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On groups of smooth maps into a simple compact Lie group

PiERRE DE LA HARPE

Let X be a closed smooth manifold and let G be a connected compact real Lie
group with simple Lie algebra g. Let M,G be the connected component of the
group €7(X, G) of smooth maps from X to G, with respect to the €*-compact-
open topology. Then M,G is a nice example of a well behaved infinite
dimensional Lie group; see [M] and [PS]. However, I am interested here in some
properties of MyG as an abstract group.

The main result below describes automorphisms of My,G. Let M Aut (G) be
the group of smooth maps from X to the group Aut (G) of automorphisms of G,
and let 2(X) be the group of smooth diffeomorphisms of X. Consider the natural
action of 2(X) on M Aut (G) defined by

p(B)=Bp~! for @eD(X), B e M Aut (G)

and the associated semi-direct product M Aut (G) X %(X) with multiplication

(a, @)(B, ¥) = (a@(B), p¥).

This acts on M,G by automorphisms

aeM Aut (G) @ € 9(X)

(a, @)(Y)x) = a(x)(v(¢~'(x))) for {y e M,G xeX

Any automorphism of M,G happens to be of this form; thus, in particular, it is
continuous in any decent sense.

THEOREM 1. The group of all automorphisms of M,G coincides with
M Aut (G) X 2(X).

The proof of Theorem I has a crucial ingredient, due to E. Cartan (see [C]
and [vdW]): any homomorphism between semi-simple compact Lie groups is
smooth.
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The proof depends also on the classification of maximal normal subgroups of
M,G. For xe X, let €,: MyG— G be the evaluation at x and let &, :M,G—
G/C(G) be the composition of &, with the canonical projection of G onto the
quotient by its centre. As G/C(G) is simple as an abstract group, the kernel of &,
is clearly a maximal normal subgroup of M,G. Conversely:

PROPOSITION 1I. Any proper normal subgroup of My,G is contained in
Ker (&,) for some x € X.

One may think of Proposition II as a global result, which follows from a
related local result. To state the latter, denote by n the dimension of X. Given a
smooth manifold Y, denote by €} y the set of germs at the origin of smooth maps
from R" to Y, and let €: €, y— Y be the evaluation map. For Y = G as above, let
again & be the composition of € with the projection from G onto G/C(G). Then
€,  is a local group in the following sense:

PROPOSITION III. Any proper normal subgroup of €, ; is contained in
Ker (&).

Everything here works equally well for maps and germs which are of class €*
for some k=0. The proof of Proposition III works also in the real analytic
setting. Though the real analytic analogues of Theorem I and Proposition II look
plausible, they are not covered by our proofs which use partitions of unity. Also,
we believe that Proposition III may be proved for a simple Lie group which is not
necessarily compact, but the class of groups for which Theorem I holds is not so
clear.

Theorem I, with extra smoothness assumptions about automorphisms of M,G,
is due to Pressley and Segal. Indeed, its statement appears in Chapter III of a
preliminary version of [PS]. But the proof there is not quite explicit, and I
thought it worthwhile to write it up as follows. I am grateful to both Andrew
Pressley and Grame Segal for their patience in discussing parts of their
forthcoming book, as well as to Armand Borel who has encouraged me to write

up the full proofs for a general simple compact Lie group (and not just for
SU(2)).

1. Proof of Proposition III when G =SU(2)
Any g € G = SU(2) has two eigenvalues z, and z, of modulus 1. Assume that g

lies in the set G, = G — {£1} or regular elements. Agree that notations are such
that Im(z,) >0, define t,€]0, 7[ by z, =exp (it;), let u, be the orthogonal
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projection of C? onto the eigenspace of g corresponding to z,, and let uy=1—u,
be the projection onto the other eigenspace. One has

’

g = ZlU, +E;ug for all g€ Greg'

We identify the projective complex line P¢ with the space of orthogonal
projections of C? onto a line

P& = {u e My(C)| u* = u=u* and trace (u) =1}
where u* is the adjoint matrix of u. Set A =0, x|.
LEMMA 1. The map

{Greg—» PIC XA
g (ug, 1)
is an analytic diffeomorphism.

Proof. Clear. Analyticity follows for example from holomorphic functional
calculus (see [TS], Chapter I, §4, no 11, Proposition 16).

