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On values of the Gauss map of complète minimal surfaces in R3

Ricardo Sa Earp* and Harold Rosenberg

1. Introduction

Let M be a cm.s. (complète minimal surface) in R3 and g : M -* C C U {«&gt;},

be the Gauss map; g is the composition of the normal mapping M-*S2, with
stereographic projection from the north pôle, and g is conformai.

In this note we shall prove:

THEOREM 1.1. Assume M is offinite topological type and not a plane. Then
either g assumes every value infinitely often, with the possible exception of six
values, or M is offinite total curvature and g omits at most three values.

Henceforth, assume M is a cm.s. in R3 which is not a plane. R. Osserman

proved the image of g is dense and that if M has infinité total curvature (denoted
by c(M)) then g takes on every value infinitely often with the possible exception
of a set of capacity zéro. If c(M) is finite then g omits at most three values [2].

F. Xavier has proved that g can miss at most six points (the Gauss map of
Scherk&apos;s surface misses four points and it is unknown if four is sharp).

We shall use Xavier&apos;s techniques to prove 1.1 [3]. It seems reasonable that
finite topological type is not necessary. That is, if c(M) », then g should take
on every value infinitely often, except perhaps for six values.

2. A theorem of Yau

Let M be a complète Riemannian manifold, and consider the équation

A log u F

* The first author was partially supported by the CNPQ of Brasil.
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where u is a nonnegative function on M. Assume the zéros L of w are discrète, u
is smooth on M - L and Lipschitz in a neighborhood of L.

Yau has proved that if F is bounded below by a constant (where u ^ 0), and is

Lebesgue integrable with 0 &lt; JM F, then jM up « for ail p &gt; 0, unless m is

constant. If Fis zéro almost everywhere, the same conclusion holds [4]. We shall

only use this last statement.

3. Localizing the problem

Let M be a c.m.s. of finite topological type with Gauss map g; M is

topologically a compact Riemann surface M minus a finite number of points

qlr..., qr. If this is the conformai structure of M as well, then 1.1 follows from
Osserman&apos;s work and Picard&apos;s theorem. More precisely, consider g in a punctured
dise neighborhood of one of the points qr If q} is an essential singularity of g then
1.1 follows from Picard&apos;s theorem. Otherwise g extends meromorphically to qr If
this happens at each q} then g extends meromorphically to M and M has finite
total curvature. Then g(M) misses at most three points by Osserman&apos;s theorem.

Hence we may assume the conformai structure at some end of M is that of an
annulus

A {z/0 &lt; r&apos;1 &lt; \z\ &lt; r &lt; 00}.

The Weierstrass représentation of M in A is (g, w) where w=f(z)dz, f is

holomorphic in A, and the zéros of /coincide with the pôles of g.
The metric on M in A is given by

where 2Â |/(z)| (1 + |g(z)|2). Since M is complète we hâve

ds-00
Y

for every path y in A tending to the boundary \z\ r.

Suppose that g does not take on every value infinitely often, with the possible

exception of six values. Then there are seven points px&gt;... ,p7 on the sphère
that hâve a finite number of preimages in M. Since thèse preimages are in a

compact subset of M, we can choose the end A so that g does not take any of the

values/?!,... ,p7 in A.
Now 1.1 will follow from:
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THEOREM 3.1. g can omit at most six points in an annulus end A of M.

The proof of 3.1 will occupy the rest of the paper and will be by contradiction.
So, we assume g misses seven points pXf...,p7\nA. After a rotation of M we

can assume p7 », so that g:A-&gt;C - {px,. p6}.
Consider the function on A:

*«—
8&apos;{z)

where q and a will be chosen later. Since g has no pôles in A, /has no zéros in A
and h is holomorphic in A.

Using Yau&apos;s theorem, we will prove

1

for ail p&gt;0. Then (by generalizing Xavier&apos;s technique) we will prove this latter
intégral is finite, thus proving 3.1.

4. How we apply Yau&apos;s theorem

Since h is holomorphic in A&gt; we hâve A\og\h\=0 almost everywhere;
however, we cannot directly conclude I is true since the metric on A is not
complète at the boundary component \z\ r~l.

Consider the metric dx on A defined by:

dx k(z)k(-) \dz\.

