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Valuations on free resolutions and higher géométrie invariants of
groups

Robert Bieri and Burkhardt Renz

Dedicated to Beno Eckmann on the occasion of his seventieth birthday.

1. Introduction

1.1. Let G be a group. A G-moduIe A is said to be of type (FP)m if A admits
a resolution

•. ^F^F^-*- • .-&gt;F1-&gt;ft-*i4-&gt;0 (1.1)

by free G-modules Ft which are finitely generated for ail i ^ m. If the trivial
G-module Z is of type (FP)m - and this is indeed the most interesting situation -
we say also that the group G is of type (FP)m.

If a G-module A is of type (FP)m then subgroups 1/ &lt; G may or may not hâve
the property that A is of type (FP)m when regarded as an {/-module. Our paper
aims to shed some light on the distribution of the subgroups U with respect to this
dichotomy. We find that the situation is rather complex but not totally out of
control if we assume that U contains the commutator subgroup G&apos; of G. The
main results hâve been announced in [6].

1.2. Our approach is based on and extends the &quot;géométrie invariant&quot; SA

which was originally introduced by Ralph Strebel and the first author for modules
A over finitely generated Abelian groups Q[3], [4]. IA is a subset of the unit
sphère Sn&quot;1 c Mn, where n is the Z-rank of Q, and it was designed to contain the
information as to whether a group G, which is an extension of Q by A, admits a

finite présentation. Under joint effort with Walter D. Neumann [5] much of the

theory grew up to the case when G is an arbitrary finitely generated group and A
a normal subgroup containing G&apos; and acted on by conjugation.

The présent paper adds a generalization in a new direction. We introduce, for
an arbitrary finitely generated group G and any G-module A, a chain of higher
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géométrie invariants

Sn~l

containing the previous invariants as the spécial cases Z°(G;A) and

11{G\ Z). Ik(G;A) contains complète information as to which subgroups (/&lt; G

containing G&apos; hâve the property that A is of type {FP)k over U.

1.3. We briefly give the définition of the higher invariants. By a character of
G we mean a non-zero homomorphism % : G -&gt; R into the additive group of the
reals. Two characters are équivalent if they coincide up to multiplication by a

positive real number. The équivalence class of a character x&apos;-G-^M thus is the

straight ray from 0 through % *n Hom(G, iR) Rn. Hence the set of ail
équivalence classes [x] of characters x has the structure of a sphère which we
dénote by S(G). Attached to every point [x] e S(G) we consider the submonoid

Gx {g |x(g)&gt;0} of G. Then, if A is an arbitrary left G-module and m an

integer &gt;0, we put

Im(G; A) {[X] | A is of type (FP)m over ZGX}. (1.2)

The précise relationship with the invariants of [3] and [5] is the following. 1)

To say that a module A is of type (FP)0 means simply that A is finitely generated.
Hence I°(G;A) coincides with the invariant IA of [3] by définition. 2) The
invariant 2N(G) of [5] is defined for an arbitrary finitely generated group G and a

right G-operator group N: it consists of ail points [x] € S(G) with the property
that N is finitely generated as an operator group over a finitely generated
submonoid of Gx. It turns out that if N is the commutator subgroup G&apos; of G,
acted on by conjugation from the right,

Zl(G;Z) -ZG&lt;G). (1.3)

(see Proposition 6.1). The funny sign stems from the fact that Z, on the left hand
side, is a left module, whereas in [5] we hâve been using right action. It would
disappear if one only could agrée to consistent action.

1.4. The main results of our paper are extensions of [5], Theorems A and B.

THEOREM A. Im(G;A) is an open subset of S(G) for every finitely
generated group G and every G-module A.
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THEOREM B. Let G be a finitely generated group, N a subgroup of G

containing G&apos;, and A a G-module. Then A is of type (FP)m over N if and only if
Sm(G;A) contains the great subsphere S(G, N) {[x] e S(G) \ x(N) 0}.

The conjunction of Theorems A and B allows a similar application as in [5].
We note that the set 31 of ail subgroups N with G&apos;&lt;N&lt;G and rkz(G/N)=j
admits a natural map into the Grassmann space Gn&gt;y of ail /-dimensional linear
subspaces of Hom (G, R) R&quot;; thus sJl carries the topology induced by sJf—? Gn,r
If A is of type (FP)m over N then S(G, N) c Im(G;A) by Theorem B. But then,
as Sm{G\A) is open, it will also contain the subspheres S{G,NX) for NxesJî

sufficiently close to N. Hence we hâve

COROLLARY AB. The set of ail N e s)l with the property that A is of type
(FP)m over N is open in s)l.

In particular, the set of ail groups of type (FP)m in s)l is open in s)i. For m 2

this is closely related to a resuit of Fried and Lee. Indeed, groups of type (FP)2
can also be characterized by the property that they admit présentations with
finitely many generators and finitely generated relation module. Thus every
finitely presented group is of type (FP)2 - whether or not, conversely, every
group of type (FP)2 is finitely presented is an open problem. The Fried-Lee
resuit [9] asserts that the set of ail finitely presented groups in sJl is open in s)l.

1.5. The crucial tools for the proof of both Theorems A and B are two
descriptions of Sm(G; A) in terms of a free resolution of the G-module A. One of
thèse extends (and perhaps explains) the somewhat technical &quot;equational

définition&quot; of IG(G) in [5], Section 2.

Before we give a brief sketch of thèse descriptions we make the following
observation: the group ring ZG is the ascending union of the free cyclic
Gx-modules 1Gxgk, 0 &lt; k e Z, where g is an arbitrary élément of G with %{g) &lt; 0.

From this we infer that ZG is flat as a Gx-module and that ZG®GxA is

isomorphic to A for every G-module A. Consequently, we can apply the tensor
product ZG ®G - to a finitely generated Gx-free resolution of A in order to obtain
a finitely generated G-free resolution of A. This shows that if Im(G;A) is

non-empty then A is of type (FP)m over G.

So we may assume that we are given a free ZG-resolution F-»A as in (1.1).
For each i&gt;0we pick a spécifie basis X^F, (finite for 0^i&apos; ^m) and, without
loss of generality, we may assume that dx # 0 for ail x eX,. In Section 2 we show

how one can then associate to every character x &apos; G -» R a certain map y:F^RU
{oo} which formally behaves similar to a valuation on a ring and which we



Valuations on free resolutions and higher géométrie invariants of groups 467

therefore call the valuation on F extending % (with respect to the bases Xt). It is

then natural to consider the &quot;valuation complex&quot;

Since u(3c)&gt;u(c), for ail ce F, Fv is a subcomplex; but it is not, in gênerai,
exact. Its déviation from exactness in dimension / &gt; 0 is measured by the quantity

D} supinf {v(z) — v(c) | O^z e FJf c e FJ+l, de z}.
z c

It is convenient to extend this définition to the case j — 1 by using the

augmentation map e:F{)-*&gt;A,

D_! supinf {-v(c) | 0=£a eA, ceF{)&gt; e(c) a}.
a c

THEOREM C. The following three conditions are équivalent for a non-
négative integer m.

(I) \x]eSr(G;A)
(II) Dj&lt;™for each -l&lt;/&lt;m;

(III) The identity on A can be lifted to a chain endomorphism &lt;p:F—»F with
the property that v(q?(x)) &gt; v(x) for ail x eXn 0 &lt; i &lt; m.

Among the three descriptions of Hm{G,A) in Theorem C, Criterion (III)
seems to be the most powerful one. In particular, Theorem A, the openness of
2m(G\À)&gt; is an immédiate conséquence. For the chain endomorphism &lt;p:F-»F,

asserted to exist if [x] € Zm(G; A), will also do for every point sufficiently close to
bel

The charm of Criterion (II), on the other hand, lies in the fact that it
generalizes to a statement in terms of a projective resolution of A (cf. Section

3.3); whence the conséquence

COROLLARY D. If the G-module A admits a projective resolution of length
^d then

for every
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1.6. Some readers will probably find topological versions of Criteria (II) and

(III) more attractive, and we do share thèse feelings. The topological version of
(II) is stated in Proposition 6.1, and we use it to establish (1.3).

The topological translation of (III), or rather of Theorem 4.2, is crucial for a

homotopical version *Sm(G) of the invariant, investigated by the second author.
This will appear separately (see Section 6.5 and [12]).

