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Chapter 1. Introduction

The spaces X" of complete quadrics is a compactification of the space of
nonsingular quadric hypersurfaces in complex projective n —1 space. It was
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introduced by Chasles for n =3 in 1864 [C] and by Schubert for general n in 1879

[Sch]. In this paper, we give a conceptual formula for the rational cohomology
groups of X", including its ring structure.

1.1. In our view, the variety X" of complete quadrics ranks with Grassmannians
and flag manifolds as one of the most important special varieties. Since they are
less well known, we summarize some background about them in the introduction.

First we identify X" as a set. The points of the variety X7 of nondegenerate
quadrics represent nonsingular quadrics (degree two hypersurfaces) in complex
projective n — 1 space P*~'. The idea behind the variety of complete quadrics X"
is to add to Xj points representing certain geometric objects in P"~! called
degenerate quadrics. A degenerate quadric is a partial flag ¢ =FcFcFkc
+«-c F,=P"! of linear subspaces of P"~! together with, for each i>0, a
nonsingular quadric in the projective space of planes of dimension (dim F;_, + 1)
which contain F;_, and are contained in F,. (We take the natural conventions that
dim F,= — 1, that P° consists of a single point and contains a unique quadric, and
that a nondegenerate quadric in a one dimensional projective space is a pair of
distinct points). A complete quadric is by definition either a nonsingular quadric
or a degenerate quadric. As a set, X" is just the set of complete quadrics.
Complete quadrics are classified into strata according to the type of flag. For
n =3, there are four strata:

\ o
_— \

nonsingular quadrics
trivial flag with no point or line

flag with one line

flag with one point

flag with a point in a line
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Now we need to put a topology on the set of complete quadrics. The topology
within each stratum is clear. The intuitive idea behind convergence of sequences
in one stratum to a point in another is illustrated by the following four pictures of
pairs of complete quadrics which represent points close together in X°.

Perhaps the simplest precise definition of X" as a topological space is the
following one in the spirit of [FKM]: Let F be the flag variety of points contained
in hyperplanes in P*~'. Map the variety X§ of quadrics into the space Sub(F) of
closed subsets of F by associating to a quadric the set of flags consisting of a point
and the tangent plane at that point. Then X" is the closure of X§ in Sub(F)
endowed with the Hausdorff topology.

1.2. Complete quadrics have arisen in both algebraic geometry and algebraic
group theory, and the space X" has modern constructions as an algebraic variety
from both points of view. We sketch these in this section, but we have minimized
our reliance on either of them in this paper since most readers are familiar with at
most one construction.

Constructions of X" in Algebraic Geometry

The original use of the variety of complete quadrics was in enumerative
geometry, where they are used to count quadrics with certain sets of tangency
conditions. See [K1], [K2] for a historical account. The importance of it there
stems from the following characterization of X": For each integer j, we can
associate to any nonsingular quadric the variety of its i-dimensional tangent
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planes. This turns out to be a nonsingular degree two subvariety of G;, the
Grassmannian of all i-planes in P"~' (with respect to the Plucker coordinates on
the Grassmannian). So for each i, we have a map @, from X7 to Q,, the variety of
all degree two subvarieties of G; (singular or not). Then X" is the minimal
compactification of X5 over which all of the maps @; extend. This means that a
degenerate complete quadric has ideal tangent planes which are limits of tangent
planes of nearby nonsingular quadrics. For example, if Q is a quadric in the
stratum of X° consisting of a line with a nondegenerate quadric (two points) in it,
the ideal tangent lines to Q are all lines through those two points.

¥ %

The algebraically simplest construction of X, is a realization of this universal
property: A nondegenerate quadric is most conveniently represented by sym-
metric n X n complex matrix M with nonzero determinant, with two being
considered equivalent if one is a scalar multiple of the other. This gives an
embedding of X{ in the projectivization of the space of all n X n matrices. The
closure X7, of X§ in this space is called the naive compactification. If we
consider not only M but also of all its exterior powers (or adjugates, in the
language of [T]), we similarly get an embedding in a product of projective spaces,
one for each exterior power, and X" is the closure of Xj in this product of
projective spaces ([T], [V]).

The variety X" also has a construction by blowups from the naive compac-
tification X7, which is stratified by the rank of the matrix M. To obtain X", first
blow X7, up along the rank 0 stratum, then blow the result up along the proper
transform of the rank 1 stratum, and so on [V].

Constructions of X" in Algebraic Group Theory

The variety X3 of nonsingular quadrics is an example of a symmetric variety.
A symmetric variety is a particular type of homogeneous space that is the
analogue in algebraic geometry of a Riemannian symmetric space. Any sym-
metric variety X has a natural compactification C(X) which may be characterized
as the minimal one that is wonderful [DP1]. Here wonderful means that C(X) is
equivariant and C(X)— X is a union of nonsingular divisors which intersect
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transversally and whose natural stratification as a divisor with normal crossings
coincides with its stratification by orbits. The compactification C(X) has a
construction as the closure of Xg in the space L of subalgebras of the Lie algebra
of the automorphism group, where Xg is embedded in L by sending each point to
the Lie algebra of its stabilizer group [DP1], [DP2]. It also has a construction as
the closure of an orbit homeomorphic to X in the projectivization of an
irreducible representation of the automorphism group which is general (in the
sense that the highest weight is not in a wall of the Weyl chamber [DP1], [DP2].
(We note that the compactification C(X) is the analogue for symmetric varieties
of the largest Satake compactification of a symmetric space of negative curvature
[Sa].)

In our case, X" = C(Xg). We admit our bias in favor of the algebraic group
theoretic approach because of its generality and the beauty of its conceptual
framework. However, this paper does not rely on it. Only section 5.3 makes
explicit reference to any preexisting construction of X".

1.3. The cohomology H*(X™) of the space X" of complete quadrics has been the
subject of many studies. The manipulations of Chasles and Schubert, done many
years before homology was even defined, may be interpreted as calculations
inside the ring H*(X"), as was first pointed out by van der Waerden [VW]. In
fact, Schubert’s formulas represent an extensive understanding of the subring R
of the cohomology ring generated by classes in degree two. A number of people
have worked on making these formulas rigorous in the language of cohomology
(see [K1], [K2]) and in [DP1] there is a complete calculation of R.

