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A Riemann-Hurwitz formula for the Selmer group of an elliptic
curve with complex multiplication

Kay Wingberg

In 1981 Iwasawa considered p-adic Galois représentations obtained by the
action of the Galois group of a finite p-extension on a Qp-vector space defined by
the idéal class group of the cyclotomic Zp-extension of a number field. More
precisely his resuit is as follows [4]: Let p be an odd prime number and let L be a
CM-field which is a finite Galois p-extension of the cyclotomic Zp-extension kx of
a CM-field k with Galois group G G(L/kx) and ring of integers Û(L).
Assuming the Iwasawa-ju -invariant of kx is zéro the structure of the minus part of
the Pontryagin dual of the flat cohomology group H\€(L), \ip*) as QP[G]-
module is given by the isomorphism

(Hl(o(L), ixp~yy &lt;g&gt; qp s q* e Qp[Gf ^~à e e
v \p

where ô is equal to 1 if k contains the group iàp of p-th roots of unity and 0

otherwise; Â&quot;^) dénotes the À-invariant of (Hl(û(kx), //,,-)-)*, Gv is the

décomposition group of G relative to a prime v of kt and I(GV) is the

augmentation idéal of QP[GV]. (If Â~(/coo) 0 and ô 1 the isomorphism should
be interpreted in the Grothendieck group of finitely generated Qp[G]-modules.)
Observe that Hl(6(L), jUp»)~ is just the minus part of the p-component of the
Picard group Pic 6(L).

The corresponding identity between the dimensions on both sides is the
Riemann-Hurtwitz formula proved by Kida [6].

Our aim is to show an analogous formula for the Selmer group of an elliptic
curve E defined over a number field F which has complex multiplication by the

ring of integers of an imaginary quadratic field K. In this case p has to be an odd
prime number, which splits in K, i.e. p pp*, and where E has good (ordinary)
réduction. Let /^ be the unique Zp-extension inside F(E(p)) and let L be a finite
Galois p-extension of E» with Galois group G unramified at ail primes above p*.
For the Selmer group Hl(0(L), E(p)) (we do not distinguish in the notations
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between the Néron model and its generic fiber) we will then show the following
resuit,

THEOREM. Assuming

F(EP)/Kis abelian (1.0)

then there is a Qp[G]-isomorphism

H\0(L), E(p))* ® Qp s Q*p 0 Qp[Gf^-£ 0 0 Indgt,

where e is equal to 1 if F F(EP) and 0 otherwise and \P(F*) dénotes the

X4nvariant of Hl(€(Fao), E(p))* (if XP(FX) — e is négative the isomorphism should
be considered in the Grothendieck group). In particular, if ew is the ramification
index of L/F^ relative to a prime w of L, then

e - kp(L) (e - kp(F«))[L : FJ - 2 (ew - 1).

Instead of assuming 9 F(EP) to be an abelian extension of K we will prove the

theorem under the more gênerai conditions:

^oo satisfies the weak p-adic Leopold-conjecture, see [1] p. 124. (1.1)

The ju-invariant of &amp;(€(&amp;&lt;»), E(p))* is zéro. (1.2)

Thèse assertions are true if 9/K is abelian, [1] Proposition 15, [2] Theorem 3.4.
As a conséquence of (1.1) and (1.2) the following is true:

(2) The Pontryagin dual of

Hl(0(Fx)f E(p)) Hl(G(9sJ^)f £(p))A

is a free Zp-module of finite rank AP(FOO), [1] Theorem 12, Proposition 22, where

Ls is the maximal p -extensions of a field L unramified outside a set 5 of primes of
L, Sp {v | p} and A G(9/F). Furthermore, let 5 be a finite set of primes such

that SDSp=zSp then according to [8], Theorem, the assertions (1.2) and (2)

imply:

is free pro-p-group of finite rank. (3.1)

For T 2 S the canonical map (3.2)

G(FTIFS)
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from the free pro-p-product of inertia groups into G(FT/FS) induced by the maps

Tv(F{p)lFJ Tv(F(p)/Fs) ^ G(F(p)/Fs) ^ G(FT/FS)

is an isomorphism.