1.7. EXAMPLES. In view of the ones given in [3], [4], and [5] there is

certainly no shortage of examples for Sm(G; A) with m 0 or 1. As to m &gt; 2 our
computations of examples are still rather incomplète and technical; therefore we
prefer hère to confine with a few easy remarks, based on our gênerai results, and

hope to corne back to a more systematic treatment of examples elsewhere.
A point of the sphère S(G is said to be rational if it can be represented by a

character x - G-* R with x(G) ç Z. If I is a subset of S(G) we write Irat for the
set of ail rational points in S. Information on Sm(G;A)rat is often easily available
from Theorem B.

a) Let G be the fondamental group of a 3-manifold. Then l\G;Z)mt
coincides with its antipodal set (see [5]). So if [x] eIl(G;l)nt then Il{G\T)
contains the subsphere S(G, N) {±[#]}, N ker#; hence N is finitely gen-
erated. Since N is a 3-manifold group this implies that N is, in fact, of type {FP)X.
By Theorem B, it follows that ±[x] e Im(G;l) for each m &gt; 1. Whence

Sm(G; Z)rat I\G; Z)rat for ail m &gt; 1. *

b) We find the same behaviour for G a one relator group. In fact, we then
hâve even

Im(G; Z) Il(G; Z), for each m &gt; 1,

as was pointed out to us by Walter D. Neumann. Neumann&apos;s argument was based

on K. S. Brown&apos;s explicit computation of 2G(G) for one relator groups [8]. In
Section 7 we illustrate the techniques revolving around Theorem C, Condition
III, by giving new proofs of both Brown&apos;s and Neumann&apos;s resuit.

c) One relator groups and fundamental groups of non-closed 3-dimensional
manifolds are prominent examples of groups of cohomological dimension ^2.
Because of their parallel behaviour in a) and b) above, the reader might wonder
whether the assertion of Corollary D holds even for m d - 1, perhaps at least

* W. D. Neumann has shown that this holds without the restriction to rational points.
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for A Z. This is not the case. Indeed, recall that a group N is of type (FP)U if
and only if N is finitely generated. Thus the assertion I2(G;I) 2&apos;1(G;Z)

implies, by Theorem B, that every finitely generated subgroup iV&lt; G containing
the commutator subgroup G&apos; is also of type (FP)2. Now, let G F(a, b)x
F(x, y) be the direct product of two free groups of rank two on the exhibited
generators. Then the subgroup N of G generated by {a, xb&gt; yb) is normal with
GIN Z. But H2(N; Z) is not finitely generated (N can be constructed by taking
the free product of two free groups of rank two, amalgamated over a free

subgroup of infinité rank [13]); hence N is not of type (FF)2. This shows that
I2(G;Z)^Il(G\Z). Straightforward calculation along the Unes of Section 7

shows that I2(G; Z) is, in fact, empty.

1.8. We are indebted to Ralph Strebel for a number of comments and an
extended discussion on a preliminary version of this paper which hâve influenced
our exposition. In particular, we use his comment that our original définition of
[x] e Sm (via Criterion (II) of Theorem C) is équivalent to the (FP)m-property
over the submonoid Gx. The présent concise version of (III), Theorem C, and the
idea of extending our techniques to projective resolutions, in order to prove
Corollary D, came up in the course of that discussion. We are also grateful to
Walter Neumann and Ken Brown for discussions on the case of a one relator

group, and to Ross Geoghegan for tutorials on his work with Michael Mihalik
[10], which stimulated this research at an early stage.

2. Valuations on modules and resolutions

2.1. Throughout this section x • G —&gt; R is a fixed character of the group G. We
write Roc for the reals supplemented with an auxiliary élément &lt;*&gt; which, by
définition, is greater than every real number and satisfies r + oo oo oo + r for
every r e Rx.

DEFINITION. Let A be a G-module. A map v:A^&gt;Ux is said to be a

valuation on A extending x if the following axioms hold

v{a + 6)&gt;min {v(a)&gt; v(b)}&gt; alla, b eA, (2.1)

v(ga) X(g) + v(&lt;*)&gt; ail g e G, a eA, (2.2)

v(-a) v(fl), Mae A, (2.3)

u(0) oo. (2.4)
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Remark. 1) As usual one can deduce that (2.1) is an equality if v(a)¥=v(b).
Indeed, if v(a)&lt;v(b) then v(a + b) &gt; v(a) by (2.1); on the other hand, (2.1) and

(2.3) applied to (a + b) - b yields v(a) &gt; v(a + b).
2) If cp:A—* B is a homomorphism of G-modules, then every valuation v on

B extending % induces a valuation v* v • q? on A extending %.

2.2. Let F be a free G-module with a fixed basis X. Given an arbitrary map
v :X-+ M, there is an easy way to extend utoa valuation v : F—» IR^ extending #.

Weput

t/(0) oo,

v(x), for geG.xeA&apos;, and

u(/) min {v(y) | wv =^0}, if f~Znvy is the unique expansion of

/ € F in terms of the Z-basis GX, nv e Z.

If we wish to express the dependence on the basis X we shall write vx - F-+ U^
for the valuation v. vx is thus defined relative to a choice of vx(x) for ail x e X.
As we only consider cases where vx(X) c R, our valuations vx will always hâve

the feature that

0. (2.5)

As a spécial case we hâve F— J.G with basis ^={1}. Choosing Uî(1) 0

yields the valuation v^ZG—»RX which is a valuation on the group ring in the
usual sensé provided J.G is a domain.

We shall repeatedly need the following.

LEMMA 2.1. Let F and F&apos; be free G-modules on X and X&apos; respectively and
let cp:F-*Ff be a G-homomorphism. Then

vx.{q&gt;{f)) ^vx(f) + inf {vx((p(x)) - vx(x)}
xeX

for every f eF.

Proof. The statement is obvious for / € X. For f gx e GX and / Inyy it
follows by using the définition of vx above.
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2.3. We call two valuations v,v&apos;:A^Rx équivalent if there are real numbers

r, r&apos; such that v&apos;(a)&lt;v(a) + r and u(a)&lt;u&apos;(a) + r&apos;, for ail aeA. As a

conséquence of Lemma 2.1 we hâve

COROLLARY 2.2. // F is a finitely generated free G-module, then the

équivalence class of the valuation vx:F^Uoc, defined in 2.2 does not dépend on
the choice of the basis X nor on the values vx(x), x e X.

Proof. A différent choice of X amounts to composing v with an automorph-
ism q&gt;:F—&gt;F. The corollary thus follows from Lemma 2.1 applied to cp and cp~l.

A similar argument opens the possibility to define a canonical équivalence
class of valuations on every finitely generated projective module P. Let i:P&gt;~* F
be a split embedding of P into a free G-module F of finite rank, and choose a

basis X of F. Then define v : P-&gt; Ux by putting v vx° i.

LEMMA 2.3. The équivalence class ofv:P-*Mxis independent of the choice

ofF} iy Xy andv(X).

Proof Let F&apos;, i&apos;:P^F, and X&apos; cF&apos;bea second choice, and let jz:F-*&gt;P

be a splitting of t. Then i&apos;

&lt;pi, where çp:F^&gt;F&apos; is the homomorphism t&apos;jr. By
Lemma 2.1 we obtain for every p e P&gt;

&gt; vx(i(p)) + inf {u^OCx)) - vx(x)}.
x

The inf term is independent of p and &lt;&lt;*&gt;. Interchanging the rôle of F, t, X with
F&apos;, t&apos;, JT&apos; thus yields the resuit.

2.4. We extend the notion of valuations on a (free) module F to free
resolutions F-»;4 of a G-module A. We shall always assume that the resolution F
is admissibley by which we mean that it has the following additional feature: For

every / &gt; 0 the free G-module F, is endowed with a spécifie basis X, ç Fn and for
this basis we hâve dx i= 0 for every x e X, (hère 3() is to be interpreted as the

augmentation map F{)-»A). Of course, every G-module A admits admissible free

resolutions.
We find it convenient to think of F as the free G-module © ,^0 F, on the basis

* LUo*,. And we write F(m) for the m-skeleton F(m) © &quot;UFt which is free
with basis Ar(m)
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The resolution F is now equipped with the following valuation v :F-» Ux. For
each i ^ 0, the valuation v restricted to Ftf denoted vt : F,-* U, is the valuation vXl
of Section 2.2, where the values of vt on Xt are chosen inductively by putting, for
each x eXn

0, if i=0

One can then define the value on arbitrary éléments of F by taking the minimum
value on its homogeneous components. The reader can easily verify that the so
defined map v :F-&gt; Ux satisfies (2.1)-(2.5) and has the additional property that

v(dc) =&gt; v(c) for every c e F. (2.6)

Observe also that v(¥) c x(G) U {oo}.