There are two modern approaches to the complete calculation of H*(X").
One is to realize X” as a projective space with a sequence of varieties blown up as
described above, and to iteratively use the formula for the cohomology of a blow
up (Vainsencher [V]). This gives the ring structure in principle, but following the
formula through the interations leads to combinatorial difficulties ([V], p. 201).
The other is to find a paving of X" by affine spaces (Strickland [Str]). See also
[Dr1] and [Dr2].

Our object here is to give a formula which is conceptual and non-iterative in
the sense that Borel’s calculation of the cohomology of the flag variety ([BO1],
[B02]) or Danilov’s calculation of the cohomology of a toric variety [D] are. We
have succeeded only at the expense of sacrificing the integers: our formula holds
only for rational cohomology H*(X";Q). This is, of course, sufficient for the
development of Schubert’s calculus.

1.4. We now give the statement of our first main result, which is a formula for
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the cohomology of X" as a rational vector space. It involves a flag variety %, and
a toric variety T,.

Let % be the space of all direct sum decompositions C*=P, O P,D--- D
PO Ly, ®Lyy,®D---D L, where the P, are two dimensional subspaces, the
L, are one dimensional subspaces, and all of the subspaces are orthogonal with
respect to the standard Hermitian inner product on C". The product of symmetric
groups Z; X Z,_,, acts on ¥, by permuting the labelling of the planes P, and the
labelling of the lines L, The space % is homeomorphic to the space of
(2,4,...,25,25+1,25s+2,...,n—1)flags in C". Hence its cohomology to-
gether with the action of Z; X 2, _,, on it is conceptually computable using [Bo1]
or [Bo2]. (See [Ste] and [BM] for explicit calculations of the action.)

In order to specify a Toric variety, we need the following data: a real vector
space V, an integral lattice L in V, and a rational polyhedral cone decomposition
Y of V. For any integer m, let V,, be the hyperplane in R™ with coordinates
a,, az, . . ., a, defined by the equation 2;a; = 0. Let L,, be the lattice of points on
which each a; takes on integral values, and let Y,, be the cone decomposition
generated by the hyperplanes in V which are defined by a; = a; for all pairs i #}j.
(This is a description of the decomposition into Weyl chambers for the root
system A,,_,.) Let T, be the toric variety corresponding to the data V,_, L, _,,
and Y,_,. An action of the permutation group X, X X, _,, on T, is induced from
the following action on V,_,: 2 permutes the s coordinates a,, a,, ..., a; and
>,._, permutes the n —2s coordinates a4, ..., a,_,. The cohomology of T,
together with the action of X, X X, _,; on it is conceptually computable by [D]
§10. Also, there is a more explicit calculation of it in [P].

THEOREM. There is an isomorphism of groups

n/2

HOm0=0 | @ [H(%:; 0 H(T; Q]
s=1 \a+b=k—4s

In this formula, the superscript 2, X 2, _,, means to take the invariants. Note that

this could not be a ring isomorphism because the dimension shift of 4s would

contradict the grading.

(The constructions above have the following interpretation in terms of
algebraic groups. Let G be PGL(n), the automorphism group of the projective
plane P*~!, Then the space %, is G/P, for an appropriate parabolic subgroup P..
The vector space V,_, is the subspace of the Cartan subalgebra of G given by
zeros of s orthogonal roots and Y is the restriction to V of the decomposition into
Weyl chambers. This formula is the extension to the case of complete quadrics of
a formula of deConcini and Procesi for the cohomology of the completion of an
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adjoint group viewed as a symmetric variety [DP3]. In the case of the adjoint
group, the first direct sum was unnecessary since there was only one term.)

1.5. Our second main result is a determination of the ring structure on the
rational cohomology of the variety of complete quadrics.

Fix an integer s in {1,2,...,[n/2]}. We will define an algebra R, over the
rationals (see also §1.6). Consider the one dimensional cones o,, 0,, ..., 0, in
the cone decomposition Y, of V, (defined above) which lie in the closed quadrant
defined by a, =a,, as;=a,, ..., ay_; =a,. In each g, let ﬁi be the vector to the
first lattice point in L,.

Recall that the cohomology ring H*(%,, Q) of the flag variety % is generated
by the cohomology classes c'(P), ¢*(P), and c'(L;) where P, (for j=
1,2,...,s)and L,, (for k =s +1, ..., n) are the tautological plane bundles and
line bundles over %, and where ¢’ denotes the Chern classes.

DEFINITION. The ring R; is the polynomial ring
H*(%,; Q)[D,, D,, ..., D,]

(in commuting variables D,, . .., D, of degree 2), divided by the following four
relations:
1. The monomial D; D,, - - - D, =0 whenever o,,, 0,,, ..., and g, do not all
lie in some cone of Y,,.
2. For each D in {D,, D,, ..., D,} and each integer j in {1,2,...,s} such

that a,,_,(D) < ay(D), let D denote the sum of all the D; such that ay_,(D;) <
a5(D;). Then

(D? - 4c'(P)* + 16¢*(P))D = 0.

3. Foreachjin {1,2,...,s}.

2 Di(aZj([ji) +ay- 1(13:)) = CI(P/)
i=1

4. Foreachkin {2s+1,2s+2,...,n},
21 Dg‘ak(l-ji)zcx(Lk)

The permutation group X2, X X, _,. acts on R,. It acts on H*(%,) as described
earlier, and it permutes the generators D; by acting on V,, as follows: X, permutes
the pairs of coordinates (a,, a;), (a3, a4), . . ., (@2-,, ax) and X, _,, permutes the
coordinates d,;, ¢, . . . , Q,.
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Next, we define a sequence of ring homomorphisms
R[n/zr—’ R[n/2]~1—') > R—> R,

Since H*(%,) c H*(¥,_,), to define the map R,— R,_; we only need to
describe where the generators D; of R, go. If a,_,(D,) = a,(D;) then D; goes to
itself. If as_l(ﬁ,) < as(lj,-), then D; goes to D; + D, where 5,- is the reflection of D,
in the hyperplane a,_, =a,.

THEOREM. The ring H*(X,;Q) is isomorphic to the subring of Ri.;
consisting of elements r whose image in the ring R, is invariant under X, X X, _,,
for each s in {1, 2, ...,[n/2]}.

