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Representations of bipartite completed posets

L. A. Nazarova and A. V. ROITER

0. General concepts and results

0.1. A completed poset S consists of a finite set S, a partial order relation
S=={(s,t) e S*:5 =t} on S and an equivalence relation ~ on S=. These data are
subjected to the condition that r =s =t and (r, t) ~ (', ¢') imply the existence of
a unique s’ satisfying r' =s'=¢', (r,s) ~(r', s') and (s, t) ~ (s', ).

In case (s,s)~(s',s') we shall write s ~s’, thus obtaining an equivalence
relation on S. In fact, it follows from the axioms that (s, t) ~ (s’, s') implies s = ¢
and that (s, ¢t) ~(s’, ¢t') implies s ~s’ and ¢t ~¢'.

0.2. Completed posets provide a convenient formulation of the matrix
problem which is our real center of interest. We first attach two categories to the
completed poset §: Let s,, . . ., 5, be a numbering of S and k a field. The objects
of our first category S, are the vectors v =[v,---v,]€N" such that v, =v; if
s; ~s;. In order to define the morphisms, consider two objects u, v and a matrix
B € k™™ where |v|=v;+ - - - + v, (we do accept matrices having no row or no
column!). We subdivide B into rectangular blocks B; € k>** (1=i, j=n) in the
usual way, and we define Hom (u, v) as the subspace of &' formed by the B
such that B; = 0 if s; £5; and B; = B, if (s;, 5;) ~ (5,, 5,). The composition of S is
given by matrix multiplication (the condition imposed on completed posets makes
sure that B'B € Hom (u, w) if B €e Hom (u, v) and B’ € Hom (v, w)).

We call dimension-vector a pair d = (dy, d) =[dod, . . . d,] e NxN", where
d=|[d;---d,) €S. Further, we call representation of S of dimension d a pair
(d, M) formed by a dimension-vector d and a matrix M € k%*"!_ For i= 1, we
call d; the dimension of (d, M) at the point s;, A morphism of representations
(d, M)—> (e, N) is given by a pair (A, B) of matrices A €k%*% and Be
Hom (d, &) such that AN = MB”. Composition is defined by (A4’, B')<(A, B) =
(AA’, B'B). Let rep S denote the category thus defined.

The representations of completed posets play a central role in general
representation theory. For information on how they fit into this broader context,
we refer to [5,9].

Our problem is to determine the isomorphism classes of rep . If we set
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Representations of bipartite completed posets 499

GL,, = {A € k™ :det A #0} and Autd = Hom (d, d) N GL,j, these classes cor-
respond bijectively to the orbits of the groups GL,, X Autd in the spaces k%!
under the actions (A, B; N)—> ANB~7. We are especially interested in the case
where there are only finitely many orbits for each d.

0.3. Of course, the investigation of these orbits is greatly facilitated by the
observation that the category rep S is additive. In fact, we fix and shall need a
canonical construction for the direct sum of two representations. Our “canon’ is
illustrated with an example in Fig. 1, where (e, P)® (f, Q) = (e +f, M). The
symbol s — ¢ means that ¢ is subsequent to s in §. The produced morphisms are
our canonical projections. The canonical immersions are defined by the trans-
posed matrices. The (canonical) direct sum ®i_, U; of a sequence Uy, ..., U, of
representations is defined recursively by @®;_, U, = (®;Z; U;) ® U,.

[V ]
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S

I
N O€—0r

e=[2 1111 f=[1 1100 e+f=[32211]
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Figure 1

We call a representation indecomposable if it is not zero and not isomorphic to
the direct sum of two non-zero representations. It is clear that each repre-
sentation of § is isomorphic to a direct sum of indecomposables. The unicity of
such a decomposition up to isomorphism follows from the fact that idempotent
endomorphisms of rep § split (1.1). This reduces our classification problem to the
description of the indecomposables. We are particularly interested in the case
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where § is representation-finite, i.c. admits only finitely many isomorphism classes
of indecomposables.

[ ] > [ ]
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(1,1,1,1) 2,2,2) (1,3, 3)
[} '70
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(1,2,95) (2«2,4)
Figure 2

The representation-finite S are determined in [1][2] when S is a trivially
completed poset (i.e. ~ is the identity), in [6] when (s,f) ~(s',¢') and
(s,2)#(s', t') imply s =t and s’ =t'. The result in the first case is that a (trivially
completed) poset is representation-finite iff it does not contain a full subposet
(= subset equipped with the induced order) of one of the 5 forms given in Fig. 2
(where the symbol s — ¢ now means that ¢ is subsequent to s in the subposet!).

Because of the striking simplicity of this result, our general method is to
reduce the characterization of representation-finite completed posets to the
trivially completed case. In the present article, we present such a reduction in a
particular case which happens to be crucial for the general solution, as will be
shown in a forthcoming paper.

0.4. In the case of a representation-finite S, it is easy to prove that each
equivalence class of § is linearly ordered and has cardinality =3. From the first
part of this statement and the axioms of completed posets it then follows that
(s, )~ (s', t) implies s =s’, and dually that (s, t) ~ (s, t') implies ¢ =¢'. In fact,
the conditions which we shall impose on § in this article are much stronger.

Let {1,...,m}cN be an interval and u:{1,..., m}—>{1,...,m} a
non-decreasing function such that u(i) =i + 1 for each i <m. By a p-chain Pin a
partially ordered set P we mean a subset PcP consisting of m linearly ordered
elements s5,<---<s, such that for each i=m the interval [a;, a,,,]={p €
P:a;=p=a,,). coincidesﬂ with {s;, Si41, ..., S.}. Whenever we refer to a
bipartite completed poset § = P<1Q, we implicitly assume: first that we are given
a function u and two finite posets P, Q equipped with u-chains P={s,<-.-<
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sm}, O ={si<---<s,,} respectively; second that § is described in terms of the
data as follows.

a) S =P LI Q (= disjoint union)

b) §=P=UQ=U P x Q (in particular, p € P and q € Q imply p <gq)

c) (si, 8;) ~(si, s)) if i =m and j = u(i); any other (s, f) € S= is equivalent only
to itself.
The points of P and Q° are called thick, those of P = P\P and O = O\OQ thin. For
each thick point s € S, we denote by s’ the point of § such that s' ~s #s'. The
quasidual of § = P<IQ is by definition $* = Q<IP.

) dN

a——'b

Nl Ao,

Figure 3

Figure 3 shows an example of a bipartite completed poset and its quasidual.
There we have m =2 and u(1) = u(2) =2, the thick points are represented by
ringlets and the arrows from the first to the second components of £ and E* are
omitted.

Of course, the dual §° of a bipartite completed poset S can also be defined.
But we have £°> F in the case of Fig. 3.

0.5. Let $=P<Q be a bipartite completed poset. For each s €S, we set
S(s)={teS:s*t¥s}, endow S(s) with the order relation induced by S,
formally add to S(s) a smallest element 0 and a largest element 1 and denote the
poset obtained in this way by S(s) = S(s) U {0, 1}. With this notation, we attach
two posets P and O to the components P and Q: The poset P consists of the thin
points s € P and of the pairs (p, t) where p € P and t € S(p’). We equip the subset
P of P with the order induced by § and set s=(p, t) iff s=p, (p,t)Ssiff pSs.
We further set (p,, t;) = (p,, t,) in the following two cases:

a) py<pz and (p,, p2) * (p1, p2).

b) pi=p,, (p1, p2) ~(p}, p5) and one of the conditions pi =6, #1, 0#¢ =
pzor t; =t, holds.