2.5. We mention a rather useful alternative description of v :F—&gt; Rx.
For every élément c 6 F we define the support supp* c of c with respect to X.

supp* c is a finite subset of G defined by the following inductive procédure.
If c Snyy is the unique expansion of c in terms of the Z-basis Y GX,

ny e Z, y e Y} then

supp*c= U supp^y. (2.7)

If c y e GJÇ, with i &gt; 0, then

supp^y suppAr (9y). (2.8)

If c gxeGX0 then

(2.9)

Remark. Note that this définition includes the case of a free G-module F
(concentrated in dimension 0). In particular, for F ZG and X {1} one obtains
the usual notion of support in the group ring.

We leave the proof of the following formai properties and Lemma 2.4 as an
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exercise:

supp*(c + c&apos;) c (supp^c) U (supp^c&apos;), c, c&apos; e F, (2.10)

suppAr(gc) gsupp^c, geG, ce F, (2.11)

supp^ (de) c supp* c, c e F, (2.12)

O. (2.13)

LEMMA 2.4. 77ie valuation v:F-*Ux defined in Section 2.4 can a/so
described by

v(c) min ^(supp^ c), O^ceF.

3. The valuation subcomplex

3.1. We retain the notation and conventions of Section 2. In particular, F is

an admissible free resolution of the G-module A and u:F—&gt;(Roc the valuation
defined in 2.4. Then we consider the valuation subcomplex ¥v &lt;F defined by

It is immédiate from (2.1)-(2.6) that ¥v is a Gx-subcomplex of F.

LEMMA 3.1. The Gx-module Fw is free of rank equal to the G-rank of Fn

Proof For every xeXt the value u(jt)eR is attained on a group élément
(hère we use admissibility!). So pick gx e G with x(gx)~v(x) and put X[
{g7xx\x eXt}. Then v(x&apos;) 0 for every x&apos;eX&apos;l} and it is easy to see that
FW=ZGXX[ is free on X[.

3.2. The situation becomes particularly interesting when the complex Ftl-&gt;

i4~»0 is exact and hence provides a free resolution of A as a G^-module. The
déviation from exaetness can be measured as follows: For every /&gt;-! we
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consider the reduced cycles

fker (/•-*/&lt;_,) if/si
Zj &lt; ker(F0-»,4) if/ 0

[a if/=-l
Moreover, we think of Z_! as equipped with the trivial évaluation&quot; v:A—&gt;Mx

(v(a) 0, for ail 0 # a e A). Then we define the déviation of a cycle 0 ^ z e Z; by

d;(z) t;(z)-supi;(3-1z). (3.1)

Note that dj(z) ^ 0 for ail y &gt; 0 by (2.6); d_i(z) is, in gênerai, not bounded below.
Clearly Fv-+A—&gt;0 is exact in dimension y if and only if c/;(z)&lt;0 for all

DEFINITION. We say that Ft, —»v4—&gt;0 is essentially exact in dimension

y (y &gt; —1), if the function d} : Z;\{0} —» R has an upper bound.

Occasionally it is useful to hâve an explicit value for this upper bound; so we

put

D, sup {d,(z)|0#zeZ,}. (3.2)

THEOREM 3.2. Let ¥-*&gt;A be an admissible free resolution with finitely
generated m-skeleton. Then [%\ e Im(G;A) if and only if F,, -*A —» 0 « essentially
exact in all dimensions j with — l&lt;y&lt;m (m o^/ier wordsr Dj&lt;™ for all
-l&lt;y&lt;m).

Remarks. 1) In [6] we introduced the invariants Xm(G;.4) (for &gt;4=Z) in
terms of essentially exact valuation subcomplexes. The striking fact that our
définition can be rephrased in terms of the (FP)m-property over Gx was pointed
out to us by Ralph Strebel.

2) Theorem 3.2 establishes, in particular, that whether F,, is essentially exact
in all dimensions &lt;m is independent of the choice of F.

3) It is useful to observe that Theorem 3.2 remains valid if one replaces the
valuation v by an arbitrary valuation w:F—»RX which, when restricted to the

m-skeleton, is équivalent to v. The fact that Fw {c e F | w(c) &gt; 0} is, in gênerai,
not a subcomplex- need not concern us.

4) We shall see later that if [x]eSm(G\A) then there exist admissible
resolutions ¥-^A with finitely generated m-skeleton such that the valuation
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subcomplex FV-*A-*O is, in fact, exact, (see 4.5 Remark 1). This would yield a

constructive proof of Theorem 3.2. The non-constructive proof below, however,
is much simpler.

Proof (of Theorem 3.2). Let geG with x(g)&lt;0 and put Ek=gkFv,
k 0, 1, 2, Since gGx Gxg, Ek is a Gx-subcomplex of F and is isomorphic
to Fv. By Lemma 3.1. {E*} is a filtration of F by finitely generated free
subcomplexes. It is convenient to write Fv and É* for the chain complexes
FV-*A —&gt;0 and Ek-*A-*Q, respectively. The condition that Fv is essentially
exact in some dimension j&apos;&gt; — 1 amounts to saying that for every k e N there is

some k&apos; &gt;k with the property that the homomorphism H}(Ek)-*H}(Ek&gt;) is zéro.
In this situation a variant on K. S. Brown&apos;s (FP)m-criterion [7], Theorem 2.2

applies, asserting that this is équivalent to the condition that A be of type (FP)m
over Gx.

Appendix

Because we are in a slightly more gênerai but at the same time much easier
situation than [7], Theorem 2.2, (arbitrary modules A but only free action on F)
we repeat Brown&apos;s argument for the convenience of the reader.

To say that the maps Hj(Ék)-+ Hj(Ék) are zéro, for k1 — k sufficiently large, is

équivalent with saying that lïmïl Hj(Ék) 0 for arbitrary direct powers FI. We

prefer to interpret this in terms of E*, and the translation is given by the short
exact séquence of chain complexes A &gt;—» É* -» E* (A concentrated in dimension

-1). This gives rise to the isomorphisms Hj(Ék) Hj(Ek) for/&gt;0 and the exact

séquence

Hence the condition that Fv is essentially exact in dimension ;, for some / &gt; -1, is

équivalent to the conditions

limn«/(E,) 0, if /&gt;l,
k

A induces a monomorphism lim II H0(Ek) &gt;—&gt; FIA, if / 0,
k

A induces an epimorphism lim II H0(Ek) -» /M, if y — 1.
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Now,

TorfG*(JZZGx, A) H}({nZGx) &lt;8&gt;GjcF)

Gx)®GzE,)
)&gt; if ;&lt;m,

where we hâve used that F-»v4 is a flat resolution over Gx, that ® and //y
commute with lim, that II commutes with the tensor product by a finitely
gênerated free module, and that FI commutes with Hr Hence the condition that
Fv-*A—&gt;0be essentially exact in ail dimensions — 1 &lt;y&lt;m is équivalent to the
condition

(FIZGX) ® GxA^&gt; WA is epimorphic, if m 0,

or,

(IIZGX) ® GxA^»HA is an isomorphism and

TorfG* (ÏIZGX, A) 0 for ail 1 &lt;/ &lt; m, if m &gt; 1.

This is precisely the Tor-criterion for type (FP)m, see e.g. [1] or [2].

3.3. It is useful to reinterpret Theorem 3.2 in terms of a projective resolution
¥-*&gt;A with finite m-skeleton. Let us assume that P is admissible in the sensé that
for ail i ^0, 9Pt #0 unless Pt 0 (with 30 interpreted as the augmentation map).
By carefully choosing projective compléments Qt for Pt we find an exact
admissible projective complex Q such that P © Q F is a free resolution of A
with finitely generated m-skeleton and retains the admissibility condition above.

Then it is also easy to choose suitable bases Xt c Ft such that F is admissible in the

sensé of Section 2.4. Let us consider the valuation subcomplexes Vv P n ¥v and

It is easy to observe that ¥v is essentially exact in dimension ; if and only if
both Vv and Qv are essentially exact in dimension j. We claim that ¥v is essentially
exact in ail dimensions &lt;m if and only if Vv is essentially exact in ail dimensions
&lt;m. And to prove this we hâve to show that Qv is always essentially exact in
dimensions &lt;m.

Now, Q can be regarded as a projective resolution of the trivial module 0.

Again we find an admissible projective complément R such that Q © R E is an
admissible free resolution of 0 with finitely generated m-skeleton. Let w : E-» Rx
dénote the corresponding valuation. Then Theorem 3.2 asserts that Ew is
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essentially exact in ail dimensions &lt;m, hence so is Q^ Q D Ew. But by Lemma
2.3 v and w, when restricted to Qim\ are équivalent. Hence Qîf is essentially
exact in ail dimensions &lt;m. Thus we hâve proved that whether Ft, is essentially
exact in ail dimensions &lt;m can be read off from Pv.