1.6. The main technical tool of this paper is the idea of a diagonal quadric with
respect to a direct sum decomposition of the space C". This notion has a natural
extension to complete quadrics (see §2.2). The toric variety T, is isomorphic to
the variety of all complete quadrics which are diagonal with respect to a fixed
decomposition of C” into lines. The ring R, is the cohomology ring of the variety
M; which is the fiber bundle over the flag manifold % whose fiber over the point
PD--- ©OPDL,,.,D---DL, is the space of complete quadrics which are
diagonal with respect to this decomposition of C”.

We wish to thank S. Abeasis, J. Carrell, W. Casselman, W. Fulton, and E.
Strickland for useful conversations on this material. We are grateful to an
anonymous referee for his extremely careful reading of the first draft of this
manuscript, and for his many helpful comments and corrections. We thank the
Conciglio Nazionale di Richerche of Italy and the National Research Council of
Canada for support during the preparation of this paper, and the Universita di
Roma “La Sapienza”, the Universita di Roma ‘““Tor Vergata”, and the University
of British Colombia for hospitality.

Chapter 2. Definitions

Throughout this paper, we fix an integer n >0. We will make use of the
standard basis and Hermitian product on C". Cohomology groups will always be
taken with coefficients in the rational numbers Q.

§2.1. Complete quadrics. A nondegenerate quadric cone () in a vectorspace
V=C" is a cone whose equations are given by the (multiples of) a complex
valued nondegenerate quadratic form on V. (i.e., with respect to the standard
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basis, it is given by (all multiples of) a nonsingular symmetric matrix of complex
numbers). The nondegenerate quadric cones in C" are in one to one correspon-
dence with nonsingular subvarieties of degree 2 in P"~' = P(C"), which are called
nonsingular quadrics.

Remark. By convention, a one dimensional vectorspace V contains a unique
quadric cone. A double hyperplane (i.e. a hyperplane with multiplicity 2) is
considered to be a singular quadric (even though its underlying space is
nonsingular).

Let X° denote the variety of nonsingular quadric hypersurfaces of P"~'. It has
a smooth, projective compactification X, which is called the variety of complete
quadrics in P"~' ([DP1], [DP2], [Se], [T], [V]) which we now describe.

Let I={1,i,,...,i;—;} be any subset (possibly empty) of the numbers
{1,2,3,...,n—1}. A partial flag F of type I is a sequence of subspaces,

0=FKcKckhc--cF cE=C
such that for each p (with 1=p <k — 1), dim (F,) = i,.

DEFINITION. The variety X, of complete quadrics of type I is the variety of
all pairs (F, Q), where F = {F,} is a partial flag of type /, and Q is a collection
which consists of a nondegenerate quadric cone Q, in each F,/F,_, (where
1=p =<k). (We make the convention that X, = X°.)

PROPOSITION 1.1. The variety X of complete quadrics (as defined in [DP2],
[Se], [Sch], [T], or [V]) is the union

X=UX,

1

Proof. The proof depends on which rigorous definition of X is used (see the
introduction to this paper for a list of such definitions). For a proof starting from
the definitions in algebraic geometry, see [V]. For a proof starting from the group
theoretic construction of [DP1], see §5.6.

Remark. In fact the space X is a “wonderful” compactification ([DP1]) of X°,
i.e. it is nonsingular, X — X? is a union of nonsingular divisors D, D,, ..., D,
which meet transversally. (This was proven by Severi [Sv] for the case of conics,
by Semple [Se] for the case of quadrics, in space, by Alguneid [A] for quadrics in
P4, by Tyrrell [T] in the general case of quadrics, and by DeConcini and Procesi
[DP1] for general symmetric varieties). If I={i,, i, ..., i,—;} is any subset
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(possibly empty) of the numbers {1,2,3,...,n —1}, then (for an appropriate
renumbering of the divisors D;) the closure X, of the set of complete quadrics of
type I is precisely the intersection X, =D, N D, N---ND, (See §5.6, or [V]
theorem 6.3).

EXAMPLE. The variety X of complete quadrics in P' consists of all
unordered pairs of (not necessarily distinct) points in P'. It is isomorphic to P2, A
single point g € P' with multiplicity 2 is called a degenerate quadric: such points
form a subvariety which we will denote by 3P°. It is isomorphic to P' but is itself
embedded as a quadric hypersurface in X. (See §5.8 for more details).

§2.2. Diagonal Quadrics. Suppose we are given a direct sum decomposition,

C'=vV,eV,b---DYV,
of C” into a sum of complex vectorspaces. A nondegenerate quadric cone in C" is
diagonal with respect to this decomposition if (with respect to a basis adapted to
this decomposition) the symmetric matrix corresponding to the quadric has no
nonzero off diagonal blocks.

We now define the notion of a diagonal complete quadric (which will turn out
to be the limit in X of a sequence of diagonal nondegenerate quadrics). Fix
I={i, iy ..., 0 1}={1,2,...,n—1} as above. An [-filtration of this direct
sum decomposition of C" is a k-step filtration of each V,,,,

0=V2cV! cV2c.-.-cVilcVvik =V,

such that for each p (where 1 =p =k — 1) we have,
>, dim (V5,/VvETY) =i,
m=1

Each [-filtration of this direct sum decomposition gives rise to a flag F of type / by
setting

E,= @ ve,
m=1

(but some flags of type I are not obtained in this way).

DEFINITION. A complete quadric (F, Q) (of type [) is diagonal with respect
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to the direct sum decomposition
C'=vV,0oV,b---BYV,

if there exists an [-filtration {V¥,} of this direct sum decomposition such that

(a) The flag F arises from this /-filtration as described above.

(b) For each p (where 1=p =<k), the nondegenerate quadric cone Q, on
F,/F,_, is diagonal with respect to the induced decomposition

E/E,_ = @ (Vi./vi™

PROPOSITION 2.2. The set of complete quadrics which are diagonal with
respect to the decomposition C" =V, @ V, @D - - - @ V, is precisely the closure (in X)
of the set of nondegenerate quadrics which are diagonal with respect to this direct
sum decomposition. It is an irreducible algebraic subvariety of X.

Proof. The proof will appear in §5.6.

§2.3. The spaces Z, and 3Z,. The following construction will be made with
respect to the standard basis of C".