Observe that this diffeomorphism is G-equivariant, where G acts on G, by

conjugation, on P¢ as usual, and on A in the trivial way.

b
Any u € Pg¢ is of the form u = (g 1—a> withaeR,a=0,beC,a*+|b|°=a.

LEMMA 2. Let AU be the open subset of P¢ consisting of those

b U—SU(2

(‘i ) for which a>0. There exists a smooth map { —SU@) such that

b 1-a urg,

(1 0) =uforallueu
gu 0 0 gu e

. a b 12
Proof. Given u = 5 1-a €U, set p=a"* and o= -b/p. Then g, =

( p.. 0) works.

Let O be a neighbourhood of the origin in R” and let y: 0— G be a smooth
map with values in G,.,. Then ¢, depends smoothly on x by Lemma 1, and
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defines at the origin a germ of smooth map from R” to A; this germ depends only
on the germ y of y, and will be denoted by t, below. Similarly for u,. We write also ¢
and u if the reference to y is clear.

LEMMA 3. Consider two germs y, 0 in €, s with y(0), 6(0) € G,,. Set
Y = P¢ X A and denote the germs in €, v associated to y and 6 by (u, s) and (v, t).
Then y and § are conjugate in €7, ¢ if and only if s=t.

Proof. One may choose representatives y, u, s, 9, v, t defined in a common
neighbourhood O of the origin of R" in such a way that y(x), 8(x) € G,., for all
x € 0. To prove the non trivial implication, we assume that s =t, and indeed that
s=1L

Suppose first that the range of u(0) is not orthogonal to the range of v(0). (If
PL is identified with S, this means that u(0) and v(0) are not antipodal.) In
appropriate coordinates

u(0)=((1) 8) and v(())=(‘c2 lfi-c) with ¢ >0.

If

_(a(x)  b(x) _(cx)  d(x)
u(x)—-(m 1—a(x)> and v(x)—(a—(;-)- 1-—c(x)> for xe0,

we may assume O small enough so that a(x) #0 and c(x) #0 for all x € 0. By
Lemma 2, there exists a map §:0— G such that {(x)u(x)&(x)™'=v(x) for all
x € 0. As s =t it follows that {yE~' = 6.

In case u(0) and v(0) are orthogonal, define a new germ y’ with t' =t such

that u’(0) is orthogonal neither to u(0) nor to v(0). The argument above shows
that y' is conjugate both to y and §.

LEMMA 4. Let s € A. For any t € A with sin (¢/2) <sins set

(1 _ sin’ (1?/2))”2 sin (¢/2)

sin’ s

£ = sin s
o _sin (¢/2) (1 _sin’ (t/2)>“2
sin s sin’ s
_ (exp (is) 0 exp (—is) 0 1
VI:-( 0 exp (——is)) C’( 0 exp (is))C'
_ (exp (it) 0
0= ( 0 exp (——it))

Then 1, is in G, and is conjugate to 9,.
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Proof. Compute

sin®s — {1 — cos (2s)} sin® (¢/2)
sin® s

trace (n,) =2

=2 cos t = trace (6,).

LEMMA 5. Consider two germs v, 9 in €, g with y(0), 6(0) € G, and let u,
S, V, t be as in Lemma 3.

There exists a neighbourhood of the identity V' — G (depending on y) such that
0 is in the normal subgroup € ; generated by y as soon as 6(0) € V' N G,.

Proof. Let ¥ and y, u, s, 6, v, t be as in the proof of Lemma 3. By this
Lemma 3, we may suppose that

_ (exp (is(x)) 0
"(")"( 0 exp(—is(x)))

_ (exp (it(x)) 0
O(x) = ( 0 exp (—-it(x)))

and that s(x) is bounded away from {0, 7} for all x € 0. By Lemma 4, there exists
for all ¢ €€, s with sin(8(0)/2) <sin(s(0)) a germ { e €, s such that the
eigenvalue parts of 8 and yfy~'{™' are equal. One concludes using Lemma 3
again.

For a while, let G be an arbitrary connected Lie group. We introduce a
topology on €, ; making it a connected (though not Hausdorff) topological
group.

For any integer k =0, the set J§(R", G) of jets of order k of smooth maps from
R" to G is naturally a finite dimensional connected Lie group. These constitute a
projective system with inverse limit the connected topological group J5(R", G),
and there is a natural projection & from €, ; onto J5(R", G). The topology put
on 6,  is that for which a subset S is open if and only if z#(S) is open in the
infinite jet group.