We summarize:

THEOREM 3.3. Let V-^A be an admissible projective resolution with finite
m-skeleton; consider a valuation u :P(m)—»[Rac by choosing valuations v, on each

finitely generated projective module Pn i&lt;m, as in Section 2.3. Then P&lt;m) is

essentially exact in ail dimensions &lt;m if and only if [x] e Sm(G; A).

The effort to establish Theorem 3.2 for projective resolutions is rewarded by
the following application: Let A be a G-module of projective dimension ^d. If
Id(G;A) is not empty then A must be of type (FP)d and so has a projective
resolution which is both finitely generated and of finite length &lt;d. Then Vv is

obviously exact in ail dimensions &gt;d. Whence

COROLLARY 3.4. // the G-module A has a projective resolution of finite
length &lt;&lt;i then

for every m^

4. Crîteriafor£m(G;,4)

4.1. We keep the notation and conventions of Section 2; in particular, F is an
admissible free resolution of the G-module A, and tr.F-»[Roc is the valuation

extending x : G~&gt; R defined in Section 2.4 (or 2.5).
The main technical resuit of this paper, which makes 2m(G;A) to some

extent accessible, is

THEOREM 4.1. Assume that ¥^*&gt;A is an admissible free resolution with

finitely generated m-skeleton F(m). Then [x] e Im(G;A) if and only if there is a

chain endomorphism qp:F—»F, lifting the identity of A, such that v(cp(x))&gt;v(x)

for every basis élément x € X{m).

Proof, Let us first assume that a chain endomorphism &lt;p:F-»F as mentioned
in the Theorem, exists. Since q&gt; lifts the identity of A we can choose a chain
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homotopy o\q&gt;~IdF. For m&gt;i^0we consider the two real numbers

r= min {v{cp{x)) - v(x)},
X€Xl+l

s min {v(a(x)) — v(x)}.
xeX,

By assumption we hâve r&gt;0. Let ze/;_,bea cycle. Then z de for some ce/;.
We claim that c can always be chosen with v{c)&gt;v{z) + s. Indeed, if v(c)&lt;

v(z) + s we replace c by c&apos; c + da(c) &lt;p(c) - a(dc) &lt;p(c) - a(z); and find

v(c&apos;) ^ min {v(q)(c)), v(a(z))}

in {v(c) + r, v(z) + ^}, by Lemma 2.1.

Hence either v{c&apos;) &gt; u(z) 4- 5 or v{c&apos;) ^ v(c) 4- r. In the first case we are done; in
the second case we hâve at least increased the value of v(c) by the positive
quantity r. Hence repeating the procédure will eventually produce c e F, with
dc z and v(c) ^ v(z) + s. By définition this means that F,, is essentially exact in
dimension i — 1. Hence [x] € 2&quot;&quot;(G; A) by Theorem 3.2.

Now we assume, conversely, that [x]e Im(G;A). Then Theorem 3.2 asserts

that Djy as defined in (3.2), is finite for ail —1 &lt;/&lt;m. Hence every real number

D&gt;Dj has the property that for every zeZ} there is ceFJ+l with de z and

u(c) &gt; t/(z) - D.
We pick an élément g eG whose value x(g) &apos; wiU be specified later. For

each x e Xo we apply Theorem 3.2 for / — 1 to choose c^. e ft with 9cx g~l dx
and ^(0^)^—00 (3o is to be interpreted as the augmentation map). Putting
&lt;p{x)~gcx then yields a homomorphism q):F{)-*F0 lifting the identity of ^4, with
v(q)(x)) &gt; / — D_] for every x e Xo. Using Lemma 2.1 we deduce that even

v(&lt;p(c)) &gt; u(c) + inf (v(cp(x)) - v(x))
X

for every c e FQ.

Assume, inductively, that a chain map &lt;p:F0)—»F0) has been constructed with
the pïoperty that

)*v(c) + l-2 D,,
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for every ceFr We apply Theorem 3.2 again, in order to find, for each x eXJ+l,
a chain cx e FJ+] with dcx q)(dx) and with v(cx) &gt; v{çp(dx)) — Dr Then, putting
&lt;p(x) cx yields a chain endomorphism &lt;p:F0+1)—&gt;F(/+1) with the property that
for every x eXJ+l

* v{âx) + inf (v(&lt;p(x)) - v(x)) - D,
x

D,,

where we hâve used Lemma 2.1, (2.6), and the induction hypothesis. Using
Lemma 2.1 again we find

D,,

for every c eFJ+ï.
It suffices now to choose / &gt; D_, + Do + • • • 4- Dm_l. Since Dt &gt; 0 for ail i &gt; 0

we then hâve 1&gt;D_X 4- Z&gt;0 + • • • + £&gt;;_i, for ail j with 0 &lt;y &lt; m, whence
for every x e Xim\ as asserted in the theorem.

4.2. We shall also need a variant on Theorem 4.1 which makes a stronger
conclusion at the expense of modifying the given free resolution F by elementary
expansions in the sensé of simple homotopy theory of J. H. C. Whitehead.

We recall that an elementary expansion F dépends on the choice of an
élément we/),/&gt;l, and is defined as follows: adjoin a new basis élément e to X}
and define de du. Then, in order to kill the y-dimensional homology created by
the first move, adjoin a new basis élément e&apos; to XJ+[ and define de&apos; e — u. It is

easy to check that F is again a free resolution (of the same G-module), and if
and F is admissible, so is F.

THEOREM 4.2. Let A be a G-module of type (FP)m. Then [x] eZm(G, A) if
and only if there exists an admissible free resolution ¥-*&gt;A with finitely generated
m-skeleton, a chain endomorphism &lt;p:F—&gt;F, and a chain homotopy o.cp — IdF,
such that

v(cp(x)) &gt; v(x) for every x e X{m) (4.1)
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and

a(Xl)c*l+iU{0} for every Q^i^m. (4.2)

The resolution F is obtained by performing a finite séquence of elementary
expansions on an arbitrary admissible free resolution of A with finitely generated
m-skeleton.

4.3. Before we prove Theorem 4.2, we draw some conséquences of (4.1) and

(4.2) which will be needed both for the inductive proof and for later applications.

LEMMA 4.3. Under the assumption of Theorem 4.2 there is a real number
t&gt;0 with the property that we hâve for every chain c e F(m)

supp* o(c) c supp* c U Gv{c)+t, (4.3)

where Gr, for any reU, stands for the set {g e G | x(s) —r)- Consequently

v(o(c)) ^ f(c). Moreover, the largest possible value for t is

f= min {v((p(x))-v(x)} (4.4)

Proof Assume, for the moment, that (4.3) holds for ail c x e X^m\ Then, as

is clear from (2.11) and (2.2), it holds also for c y g GX{m\ And using (2.10)
and (2.1) one obtains the assertion for arbitrary c e F(m).

It remains to prove (4.3) for c =x eX{m) and we do this by induction on m.
For every x e X{m) we hâve

supp* o(x) supp* 3a(x), by (4.2)

supp* (cp(x) -x- o{dx))

c supp** U Gv{x)+t U supp* o(dx),

by (2.10) and (4.1)

For x 6 Xo, a(dx) is to be interpreted as 0. The induction is now obvious.

4.4. Proof (of Theorem 4.2). Assume first that F, ç : F-&gt; F and o : y ~ IdF as

in the theorem exist. Then we observe that the real number s, defined in the first
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part of the proof of Theorem 4.1, is now &gt;0. The proof of Theorem 4.1 then
shows that Fv —»&gt;4—? 0 is, in fact, exact in ail dimensions &lt;ra. Hence A is of type
(FP)m over Gx, that is, [X] e Zm(G\A).

Now we assume, conversely, that [x] eZm(G;A). We start with an arbitrary
admissible free resolution F-*&gt;A with finite m-skeleton, and aim to construct q&gt;

and a step by step while modifying F in terms of elementary expansions.
First we follow the proof of Theorem 4.1 to find a homomorphism q):F0-*F{),

lifting the identity of A, and such that (4.1) holds for ail x e Xo. Then we perforai
for each x e Xo an elementary expansion by adjoining, in first move, a new basis

élément ex to Xx with dex &lt;p(x) -x. Note that (p(x)i^x by (4.1), so that F
remains admissible. Then we define o.Fq-^Fx by putting o(x) ex.