DEFINITION. The variety Z; is the set of all complete quadrics which are
diagonal with respect to the decomposition of C” into the first s coordinate planes
and the last n — 2s coordinate lines,

Cn=P‘®Pz®' : '®RS®L2s+I®L2s+2®' ‘ @Ln
There is an action of I, =23, X X, _,, on Z;: Fix 0e 2, and T€ X,_,, (Which we
will think of as the permutation group on the numbers {2s + 1,25 +2, ..., n}.
Since we have chosen a basis of C" compatible with the direct sum decomposi-
tion, we obtain isomorphisms

Fi=Po)

Li=L.,

which induces an isomorphism

Cn=Pl@"'®LnEPo(I)@'"®Lr(n)=cn
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This isomorphism takes a complete quadric O to some complete quadric Q', so it
induces an action on Z,. (A different choice of basis of C" and of a direct sum

decomposition of C" which was compatible with that basis would induce a
homotopic action of I}).
We obtain a canonical map

w:Z,—[] p?

i=1

by associating to each complete quadric (F, Q) (which is diagonal with respect to
the above decomposition), its intersections

(FNP,ONP),(FNR,0NP),...,(FNP,QNP))
(See the example of §2.1.) In other words, if (F, Q) is a complete quadric of type
I=1{i,, i,,...,i} which is diagonal with respect to this decomposition of C",
then each partial flag

OcFENPcKENPc---cENP
reduces to either a two-step flag

OcEFENPcP

(which gives an element of 3%*c P?, and in which we say the intersection
(FN P, QN P)is degenerate) or else to a one step flag,

0=FNP<FNP=P

and in this case, Q,N P is a nondegenerate quadric in P, so it also gives an
element of P

PROPOSITION 2.3. This map is well defined, continuous, and algebraic.

Proof. The proof will appear in §5.9.1 (and its corollary).

DEFINITION. We define the divisors

A=P*XP*x X 3P*X -+ - P?
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(where 3P* appears in the ith position, and denotes the set of degenerate
quadrics in P'), their union

A=J 4

i=1
and the pre-images,
8:Z, = u~\(4)
3Z, = u"'(4)
It is easy to see that 2, permutes the boundary divisors 9,Z;.

§2.4. The spaces M,. We will use the standard Hermitian metric on C". For each
integer s, where 0 =s < [n/2] we define a space M, of pairs ((P, L), (F, Q)) where
(P, L) is an orthogonal direct sum decomposition,

Cn=P1®P2®' : '®I)S®L2s+1®L2s+2' . ®Ln
into two dimensional subspaces P, B, ..., P, and one dimensional subspaces
Lys+1, Loy, ..., L,, and where (F, Q) is a complete quadric which is diagonal
with respect to this decomposition of C". The space M; is an algebraic variety, but
in an unnatural way, and the canonical map

D:M—-X
(which is given by @,((P, L), (F, Q)) = (F, Q)) is not an algebraic map. There is

a canonical (real analytic but not algebraic) map f:M,_,— M, which is obtained
by setting

B((P, L), (F, Q))=((P', L"), (F, Q))

where P/=P,for1<i<s—-1,and L/=L;for2s+1=<i=<n and
Pi=Ly, ,®L,
For each i, (where 1 <i =<s) we define the space

M, ={((P, L), (F, Q) e M; | (FN P, QNP) is degenerate}
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(see §2.3). The symmetric group 2, on s letters acts on M, by permuting the
(labelling of the) P’s, and the symmetric group X, _,; acts on M, by permuting
the L’s. These actions do not affect the quadric Q, so the fibres of the map @, are
invariant under the group Iy =23 X X, ,. It is easy to see that 2 permutes the
components 9;M;, so it leaves invariant the subvariety

oM, =) oM,
i=1

There is a canonical I; = 3 X ¥, _,-—equivariant fibre bundle map
nl . Ms > ‘Oj's

to the manifold % of partial flags of type [ ={2,4,...,25,25+ 1,25 +
2,...,n—1} which associates to each pair ((P, L), (F, Q)) the flag of partial
sums of the P’s and L’s. (Here I, =2 X ¥, _, acts on %, by permuting the P’s
and L’s, which can be recovered from the partial flag by using the Hermitian
metric.) It follows that I acts on the cohomology sheaves R'(®,).(Q) of the fibre
Z,=n7'(p). Since %, is simply connected, these sheaves are constant, and we
obtain an action of I; on the cohomology H*(Z;) of the fibre.

PROPOSITION 2.4. This action of I, = 2, X X, _,, on H*(Z,) coincides with
the action defined in §2.3.

Proof. The proof will appear in §5.7.4.

§2.5. The toric varieties 7 and 7,. Consider the torus (C*)* x (C*)"~* which acts
on C" by scalar multiplication on each of the factors in the above direct sum
decomposition. Each x € (C*)* X (C*)"~® thus corresponds to an n X n matrix.
This torus acts by projective transformations on P"~' and it transforms the set Z,
into itself under the induced action on quadrics. However the subtorus

D = {x e (C*)* X (C*)" > | xx" =x*= Al for some A}
acts on the symmetric matrices which represent nondegenerate quadrics in Z, by

homotheties, so it induces a trivial action on Z,. Therefore the action factors
through an action of the quotient

T, = ((C*) X (C*)""*))/D
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It is easy to see that the torus T preserves the fibres of the map u and that T acts
with an open dense orbit on any fibre of u. We fix the “basepoint” p = u(Q,),
where Q, denotes the homogeneous quadric cone in C" which corresponds to the
identity matrix.

DEFINITION. We define the toric variety T, to be the fibre u~'(p), together
with its action of 7,. We denote by T the maximal torus, T = Ty = Z,,.

The action of I, = 3, X X, _,; on Z, which was described in §2.4 restricts to an
action on 7,=pu"'u(Q,) (because each of the isomorphisms P, =P, take
QoN P to Qo N Py)-

These spaces and maps can be arranged in the following diagram:

Chapter 3. Statement of results

§3.1. Statement of the main theorems. We use the notation of chapter 2. All
cohomology groups will be taken with rational coefficients. Let m =[n/2]. The
maps D, : M;— X fit together in a tower of spaces,

9m Oy -2 6, 6o
XM, <=M, < —M—M,

(The group actions I; are not compatible with these maps. They are K-
equivariant maps, but are not G-invariant, where G = PGL,(C) and K is the
maximal compact subgroup of G, i.e. the special unitary group).

Let ®F:H*(X)— H*(M,) and W*:H*(M,,)— H*(M,) denote the induced
homomorphisms on cohomology (where 0 =s < m).