LEMMA 4. The assertions (3.1) and (3.2) are stable under base change by a

finite Galois p-extension unramified at ail primes above p*.

Proof. Let L/F^ be a finite Galois p-extension unramified at Sp+ and let T be
a finite set of primes such that L c FT and T D Sp Sp. Then by (3.1) the Galois

group G(LT/L) of LT FT over L is free of finite rank. Hence we obtain for the
factor group G(LSp/L)

»(G(LSp/L)ab) ii{G{LTlL)ab 0.

Again by [8], Theorem, the assertions (3.1) and (3.2) are true for L.

LEMMA 5. Let G and A be finite groups ofp-power order and order prime to

p, respectively. Let M be a Zp-torsion free ZP[G x A]-module with the properties
(a) /f1(G,M) 0,

(b) //2(G,M) Z/(G:1)Z,
(c) H\GxA, M)*0.

Then for every Zp-irreducible character x of A, i.e., ZP[A] 0X Zp[zl]*, there are
numbers mx^0 and Zp[G]-isomorphisms

for

where Rd is defined by a minimal présentation l-*Rd-*Fd-+G-*l of the group
G be a free pro-p-group Fd of rank d.

Proof. Let Mx be the eigenspace of M with respect to %, then

H\G, M) © H\G, Mx) 0,
X

H\G, M) © H\G, Mx) Z/(G : 1)Z
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Because H2(G, M*0)sH2(G x4,M)^0we obtain

This shows that for x^Xo the Zp[G]-module Af* is cohomologically trivial and

therefore Zp[G]-free, as M is torsion free, [5] Lemma 1.6. According to [5]
Korollar 1.8 we obtain the assertion for the eigenspace of the trivial character.

COROLLARY6. Let

// &gt; F &gt; G

i i
* 9 * Gx

1 1

be a commutative and exact diagram of profinite groups, where F is a free

pro-p-group of finite rank and A is a finite group of order prime to p. Then for
every Zp-irreducible character x of A there is a Qp[G]-isomorphism

(Hab)x®Qp~Qp[Gp-6*

where

ôz
&apos; ° and r\n

Proof For the ZP[G x 4]-module Hab the conditions of Lemma 5 are fulfilled
because scdp(F)^2, [3] Définition 10 and Proposition 11, and

H2(G x A, Hab) ~^-&gt; H2(G, Hab)A-^ Ê°(G, ZP)A a Z/(G : 1)Z.

Since

1®QP&gt; d rankF,

we obtain Qp[G]-isomorphisms

(Hab)x &lt;8&gt; Qp ^ Qp[G]m* © Q^



A Riemann-Hurwitz formula for the Selmer group 591

for some mx ^ 0. Thèse numbers are easily calculated. Since G and A commute
we get by taking G-coinvariants

rankZp

Proof of the Theorem. Let L | E» be a finite Galois p-extension unramified at
ail primes above p* and contained in Fs, S a finite set with SC\SP=SP. Let

&lt;£ L(EP), A G(&lt;£IL) and G G(L/FX). Then we obtain a commutative and
exact diagram

1 &gt; G(&amp;sl$) &gt; G(^sl^) &gt; G &gt;
1

x A &gt; 1G(^/F«) ^ G x

From Corollary 6 it follows that

QP {H\G{9sl&lt;e), QPIZPY(\))* ® Qp

— Q [G]il&quot;(&apos;ri)+*&lt;l&apos;€5VSl)I &apos;?&apos;&lt;£&gt;¦)=&apos;&gt;¦&gt;-* © Q

where (1) dénotes the twist with E(p) and ^ is the character given by the action of
A on Ep. Hère we use (3.1) and (3.2) which give

corankz,

#{u e S\SV | FV(E9) Fv

Again with (3.1) and (3.2) and Lemma 4 we obtain

e 0

e e q
\5(L p
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Thus we get an isomorphism

(H^OiL), E(p))* ® Qp 0 Q^e^L) | Lw(Ef

which proves the theorem.
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