Now we assume, inductively, that we hâve already constructed F, cp:F-+F
and o\q) — IdF in dimensions &lt;ra — 1 with the property that (4.1) and (4.2) hold
in thèse dimensions. In order to construct &lt;p:Fm—»Fm we then consider the real
number

r= min {v(cp(x))-v(x)},
xeXm-i

which is positive by assumption. Using Lemma 2.1 we find that t/(&lt;p(c))&gt;

v(c) + r, for every c e Fm-X. Hence we hâve for c eFm and k e N,

v((pk(dc))&gt;v{&lt;pk-\dc)) + r

(pk(dc) is, of course, an (m - l)-cycle; and since [x]eIm(G;A) we know, by
Theorem 2.3, that there must be some m-chain c e Fm with dc (pk(dc) and

v(c)&gt;v(q)k(dc)) — D, for any D&gt;Dm-x. Hence, by choosing k larger than

Dm_t/r, v{c) &gt; v(dc). In this fashion we find for each x e Xm a chain cx e Fm with
dcx (pk(dx) and v(cx) &gt; v(dx).

Now we put

cp(x) cx - o(cp + cp2 + • • • + (pk-l)(3x), x e Xm. (4.5)

With this choice of q)(x) we hâve, for x e Xmy

v((p(x)) &gt; min {v(cx)&gt; v(acpl(dx)) \0&lt;i&lt;k}

&gt;min {v(cx), v(cpl(dx)) \0&lt;i&lt;k},
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by induction and Lemma 4.3. By induction, again, it follows that v(cp(x))&gt;

v(dx) &gt; v(x), as required. The homotopy property of a in dimensions &lt;ra - 1

together with dcpl{dx) 0 yields

q&gt;l+\dx) - (p&apos;(dx) daq&gt;\dx).

Hence, by (4.5),

dxp{x) (pk(9x) - do{q&gt; + &lt;p2 + • • • + &lt;p*-l)(dx)

&lt;p(dx),

which shows that &lt;p:F(m)-»F(m) is indeed a chain map satisfying (4.1).
It remains to perform, for each x e Xm with (p{x)^x -f o{dx), an elementary

expansion the first move of which being adjunction of ex to Xm+lf with
dex cp{x) — x — o{dx). Then we define o:Fm-+ Fm+l by putting a(jc) ex, if
q)(x)¥zx 4- &lt;7(&lt;9x), and a(x) 0 otherwise. This complètes the proof of Theorem
4.2.

4.5. Remarks. 1) The proof of Theorem 4.2 shows, in particular, that if
[x] eSm(G\A) then there is always an admissible free resolution F-»A whose
valuation complex Ft;-*y4—»0 is exact. This yields a proof of Theorem 3.2

avoiding Brown&apos;s (FP)m-criterion.
2) The proofs of Theorems 4.1 and 4.2 yield somewhat stronger necessary

conditions for [%] e2m(G;A) than the statements of the theorems, namely

PROPOSITION 4.4. Let F-^A be an admissible free resolution with finitely
generated m-skeleton. If [x]eSm(G,A) then every chain endomorphism
qp:F(m&quot;&quot;1)-»F(m&quot;l), with v{cp(x)) - v(x)&gt;Dm_, for ail x e ATW_,, can be extended

to a chain endomorphism &lt;p:F(m)—»F&lt;m), with v(q)(x)) — v(x)&gt;0 for every
xeXm.

PROPOSITION 4.5. Let ¥-*&gt;A be an admissible free resolution. Let o:F,-»
Fl+U 0&lt;i&lt;m be a séquence of homomorphisms such that v(o(x))&gt;v{x) and

v(x + a(3x) 4- da(x)) &gt; v(x) for every x e X{m~V). If [%) e Im(G\ A) then o can
be extended to a : Fm-+ Fm+] such that v(x + a(dx) + do(x)) &gt; v(x) for ail x e Xm.

Proposition *4.5 is immédiate from the proof of Theorem 4.2 and the
observation that the chain endomorphism q? can always be expressed in terms of
a.
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4.6. We shall now hâve to consider more than just one fixed character

X G-*R at a time Thus, from now on we wnte vx for the valuation v F-^R^
extending % defined in Section 2 4 (or by Lemma 2 4), in order to express îts

dependence on %

Usmg Lemma 2 4 we make the elementary but crucial observation that
évaluation at an élément ceF yields a continuous map e Hom (G, R) —&gt;R,

e(x) vx(c) This has, m particular, the conséquence that if a chain endomorph-
îsm cp F-&gt;F, with the properties stated in Theorem 4 1, exists for some

X e Hom (G, R), then the very same cp will do for ail characters sufficiently close

to x Hence Theorem 4 1 has the immédiate

COROLLARY 4 6 Im(G, A) is an open subset of 5(G), for every G-module
A and ail m^O

4.7. We close this section by extending Theorems 4 1 and 4 2 from the

smgleton {[x]} to a compact subset of S(G)

THEOREM 4 7 Let V-*&gt;A be an admissible free resolution with finitely
generated m-skeleton Then the following three conditions are équivalent for a

compact subset F œ S (G)
(i) r&lt;zZm(G,A)
(n) there is a finite set cp of chain endomorphisms cp F—» F, lifting léAy with

the property that for each point [x] e F there is some cp e (p with

vx((p(x))&gt;vx(x), for every x e X(m) (4 6)

(ni) After replacing ¥ by a suitable admissible free resolution, obtained by

performing on F a finite séquence of elementary expansions, we can find a set &lt;f&gt; as

in (n) and for each y e (p a chain homotopy a cp — IdF with o{Xt) ç Xt+X U {0}
for every i with 0 &lt; i &lt; m

Proof (i) :=&gt; (ni) Following the proof of Theorem 4 2 we find for each point
[x] e F a homomorphism cpx Fi}-+ Fo, lifting Id^, such that (4 6) holds for cp q&gt;x

and m 0 But if (4 6) holds for some cpx then the very same cpx can be used in an

open neighbourhood of [x] Hence, by compaetness of F, there is a finite set cp0

of cpx&apos;s such that for each [x] e F there is some cp e &lt;j&gt;{) satisfying (4 6) for m 0

Now we perform for each x e X{) and each cp e (f&gt;{) an elementary expansion
adjoining a new basis élément to Xx with dex ^ - cp(x) - x (note that q&gt;(x) - x is a

cycle in the sensé that îts augmentation image is zéro) Then we replace F by the
new resolution which is again admissible smee q)(x) # x for each x e Xo And we
define o^ Fq-+Fx by putting o(p{x) exq) for every x e Xo
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Assume now, inductively, that we hâve already constructed a finite set &lt;j&gt;m-i

of chain endomorphisms of F(m&quot;&quot;1}, such that for each [x] e F there is q&gt; e &lt;t&gt;m-\

satisfying (4.6) for m replaced by m - 1, and a chain homotopy a:cp — IdF with

a(IJc Xi+Ï U {0}, 0&lt;/^m — 1. According to Proposition 4.4, &lt;p can then be

extended to a chain endomorphism ç&gt;x:F(m)—»F(m) satisfying (4.6). But if this is

so for some &lt;px, the very same cpx will do for an open neighbourhood of [%\
Hence, again by compactness of f, it follows that there is a finite set &lt;f&gt;m of ç&gt;x&apos;s

(finitely many extensions of the endomorphisms in 0m_O such that for each

[x] € F there is some y e 0m satisfying (4.6).
It remains to perform for each &lt;p e (f&gt;m and each xeXm with ç(x)=fcx +

0ip(dx) an elementary expansion in order to extend the chain homotopy a^ to
dimension m.

The implication (i) ^ (ii) is similar and easier than (i) ^ (iii) and can be left as

an exercise. The converse implications (ii)^(i) and (iii)=&gt;(i) are obvious from
Theorems 4.1 and 4.2. This complètes the proof of Theorem 4.7.

5. Type (FP)m over normal subgroups

5.1. In this section we consider a finitely generated group G and a normal
subgroup N&lt;\G with Abelian factor group Q G IN. As before A will dénote a

G-module of type (FP)m. Then A may or may not be of type (FP)m over N - the
information as to whether or not it is of type (FP)m is contained in the invariant

Im(G;A). For we shall prove

THEOREM 5.1. A is of type (FP)m over N if and only if S(G,N)cz
Im(G;A).

Hère, S(G, N) stands for the subsphere of S(G) consisting of ail points
[x]€ S {G) with x(N)= 0. Note that the canonical projection n:G -*&gt;Q induces

an embedding n* :S(Q) &gt;-&gt;S(G) which maps S(Q) isomorphically onto S(G, N).
Also, S(Gf N) remains unchanged if we replace N by a subgroup Ni of finite
index in N. Since type (FP)m over N is équivalent to type (FP)m over Ni for the
G-module A, we can thus replace N by the preimage of the torsion subgroup of
Q and assume that Q is free Abelian of finite rank n.