THEOREM 1. The homomorphism ®,,:H*(X)— H*(M,,) is injective. Fur-
thermore the image is precisely those cohomology classes which, for all s, pull back
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to I-invariant classes, i.e.
H*(X)={Ee H*(M,,) | W} (&) e H*(M,)" for each s, 0 <5 <m}

The cohomology ring H*(M;) is completely described in theorem 6.1.2.
Now define the ideals, I, = ker @] ¢ H*(X). These filter H*(X),

0=ImC1m_1C‘"C11C10C1_1=H*(X)

For each s (where 0=s=m) the subquotient I,_,/I,c H*(M,) lies in the
2 .-invariants.

THEOREM 2. The homomorphism H*(M,, dM,)— H*(M,) is injective and
Is—l/Is = (H*(Ms’ aMs))rs

THEOREM 3. There is a canonical isomorphism,

H'(M,, 3M,)= © H*(%)Q H*~*(T,)

a+b=i
which is an isomorphism of representations of I, = X, X X, _,..

Our proof of these results depends on the following two results (§3.2 and
§3.3).

§3.2. The Main Lemma. The long exact cohomology sequence for the pair
(M, OM,) breaks into a series of 2, X X, _,—equivariant short exact sequences,

0— H'(M,, 3M,)— H'(M,)—>H(3M,)— 0

Furthermore, if we restrict to invariant cohomology, then we obtain a diagram

0 —> H'(M,, 3M,)" —> H'(M,)" — H'(dM,)" — 0

|

H'(M,_,)

and ker (a) = ker (8).
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§3.3. Rational Cell Decomposition of M, and Z,.

DEFINITION. An algebraic rational cell C in an algebraic variety M is a
locally closed algebraic subset such that H.(C; Q) =0 for all but one value of i,
which is called the dimension of the cell. (It is twice the dimension of C as an
algebraic variety).

A paving of M by (algebraic) rational cells is a decomposition

M=lg[}C,,

into finitely many rational cells C,, together with a total ordering of the index set
J such that for each B € J, the set

Mﬁ=UCa

a=f

is closed in M.

If M has a paving by rational algebraic cells, then these cells are even
dimensional and form a basis for the rational cohomology of M.

For each subset I = {1, 2, ..., s} we define subsets

oMs= q oM,
oM, = o0,Ms — U o;M;
IRl

THEOREM 4. There exists a paving of M, into algebraic rational cells,

Ms=qcl

]

such that

(a) each 9;Ms is a union of cells

(b) The subvariety Z; = M, is a union of rational cells, each 3,Z; is a union of
rational cells, and the map u:Z,— [I;_, P? takes cells to cells.

Proof. The proof will appear in §5.11.
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§3.4. Numerology. We will often use the following simple facts about repre-
sentations of a finite group G:

PROPOSITION 3.4. (1) If V and W are two representations of G, and if V is
isomorphic to a sum of copies of the regular representation of G, then we have

dim (V) dim (W)
|G

dim (V @ W)“ =

(2) If V is the regular representation of G, and H < GG is a subgroup with
normalizer Ny in G, then the space V" (as a representation of N, /H) 1s
isomorphic to (G : Ny) copies of the regular representation.

We will apply these facts to the cohomology V = H*(#; Q) of the flag variety
in P"~!, which is the regular representation of X,. The cohomology of a partial
flag variety is of the form V' for a suitable subgroup H. In the case of the
variety ¥, we have

H = (Z/(Z))s and NH/H - Z‘ X Zn—-ls
and

H*(%,;Q)=V".

DEFINITION. We define

%, = dim (H*() ® H*(T,))*"* »

Remark. The variety T, is nonsingular and admits an action of the algebraic

torus T;, with (n —s)! fixed points, so by [BB1], dim H*(T;) = (n —s)!. Since
H*(%,) is a sum of regular representations of I; = X X X, _ we have

&

_dim H*(%) dim HX(T,) _ (n - s) n!

155 X Z ] s 12

PROPOSITION 3.5. The Euler characteristic, Z(X) satisfies

2X)= 3 1,

Proof. See [Str]
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Chapter 4. Proof of theorems 1, 2, and 3

§4.1. @, is injective. In fact we will show that the map M,, — X is a map of finite
and positive degree between nonsingular spaces of the same dimension (so by
Poincaré duality the induced homomorphism on cohomology is injective). It is
easy to see that the map &,,: M,,— X is generically Tt =n!/(2™) to 1: Let Q be a
generic diagonal quadric. Then a decomposition of C” into m planes (and a line,
if n is odd) which diagonalizes Q is just a decomposition of C" into m coordinate
planes (and possibly a line). There are T such decompositions.

The group X, =1, acts freely on the generic fibre @,,'(Q) so we get a
partition of this fibre into 7/(m!) orbits of X,,. Since t/(m!) is an odd integer, the
map ®P,, will have nonzero degree provided %,, acts in an orientation preserving
manner. This is a consequence of the following facts: (a) #,,:M,,— %, is a
3, .—equivariant fibration whose fibres are algebraic varieties which are permuted
by Z,, in an orientation preserving way; and (b) X, acts on %,, in an orientation
preserving way. (This argument even shows that the degree of ®,, is exactly m!).

We will prove theorems 1, 2, and 3 in reverse order.

§4.2. Proof of theorem 3. The fibre bundle x,: M, —> %, (with fibre Z;) restricts
to a bundle

ﬁ1:Ms— aMs-».%

with fibre Z — 3Z;. Since each of these spaces has a “‘rational cell decomposition”
(83.3) with even dimensional cells, the cohomology spectral sequence for the map
7; degenerates at E°. Furthermore, %, is simply connected. Thus,

H'(M,, 3M,) = H(M, — dM,)= D HYZ, - 3Z,)® H* (%)

a+b=j

and (by proposition 2.4) this is an isomorphism of representations of X, X X, _,..
On the other hand, the map u: Z, — (P?)* restricts to a fibre bundle,

f:Z—3Z,~ (P -A
with fibre T, (where A was defined in §2.3). The fundamental group =,((P?)’ — A)
is a product (Z/(2))° (see §5.8: P> — 8P? is homotopy equivalent to P*(R)), but

we will show (§5.9.7) that it acts trivially on H'(7;), from which we conclude that