The description of Q is dual (and quasidual) to that of P. In particular, the
elements of O have the form te Q or (q, s) where g € Qandse S(g").

In the case § = E (Fig. 3), P and Q are given by Fig. 4.
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Figure 4

Now we can formulate our first main theorem:

THEOREM 1. The bipartite completed poset S = P<IQ is representation-finite
iff so are the posets P and Q.

0.6. Let T be a subset of S which is stable under the equivalence relation of S
(i.e. s€ S, te T and t ~s imply s € T). The structure carried by S then naturally
induces a completed poset structure T on T. If we equip T with the numbering
“induced” by that of S (0.2), we obtain a fully faithful embedding rep T — rep $.
More precisely, we can extend each dimension vector d of T by zero and obtain a
dimension vector d° of S (d}=d,, d?=d, if s;=t; and d?=0 if 5;¢ T). The
embedding functor is then simply (d, M)~ (d°, M). It permits us to identify the
set ind T of isomorphism classes of rep T with a subset of ind S.

For instance, the trivial representation J, of S, whose dimension-vector is
[10---0], is associated with a representation of J! More generally, each
representation (e, M) of § has the above form (d° M) if we take T to be the
support {s;€ S:e; #0} of (e, M).

If the support of (e, M) equals S, we say that (e, M) is faithful. And we say
that § is faithful if § admits a faithful indecomposable representation.

THEOREM 2. Let § = P<Q be a faithful bipartite completed poset.

a) If the poset S(s) is linearly ordered for each s € P (resp. s € Q), then there is
a natural bijection from ind $\ind P onto ind Q\{,} (resp. from ind $\ind Q onto
ind p \{@0}).

b) If S is representation-finite and if there exist thick points p € P and qe Q
such that neither S(p) nor S(q) is linearly ordered, then § is isomorphic to E or E*
(0.3).

1. The easy direction

Our objective in this section is to prepare the general demonstration by
proving the first part of Theorem 2 and the necessity of the condition of theorem
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1. From 1.2 onwards, we fix P, Q and § = P<|Q. We choose a numbering of
S=PUQ wt}ich first numbers P (in the order of succession s,, . . ., s,, imposed
by P), then P, Q (in the order of succession s}, . . ., s.,) and finally Q.

1.1. Let us briefly recall why representations of a completed poset S can be
“uniquely”” decomposed into indecomposables.

We first notice that the category S, (0.2) is k-linear in the sense that the
morphism spaces carry k-vector-space structures, that the composition is bilinear
and that finite direct sums exist: In fact, we can set u @ v = u + v if we define the
canonical immersions and projections in the obvious way. Each point t € § gives
rise to an indecomposable ¢ € S; whose endomorphism-algebra is local (¢, =1 or 0
according as s;~t or s;7Ft). The map t—t yields a bijection between the
equivalence classes of S and the indecomposables of S,. Each object v e S, is a
finite direct sum of indecomposables. Finally, for each idempotent F e
Hom (v, v), there exist morphisms R € Hom (v, u) and S € Hom (&, v) such that
F=SR and 1,=RS (since Hom (v, v) is a finite-dimensional algebra, F is
conjugate to a sum of idempotents occurring in the natural decomposition of 1,
into pairwise annihilating primitive idempotents).

Like S, the category rep § (0.2) is k-linear. Each decomposition (d, M)>
(e, P) ® (f, Q) gives rise to an idempotent (E, F) € End (d, M), the projection
onto the first summand along the second. To prove the converse, we must supply
each idempotent (E, F) with morphisms

(d, M)LL5s (e, P) 220 (4, M)

such that (E, F)=(VU, SR) and (1., 1.,) = (UV, RS). For this, we first con-
struct U, V (clear!) and R, S as above; then we set P = UMR”.

Since the direct sum decompositions of (d, M) corresponds to the decomposi-
tions of 1, into pairwise annihilating idempotents, (d, M) is a direct sum of
indecomposable representations, which are uniquely determined up to
isomorphism.

1.2. We now assume that § = P<1Q. Using the action of GL,, x Autd (0.2),

we can reduce each representation (d, M) of § to the form of Fig. 5. Indeed, we
can first find a matrix A € GL,, such that

where M, € k"<'%' and r = rank M,. Then there is a C such that M,C = M’, and
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1 0 -
AMB™T is given the wanted form by setting B = [ cT ﬂ] € Autd.
[M”O]}r dp=[d\d; - - dpp]
0 :Mplldy—r r=rank M,
paadibm el
|dp| || — |dp| |P| = cardinality of P
Figure 5

This means that each representation of S is isomorphic to a “reduced”
representation whose matrix has the form of Fig. 5. If (A, B):(d, M)— (e, N)is a

morphism of reduced representations, we subdivide A, B into blocks adapted to
those of M and N:

A Az] _[B, 0]
A"[A3 AL B= B. B,)

The condition AN =MB" then means that A,N,=M,B{, A,N,=M,B],
A3Np =0 and A4Ny = M,B]. Since the rows of N, are linearly independent by
assumption, the equality A;N =0 implies A; =0.

In case (A, B) is an isomorphism, the condition imposed upon B, is to lie in
the automorphism group of dp in the category P, associated with the (trivially
completed) poset P. This means that for M, we can choose representatives of the
isomorphism classes of rep P and then restrict (A, B,) to Aut Mp. The problem
then stays with B,, which must be an isomorphism of Q, and share some
“subblocks” with B,. To examine into this condition, we introduce supplemen-
tary simplifying assumptions.

1.3. Let % be a sequence
(dllﬁ Ull)’ R (dllp Ull;)) R (dij’ Uij): ceey (dmh Uml)) ey (dml,,,: Uml,,,)

of pairwise nonisomorphic indecomposable representations of P such that
(d;j, U;) has dimension 1 at s; € P and 0 at all other thick points of P(1=i=
m, 1=j=I[). We denote by repy S the full subcategory of rep § formed by the
reduced (1.2) representations (d, M) whose P-component has the form

(*) (dP, MP) = (dlh Un)“” b---D (dij; Ui,')“‘/ @---D (dm,m, Um,m)”""m

where dp=[rd,---dp) (Fig. 5) and pu; € N. We stress the point that this direct
sum has to be constructed according to the prescribed canon (0.3).
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The category repy, S is k-linear, and its indecomposables are indecomposable
in rep S: If (e, N) is a direct summand of (d, M) e repy, S, we can first reduce
(e, N) to the form of Fig. 5 and then further convert the P-component to a direct
sum of the form (*).

Of special importance for us will be the case where, up to isomorphism, %
exhausts the indecomposables of rep P whose support intersects P. In this case,
the indecomposables of rep § which are not isomorphic to an indecomposable of
repy S lie in rep P (0.6).