5.2. We start with the easy direction of Theorem 5.1, which is the assertion
that A of type (FP)m over N implies [x] e Im(G;A) for every character x &apos;• G-* R

with x(N) - 0. We first hâve to establish a very spécial case
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LEMMA 5.2. If G is a group of type (FP)m with centre Z then Zm(G;Z)
contains the complément ofthe subsphere S(G, Z) in S(G). In particular, if G is a

finitely generated Abelian group then Im(G; Z) S(G) for ail m &gt; 0.

Proof Let F-»Z be a G-free resolution with finite ra-skeleton, and let
#:G—»R be a character not in S(G, Z). Then there is an élément z eZ with
X(z)&gt;0, and multiplication by z yields a chain-endomorphism &lt;p:F—»F as

required in Theorem 4.1. This shows that \%\ eIm(G;Z).

Now we take the short exact séquence N &gt;-*G -*&gt;Q and the G-module A as in
Theorem 5.1 and assume that A is of type (FP)m over N. Let F^»A be an N-free
resolution with finite m-skeleton, and let x • G-» R be a character with x(N) 0.

Then N œGx and ZGX &lt;8)N¥ is a ZGx-free resolution with finite m-skeleton of the

Gx-module ZGX ®NA. The G^,-action on the tensor product is given by the action
on the left hand factor. Since A is a G-module we hâve a Gx-isomorphism

given by g ® a &gt;—» n(g) ® ga&gt; geGx, a eA, where jt:Gx-*&gt;Qx is the canonical

projection and with the diagonal Gx-action on the right hand side. By Lemma
5.2, there is a Qx-free resolution E-»Z with finite skeleta, whence a resolution of
the Gz-module A by modules E,®A (ZQX ®A)m. Each of thèse modules is of
type (FP)m over Gx, hence so is A by the usual mapping cône argument. The

easy direction of Theorem 5.1 is thus established.

5.3. Before we can prove the more subtle direction of Theorem 5.1 we need

some further notation. We identify the free Abelian group Q with the intégral
lattice of the Euclidean space R&quot;, n rkQ. We do this for two purposes. On the
one hand, the inner product of Rrt allows one to identify the sphère S(G, N) with
the unit sphère S&quot;&quot;lcRn by assigning to each ueSn~l the point IxJeS(G)
represented by the character xu&gt;

Xu(g)~(u,n(g)), geG.

We shall from now on identify u with [xu] and write vu :F-&gt; Rx for the valuation
extending Xu on a free resolution as defined in Section 2.4 (or formula (2.5)). On
the other hand, we can also consider the norm map ||- • -||:G--^R, where the
norm on a group élément g e G is simply defined to be the norm of its image
under the canonical projection n : G -» Q &gt;-» R&quot;, ||g|| ||^(g)||.

The norm map G—»R is, of course, not a character, but it still satisfies

\\gh\\ &lt; ||g|| + p|| for ail g, h e G, so that one could call it a &quot;semi-character&quot;.
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Much of what we hâve been doing in Section 2 for characters and valuations can
be extended to semi-characters and semi-valuations. For the sake of exposition,
however, we prefer to treat the norm as an ad hoc notion.

For every admissible free resolution F-*&gt;A we define the &quot;norm map&quot;

||- • -||:F^IRU{~°o} by putting, for each ce F,

I|C&quot;

lmax||suppjrc||, ifc*0.

If we wish to emphasize the basis XçF, we write \\c\\x for ||c||. The formai
properties of the norm map are highly analogous to those of the valuations in
Section 2.4.

t|c + c&apos;||&lt;max{||c||,||c&apos;||}, ail c.c&apos;eF (5.2)

llgc||^||g|| + ||c||, ail geG,ce¥ (5.3)

||-c|| ||c||, ail ce¥ (5.4)

||3c||&lt;||c||, ail ceF (5.5)

Remark. 1) (5.2) is an equality if ceZTX, c&apos; eZT&apos;X, where T and T&apos; are
disjoint subsets of G.

2) The définition (5.1) applies also when F is the group ring ZG concentrated
in dimension 0. In this sensé (5.3) can be generalized to

||Ac|| &lt; ||A|| + ||c||, ail A e ZG, c e F. (5.6)

For 0 # A e ZN, (5.3)&apos; is an equality.

5.4, Let F-*&gt;A be an admissible free resolution with finitely generated
m-skeleton. We consider for each real number /*&gt;0,

Fr {ceF|||c|j&lt;r}. (5.7)

By (5.2)-(5.5), Fr is an iV-subcomplex of F. We claim that its m-skeleton,
F&lt;m) Fr H F(m), is a free A^-module of finite rank.

Observe first that Fr is free Abelian on the set {y e GX | \\y\\ &lt; r}. Since N
acts freely on GX we find that Fr is a free iV-module on B {y e TX \ \\y\\ &lt; r},
where T stands for a transversal modulo N. We hâve to show that B(m) B f) F(m)

is finite. So let y tx e B{m\ Then ||fg|| &lt; r for every g e suppA- x. Hence
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which shows that \\t\\ is bounded. Since the canonical projection jï:G-»Q maps
T bijectively onto the discrète subset Zn of Rn, it follows that #(m) is finite.

So we hâve shown that (5.7) defines a free N-subcomplex of F which is finitely
generated in each dimension &lt;m. We shall establish Theorem 5.1 by showing
that if we choose F carefully and r sufficiently large then Fr-».4 is, in fact, exact
in ail dimension &lt;m.

5.5. Now we choose an admissible free resolution ¥-*&gt;A with finite m-
skeleton satisfying condition (iii) of Theorem 4.7 for the compact subset
F S(G, N)œS(G). Thus we are given a finite set $ of chain endomorphisms
&lt;p :F-* F, with the property that for each u e S&quot;~l S(G, N) there is cp e &lt;f&gt; and a

chain homotopy a:çp IdF such that we hâve

vu(&lt;p(x)) - vu(x) &gt; 0, for ail x e X{m\ (5.8)

and

a(Xt)cXl+l\J{0} forall0&lt;/&lt;m. (5.9)

We shall need the following two real parameters. On the one hand, we
consider, for each u e 5(G, N), the positive real number

p(u) max min (vu(cp(x)) - vu(x)).

This defines a continuous and positive real function 5(G, N)-&gt;IR; since 5(G, N)
is compact it attains a positive infimum

r inf {p(u) | u e 5(G, N)} &gt; 0. (5.10)

On the other hand we put

s max{\\o(y)\\\yeGXim\ lesuppxy}&gt;0. (5.11)

Note that, since G opérâtes freely on GX, only finitely many translates of the
finite set supp^ x, x e X, can contain the unit élément 1 € G. Hence s is well
defined.

The crucial technical lemma is

LEMMA 5.3. For every cycle z e fj_i with 0 &lt;; &lt; m there is a chain c e Fj with
dc z and \\c\\ &lt; max (||z||, s2/2r).
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The lemma shows that if fis a real number &gt; s2/2r then every (/ — l)-cycle z
of F, is the boundary of a /-chain of F with ||c|| &lt; t; that is, c is, in fact a /-chain in
F,. Hence ¥t-*A-*0 is exact in ail dimensions &lt;m, whence the required resuit
that A is of type (FP)m over N.

5.6. Proof (of Lemma 5.3). We take any c e Ft with de — z and assume
||c|| a &gt;max(||z||, s2l2r). We shall show that c can be replaced by a chain of
smaller norm. The idea to prove this is the following. We consider the support
supp*ce,G and pick g e G with ||g|| a. Then we modify c so as to remove this
élément from the support, at the expense of introducing new éléments h with
\\h\\ &lt; a. This reduces the number of éléments with maximum norm in supp^ c by

one- thus repeating the argument will eventually yield a chain of smaller norm.
Since the values of norms attain only square roots of integers, 0 is the only cluster
point of norm values. Hence the procédure yields eventually a chain c with
||c||&lt;52/2r.

So let gesupp^c with ||c|| ||g|| =a. We consider the expansion c Znyy,

y g GXP with 0^ny e Z, and décompose c c&apos; + c&quot;, where c&apos; collects ail terms

nyy with the property that hg e supp^ y, for some heN. Now let

The corresponding character %U1 when restricted to supp^c, takes its minimum
value at éléments of the form hg, heN, and this minimum value is equal to

Hlgll ~a- Since both supp* z and supp* c&quot; are contained in supp* c but do not
contain such éléments, we hâve vu(z)&gt;~a and vu{c&quot;)&gt;~a. Let çpe&lt;p and

a:ç? IdF as in (5.8) and (5.9). In view of the définition (5.10) we may assume
that vu(&lt;p(x)) — vu(x) ^ r for every x e Xim\ Our aim is to replace c by

c ~

We hâve to show that ||c|| ^ ||c|| and that the number of éléments of maximum

norm in the support has decreased.