HYZ, - 3Z,) = H*%(T,).
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§4.3. Proof of theorems 1 and 2. Recall that @} : H*(X)— H*(M,) denotes the
induced homomorphism on cohomology. We now define the following groups:

DEFINITION.
J, = Image (®}) c H*(M,)

I, = Kernel (@) c H*(X)
I, =H"(X)
A;={& e H*(M,) | for each r =5, & pulls back to a I invariant class in H*(M,}

Since each J; is contained in the invariant cohomology (see §1.1) we have a
diagram

H*M,)— H*(M,,_)—> - - - —> H*(M,)
9% 1 052 h
U U U
H*(Mm)rm I—I*(Alm--l)rm‘l H*(MO)R)
U U U
A,— A,,., —>  —> Ay— A_,=0
U U U U
H*(X) 3 » Jpoy > > Jy—> J_1=0

Where 6 :H*(M;.,)— H*(M,) is the induced homomorphism on cohomology.
We also have the following inclusions,

I;_\/L; = (J; Nker (6;-1)) = (A, Nker (6;-,)) = (H*(M,)" Nker (6;_,))
= H*(M;, dM;)"

by the main lemma (§3.2). Since 7,, =0 (§4.1), we have
Z(X)=dim (J,,) = >, dim (J, Nker (%))
s=0

= > dim (A, Nker (8%,)

s=0

=< > dim H*(M,, dM,)"

s=0
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= 3 dim (H*(%) @ H*(T))"

=2 % =Z(X)
s=0
(By theorem 3). Consequently the above inclusions are all equalities, so
L/ =(H*(%) ® HX(T,))"

and the following diagram

v
>
v
>
[

0 — A, Nker(6;_))

n T

0— J.s nker(ez‘—l)

v
~
v
~

|
<

shows (by induction) that A; =J; and, in particular,
H*X)=J,=A,,
which proves theorems 1 and 2.
COROLLARY. The homomorphism H*(X)— A,= H*(M,)" is surjective.

§4.4. Proof of main lemma. We have seen (§3.3) that both M, and dM, have
pavings by even dimensional ‘“rational cells”. It follows that the odd rational
cohomology of each of these spaces vanishes. Therefore the long exact cohomol-
ogy sequence for the pair (M;, dM;) splits into short exact sequences.

We now prove that ker (a) = ker (B) by analyzing the map B:M,_,— M, of
§2.4, which is obtained by setting S((P, L), (F, Q))=((P', L"), (F, Q)), where
P/=Pforl<i<s—1,and L/=L,for2s+1=<i=<n, and

Pi=Ly ®L,

The group Z/(2) acts freely on M,_, by switching the (labelling of) the subspaces
L,,_, and L,,, and the map f is equivariant with respect to this action. It is easy
to see that B~!(8,M,) consists of two disjoint copies of 8,M, which are switched
under the Z/(2) action. Thus we have a commutative diagram, where B’ is an
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isomorphism:

&

H*(M,) — H*(o,M,)

ffl ll"
H*(M, )" —— H*(B™'(3,M,))"”
N n
H*(M,_,) —— H*(B'(3.M.,))

LEMMA. ker (&) = ker ().

Proof of lemma. The homomorphism & is surjective since (§5.11) M, has a
cell decomposition with even dimensional cells such that o,M, is a union of cells.
Since B’ is an isomorphism, it follows that 7 is surjective. But this means that 7 is
an isomorphism since

2, dim H'(M,_,)"® = 3, dim H'(3,M,)

(by corollary 5.9.4). This proves the lemma.
Now consider the following diagram.

0 — H*(M,, OM,)"" — H*(M,)" —> H*(O.M,)" —> 0

ﬁl ly

H*(M, ) éal H*(3,M,)

The homomorphism v is injective since M has a paving by rational cells such
that each intersection 3,M, N 3;M, is a union of cells (and so that the same is true
for all multiple intersections). Thus, for any £ e H*(M,)" we have,

a(§)=0

S(yew)(§)=0

Sa()=0

Sp(E)=0

(since & is 2 -invariant). This completes the proof of the main lemma.
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Chapter S. Complete quadrics and algebraic groups

§5.1. PGL, acts on X

Recall (§2.1) that X is a union of varieties X,, consisting of pairs (F, Q),
where F = {F,} is a partial flag of type I, and Q is a collection of nonsingular
quadric hypersurfaces Q, in each P(F,/F,_,). There is an obvious action of the
group PGL,(C) of projective transformations on the variety X,: a transformation
A :C"— C" takes each subspace F, into some other subspace A(F,) and induces a
projective transformation A,:P(F,/F,_,)— P(A(F,)/A(F,_,)) which takes the
quadric hypersurface Q, into some other quadric hypersurface A(Q,). Since all
nondegenerate quadric hypersurfaces in projective space are projectively equiv-
alent, we see that G = PGL(C) acts transitively on X.

PROPOSITION. This action of G on X is algebraic, and the orbits of G are
precisely the varieties X,.

Proof. This is precisely theorem 6.3 of [V] (p. 214); see also [Drl], [Dr2].

Remark. In this section we give an explicit construction of the pair (F, Q)
which corresponds to a complete quadric, as defined in §1.2 (““Constructions of X
in algebraic geometry”’). We refer to §5.3, or [T] and [V] for proofs. Suppose (as
in §1.2) that C=(C,, C,, C,, ..., C,_,) € X, where each C; is a point in the
variety Q.. (Here, Q; is the set of all degree 2 subvarieties of the Grassmannian
G,; of i-planes in P”~'.) Now consider those C; which are totally degenerate, i.e.,
which consist of the ‘“‘double hyperplane sections” of i-dimensional subspaces
which meet a fixed n — i — 2 dimensional subspace F. Let j, =j,=---=j, be the
indices for which this occurs. Then F; o F;, > - - o F, is the required flag F.

Now let k be any other index such that j <k <j, ., (where —1=j, and
n —1=j,). Then C; is the closure of its open part,

Ci={neC,|nNF, is proper}
This open part has an alternate description

%= {m | xNF, is proper and is a tangent subspace

to Q, in F; with kernel F; }
for some fixed quadric Q,. This sequence of quadrics gives the element Q.

§5.2. Review of toric varieties. To fix notation, we review some basic facts about
torus embeddings ([D], [Ash], [K]).