The only open subgroup of €, ; is €, ¢ itself. The point {1} has for closure
the set of germs which are flat in the appropriate sense.

Assume now that the Lie algebra of G is simple, and let &: €, s— G/C(G) be
as in the introduction. Let N be a normal subgroup of 4;, . If N ¢ Ker () then
E(N) = G/C(G), because G/C(G) is simple as an abstract group. In particular N
contains a germ y with y(0) regular.
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From now on until the end of section 1, we set G = SU(2) again.

PROPOSITION 6. Proposition 111 of the introduction holds for G = SU(2).

Proof. Let N be a normal subgroup of 6, ; with N ¢ Ker (£). We have just
seen that N contains a germ y with y(0) € G,.,. Lemma 5 shows that N contains
any germ ¢ with 6(0) regular and near enough 1. As these constitute a non empty
open subset of €, ;, the group N is open, and consequently is all of €, .

We end this section with a digression. Though regular germs can be
diagonalized by Lemma 3, the condition of regularity cannot be removed. The
following example illustrates this. It comes from [R]; see also [J].

0
Set n=1 and 6(0) = (O

g) Define for x € R*
B _ s (cos(2/x) sin (2/x) )
0(x) = exp (= )(sin (2/x) —cos(2/x)/

Define also y(x) =exp (i6(x)); then y € €*(R, SU(2)). Outside the origin, y(x)
cOS (1/x)) ( sin (1/x)
d
sin (1/x) e\ —cos (1/x)
(—x72)) and exp (—i exp (—x~?)). But there is no germ § such that dyd~' is

diagonal. Of course, one may diagonalize y with a Borel map [A]!

has eigenvectors ( ) with eigenvalues exp (i exp X

2. Proof of Proposition III in the general case

Let G be a connected compact Lie group with simple Lie algebra g.

It is sufficient to prove proposition III for simply connected groups. Indeed,
suppose the proposition holds for the universal covering G of G (which is still
compact by Weyl’s theorem). The short exact sequence

{1}>m(G) > G- G- {1}

induces a sequence
{1} = 7:(G)— €65 6n.6— {1}

which is again exact (here elements of 7,(G) are viewed as constant germs). Let
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Nc €, be a normal subgroup which is not contained in the kernel of
E:€; c— G/C(G). As G/C(G)=G/C(G), the normal subgroup N =p~!(N) is
not contained in the kernel of €} s— G/C(G). If Proposition III holds for G,
then N = € s and thus N = € ;, so that the proposition holds also for G.

From now on we assume G to be simply connected. Using as much as possible
the notations of [Lie], we denote by T a maximal torus in G, by t its Lie algebra,
and by A an alcove in t (namely a connected component of the subset of t
consisting of those x € t with exp (x) regular). Lemma 1 above is a particular case
of

LEMMA 7. The map

.{(G/T) X A= Gyop
P41 (eT, s)—glexp (s))g ™"

is an analytic diffeomorphism. It is G-equivariant if G acts canonically on G/T,
trivially on A, and by conjugation on the set G, of regular elements in G.

Proof. For the first claim, see Proposition 4b in [Lie], page 51 (where
H, = {1} by remark 1 of page 45). The second claim is clear.

LEMMA 8. There exist an integer k =1 and

open subsets Uy, WUy, . .., U in G/T

base points 0, € U, 0,€ Uy, . .., 0, € Uy

smooth maps u;:U— G forj=1,2,...,k
such that

u;(u)0; = u for each u € U;, forj=1,2,..., k.

Proof. This is because G — G/T defines a locally trivial bundle with compact
base.

Lemma 3 can in turn be generalized as follows.

LEMMA 9. Consider two germs vy, 0 in €, s with y(0), 6(0) € G,,. Set
Y =(G/T) X A. Denote by (u,s), (v,t) the germs in €, y which are composition
of v, 6 and @4' (see Lemma 7). Then Y and J are conjugate in €, ¢ if and only if

-

s=t.

Proof. We assume s =t, and we show that y is conjugate to 0.

