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A Riemann-Hurwitz formula for the Selmer group of an elliptic
curve with complex multiplication

KAy WINGBERG

In 1981 Iwasawa considered p-adic Galois representations obtained by the
action of the Galois group of a finite p-extension on a Q,-vector space defined by
the ideal class group of the cyclotomic Z,-extension of a number field. More
precisely his result is as follows [4]: Let p be an odd prime number and let L be a
CM-field which is a finite Galois p-extension of the cyclotomic Z,-extension k.. of
a CM-field k with Galois group G =G(L/k.) and ring of integers O(L).
Assuming the Iwasawa-pu-invariant of k. is zero the structure of the minus part of
the Pontryagin dual of the flat cohomology group H'(O(L), u,-) as Q,[G]-
module is given by the isomorphism

(H'(O(L), u,-)")*®Q,=Q® Q,[G]* “° @ UEP,, Ind§ (1(G,))

"‘ka11+

where 0 is equal to 1 if k contains the group u, of p-th roots of unity and 0
otherwise; A7 (k.) denotes the A-invariant of (H'(O(k.), u,-)”)*, G, is the
decomposition group of G relative to a prime v of kX and I(G,) is the
augmentation ideal of Q,[G,]. (If A"(k.) =0 and 6 =1 the isomorphism should
be interpreted in the Grothendieck group of finitely generated Q,[G]-modules.)
Observe that H'(O(L), u,-)" is just the minus part of the p-component of the
Picard group Pic O(L).

The corresponding identity between the dimensions on both sides is the
Riemann-Hurtwitz formula proved by Kida [6].

Our aim is to show an analogous formula for the Selmer group of an elliptic
curve E defined over a number field F which has complex multiplication by the
ring of integers of an imaginary quadratic field K. In this case p has to be an odd
prime number, which splits in K, i.e. p =pp*, and where E has good (ordinary)
reduction. Let F, be the unique Z,-extension inside F(E(p)) and let L be a finite
Galois p-extension of F,, with Galois group G unramified at all primes above p*.
For the Selmer group H'(O(L), E(p)) (we do not distinguish in the notations
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588 KAY WINGBERG

between the Néron model and its generic fiber) we will then show the following
result,

THEOREM. Assuming
F(E,)/K is abelian (1.0)

then there is a Q,[G-isomorphism
H'(O(L), E(r))*®Q,=Q; ® Q,[G]*™ & ? IndS (I(G,))
vyp
E(Ey)=F,

where € is equal to 1 if F=F(E,) and 0 otherwise and A,(E.) denotes the
A-invariant of H'(O(E.), E(p))* (if A,(F.) — ¢ is negative the isomorphism should
be considered in the Grothendieck group). In particular, if e, is the ramification
index of L/E, relative to a prime w of L, then

g —Ay(L)= (e — A(E))[L:E] - 2” (ew — 1).
L,.,(E;,)———Lw

Instead of assuming & = F(E,) to be an abelian extension of K we will prove the
theorem under the more general conditions:

F. satisfies the weak p-adic Leopold-conjecture, see [1] p. 124. (1.1)
The u-invariant of H'(0(%.), E(p))* is zero. (1.2)
These assertions are true if #/K is abelian, [1] Proposition 15, [2] Theorem 3.4.

As a consequence of (1.1) and (1.2) the following is true:
(2) The Pontryagin dual of

H'(O(F.), E(p)) = H'(G(%s,/ %.), E())"

is a free Z,-module of finite rank A,(F.), [1] Theorem 12, Proposition 22, where
L is the maximal p-extensions of a field L unramified outside a set S of primes of
L, S,={v |p} and A= G(%/F). Furthermore, let S be a finite set of primes such
that SN S, =S, then according to [8], Theorem, the assertions (1.2) and (2)
imply:

G (Fs/F.) is free pro-p-group of finite rank. (3.1
For T o § the canonical map (3.2)
*yersi) I (F(P)/ Eo) = G(Fr/ Fy)
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from the free pro-p-product of inertia groups into G (Fr/Fs) induced by the maps

T,(F(p)/E.) = T,(F(p)/Fs) > G(F(p)/ Fs) » G(Fy | Fy)

is an isomorphism.

LEMMA 4. The assertions (3.1) and (3.2) are stable under base change by a
finite Galois p-extension unramified at all primes above p*.