Note first, that by (5.10) and Lemma 2.1,
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Also,

vu{o{dc&apos;)) &gt; vu(dc&apos;), by Lemma 4.3,

vu(z-dc&quot;)

in{uM(z), vu(c&quot;)}

489

Hence uw(c)^min {vu(q)(c&apos;))f vu{o(dc&apos;))y vu{c&quot;)}&gt; -a, which shows that g is

certainly not contained in supp* c.

As supp^- do(c&apos;) c supp^ o{c&apos;) we hâve, by Lemma 4.3,

supp* c c supp^ c U G_a+r (5.12)

Also, for each y e GX} occurring in the expansion c&apos; Znyy, g
x

supp^y contains
an élément of N. Hence, by the définition (5.11)

\\g&apos;lsuppxda(c&apos;)\\ ^ \\g&apos;lsuppxa(c&apos;)\\ &lt;5. (5.13)

The conjunction of (5.12) and (5.13) then shows that the new éléments of
supp^c, that is, supp* cXsupp* c, is contained in the range exhibited in the
following figure.



490 ROBERT BIERI AND BURKHARDT RENZ

By Pythagoras&apos; Theorem the maximum norm of points in the exhibited range
is

((a - rf + s2 - r2)112 {a2 - 2ar + s2)112 &lt; a.

Thus we hâve shown that ||c|| &lt; ||c|| =a and that the éléments of norm a in

suppx c are already in supp* c. Since g $ supp^ c, the number of thèse éléments is

reduced by at least 1. This complètes the proof of Lemma 5.3 and hence also of
Theorem 5.1.

6. Topological interprétation and connection with I(r of [5]

6.1. Let us assume that the G-module A is a permutation module. Then the
définition of Sm{G\A) can easily be translated into more topological language by

interpreting the admissible free resolution F as the cellular chain complex of an

acyclic CW-complex X with a free cellular G-action, such that X/G has finite
m-skeleton and H()(X) is isomorphic to A. The reader might find this translation
suggestive - it was certainly invaluable in the process of finding both the results
and the proofs in the previous sections. It will also lead to a convenient
connection to the invariant IM of [5].

6.2. For simplicity we assume that X is, in fact, given with a simplicial
structure, X \K\, and a simplicial free G-action. Then, given a character
X&apos;-G-*M we find a continuous map/:3E—»IR as follows. We choose a set X{) of
représentatives of the G-orbits on the 0-skeleton X{) of X, and we put, for each

xeX{\ /(*) x(g)&gt; where g e G is the unique élément with xegX{). Then we
extend the map f:£{i—&gt;U linearly to the higher skeleta. The resulting map
/:3E-»1R is continuous, piecewise linear, and satisfies

f(gx) x(g)+f(x), ail g e G, xeX.

Let F C(/Q be the simplicial chain complex of K. F has the set K of ail
simplices as a canonical Z-basis acted on by G. Any choice of représentatives X
of the G-orbits is a G-basis of F, and F is admissible in the sensé of Section 2.4,
with respect to this basis. Let us choose X such that X{) coincides with the

previously chosen représentatives in K° X°. Then we find that for every simplex
oeK the support supp^a and the valuation v(o), as defined in Section 2, are
given by

supp*a {g ê G | ô
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where we write à a 3E for the cell corresponding to o. This shows that the
valuation subcomplex Fv of Section 3.1 coincides with the simplicial complex
C(KV), where Kv stands for the full subcomplex of K generated by ail O-simplices
xeK° X° with /(x)&gt;0. Instead of using the corresponding subspace \KV\ of
\K\ 3£ it seems more natural, in the présent circumstance, to use the subspace

£x XXt0, where

Xx,r={jc€3E|/(jc)&gt;-r}, reR.

PROPOSITION 6.1. [x] e Im(G;A) if and only if (the permutation module)
A is finitely generated over Gx and there is a real number r &gt; 0 with the property
that the homomorphism

induced by inclusion, is the zéro map for ail i&lt;my Hl is the reduced homology,
Le., Ht Ht for i &gt; 0 and Ho ker (//&lt;&gt;-» A).

Proof. Show that \KV\ is a déformation retract of £x and apply Theorem 3.2.

6.3. Let G be a finitely generated group and IçCa finite set of generators
of G, 1 $ T. Then Proposition 6.1 applies, for A Z and m 1, if we take for 3E1

the Cayley graph F(G, T) (in dimension 0 there is no need to pass to a simplicial
subdivision). Recall that F(G, T) is the graph with vertices G and edges G xT,
where g is the origin and gt the terminus of the edge (g, t)eG xT. The condition
in Proposition 6.1 for i 0 asserts, that ?ix is &quot;essentially connected&quot; in the sensé
that each pair of points in £{x can be connected by an edge path of 3Êxr for some
fixed reR. Hence

COROLLARY 6.2. [x] e Zl(G; Z) if and only if there is a real number r =&gt; 0

with the property that every élément gzGx can be written as a product

g^hhty &apos; mts, with tte T±l and xihh&apos; &apos; -tt)&gt;-r for every 1&lt;*&lt;s.

At the expense of adjoining to T an additional generator one can strengthen
the condition in Corollary 6.2. Let t e G with #(0 &gt; r. If g e Gx then t~lgt e Gx,
whence t~lgt tit2- - -ts as in the corollary. Hence g ttxt2- • -tst~x is a product
with ail its initial segments ttx- - tleGx. That is, we hâve

COROLLARY 6.3. [x]eIl(G;I) if and only if G has a finite set of
generators T with the property that each g eGx can be written as a product
g txt2• • • ts such that ail initial segments txt2&apos; • mtn 1 &lt; / &lt;s, are in Gx.
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6.4. We are now in a position to prove

PROPOSITION 6.4. If G is a finitely generated group, then Z\G\T)
coïncides with —ZG&apos;, the antipodal set of the invariant of [5], where G&apos; is the

commutator subgroup of G acted on by conjugation from the right.

Remark. The slightly unpleasant sign in Proposition 6.4 arises because the

groups in [5] are acted on from the right, whereas in the présent paper we use left
modules. The sign disappears if one considers G&apos; with the left action by
conjugation or, alternatively, if one considers Z as the trivial right G-module.

Proof If one is to prove that [x] e Il(G; Z) by Corollary 6.2 or 6.3 it suffices

to verify the corresponding conditions for g € G &apos;

(since there are no problems to
verify them modulo G&apos;). Hence the &quot;equational condition&quot; (ii) of [5], Proposition
2.1, shows that if [x] e -ZG&gt; then [x] eIl(G;Z). Conversely, assume that the
condition in Corollary 6.3 holds, and pick aeGf. Then ;£(&lt;i) 0 and so
&lt;* hhm &apos;

&apos;ts as i° ^e corollary. But then

for ail a e 3t {[w, v] | u, v e T±l} and ail t e Ty shows that Condition (iv) of [5],
Proposition 2.1, is satisfied for -#.

6.5. Remark. Proposition 6.1 suggests that there is a homotopy version of the
invariant 2*m(G;Z), which is defined by replacing reduced homology, in the
statement of Proposition 6.1, by homotopy. Let us write *Xm(G) for thèse new
invariants of the group G; clearly *2&apos;1(G) 2ll(G;Z). For m&gt;2 the invariants
*Zm(G) hâve been investigated by the second author. This will appear in a

separate publication. It turns out that
(a) *Jm(G) is an open subset of 5(G),
(b) *Zm(G) *Z2(G) fl Im(G; Z)
(c) if N&lt;1G is a normal subgroup with Abelian quotient G/N, then N is

finitely presented, if and only if S(G, N) c *Z2(G).
Whether *I2(G)-Z2(G;Z) is open and related to the open problem as to
whether every group of type (FP)2 is finitely presented.

7. One relator groups

7.1. Throughout this section we write Zm(G) for the invariant Zm(G; Z).
Let F be a free group on a basis XcF, R= gpF(w)&lt;F the normal closure, in
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F, of a single word w e F, and G the one relator group F/R. The invariant Z\G)
has been determined by K. S. Brown [8]; and Walter D. Neumann showed us

recently a (topological) argument, based on Brown&apos;s computation of Il(G) and

the invariant *Z2, which proves Zm(G) Zl(G) for ail m&gt;2. Thus Zm(G) is

known for ail m.
In this section we show how ail this can rather nicely be obtained by our

techniques of Section 4.

7.2. We hâve to start with the preliminary

LEMMA 7.1. // G is a one relator group with 2&apos;1(G;Z)#=0 then G is an
ascending HNN-extension over a free base group.