It is easy to check dx is a complète metric on À. Define fi(z) h(z)h(l/z). Then
A log \fi\ 0 on À so Yau&apos;s theorem applies and we hâve

Write Â=Ai + A2 + B where Au A2 are small annular neighborhoods of
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|2:| r&quot;1, |z| r, respectively, and B is their compact complément. Moreover,
choose Ai, A2$o that A2 is the image of Ai by the map z*-*z~x*

Since \B |/t| &lt; », we hâve jAi \fi\ oo or jAz \d\ ». By change of variables we
hâve

f 1*1 - f l4
z

;

hence

f |*| «
•Mi M

On A2, A(l/z) and h(l/z) are both bounded; hence

1 ^

f
A2

and we conclude J^ \h\p », for ail p &gt;0 (since 4 log \hf -pA log |/i|).
The only point to check is that if fi is a nonzero constant, then \\ \ft\ oo. This

follows from the fact that the volume of A is infinité with respect to any complète
metric: just apply Yau&apos;s theorem to \z\ on A.

5. Another Estimate of jA \h\p

F. Xavier proved the intégral in question is finite on the dise H, when h is
defined on ail of //, i.e., when g missed seven points on M. His proof uses some
estimâtes coming from normal families in the dise. We will do the same analysis
in the annulus.

LEMMA 5.1. Let g:A-*C be holomorphic and omit k points p{, pk,
k &gt; 6. Then there exists a and p, 0 &lt;p &lt; 1, such that

1
n\g{z)-Plr

We claim 5.1 proves jA \h\p is finite for some p &gt; 0, thus establishing 3.1.
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To see this, notice that the volume form on H, in terms of (g, /) is given by
k2dxdy, where 2A |/| (1 4-|g|2). Hence the intégral of 5.1 is in fact jA \h\p,

where pq - 2.

The remainder of this section will be devoted to obtaining a majorant for the

integrand of 5.1:

Then in section 6 we will prove this majorant has a finite intégral on A.

LEMMA 5.2. Assume kpoc 5, pa &lt; 1, a &lt; 1 and p(2 - a) &lt; 1. Then there

are constants Cv such that

More preciselyy we shall décompose A into measurable sets, on each of which this
estimate is valid.

Proof of 5.2. Let T,{z) \g(z) -Pj\ and D} {z eA/\g(z) -Pj\ &lt; e &lt; 1},
where e is chosen so that the D, are pairwise disjoint for 1 &lt;/ &lt; k.

On each Dn we hâve g bounded so there is a constant Cy such that for z eDjy

Now if or &lt; 1, then on D;, we hâve

1 2
2—a &apos;fa fa i T&gt;2

1 j 1 j T 1 j

Hence on V U;*=i £&gt;;&gt; 5.2 is established.

Now consider / on A - V. On the set where e &lt; 7J &lt; 1, we hâve |g| and 771

bounded, so there is a constant C such that

fpa1 /

for a &lt; 1, so the same reasoning as above establishes 5.2.
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So assume each 7J 2= 1. Then if kpoc 5, poc &lt; 1, p(2 - or) &lt; 1, and aOt.. a4

are positive numbers, then it is dear that

&lt;=o _J_ Ci

for some constants Ctt C2.

On the set in A — V where 1 ^ 7J ^ X^, for some #, we hâve g bounded and

for some constant C. So 5.2 follows on this set.
We know Tt,..., Tk differ by bounded numbers that dépend only on

Pi,...,pk. Hence there is a constant K&gt; 1 and C&gt;0 such that if each Tt&gt;K,

then

1 C
A: 77&quot;**

n Tpta ;

for each /&apos;.

Hence

Tkpa1 j

Now by our previous remark, 5.2 is proved.

6. An estimate for jA Kdxdy

We will use Xavier&apos;s idea of employing normal families to estimate this

intégral.
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LEMMA 6.1. Let g:Q-+C be a holomorphic map on a domain QaC, such
that g omits two values 0 and a^O. Let &lt;f&gt;k:H-* Q be a family of conformai maps
indexed by XeF. There is a C &gt; 0 such that for z &lt;f&gt;x(O),

Is&apos;COI

_ c
101(0)1&apos;

\8&apos;(z)\ ^ Ck

forkeZanda l- (l/jt).

Proof of 6.1. The family g&lt;px.H—*C is a normal family. Hence, by [1],

Now to obtain the second inequality, apply the above to the family
We will apply 6.1 to fi the annulus AcH, A {e&apos;&quot;&lt; \z\&lt; 1}, and the

family of conformai covering maps (f&gt;z:H-^A, given by

where w eH, z eA, z exp (i log d), 0
Calculating the derivative we obtain:

z.

\z\ 1--

Let r log|z|2. Then

|1 - cos t - i sin t\ V2 - 2 cos t.

In a neighborhood of 9A (i.e., f 0), we hâve
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hence

;dxdy

and this is finite for p &lt; 1.

Hence $AJdxdy is finite, provided kpoc 5, poc &lt; 1, a &lt; 1 and (2 - cr)/&gt; &lt; 1.

So take k 6, or i!&gt; P i§ to conclude.
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