On the geometry of quadrics and their degenerations 361

5.2.1. Cone Decompositions. Let S =(C*)" be an r-dimensional torus. We
denote the group of one parameter subgroups of § by X*(S), and the dual group
of characters of S by X.(S). An S-embedding is a complete normal algebraic
variety S which contains S as a dense open subset, and which is an S-equivariant
compactification of S.

A rational polyhedral cone decomposition (R.P.D.) % of the vectorspace
X*(S) ®R is a decomposition,

X*(S$)BOR=Uc,

into finitely many closed rational polyhedral convex cones, c, which are centered
at the origin, such that

(1) no c, contains a line (i.e. a 1 dimensional linear subspace)

(2) for each a, every face of ¢, is a cone cg € X

(3) for any a, B, the intersection c, N cg is a face of both ¢, and cg.

PROPOSITION. The possible S-embeddings are in one to one correspondence
with the possible R.P.D. of the vectorspace X*(S) @ R. If S denotes such an
S-embedding with associated R.P.D. X, then each closed cone c, € X corresponds
to a unique S-orbit, (c,) in S, and

caccﬁ<:>z—c—:)—3(cﬁ)

In fact, the points in the orbit (c,) can be identified as follows; there is a
canonical isomorphism

S/R— (ca)

where R is the subgroup of § which is generated by all the one-parameter
subgroups in the closed cone c,. With this identification, convergence from the
largest orbit S = (0) to a smaller orbit (c, ) is given as follows: If A € ¢, is a one
parameter subgroup, and if b € §, then

lim ba=bR € S/R

a—x

acA

5.2.2. Maps between toric varieties. Suppose {u,, 4, ..., u,} is a basis for
X.(S), and let I" be a subset of these basis elements. Define

K={seS|s*=1, foral uerl}
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to be the associated subtorus, and let
p:S—>T=S/K

be the quotient mapping. We obtain an induced homomorphism of vectorspaces,
P X*(SOR-X*(T)®R

Now suppose we are given two toric varieties,

(a) S compactifying S, with associated R.P.D. X c X*(S) ® R
(b) T compactifying T, with associated R.P.D. Q c X*(T) ® R

PROPOSITION. The homomorphism p:S— T extends to an S-equivariant
homomorphism p :S— T iff for every cone w € 2, the preimage pz'(w) is a union
of cones in Z.

In this case, the preimage of any orbit in T is a union of orbits in S, i.e.

() '(w)) =U{(0) | 0 € Z and pg(0) = w}

In fact one can say more: if 0 € 3 and if py(0) = w, and if a point p € (o) is
represented by a coset aR (where R is the subtorus of § which is generated by the
one parameter subgroups in o), then p(p) is represented by the coset p(a)R’,
where R’ is the subtorus of T which is generated by the one parameter subgroups
in w. If T’ =ker (p) is connected, then the fibre p~'(1) is a T’ torus embedding
with associated R.P.D. equal to 2 Nker (p4).

§5.3. The closure of the diagonal matrices. Define the hyperplane

{aeR"

together with the linear functionals
aa)=a;,, —a;
Define the integral points in V to be the points a such that each a;(a) € Z. With

respect to this integral structure on V, we define the following decomposition 2 of
V into rational polyhedral cones: X' is generated by the hyperplanes a; = a; for
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i #j. In other words, for each ordered partition {I;, I, ..., I,} of the numbers
{1,2,...,n}, there is a closed cone o c V, which is given by
{ |ifi.je[}thena,=a, }
o=3aeV | . :
ifiel, andjel,, ands, <s,thena <a,

(An ordered partition is an ordered collection of disjoint, nonempty subsets
whose union is the whole set {1,2,...,n}. There is no relation between the
ordering of the I'’s and the ordering of the numbers between 1 and n.)

Let T < X denote the diagonal nondegenerate quadrics (i.e. the nonsingular
diagonal matrices, modulo scalar multiples). This is a torus 7 (under the
operation of matrix multiplication), and a basis for the character group X .(7) is
given by {exp(«,), exp(a;), ..., (a,_;)} where exp (a,)(t) =t,,,/t,. (Here t,,
ty, ..., t, denote the diagonal entries in the matrix ¢.) Thus the vectorspace
X*(T)® R has been identified with the hyperplane V above.

PROPOSITION 5.3.1. This identification extends to an identification of the
closure T (in X) of the diagonal matrices with the toric variety associated to the
cone decomposition

Proof. We recall the proof of [DP2] theorem 5.3.) In [DPI1] there is
constructed a basic T-stable affine open set A of T, whose associated polyhedral
cone is the fundamental Weyl chamber. The action of X, stabilizes T and hence
also (U5, wA. The open sets wA correspond to distinct Weyl chambers and
since the chambers decompose V, we see that ), s wA is complete and hence
coincides with T.

Recall that one of the properties of A is that each orbit of the action of the
projective group on the space of complete quadrics intersects A in a T orbit.

PROPOSITION 5.3.2. If 0e€eZX is a cone corresponding to a partition

{I,,5,..., L} of the set {1,2,...,n} then this identification takes the T-orbit
(o) into the stratum (or G-orbit) of X corresponding to the subset I=
{i, iy ...,y }e{,2,...,n—1} where
k
I = 21 ||
i=

Remark. As an immediate corollary of 5.3.2, we see that two T-orbits in T
are in the same G-orbit of X if and only if they are in the same orbit under the
symmetric group.
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The points in the toric variety T are identified with points in X in an explicit
way: A point p € (o) is given by a coset tR (where t=(t,, t,, ..., t,) and where
R is the subgroup of T generated by the one parameter subgroups which are in
o).

PROPOSITION 5.3.3. The point tR is identified with the following diagonal
complete quadric (F, Q): F is the partial flag which is given by the direct sum
decomposition

C"=(er)®(er) ®--- D (er)

where (er.) denotes the span of the basis vectors {e, | A € I;}. Within each (e.) the
nondegenerate quadric Q; is given by the diagonal symmetric matrix (t;) whose
diagonal entries are the numbers {t, | A € I}}.

Remark. Observe that this identification depends only on the coset of
t (mod R) because R is the subgroup of diagonal matrices (¢) such that each (¢) is
some multiple of the identity matrix.