1.4. In order to describe repy, S, we introduce a set Q, which consists of the
representations (d;, U;) and of the thin points of Q. We equip Q, with the
following relation R — Q%: In case q, r € Q we set gRr (i.e. (g, r)eR)) iff g=rin
Q. Similarly, we set gR(d;, U;) (resp. (d;;, U;)Rr) iff g =s; (resp.s;=r) in Q. In
case (s;, s,)~ (si,s,) we set (d;, U;)R(d,,, U,,) iff there exists a morphism
(A, B):(d;, Uj)— (d,,, U,,) such that B,,#0 (0.2). Finally, we also set
(dy, Uj)R(d,, U,,) if i=u and (s;, 5,) # (5], S..)-

The following proposition uses the notations of 1.2 and 1.3. In particular, if
(d, M) e repy S, (dp, Mp) is the direct sum of 1.3. By d, we denote the row

do=[(do—r) putrz* * * Uy, d1 413" - - d,] € NIV ™!

PROPOSITION a) The relation R is a partial order on Qg,.

b) If (A, B):(d, M)— (e, N) is a morphism of reps, S, the block B, belongs to
the morphism space Hom (d,,, ;) of Q-

¢) The reduction functor R:repy S— rep Qu, (d, M)~ (dy, My) which maps
a morphism (A, B) onto (A,, B,) is an epivalence.

The neologism epivalence, chosen here for a widely used notion of repre-
sentation theory, means that & detects isomorphisms (u is invertible if so is Rpu)
and induces surjections on the morphism spaces and on the isomorphism classes

of the objects. It follows that # induces a bijection between the isomorphism
classes.

Proof. a) The crucial point is to prove that (d; U;)R(d,,, U,) and
(du, U,)R(d,,, U,,) imply (d;, U;)R(d,,, U,;). This is clear by definition if
(8: 5,) # (s}, s}). Otherwise, there are morphisms (A, B):(dy, Uj)— (duy, U.y)
and (C, D):(d,,, U,)— (d,., U,,) such that B, #0# D,,. It follows from 0.4
that (DB),; = 5., Dy, B = Dy By #0.

With these notations, we must also prove thati =y, j =z, implies i = u, j =v.
The reason is that in case (i, j) # (4, v), (AC, DB) would be nilpotent though
((DB) )i = (DiuBui)N #0.



506 L. A. NAZAROVA AND A. V. ROITER

b) We must prove that a block of B, vanishes if it is associated with a pair
(x, y) € Q% such that x £y. Since B,, =0 if s, £s,, it suffices to examine the case
x =(d;, U;), y = (dyy, U.,) where (s;, s,) ~ (s;, s,). Then the associated block of
B, is equal to a certain subblock of the block B,; of B. We can interpret each
coefficient of this subblock as the 1 x 1-block D, associated with a morphism
(C, D):(d;, U;)— (d.v, U,,). By definition of the order of Qq, the coefficient is
zero if x £ y.

¢) By construction, R induces a surjection on the objects. Let now
(d, M), (e, N) be two objects of repy, S and (C, D) a morphism (dg, My)—
(e, Np). We must find an (A, B) such that C=A, and D = B,. Of course, we
will set A,=A;=B,=B;=0 (1.2). The problem is to find an
(A;, By):(dp, Mp)— (ep, Np) such that B, shares appropriate blocks with B,.
More precisely, each pair (x, y) € Q% such that x = (d;, U;)=y = (d,., U,,) and
(s;» 5.) ~ (s, s.,) determines a subblock of (B,),; = B,; which is prescribed by the
datum of B,. So it is enough to prove the existence of an (A4,, B;) for which all
these subblocks are arbitrarily prescribed. As in b) above, this follows from the
interpretation of the coefficients of these subblocks as 1 X 1-blocks associated with
morphisms between direct summands of (dp, Mp) and (ep, Np) of type (d;, U;)
and (duv; Uuu)

It remains to prove that & detects isomorphisms: Consider a morphism
u:X—Y such that Zu is invertible, and choose a v:Y— X such that Zv =
(Ru)~'. The kernel K of End X— End #X then contains 1y — vu. Since
0+ Z e repy, S implies RZ # 0, K contains no primitive idempotent. We infer that
K and 1, — vu are nilpotent. Hence vy is invertible and so is uv.

1.5. Proof of the necessity in Theorem 1. Each thick point ¢ € P gives rise to
two indecomposable representations of P supported by ¢: Their dimension-vectors
are [01p] and [11p] where t, € N'*! satisfies tp; = 1 if 5; =t and tp; =0 if 5; # t; we
denote them by {t}o and {t},.

Similarly, if teP and seP are incomparable, we denote by {¢, s}, “the”
indecomposable representation of P with support {s, ¢} and dlmensmn-vector
[15p + tp).

Now, if the sequence % of 1.2 runs through all indecomposables of rep P of
the form {t}o, {t}; and {¢, s}o, the poset Qq, of 1.4 is obviously identified with Q.
By Proposition 1.4c), 0 50y is representation-finite if so is S.

1:6. Proof of Theorem 2, part a). If S(t) is linearly ordered for each ¢ € P, the
sequence % chosen in 1.5 exhausts (up to isomorphism) the indecomposables of
rep P whose support intersects P. The statement to be proved therefore follows
from the last sentence of 1.3 and the Proposition 1.4c).
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2. The poset Q associated with § = P</Q

The progress made in Section 2 reduces the proof of our Theorems 1 and 2 to
the following combinatorial statement. Its demonstration will spread over the rest
of the article, where P and Q are always supposed to be representation-finite.

THEOREM 3. Suppose that §=P<Q is faithful, that P and Q are
representation-finite and that there exist points p € P and q € Q such that neither
S(p) nor S(q) are linearly ordered. Then § is isomorphic to E or to E*(0.4).

2.1. We first recall the classification of the indecomposable representations of
a representation-finite poset 7. According to [3] the support of a non-trivial (0.6)
indecomposable is a full subset of 7 which is isomorphic to one of the 13 posets of
Fig. 6. The number below the symbol of a listed poset is the number of its
isoclasses of faithful indecomposables.

So each supporting subposet 2 of T (i.e. each full subposet of the form of Fig.
6) yields the indicated number of non-trivial indecomposables of 7. We denote
these indecomposables by X, X, - - - . For instance, each “monad” {¢;} yields 2
indecomposables, the representation {t;}, whose dimension vector d satisfies
dy=0, d;=|d| =1, and a representation {t;}, with matrix [1]. Each “dyad” {¢,, ¢,}
yields 1 indecomposable {t;, t;}, with matrix [1:1]. Each “triad” {¢;, t;, t,} yields 2
indecomposables, the first {t, ¢;, t }o with matrix [1:1:1}, the second {¢, ¢, t},

with matrix [15031] cee
0:1:1

° ° i o3>0 o3
L] . L] *——>e ——>e e— e —— 30
1 1,1 (1,1,1) (1,1, 2) (1,2,2) (1,2, 3)
2 1 2 1 3 5
b ¢——>e o—>e
o ——>e "—{;0 0—40
*—> 0 ———>0 —> 9 o——>¢ o— 39— 39
(1,2, 4) (2<2,2) (2<2,3)
14 1 9
. . o——>e o> 0
o—_—’/-)t;?o .2&). . 4
Y @ =——F® ®——3 @D @ — o> o ——> o o3 —— o —> ¢
Q, 316—3) (=23, 3) (2—>%<~—4) (2<—21—>4)
1

Figure 6
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2.2. EXAMPLE. In the case §=E (0.4), all the indecomposable repre-
sentations of P whose support intersects P are listed in Fig. 7. For each of them,
the intersection consists of 1 point, and the dimension at this point is 1.
Therefore, we can let the sequence % of 1.3 run through all the indecomposables
of Fig. 7, which describes the poset Q4 of 1.4 in this particular case.