Suppose first that there exists j € {1, . .., k} with u(0), v(0) € %; (notations of
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Lemma 8). We may choose representatives y, u, s, 8, v, tof y, ..., t defined in
a neighbourhood O of the origin in R” such that s(x) = t(x) and u(x), v(x) e %;
for all x € 0. By Lemma 8, there exists a map u: 0— G such that u(x)u(x) = v(x)
for all x € 0. By Lemma 7 one has u(x)y(x)u(x)™' = 8(x) for all x € 0.

In the general case, one may find a sequence uy=u, u,, ..., u, =V such that,
for each i€ {1,..., m}, there exists some je{1,..., k} with u;_,(0), y(0) €
U ;y- By the argument above, there exists u;: 0— G with p,(x)u;_;(x) = u;(x) for
all x in a neightbourhood O of the origin in R". Then the product u,u,,_,- - - 4,
conjugates y in 0. o

As we have not been able to generalize Lemma 4, we proceed as follows by
reduction to the case of SU(2).

Choose a root a: T— U of G with respect to T (with U the unit circle of the
complex plane). Let v:SU(2)— G be a morphism of Lie groups such that

(a) the image of v and the kernel of & commute

0
(b) for a € U one has v(g _) e T and av(g g) = a” (see [Lie], page 31).

a
0 -1

Let ¢y be the inner automorphism of G defined by v( _

). Then

Y(t) =t for all teKer(a)

y()=t"" forall reTNIm(v)

(see [Lie], page 33). As
T = (Ker (a)) - (T NIm (v))

the commutator ty(¢)~" lies in T N Im (v) for all t € T. Moreover there exists an
open dense subset T, in T (indeed in T N G,,) such that ty(t)~' is not in the
image by v of the centre of SU(2) for any t € T.,.. We denote by t,.,. the inverse
image by expy of T\, in t. Then

Greg+ = (pA((G/T) X (A N trcg+))

is an open dense subset of G.
For example, let G =SU(/+1) for some /=2 and let T be the torus of
diagonal matrices. If & maps diag (z;, ..., z/+1) 10 2,25 ', then the image of v
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consists of matrices of the form

a b
—b a
1 a,beC lal*+ |b*=1
1
and T,.,, consists of matrices diag(z,, ..., ;) where the z’s are all distinct

and where z, # —z,. We return now to the general case for G.

LEMMA 10. Let N be a normal subgroup of €; s which contains a germ
v € €5 G with y(0) € G,y+. Then N contains any constant germ.

Proof. Let y:0— G be a representative of y. By Lemma 9 we may assume
that there exists a smooth maps:0—A Nt.,, with y(x) =exp (s(x)) for x € 0.
Define 6:0— G by 8(x) = y(x)y(y(x))~". As & is the commutator of y with the

0 -1
constant map 0— G of value V(l O)’ the germ ¢ lies in N. Moreover

soer(y 1) (T )

by definition of G .. It follows from Proposition 6 that N contains any constant
germ with value in Im (v). As G is simple (up to its centre), this implies that N
contains any constant germ at all.

LEMMA 11. Let N be as in Lemma 10. Then N = €, ;.

Proof. Let ¢ be a Coxeter element of the Weyl group of T. Let m be an
element in the normalizer N;(T) of class ¢ in W, and denote by f the smooth map

{T“’ T The derivative of f at the identity is L( f)-{'_"’t Now
to>mm~ 't y Axc(x)—x

L(f) is an automorphism because Coxeter elements do not have 1 as eigenvalue
(we repeat here part of [Lie], page 33). By the implicit function theorem, this
implies that there exist a neighbourhood ¥ of 1 in T and a smoothmap x: ¥ —> T
such that

t=my(t)m~'x(t)~' forall re¥.
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Consider now m as a constant germ in €, ; then m € N by Lemma 10. Let
Y€ Greg be a germ with

y(0)e U g¥g~',
geG

and let y be a representative of y. Let 6 be a conjugate of y with values in T (see
Lemma 9). As

8(x)=my(6(x))m~'x(6(x))"" xeO
and as m € N, one has § € N and also y e N. Consequently N contains an open

subgroup of €;, ;.
As €, ¢ is connected, this ends the proof.

The argument used for Proposition 6 above proves now Proposition III for
any simply connected compact Lie group with simple Lie algebra.