Proof. Let L/F, be a finite Galois p-extension unramified at S,. and let T be
a finite set of primes such that L « Fr and T NS, = S,. Then by (3.1) the Galois
group G(Lz/L) of L = Fr over L is free of finite rank. Hence we obtain for the
factor group G(Ls,/L)

rankA G(Lsp/L)ab = 0,

u(G(Ls,/L)*) = p(G(Lr/L)™)=0.
Again by [8], Theorem, the assertions (3.1) and (3.2) are true for L.

LEMMA 5. Let G and A be finite groups of p-power order and order prime to
p, respectively. Let M be a Z,-torsion free Z,[G X A]-module with the properties

(@) H'(G, M) =0,

(b) HX(G,M)=Z/(G:1)Z,

() H¥(G x A, M) #0.
Then for every Z,-irreducible character x of A, i.e., Z,[A]= D, Z,[A], there are
numbers m, =0 and Z,[G]-isomorphisms

M*=Z,[G]™ for x#yxo:=1,
M*=R¥ ®Z,[G]™,

where R, is defined by a minimal presentation 1— R,— F,— G — 1 of the group
G be a free pro-p-group F; of rank d.

Proof. Let M* be the eigenspace of M with respect to x, then
HY(G, M)=® H'(G, M) =0,
X

H*(G, M) = @ H¥G, M")=Z/(G:1)Z
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Because H*(G, M*) = H*(G x A, M) # 0 we obtain

Z/((G:1)Z, x=2x0

H*(G, M* E{
( ) 0, X F Xo-

This shows that for x # x, the Z,[G]-module M* is cohomologically trivial and
therefore Z,[G)-free, as M is torsion free, [5] Lemma 1.6. According to [5]
Korollar 1.8 we obtain the assertion for the eigenspace of the trivial character.

COROLLARY 6. Let

1—wH—>F — G — 1

|

1 > H > F >» GXA —1
A

l

= A

be a commutative and exact diagram of profinite groups, where F is a free
pro-p-group of finite rank and A is a finite group of order prime to p. Then for
every Z,-irreducible character x of A there is a Q,[G]-isomorphism

(H)*® Q,=Q,[GI*~* & 0

where

L x=x
) ={ d = abyx
*=10, x %70 and n, =rankz (F*)

Proof. For the Z,[G X A}-module H* the conditions of Lemma 5 are fulfilled
because scd,(F) =<2, [3] Definition 10 and Proposition 11, and

HX(G X A, H**) 2> H¥G, H*)*— A%G, Z,)»=Z/(G:1)Z.

Sipce
H*®Q, = Q, (Gl '®Q,, d =rank F,

we obtain Q,[G]-isomorphisms

(H*)*® Q, = Q,[G]™ ® Qy
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for some m, =0. These numbers are easily calculated. Since G and A commute
we get by taking G-coinvariants

m, + 8, =rankz ((H**)*)g
= rankz, (HE)*

=rankg (F*)*=n,.

Proof of the Theorem. Let L | F, be a finite Galois p-extension unramified at
all primes above p* and contained in F;, S a finite set with SNS, =S,. Let
L=L(E;), A=G(Z/L) and G = G(L/E.). Then we obtain a commutative and
exact diagram

| — G(%/%) — G(F|F)— G —> 1

1 — G(%/¥) — G(F/E) — GxA—1
A _— A
From Corollary 6 it follows that

(H'(G(%5/%), E(p))*)* ® Q, = (H'(G(F/%), Q,/Z,)(1))* ® Q,
= Qp[G]lt'(Fx)"“#(UGS\Sv | F(E=F}—e @y Q;,

where (1) denotes the twist with E(p) and y is the character given by the action of
A on E,. Here we use (3.1) and (3.2) which give

corankz H'(G(%s/%.), Q,/Z,)* = corank, H'(G(%s,/ #.), Q,/Z,)*
+ > corank,, H'(T,(%#(p)/ %.), Q,/Z,)*

veS\S,

=A(E) + #{veS\S,|E(E,)=F}
Again with (3.1) and (3.2) and Lemma 4 we obtain

(H(G(%5/£), E(n))*)* ® Q, =(H'(G(%,/£), E(0))*)* ® Q,
& D )(H‘(T,,(@(p)/fl’), Q,/Z,)"(1))* ®Q,

veS\S,(L

=(H'(G(Zs/%), E(»)*)*®Q,
®@ D 0Q

weS\S,(L)
L, (Ey)=L,
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Thus we get an isomorphism

(H'(O(L), E(p))* ® Q, @ QF (weS\S(L) | Lu(Er)=Ly)
=Q;®Q,[GI*™*®d & Indg Q,[G,]

veS\S,(F)
F(Ep)=F,

which proves the theorem.
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