{a}(, {a,c,po{a,p}o {b}, {b,chy {b}

>

\\//’°

a,cly f{a.c,ph lah 4
-d
Figure 7

The poset of Figure 7 “fully” contains 11 monads, 18 dyads, 8 triads, 12 copies
of :_,. and 1 of :=3:, which yield 22,18,16,12 and 3 indecomposables
respectively. Together with (J, and the five nontrivial indecomposables located in
P, E therefore has 77 indecomposables and is representation-finite. Among the
50 “supporting’ subposets enumerated above, there is just one which involves all
the points of E up to equivalence, namely {d, {b},, {a, ¢, p}, <q}. This means
that E has exactly 1 faithful indecomposable, whose matrix is

.............................

c p a b dgq
Figure 8

2.3. Returning to the general case, we denote by 7;.. the poset obtained from
a representation-finite poset T by substituting a chain t,—,— - - - — ¢, for a point
te T as shown in Fig. 9 (e =1). We say that ¢ has multiplicity =e in T if T,,, is

NN '\./ \
NS

T T;Xq L,

S /

Figure 9
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s 3 % .
% % % T
3 3
- ° ° & ————p ® 1

(H) (1, 1) (1, L,1) (1,1,2) (1,2,2)

2

> O ———

*——3>0 Qe 30— 3¢
2 2 2
(1,2, 3) (2<2,2) (1, 3<3)
Figure 10

representation-finite. The multiplicities =2 occurring in the posets of Fig. 6 are
listed in Fig. 10.

We apply the construction above in case T=P and te€ P. If Q contains a
chain g,— - - -— g, of elements incomparable with ¢’ € Q, then P contains the full
subposet formed by the elements p e P, (r,0) for re P and r=t¢, (¢, q;) for
1=i=c, and (s, 1) for s € P and ¢t =s. This subposet is naturally isomorphic to
P« (+2 and is representation-finite. It follows that ¢ has multiplicity =c +2 in
each full subposet of P containing ¢. In particular, a supporting subposet 2 of P
(2.1) which intersects P must be isomorphic to one of the 8 posets of Fig. 10; and
>N P contains only points of multiplicity =2 in 2.

2.4. LEMMA. P contains no full subposet of one of the following three forms,
where a and b are supposed to be thick.

— b *—>0 b
(1) a — b (2) «a -~ (3)a /—;

—>e —_—> ——>e

o o *o—>0 [ ]

Proof. We first assume that (a, b) ~ (a’, b'). Then, if P contained 1), 2) or 3),
P would contain a full subposet of one of the following forms, hence would not
be representation-finite

(b, 0) e——4(b, 1) > o s e se——>3e
(a1 0)0 —>e (a: 1) ._‘"‘).Z—). .LO/————).-————)O

. . o 30 d
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In case (a, b) #(a’, b'), we introduce the point c € B subsequent to a, which
satisfies a <c<b and (a,c)~(a’, c¢'). In subcase 1) P then contains the full
subposet a>— oc in contradiction to the first part of the proof. In subcase 2) or 3),

. d-——ob
P contains a full subposet of the form " +f. Since P cannot contain a full
ao—->-e
co—ob
subposet of the form , ¢ must be comparable with e. This implies c <e

e f

because e < b. By duality, we also obtain that d <c, in contradiction to d <e.

2.5. THEOREM 4. Let X be the 2 support of an indecomposable representation

(d, U) of P. If X intersects, P, 3N P has exactly one point, and the dimension of
(d, U) at this point is 1.

Proof. By 2.3 2 is isomorphic to one of the 8 posets of Fig. 10, and 2 N P
consists of points of multiplicity 22 in 2. In case |2 N 131 =2, it follows from Fig.
10 that X contains a full subposet of one of the three forms excluded by Lemma
2.4. So we must have |2’ N Pl=1

It now remains for us to go through the list of the faithful indecomposable
representations of the posets of Fig. 10 and to check that the dimension at a point
of multiplicity =2 is always 1.

2.6. The proof of Theorem 4 only uses the representation-finiteness of P, not
that of Q. Therefore, if P is representation-finite, we can let the sequence U of
1.3 run through representatives of all the indecomposables of rep P whose
support intersects P. Proposition 1.4c) then reduces the representation-theory of
S to the representation-the(zry of a poset Oy which in the case considered here
will be further denoted by Q.

In other words, if P is representatlon -finite, all the required information is
contamed in the poset Q and not in Q, whnch is identified with a full subposet of
Q The problem is that the structure of Q is much more 1ntr1cate than that of Q.

In Section 3 below, we collect the information about Q used in the further
demonstration, at various places of which we also need statements of the
following lemma.

LEMMA. S contains no stable subset T such that the induced completed poset
T (0.6) has one of the following forms (where (a, b) ~(a’, b")).
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P ° ' o—e *—>0—0 e—3e .
O Q> O—>0 O——30 O——>0—30 O——>0O—>0
a a b a b a b a b a b
al al br al bl al bl al bt al b'
Q ) —30 O—0 O—>0 0 ) e O O ——ep O30
N —e SN\ S .
L] s ] * *
(1) (2) 3) (4) (5) (6)

Proof. Construct the associated posets Q and check that they contain full
subposets of the forms described by Fig. 2.

3. On the structure of the poset é

Denote by éa the subset of é formed by the indecomposable representations
of P chosen in 2.6 whose support contains a thick point a € P. Our purpose is to
compare Qa with Qb under the assumption, valid throughout this section, that
a<b and (a, b) ~(a', b').

3.1. Our first lemma uses the following notation: If V=(d, M) is a
representation of a completed poset T = {t;,t,,...}~, we denote by V(s))e
k%*% the matrix consisting of the first d; columns of M, by V(s,) € k%*% the
mamx formed by the following d, columns - . In particular, if 7=P and
Ve Q,,, we know by 2.5 that V(a) is reduced to 1 column

LEMMA. A representation V € Q,, is smaller than the minimal element {b}, of

Q,, iff V(a) is a linear combination of the columns of the “strips” V(s) where s € P
and s < b.

Proof. Set V =(d, M). If (A, B):V — {b}, is a morphism of rep P, then B is
a row and A the “empty” matrix. The condition AN =MB7 of 0.2 therefore
means that 0= MB” = ¥ _, M(s)B(s)" if we define j by s;= b and set B(s;) = B,
(0.2). In the occurring sum, we have M(b) =0 by 2.5 and B(s) =0 if s £b (0.2).

Now, if V <{b},, we can choose B so that B(a) € k is non-zero. It follows
that M(a) = ~X,sa.s<s M(s)B(s)"B(a)™".

The converse should be clear.
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3.2. LEMMA. If P contains no element which is incomparable with a and b,
then {a}, is the only element of Q,, which is incomparable with {b},.