Proof. The set of ail points of S (G) represented by an intégral character is

dense and hence intersects every open set non-trivially. So let #:G-»Z, with
[x]e Zl(G), and consider the composite F—&gt;G-»Z. Since the automorphism

group of F acts transitively on the équivalence classes in Hom (F, Z) we can apply
a free automorphism to the generators X so as to achieve that there is one basis

élément t e X with x(t)&gt; 0 whereas x(x) — 0 f°r a^ remaining éléments of X. This

implies that the exponent sum of t in w is zéro. Hence G admits the usual

//AW-decomposition with stable letter t over a base group G{, which is again a

one relator group (see [11]). Moreover, the associated subgroups are Magnus
subgroups of G{ and hence are free. Since [%] e Zl(G) this HNN-extemion must
be ascending ([5], Proposition 4.4). Hence the base group Gx coincides with one
of the (free) associated subgroups.

7.3. Another immédiate conséquence of Zl(G) =£0 is that G is of type (FP){
and hence finitely generated. One could hâve a slightly closer look at the
HAW-extension used above and deduce that G is, in fact, generated by 2

éléments (this argument is used by Ken Brown [8]). But the 2-generation will
later drop out, essentially at no extra cost.

Now we consider the Lyndon resolution of G,

© G,G&gt;Z-^0. (7.1)
X€X

The differentials dlf d2 are given by

diex=x-l, ail xeX

xeX OX
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where dw/dx e ZG stands for the image of the partial Fox denvative under the
canomcal epimorphism ZF-»ZG The resolution (7 1) is admissible if w =£ 1, and
has fimtely generated 2-skeleton

Let x G-^R bea character By replacmg the basis éléments x e X by x~\ if
necessary, we may assume that xix) — 0 for ail x e Xy and x(t) -&quot; ^ for one spécifie

teX Let v be the valuation on the resolution (7 1) extending x as defined in
Lemma 4 2 Since dex=x~ly with i/(x)&gt;0, we find, by définition of vy that
v(ex) v(x — 1) 0 for every x e X

We define o{) ZG-* @ZGexy by putting a{)(l) et Then v(l + 3,ao(l))
u(r) ^(f)&gt;0, so that Proposition 4 5 applies for m l It follows that

[x] e Zl(G), if and only if we are able to find, for each x e Xy an élément fix e ZG
(which we need to define ox{ex) ju*ew) sut h that

2-ev + (x-l)e)&gt;0 (72)
yeX dy

&apos;

This is certamly very easy for x ty where it suffices to choose fi, 0 We can
thus rephrase (7 2) by saying that [x] e H\G)y if and only if we are able to find,
for each x eXy xi^ty an élément pix e ZG such that the following three

inequalities hold

&gt;0 (7 3)

-1-f^—)&gt;0 (7 4)

v(tix— )&gt;0 for ail yeX~{xft} (7 5)
\ dy /

7.4* Now we infer from Lemma 7 1 that G is (locally free) -by-Z and hence
the group ring ZG has no zéro divisors The analysis of (7 3)-(7 5) is then greatly
simphfied by the observation

LEMMA 7 2 If the group ring ZG has no zéro dwisorsy then the valuation
i; .ZG—» (Roc extending x with respect to the basis {1} is multiplicative, that isy

v(k) + v{iA) for ail XypieZG (7 6)

Proof For each À € ZG we define kx e ZG to be the first term in the unique
décomposition À kx -f Â+ with x(supp Xx) v(k) and u(Â+) &gt; v(k) Then Âju
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Â+jU + ÂxiU + Now

and

supp {Xxiix) c (supp Ax)(supp px).

Moreover, Axjux^O since ZG has no zéro divisors, whence %(supp (Axjux))
t/(Â) + f (ju). This shows that one has

AxJu;f, ail A, iueZG, (7.7)

and this implies (7.6).

7.5. The analysis of (7.3)-(7.5) is now easily completed. First we apply
Remark 1 of Section 2.1 to the sums in (7.3) and (7.4). We obtain

and

dw\

showing that v(iàx) -v(dw/dx) a is the same constant value for each x e X,
x¥&quot;t. This contradicts (7.5), unless (7.5) is empty, i.e., X {f, jc}. Thus we hâve
shown that Zl(G) =£0 implies G to be a 2-generator group.

It remains to analyse the two inequalities (7.3) and (7.4) with the single
parameter ix — \ix e ZG. By the définition of kx in the proof of Lemma 7.2 above
and formula (7.7), thèse inequalities are équivalent to

-1, (7.8)

and

(1 — x)x, respectively. (7.9)

But since we hâve always the equality

dw dw
— (x - 1) + — (t - 1) w - 1 0 (in ZG),
dx dt
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which implies

one can see that (7.9) is a conséquence of (7.8). Hence [x] e Zl(G), if and only if
there is ju € ZG satisfying (7.8).

Now (7.8) asserts, in particular, that (dw/dx)x is a unit in ZG. The structure
of G, exhibited in Lemma 7.1, makes it obvious that G is locally indicable (Le.,
every finitely generated subgroup admits an infinité cyclic image), hence, by a

resuit of G. Higman, ZG has only the trivial units. Hence (dw/dx)x e ±G. But if
so, it is certainly very easy to choose ju fxxe ±G so that (7.8) holds. Thus we
hâve the final resuit

THEOREM 7.3. Let G (t, x xu x2, xn | w) be a one relator group
and x&apos;-G-^U a character with #(0&gt;0 and #(*,)&gt;() for l&lt;i&lt;n. Then

[x] € Zl(G), if and only ifn^l and

It is, of course, an easy matter to verify whether the condition of Theorem 7.3
holds in a spécifie situation. If one writes down the Fox derivatives for a gênerai
word one recovers Brown&apos;s explicit description of -T(G) in [8].

7.6. Let us now assume that [x] e 2l(G) and choose the élément \i \xx € ±G
such that (7.8) holds. Then we define ox\ ®ZGex-*ZGew by putting

By using (7.3) and (7.4) one finds that v(fiew)^0, so that the assumptions of
Proposition 4.5 are fulfilled. Hence [x] e I2(G), if and only if

v(ew + ox(d2ew))&gt; v(ew)

(there is no choice for a2 left). This inequality is équivalent to
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hence to

(7.10)

It is now obvious that (7.8) implies (7.10) since (dw/dx)x and \ix are group
éléments inverse to one another up to a sign. This proves Walter Neumann&apos;s

resuit that Z2(G) Zl(G).
To complète the picture, we note that Corollary 3.4 applies to G, whence

Im{G) Z2(G) for every m &gt; 2.

We summarize

THEOREM 7.4. If G is a one relator group, then Im(G) S1 (G) for every

REFERENCES

[1] Bieri, R and Eckmann, B Finiteness properties ofduality groups, Comment Math Helv 49,

74-83 (1974)
[2] Bieri, R Homological dimension of discrète groups, Queen Mary Collège Mathem Notes,

London 1976/81
[3] Bieri, R and Strebel, R Valuations and ftnitely presented metabehan groups Proc London

Math Soc (3), 41, 439-464 (1980)
[4] Bieri, R and Strebel, R A géométrie invariant for modules over an Abelian group J reine,

angew Math 322, 170-189 (1981)
[5] Bieri, R Neumann, W D and Strebel, R A géométrie invariant of discrète groups

Inventiones Math to appear
[6] Bieri, R and Renz, B Des invariants géométriques supérieurs d&apos;un groupe discret C R Acad

Sci Pans, t 303, Sériel, no 10,435-437(1986)
[7] Brown, K S Finiteness properties of groups J Pure and Applied Algebra, to appear
[8] Brown, K S Trees, valuations, and the Bien-Neumann-Strebel invariant, Prepnnt
[9] Fried, D and Lee, R Reahzing group automorphisms Contemporary Math 36, 427-432

(1985)
[10] Geoghegan, R and Mihalik, M L Free Abelian cohomology of groups and ends of universal

covers Journ Pure and Applied Algebra 36, 123-137 (1985)
[11] Lyndon, R C and Schupp, P E Combinatonal group theory Ergebnisse der Math und îhrer

Grenzgebiete 89, Spnnger-Verlag Berhn-Heidelberg-New York 1977

[12] Renz, B Thesis, University of Frankfurt 1987

[13] Stallings, J R A finitely presented group whose 3-dimensional intégral homology is not finitely
generated American J of Math 85, 541-543 (1963)

Mathematisches Seminar
der Johann Wolfgang Goethe-Unwersitat
Robert-MayerStrasse 6-8
D-6000 Frankfurt am Main

Received November 27, 1986/July 15, 1987


	Valuations on free resolutions and higher geometric invariants of groups.