3. Proof of Proposition II.
The support of a smooth map y: X — G is the closure of {x € X | y(x) # 1}.

LEMMA 12. Let (U;),<j<n be an open covering of X and let y € MyG. There
exists a finite sequence (j;, . . ., jn) of indices in {1, . . ., n} and there exist smooth
maps v, € MyG with supp (yi) € U;, for ke {1,..., N} such that y =y,7,- - yn.

Proof. The group M,G has a Lie algebra €™(X, g) made of smooth maps
from X to the Lie algebra g of G, and an exponential map

EXP: €*(X, g)— M,G

defined by (EXP ¢)(x) =exp ({(x)), where exp:g— G is the exponential of G.
As EXP is a local diffeomorphism and as M,G is connected, there exists
Ei, ..., &, € €7(X, g) with

Yy =EXP (§;) EXP (&) - - - EXP (C).

Let (4;);<j<, be a smooth partition of unity subordinated to (%;)<j<n; as the
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A;§’s commute, one has

EXP (&)= [] EXP(L8)).

isj=n
The same holds for each {, and this proves the lemma (with N = nm).

In the following lemma, G is identified with the set of constant maps in M,G.
Given A, B c« MG, we write (A, B) for the subgroup of M,G generated by the
commutators Y8y '6 "' with ye A and 6 € B.

LEMMA 13. The group M,G is perfect. More precisely M,G = (G, M,G).

Proof. Choose a maximal torus 7 in G. Let me G and x: ¥ — T be as in the
proof of Lemma 11.

Let first y € M,G be a map with values in the neighbourhood 7 of 1 in T.
Define 6: X — T by 6(x) = x(y(x)); then y =mém~'6"' € (G, M,G).

As conjugates of T cover G, there exist tori T;,..., T, =« G which are
conjugated to closed subtori of 7, and such that

{n’- € w0y T;c—’G
&1, 8)8182 " &

is a local diffeomorphism. It follows that any y € M,G near enough to the identity
is a product y,y, - - - y, with v, e MyT, < (G, MyG) for j=1, ..., k.
Now M, G is generated by elements near the identity, and the lemma follows.

LEMMA 14. Let N be a maximal normal subgroup in M,G. There exists a € X
such that N contains the group N,G of those y € M,G which have trivial germ at a.

Proof. Set S =M,G/N; it is a group which is perfect, by Lemma 13, and
simple, by maximality of N. Write & : M,G— § the canonical projection.

For any open subset U of X, denote by M,, the normal subgroup of M,G of
those maps which have supports in %. Define

W = {x € X | x has a nbd U with &(M,)=1};

this is an open subset of X.

If there were two distinct points y, z in X— %, one could choose
neighbourhoods %, V" of y, z with U N ¥ = and 7(M,,) = n(M,-) = S. Then

§=(S,8)=(x(Mx), (My)) = (M, My) = (1) =1
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which is absurd. By Lemma 12 and by compacity of X (which is crucial here), one
cannot have W = X. Hence there exists a € X with W = X — {a}. By Lemma 12
again one has Ny < Ker (). But My, is precisely the group N,G.

We may now finish the proof of Proposition II. Let N be a maximal normal
subgroup in M,G. Notations being as above, M,G/N,G is isomorphic to €}, .,
with n the dimension of X. By Proposition III, the image of N in MyG/N,G is the
group of those germs with value at a in the centre of G. In other words N is equal
to the kernel of &,.

4. Proof of Theorem 1.

The next lemma is an easy illustration ‘“that group properties often force

considerably more regularity than is explicitly postulated” (quoted from Chapter
V in [MZ)).

LEMMA 15. Let X be a compact smooth manifold, let G be a connected
compact Lie group, and let a: X X G— G be a map such that

a(x, g)a(x, h) = a(x, gh)
l X :
ax, 1) =1 forallxe Xand g, he G

If « is separately smooth, then « is smooth.

Proof. We check first that « is continuous. Let d be a distance which defines
the topology of G. Let (x, g) € X X G and let ¢ >0. As y— a(y, g) is continuous,
one has d(a(y, g), a(x, g)) < € for y near enough to x. As the set of automorph-
isms of the compact group G is equicontinuous, one has d(a(z, h), a(z, g)) <e
for h near enough to g and uniformly with respect to z € X. It follows that

d(a(y, h), a(x, g)) =d(a(y, h), a(y, g)) + d(a(y, g), a(x, g)) <2

for (y, h) near enough to (x, g).