Proof. The lemma follows from 3.1 and Lemma 3.3 below.

3.3. LEMMA. Let T be a finite poset, t € T a point and V an indecomposable
representation of T which is not isomorphic to {t},. Then each column of V(t) is a
linear combination of the columns of the strips V (s) where s % t.

Proof. Assume that the conclusion of our lemma is wrong for V = (d, M).
Then there is a row x € k% such that xV(¢) #0 and xV(s) =0 whenever s #¢.
Setting y = xM, we infer that y” is a non-zero morphism from ¢ (1.1) to d (0.2) in
S and (x, y7):{t},— V a non-zero morphism in rep T.

The row xV (t) # 0 has d; entries, where i is defined by s; =¢. We choose a row
w € k% such that xV (£)w” #0 and set

z=[0‘--0 wl...wd()...()]eklc?l

d]+"'+d,'~]

In this way, we obtain morphisms

{t} xy7) 1%4 (Mz7, z) {t},

with composition (xMz7, zy") = (yz”, zy") = xV(O)w”, wV (t)"x") £ 0. We infer
that {¢}, is a direct summand of V in contradiction with the assumptions of the
lemma.

3.4. From now on, we write s Xt if 5, t € § are incomparable, and we say that
a thick point c is normal if S(c) = {s € S :s X ¢} is a linearly ordered subset of S.

LEMMA. Assume that b e P is normal and that there is a d € Q such that
a' >3 d>b'. Then the elements of é,, which are incomparable with {a}, are {b},
and {b, c},, where a3 c3<b. The elements V of é which are incomparable wtih
{b},are {a},, {a, c}, where a><c>b and {a, c, s}, where c3a>s3c3 b >s.

Proof. It is clear that the listed indecomposables have the required pro-
perties. And the elements of Q,, which are incomparable with {a}, are the listed

ones, because Q,, ‘consists of {b},, {b}, and indecomposables of the form {b, c},
where b >< c.
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It remains for us to examine the indecomposables V € éa whose support X
does not have the form (1) or (1, 1) of Fig. 10. The existence of d implies that a
has multiplicity =3 in X' (2.3) and excludes the posets (1,2, 3) and (1, 3 «3) of
Fig. 10. We shall consider the 4 remaining cases separately.

If = {a, c, s} has the form (1, 1, 1), V equals {qa, ¢, s}, or {a, ¢, s}y =(d, M)
where d =[1111] and M =[111]. The first evantuality is “accepted” by our
lemma. In the second one, c or s is comparable with b (2.4(1)), say s <b. But
then V(a) =[1] = V(s), and we have V <{b}, by 3.1.

If ¥={x;—x,,y,z} has the form (1,1,2), V has the dimension-vector

: 1010
= [21111] and the matrix M = [0 111
case a€{y, z}, say a=y, we must have x;<x,<b or x;<b >z because of
2.4(1) and of the dual of 2.6(2). Accordingly, T'(a) is a linear combination of
T(x,), T(x,) in the first subcase, of T'(x,;), T(z) in the second. (2) In case a = x;,
we have x, € P by 2.5 and x, < b by 0.4. By 2.4(1) this implies y <b and z <b.
The associated columns 7'(y) and T(z) generate T(a). (3) In case a=x,, b is
comparable with y or z, say y <b (2.4(1)). Then T(a) is a linear combination of
T(x,) and T(y).

If ={x,—>x,,y,2,—>2} has the form (1,2,2), two cases are to be
considered (2.3): (1) In case a = x,, we have z, <z,<b or z; <b >y (2.4(1) and
2.6(2)). If we let T run through the 3 faithful representations with support X [3], it
remains to check that 7'(a) is a linear combination of T'(x,), T(z,), T(z,) in the
first subcase, of T(x;), T(z;), T(y) in the second. (2) In case a =x,, we have
x,€ P by 2.5 and x, £ b by 0.4. Since b is normal, we have z, <z,<b >y, and
T(a) is a linear combination of T'(y), T(z;), T(z,) by 3.3.

Finally, if 2 = {x; > x, <y,— y,, z,— 2,}, a equals x, or y, (Fig. 10). The two
cases are treated like case 1) and 2) of (1, 2, 2).

]. Then three cases are possible. (1) In

3. 5 By Q,,,, we denote the full subposet of Q formed by the representations
Ve Qa U Q,, which are incomparable with {b}, or with {a},. By P,, we denote
the union of their supports equipped with the order induced by P.

C C, C3
.—/—)Q-——-—).
—>¢ P,
Sy Sz\ a8

ao—0ob

Figure 11

LEMMA. Under the assumptions of Lemma 3.4, P,, is equal to {a, b} or
isomorphic to a full subposet of P,, (Fig. 11) containing {a, b, c¢,}. The poset éa,,
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is identified with the full subposet of Q,, (Fig. 12) formed by the vertices which
involve only points of P,,.

{a, c;}o—>{a, ¢\, 5,},—{a, ¢, 52}1’“"{‘1, cyo—{a, c3}o— {a},

N\

Qab {b}o——1{b, c1}o—{b, Cz}n"""{b, C3to
Figure 12

Proof. By 2.4(1), the points ¢ € P such that a > ¢>< b form a linearly ordered
set ¢;—> Cc,—> + - -—> ;. If k was =4, P would contain the full subposet

(a,d)<—(a, 1)

(b, 0)—\-:(1), d)

Cl“') Cz"‘* Cz“‘) C4

If there was an s € P such that a><s><c; for some i=2, we would have
¢;—>s— b by (2.4)(1) and the dual of 2.6(2).

Finally, the points s € P such that a><s>{c¢,; form a linearly ordered set
51— 5;—>+ - -— 5, (0.3). If / was =3, P would contain the full subposet

5128553 (@,0)— @ d)—>@ 1) o
The rest should be clear.

3.6. LEMMA. Assume that a € P is normal and that there is a d € O such that
a' > d>b'. Then P, is equal to {a, b} or isomorphic to a full subposet of P,,
(Fig. 13) containing {a, b, c;}. The poset éab is identified with the full subposet of
Q.b (Fig. 14) formed by the vertices which involve only points of P,,.

Cy CZ Ca

D@D @
S A}
P $1_S2 P,
ao~—-o0b
Figure 13
{a, ci}o—{a, c2}p——1{a, c3}y—>{a}, Qb

™~

{b}o— {b, c1}o——1{b, c2}o—>{b, c3, S1}o——={b, c3, S2}o—>1{b, c3},
Figure 14
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Proof. This is “the dual of the quasi-dual” of lemma 3.5. Since duality theory
is screened by the use of matrices, we sketch the essentials: For each
representation V = (d, M) of P, we choose a matrix K € k'Y such that MK =0
and rank K = e, = |d|-rank M. Setting e = [e,d] € N**!, we then interpret the pair

= (e, K”) as a representation of the opposite poset P°, and we assemble a
contravariant functor & :rep P— rep (P°) by piecing out the map V> @V as
follows: First we notice that each morphism B € Hom (d, d') of P, (0.2) produces
a morphism B” € Hom (d’, d) of (P°),. Our second observation is that, for each
morphism (A, B):(d, M)— (d', M') of rep P, there is a unique matrix C e k®*¢
such that KC = B"K’, where 9(d’, M') = (e’, K'). This means that (C”, BT) =
9(A, B) is a morphism of rep (P°) from (e’, K') to (e, K). The contravariant
functor thus defined induces an antiequivalence from rep, P (the full subcategory
of rep P formed by the (d, M) such that d, = rank M) to rep, (P°). For instance,
we have @{a},={a},, D{a, c}o={a, c}o, D{a,c,s},=D{a, c,s}o" "

3.7. LEMMA. Assume that there is a d € Q satisfying a' >3 d >b' and that a
or b is normal Let further z € P be such that b<z and (b, z)~(b', z'). Then
Qab N sz consists of the representations {b, c}, where c is mcomparable with a, b
and z. If there is only one such c, then {a}, is the only element of Qa which is
incomparable with {b, c},.

Proof. The first statement directly follows from 3.5 if b is normal. If a is
normal, we must prove that {b, c3, s5;}o ¢ Qab N Q,,Z (3.6). But this follows from
the validity of ¢; <z or of s; <z (2.4(1)).

Now, the points incomparable with a and b form a chain ¢;—>c¢,— - -—¢,. If
there is only one c as above, we must have c¢=c;. Our second statement
therefore follows from Fig. 12 or Fig. 14.

Remark. By duality and quasi-duality, the first statement of the lemma is also
true under the assumption that there is a g satisfying b’ 3 ¢ >z’ and that b or z

1s normal. If, moreover, there is only one ¢, then {z}, is the unique element of
Q, such that {z},3>< {b, a}o.

4. Mixed edges

From now onwards, we suppose that § admits a faithful indecomposable
representation U = (d, M) (0.6). We denote by 2y the support of the associated
representation Uy = (dg, My) of 0 (1.4,2.6). We investigate Xy under the
following assumption, valid throughout section 4: ae€ P is thick, beP is
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subsequent to a, a’ € Q° is normal and b’ € Q° is not. By @ and b we denote a
maximal and a minimal element of éa N2, and éb N X, respectively.

The lemmas 4.1-4.5 are preliminary and follow directly from 2.1, Fig. 6. As in
2.1, we denote by 2 the support of an indecomposable representation of a
representation-finite poset 7.

4.1. LEMMA. Suppose that X has at least three points. Then, for any two
points ¢ and d (comparable or not), there is an x such that ¢ X x>d. In case
c<d, {c, d} is contained in a full subposet of X having one of the following three
forms.

(1) - (2) o—ed (3) ('-'—2-5'-»41
7
Co—ed Co—e ——30——30

4.2. LEMMA. 2 contains no full subposet which is isomorphic or dual to one
of the following posets.

®
(]

./. =
(1) ——*< (2) ><< (3) < (4) <_,__,

[ *———>e [ ]

4.3. LEMMA. If d € X and e € X are subsequent to c € X and satisfy d><e,
then X contains a full subposet of one of the following two forms. Moreover, we
have g X f whenever g € X is incomparable with c, d and e.

fo—ee Co—>ef

QR Y

4.4. LEMMA. A proper full subposet X of the form (1) below is contained in
a full subposet of X isomorphic to (2).

(1 - 2) o—-

4.5. In case veT, we call duplicate of v in T an element w € T which is
comparable with v and such that, for any ¢t € T\{v, w}, the inequality v <t is
equivalent to w <tand t<v to t < w.
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LEMMA. If X is a full subposet of X (resp. of X°) of one of the three forms
below, then Z\X (resp. Z°\X) contains a duplicate of u in X or of v.

o—0—>olf .—\-—)ou ue—r ey
(1) (2) o= 3) .
Ve ——\—-;0 0401} 040——-».

4.6. LEMMA. Q contains a point q subsequent to a' and a point d such that
b'>xg>danda’'>d>xb'.

Proof. Consider the full subposet Q(b’, -) of O formed by the points s € Q
which can be incorporated into a triad {b’, c, s} of three pairwise incomparable
elements of Q. This subposet contains at least two minimal elements, say g, and
q.- If g, is incomparable with a’, we can set d =¢q, and g = q,: Indeed, 2.4(1)
implies a’' <gq,; if g, was not subsequent to a’, each element g5 such that
a'<q3<gq, should be incomparable with- b’ (which is subsequent to a’);

q:

accordingly, g3 < g, would imply ¢; <g, and £, would contain a—>q; in

contradiction with 4.2(1). q
2

In case a’ <gq, and a’ <gq,, the same argument shows that g, and g, are both
subsequent to a'. By lemma 4.3, %}, contains a full subposet of the form, say

a ——> - = . - AR
N q', which satisfies x > b if a >< b. We claim that x € Q, becausey € Q, x € Q,
X—>q>

and x <q, would imply y=a, hence x <gq,. Furthermore, we have x <b,
because g, is minimal in Q(b’, -). We infer that @ <b and that X, contains the
full subposet of Fig. 15 in contradiction with 4.2(2).

.47 LEM‘MA. Let P contgin a point which is incomparable with all points of
P. Thenae Q,N X, and b € Q, N X, can be chosen so that a><b.

d,
Proof. Otherwise, we can apply 4.3 to the subset _ " e of 2, and find an

Ae——ep

x € X, such that @ > x 3<d and that either g > x <b or b>Xx <gq. In both cases



518 L. A. NAZAROVA AND A. V. ROITER

we have x ¢ Q since a’ is normal. So let x be i in Qy, y € P, and first suppose that
y=a: Then x<gq, x>b and y <a since x € Q,, N X, is supposed to imply x < b;
it follows that (y, b) ~(y’, b'), and we obtain a contradiction with 2.6(6), which
reduces our proof to the case y = b But then we have ¢ 3 x <b, hence y = b and
the contradiction @ <x (since x € Q,, N Xy, is supposed to imply a <x).

4.8. LEMMA. Let P contain a point which is not normal and P a point which
is incomparable with all points of P. If EU has at least 5 points, it contains a full
subposet of the following form, where a € Q,,, {b, b} Q,, and {q,d} c Q.

Proof. We apply 4.4 to the full subposet Z:__) :z of 2, which is provided
by 4.6 and 4.7. By 4.4 there is an x € 2 such that @ > x > q and that d>x or
b><x. If x was in Q, it would be comparable with d (because a’ is normal) and
provide a contradiction to 2.6(2).

Therefore, we have x =y € é for some y =b (because x> g). Incase y =b
the proof is perfect. So it remains for us to exclude the case y > b. In this case,
2.6(6) implies d <y’, and S, X, contain the full subposets of Fig. 16, where
(a,y)~(a’, y'). By 2.6(1), b is normal; by 2.6(6), y is subsequent to b; by 2.6(5),
there is at most one ¢ € P such that a > ¢ >< y; by 3.7 and the assumptions of the
lemma, we have b = {b, ¢}, @={a}, and y = {y},, where ¢ >z for all z € P.

a b y

O3 3O do——-)o)';'
g———){;\,———-—»oy 5 L
\:7. d./ ae—e(
Figure 16

By assumption, P contains a pomt exXx. Since U is faithful and b normal, e
belongs to the support of some t € Q,ﬂZ‘U, where ¢ #b. Up to duahty and
quasi-duality, we may assume that ¢t < b. Let us then compare f with @, q, b, d, 7:
Obviously, t<a = {a},. It follows that t3<d, because t<d would contradict
4.2(3). We claim that t < b: Indeed, this follows from 3.7 if t =a; and the case
t<a, t>b is excluded by 2.6(6) (since c is incomparable with ¢, a, b and d with
t', a', b'). Finally, we have >y because ¢ <y would contradict 4.2(4).
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d’——-—*.x
*b
o— 00—
t a q
Figure 17

Now, by 4.5(3) d or x has a duplicate z in Z. If z € Q, § contains the stable
subset of Fig. 18 in contradiction t0 2.6(2). If z =7 ¢ é,, g > z implies b =r, and
b’ 3 d implies y = r. Then the dual of the quasi-dual of the argument applied to ¢
above yields the contradiction b < 7.

oC
Ado—s0b

ao—-sob’
.q.——-).