The next step is to translate the problem from G to its Lie algebra g. Let % be
a neighbourhood of the origin in g and let 7" be a neighbourhood of 1 in G such
that exp: % — 7" and log: ¥"— U are diffeomorphisms inverse to each other. Let
V' be a neighbourhood of 1 in ¥ such that a(X X ¥') < ¥ and let U’ = log (V).
Define f: X xg—g by B(x, §) =log(a(x, exp{)) for xe X and {e ¥, and
extend by linearity for larger {. Then f is continuous, separately smooth, and
linear in .
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Consider linear coordinates ({;, . . ., {,,) on g. By linearity, one may write

)B(x’ C)z = 2 ﬁi,'(x)cj i=1...,m

1=j=m

By assumption, x— B(x, §); is smooth for any (&,,..., {,)eR™ and for
ie{l,...,m}. It follows that each f;; is smooth, so that B is smooth.
Consequently the restriction of o to X X 7"’ is smooth.

Let (x,g,)€XXxG. For g near enough to g, one has gy'ge ¥’ and
a(x, g) = a(x, go)x(x, g5 'g) depends smoothly on (x, g). Thus « is smooth.

We need a second smoothness lemma, for which compacity does not help.

LEMMA 16. Let X be a smooth manifold, let G be a connected Lie group,

X—>G
and let o:X— X be a map such that { -

is smooth for all y e M,G.
Then @ is smooth. x = y(px))

Proof. Let I be the open unit interval, let IV be a cube of large dimension,
and let ¢;: [N — I be the jth projection (j=1, ..., N). Let s: X— I" be a smooth
embedding of X in the cube, and let u:/— G be a smooth embedding. Consider
the map t; = ut;s, which is in MG forje{1,..., N}.

For each j, the map 7,¢ is smooth by hypothesis. As u is an embedding, ¢;s¢ is
smooth. It follows that s@ is smooth. As s is an embedding, @ is smooth.

Proof of Theorem I. Let ®:MyG— MyG be an automorphism. For each
x € X, consider the endomorphism «, of G defined by

M,G - M,G

]constam lfx

a,

G - G

Then a, is smooth by [C]. If «, was not injective, it would be trivial (because the
Lie algebra of G is simple) and @ would not be onto by Lemma 13. Hence
@, € A= Aut G for all x e X. Moreover a,(g) = ®(g)(x) depends smoothly on x
for each g € G. It follows from Lemma 15 that « is smooth. Upon replacing @ by
(a7, id,)®, we may now prove Theorem I under the additional assumption that
a, =idg for all x € X.
The automorphism ¢ permutes maximal normal subgroups of M,G. By
Proposition 1I, there exists a bijection @ : X— X such that @(Ker &,) = Ker &,,,
for all x € X. Define a homomorphism @ from M,G to the group of all maps from
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X to G by &(y)=vy@~'. We have to show that & = & and that @ is smooth.

Let y € MyG. For any x € X one may write y =gy, with g. € G (a constant
map) and y,eKer(e,1)). As P(g)(x)=g, and P(y,)eKer &, one has
&(y)(x) = z,,,8, for some z,, € C(G). The map y— z,,, is a homomorphism; it
is constant, because M,G is perfect and C(G) is abelian. Consequently
D(y)(x) =g,. Also D(y)(x)=y(p~'(x))=g,. As this holds for any x one has
&(y) = D(y). But y is arbitrary, so that & = &. Finally, ¢ is smooth by Lemma
16.

Remark. Consider now the topological group €°(X, G) of continuous maps
from X to G, and its connected component ¥ = €°(X, G)’. Let ¥ be the set of
maximal normal subgroups of ¥; because of Theorem I, it can also be viewed as
the set of homomorphisms of ¢ onto G/C(G). One may define a topology on &
as follows: given xo€ &, and given an integer k =1, elements y,,..., y, €9,
and a real number € >0, define a basic neighbourhood of x, by

Otos Y1r - -+ » Yio €)={x €2 | d(x(v)), xo(v,)) <€ for j=1,...,k}

where d is a distance defining the topology of G/C(G). Then the ““Gelfand map”
X — & which associates to a point x the homomorphism £, is a homeomorphism.

It follows that €°(X, G)° and €°(Y, G)" are isomorphic (as topological
groups) if and only if the compact topological spaces X and Y are homeomorphic.
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