Figure 18

Remark. Our proof involves quasi-duality. This may need some explanation
since we formally use the fact that the “dual of the quasi-dual” $*° = P°<1Q° also
admits a faithful indecomposable representation. In fact, the antiequivalence
9 :rep P— rep (P°) of 3.6 induces an isomorphism of (Qﬂ)0 onto the poset (QO)’a
attached to $*° = P°<JQ°. The needed faithful indecomposable representation V
of $*? is defined by Vo 5 2(Up).

Using similar arguments, one shows that the dual $°=Q°<IP° and the
quasi-dual $* = Q <|P admit faithful indecomposable representations.

5. Proof of theorem 3

As in section 4, we denote by U a faithful indecomposable representation of
the bipartite completed poset § =P<l1Q. We suppose that P and Q contain
non-normal points.

5.1. We first prove theorem 3 under the assumption that P has cardinality 2.
Using quasi-duality and 2.6(1), we may assume that P= {a<b} and 0= {a’' <
b'}, where a’, b are normal and a, b' not. By lemma 4.6 and its dual, § then
contains the full subposet of Fig. 19. If there is any other point which is
incomparable with a and b or with a’ and b’, we may by duality assume that it
lies in Q, hence that c is the unique point which is incomparable with a and b

(2.6(3)).
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Ce oP
ao—————\ob }P
a'o———sob’
q. Qd }Q
Figure 19

Let us now assume that 0 contains more points and find the contradiction.
The dual argument will then show that P also has 4 points, and our proof will be
complete. .

By lemma 4.8, %, contains a full subposet of the form g .: . % * d, where
aeQ, and {b,6}cQ,. By lemma 3.5, a={a},, b={b), and b= {b, clor
Accordingly, since U has dimension =1 at p, Z;, must contain some other a € Q,.
Lemma 3.5 implies @ < b and lemma 4.2(3) @ >< b (Fig. 20).

—ad—(

d

~N

Figure 20

Q“u

a—>
b—>

We now apply 4.5: A duplicate of b in X, cannot belong to Q because a’ is
normal, to Q,, because of 3.5, to Q,, because b 3<q. Accordingly, only g can
admit a duplicate in Xy. Therefore, 2, contains the full subposet of Fig. 21,
where g is one of the non-specified points. By 2.1, Fig. 6 it follows that X, has the
form of Fig. 22. But y cannot belong to Q because b3y <b. And y cannot

belong to éa U éb, i.e. in fact to éab, because of 3.5.

aAa—>d—re—>e Ad—>d—>e—>e
N N\
b— b b7b
d y————»d
Figure 21 Figure 22

5.2. LEMMA. Suppose that P contains points a<b <c and P a point d such
that (a, c)~(a’, ¢') and a><d ><c. Then b is normal.

Proof. Othe'rwise, P contains two points d,, d, such that d, >b><d,>d,
Since a <d;<c is excluded by 0.4, each point d; satisfies a ><d, or d,><c. By
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2.4(1) it follows that we have, say a 3Xd, <c and a <d,><c. By 2.6(1), d, and d,
are both comparable with d. So we obtain d, <d (d <d, would imply d <c!),
d < d, and the contradiction d, < d,.

5.3. LEMMA. P contains a point s incomparable with all u € P.
Proof. By the dual of 4.6 we can assume that P has cardinality =3.

Let a be the minimal and ¢ the maximal point of P. Choose a in Q,, NZXy,, cin
Qc N2y,. By 4.1, 2, contains a point x such that a>x><¢. If x e Q it follows
that a > x X ¢, and we can set s =x. Hence we may suppose that x € Q,, for some
be IS; if b#c, P contains an element incomparable with b and c, since the
contrary would imply x = {b}, Z {a}, = a (3.2). Similarly, if a #b, P contains an
element incomparable with a and b.

This solves our problem in case a=>b or b=c. In general, it implies that,
whenever v € P is subsequent to w € P, there is a point incomparable with v and
w. By duality, the same statement holds for 0.

Now suppose that a <b <c. Letv e P be subsequent to b, and b to u € P. We
claim that one of the points u, b, v is normal: Indeed, by 5.2 u is normal if a # u,
and v is if ¢ # v; if neither u nor v is normal, we have a = u, ¢ = v, and b must be
normal (otherwise, all points a’, b’, ¢’ of 0 would be normal by 2.6(1)).

So we can apply 3.7 to u, b, w. Since x eQ,, satisfies {a},3<x3< {c},, it
satisfies {u}, 3 x > {v}, and has the form x = {b, s},. But {a}, 3 {b, s}y {c}o
implies a ><s > c.

5.4. LEMMA. Let b e P and p € P be such that b is normal and p <b. Then

o R .
there is a point x € P such that x<b and a representation te Q,NZ, with
dimension =1 at p.

Proof. Since U is faithful, there isanxePandate Q,r N 2y with dimension
=1 at p. Since b is normal, Qb consists of {b},, {b}; and of representations
{b, c}o with b >< c. We infer that x # b. Suppose that x > b. By 4.1, the support X
of ¢ contains a full subposet X or Y as shown in Fig. 23 (the case (3) of 4.1 is
excluded because x has multiplicity =2). In case 3 5 X, the inequalities p <b <x

Xo® Ve
X X,® Y yzo—-oox
pe—>%x pe—e)
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imply x, > b3<x, in contradiction to the normality of b. In case 2 oY, this
normality and the condition p 3y, 3 x imply that b is comparable with y, and y,,
hence that b<y, (x><y, implies b#y,) and y,<b. This leads us to the
contradiction y, <y,.

5.5. Proof of theorem 3. Applying 2.6(6), 5.3 and the dual of 5.3, we first
observe that y must be subsequent to x if (x, y) ~(x’, y') and x # y.

By lemma 2.6(1), out of two equivalent points at least one is normal. We
choose two equivalence classes {u~u'}, {b~b'} such that u,be P and
u',b'e Q°, that u’, b are normal and that u, b’ are not. Furthermore, we suppose
that all points of P between u and b (if there are any) are normal, as well as all
points of O between u’ and b'. Up to quasi-duality, we may also suppose that
u <b. We then denote by v € P the point subsequent to u, by a € P the point to
which b is subsequent (u=a,v=b). To the pairs (a, b) and (u, v) thus
constructed we apply the lemmas 4.6, 4.8 and their duals, which provide us with
the full subposets of P, Q and é described in Fig. 24.

de
Co o ao—-sob’ be——eph
uc:—-—-‘—\‘—»f)v >o ° a’o——-—-nq
Figure 24

By 2.6(4), there are at most two points incomparable with a and b. Using 3.5,
we infer that @ ={a}, or a={a, c'}, where a>c’'3b. Accordingly, @ has
dimension 0 at p, and is distinct from the point ¢ € éx, x =a, constructed in 5.4
and obviously subjected to ¢ <gq.

Let us suppose that ¢ < b. Then we have @ > ¢t ><d by 4.2((3) and (4)) and can

tob—b
apply 4.5(1) to d>q :
>, from O because a’ is normal; from (), because b, b exhaust the elements of
0O, incomparable with a (a ><t implies @ = {a, ¢,}o, b = {b, ¢1}o, b = {b}o in 3.5);
from éy, y > b, because a <b <y implies (a, y)F (a’, y’) and a < z. Nor can we
obtain a duplicate z of @ from Q (q is subsequent to a’ and z <a would imply
z <5); from Qa by 3.5; from Qy, y <a, because y <a < b implies z <b.

So we are reduced to the case ¢ > b, hence x = a. By 3.5, t is comparable with
a. It is <a because a is supposed to be maximal in éa N Zy. The case a = {a},,
t={a, cz}o, b={b, c1}o, b={b}, is excluded by the assumption that ¢ has
dimension 21 at p. By 3.5 this implies that ¢ <b. In this case, we obtain Fig. 20

. But there is no way of obtaining a duplicate z of b in
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and can repeat the argument produced in the last paragraph of 5.1. Theorem 3 is
proved.

6. Appendix

Our objective in this section is to expose a more synthetical point of view for
the reduction used in section 1. The following is due to P. Gabriel.

6.1. Let k™ = k'™ be the space of m-rows and mod k the category of finite
dimensional vector spaces. The category S, (0.2) is naturally equipped with a
functor F:8,— mod k, v~ k"' which maps the morphism B € Hom (u, v) onto
x—xB”. Using F, we can interprete a representation (d, M) as a pair (d, f)
consisting of an object d € S and a linear map f:k%— Fd, y — yM. In this way,
we obtain an equivalence between rep S and the following F-subspace category
sub F [5]: An object of sub F is an ‘“F-subspace”, i.e. a pair (v, f) formed by an
object v € §; and a morphism f: V — Fv of mod k. A morphism (u, e)— (v, f) is
given by a pair of morphisms B € Hom (¥, v) and A € Hom (U, V) such that
fA = (FB)e.

The natural decompositions of the rows ve S, and x € Fv into “blocks”
Up=[vi - vip), vo=[vip1- - v,] and xp=[x; - xp,) X0 = [Xippien - Xy
yield an exact sequence of functors

0—Fy,— F 5 F,—0,
where  Fpu =k",  sv:x—xp, Fou=k"' and  (w)[y - yul=
[0---0y; -+ Y] The residue-functor Fp gives rise to an Fp-subspace category
sub Fp, which is defined like sub F and contains the full subcategory sub, Fp
formed by the proper Fp-subspaces, i.e. by the pairs (v, g) such that g is injective.
The subcategory suby Fp finally provides us with the wanted reduction-functor

R :sub F——sub Fy,

(v, V—> Fv)— ((v, Im (zv)f 7> Fpv), Ker (:w)fTQ» Fyv)

where fp, f, are induced by f and

Fg:suby Fp,— mod k

maps (v, U—> Fpv) onto Fpu.
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PROPOSITION. The reduction-functor R :sub F— sub F, induces a bijection
between the isomorphism classes of sub F and of sub Fy,.

It follows that & also induces a bijection between the isomorphism classes of
indecomposables.

Proof. 1t is easy to show that R hits each isomorphism class of sub Fy,.
Indeed, each object ((v, U—> Fpv), W 5 Fyu) of sub F o is isomorphic to the

image of the object (v, U® W Fu) of sub F, where s : Fp,u — Fv denotes an
arbitrary linear section of mv.

To prove the injectivity of the map induced by R, we first remark that, for
each linear map e:Fpu— F,v, there is a morphism E:u—wv of S, such that
FE = (wv)e(mu) (if u and v are indecomposable in S, this immediately follows
from (0.4b)). We then consider two objects (v, VL Fu) and (v, V' 5 Fu) of
sub F having isomorphic images in sub F. This means that there are isomorph-
isms B, C and D which make commutative the first two squares of Fig. 7. We
extend D to an isomorphism A:V 3V’ which induces C. Then f'A — (FB)f
vanishes on Ker (#v)f and factors through w:Fyu— Fv. In other words,
f'A — (fB)f can be written as a composition "

v &Y By —— Fu %> Fu
We infer that f'A — (FB)f = (w)e(nv)f = (fE)f for some E:v—v such that

(FE)*=0, hence E*=0. So we finally obtain the isomorphism (A, B+ E):
v, )3, f)

fi
Ker(mv)f —> Fyu Im(nv)f—i’—» Fu
1)1: leQB ('l/ lr;,n
, , 1
Ker(:w)f’-—ﬁ"—»FQv Im(rv)f—sFv
f
V—> Fu
All ‘l,FB
VL Fu
Fig. 7

6.2. The construction of the subspace category sub Fy, considered in 6.1 is
based on the category sub, Fp which, in general, does not have the form 7.. We
therefore insert some remarks about general subspace categories [5] [9].
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Let K be a k-linear category such that the dimensions of the morphism spaces
are finite and that each object is a finite direct sum of indecomposables with local
endomorphism algebras. If @: K— mod k is a k-linear functor, sub @ is related in
a simple way to the category of representations of a poset: Let U, ..., U, be
pairwise non-isomorphis indecomposables such that dim @U; = 1. Define a partial
order on the set ¥'={U,,..., U} by setting U, =U, is du+#0 for some
p:U;— U. Denote by @:K/Ket ®=K—->modk the functor induced by @,
where Ker @ denotes the ideal of K formed by the morphisms v such that @v = 0.
We then have the following comparism diagram

sub @X>sub @ <=rep V',

where v is the functor (N, f)— (N, f) and ¢ is determined by the choice of a basis
vector in each @U;. The functor y induces a bijection between the “isoclasses” of
indecomposables of sub @ and the isoclasses of indecomposables of sub @ which
are not of the form (N, 0) with ®N =0. The functor ¢ is fully faithful; it is an
equivalence if Uy, ..., U; exhaust the indecomposables of K. This takes place
for instance in case K =sub, Fp and @ = F), when $ = P<Q is representation-
finite (2.5).

6.3. With proposition 6.1 we can also prove that, if $ = P<AQ is faithful, the
subsets P and Q are uniquely determined by S. Indeed, suppose that § = P<1Q =
P']Q' and that, say, P N Q' #J. The (trivially completed) poset P then has the
form P=(P\Q")<(PNQ'). From 6.1 we infer that an indecomposable repre-
sentation of P has its support in PAQ’ or in PN Q'. In particular, there is no
indecomposable of rep P whose support intersects P<P\Q' and PN Q'. From

6.1 it then follows that there is no indecomposable of § whose support intersects
Pand PN Q'.
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