Remark. Since the boundary divisors (i.e. the codimension 1 orbits) in T are
given by two step flags 0 c F c C", these correspond to ordered partitions with
two elements,

LuL={1,2,...,n}

Proof of 8§5.3.2 and §5.3.3. We will use the construction of X which was
described in §1.2 and was explained in §5.1. The map @;:X;— Q; (from the
space of nondegenerate quadrics to the space of quadric hypersurfaces of the
Grassmannian G;) is given in projective coordinates by the formula

M- A'M

where M is a symmetric n by n matrix and A‘M is the matrix of determinants of i
by i minors. This may be thought of as the matrix of a quadratic form on A'C”
(i.e. a quadric in Plucker coordinates). The open set A = T (see the proof of §5.1)
is then given as follows:

Let A"~' be the affine space with coordinates (,, A, ..., A,_;). We map
A"~! to the diagonal n by n matrices by

(A], ey ;l,,_.;)—-)diag (A|A2 s A’n-—l) e eey A'IAQ’ A’l! 1) =M
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Each entry of A’M is divisible by A'7'A52- .- 4,_,. Since we are using projective
coordinates, we may divide by this and obtain a well defined map ¢;:A""'— Q..
Then the map ¢ = (¢, ..., $,—;) maps A"~ ! isomorphically to its image, which
we call A. (cf. [DP1], [Se], [T]). It is now easy to check that if p € A" and if the
ith coordinate of p is 0, then ¢,(p) is the set of i — 1 dimensional subspaces in
P! which meet the subspace defined by the vanishing of the last n —i
coordinates. Following the explanation given in §5.1, one can verify that the flag
obtained is a part of the standard flag, and that the quadrics Q; are diagonal. As
remarked in §5.3.1, the orbit of A under the symmetric group is all of 7. On the
other hand, this action of the symmetric group amounts to modifying the flag by
permuting the subspaces which are given by the coordinate axes. This shows that
T describes all diagonal complete quadrics. The rest of §5.3.2 and §5.3.3 can be
verified by inspection.

§5.4. Partially diagonal quadrics. For any subset I={i,i,, ..., }c
{1,2, ..., n} there is a canonical decomposition of C" into coordinate planes,

C'=vV,eV,d---DYV,
with dim (V)) =v; =1i; —i;_,. We define

G, =P(Gl,,(C) x - - - X GL, (C))
to be the group of projective transformations preserving each of the subspaces in
this decomposition. We denote by G the projective linear group PGL,(C) and by

K < G the projective unitary group and K, = K N G,.

LEMMA 5.4.1. The subset Z; = X (of complete quadrics which are diagonal
with respect to the above decomposition of C") is stable under the action of G, and
of K,. Furthermore, two points (F, Q) and (F', Q") of Z, lie in the same G, orbit if
and only if for each i,

dim (F) = dim (F))
(i.e., the flags F and F' are of the same type) and for all i and |,
dim (F,NV;) =dim (F; N V}).

Proof. These conditions are clearly necessary since G, leaves the spaces V,
stable. To see that they are sufficient, suppose we are given two such points
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(F, Q) and (F', Q'). Choose g; € GL(V;) so that for each i,
g(ENV)=F.NYV,

The element g = (g, &2, - . - , &) € G, takes (F, Q) to (F', Q"). But this point is
G,-conjugate to (F', Q') because the stabilizer of F acts on each F/F;_, as the full
linear group GL(F;/F_,).

In the next two sections we will prove proposition 2.2.

§5.5. Diagonalization by K. Let Z} denote the collection of nondegenerate
quadrics which are diagonal with respect to the above decomposition.

PROPOSITION 5.5. For any nondegenerate quadric Q € Z) there is an
element k € K, such that k.Q is (completely) diagonal, i.e. k.Q. € Zy=T.

Proof of proposition. It suffices to show that each of the intersections Q NV,
can be diagonalized separately, and since the argument is the same for each V; we
will replace it with C". Thus, it suffices to show that for any nondegenerate
quadric Q in C”, there exists an orthonormal basis of C” with respect to which the
matrix representing Q is a diagonal matrix. (Here, orthonormal refers to the
standard Hermitian metric on C" which is given by

H(x,y)= Zlfiyi

We will also use the standard identification R** = C" as R-vectorspaces. )
This is a consequence of the generalized Cartan decomposition

G=KA'H

of [F1] (theorem 4.1, page 118) and [R] (theorem 10, page 169). Take G = Gl,(C)
(viewed as a real Lie group), H =0O(n, C), K= U(n), and A* = A = the group of
real diagonal matrices with positive entries. The unitary matrix u € U(n) takes the
standard basis to the desired orthonormal basis.

Remark. There is also an ordering (which is possibly degenerate) induced on
this basis of C"” which is given by v, = v, iff |A;| = |A,]|.

CORROLLARY. For any G-equivariant compactification Y of the space X’ of
nondegenerate quadrics, the closure T of the diagonal -quadrics meets every G
orbit.
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Proof of Corollary. By the diagonalization lemma, the image of K X T contains
X’. But X° is dense in Y, and K X T is compact. Therefore K X T—Y is
surjective. So T meets every K orbit and hence it meets every G orbit.

Remark. A similar corollary holds for any G, equivariant compactification of
Z).

§5.6. Proof of proposition 2.1 and 2.2. Proposition 2.1 now follows directly:
Each X, is a G-homogeneous space, and every G orbit on X intersects T
nontrivially (§5.5). But the degenerate quadrics in T are described explicitly in
§5.3.

We now give the proof of proposition 2.2. The orbit G, - Q, of G, through the
identity matrix is the set of all nondegenerate quadrics whose corresponding
symmetric matrices are in diagonal block form with blocks of size v, Xwv,,
Uy, X Vg, ..., and v, X v,.

PROPOSITION 2.2. The closure (in X) of this orbit G, - Q, is precisely the
variety Z,.

Proof. Lemma (5.4) shows that G,x T— Z, is surjective. Thus Z, is a
constructible set in an irreducible algebraic subvariety of X. Furthermore the
diagonalization lemma shows that the image of the map K,T — Z, contains Z!
which is an open subset of Z,. Since the image of this map is compact, it must
equal Z, (which is compact and hence closed), so it contains the closure of
G, - Q,, which is also irreducible. Therefore Z, coincides with the closure of

Gl * Qu«

THEOREM 5.6. ([Ab]) Z, is a “wonderful” G,-equivariant compactification
of Z3, i.e. each orbit closure in Z, is smooth (in particular, Z, is smooth), and
Z,— ZY is a union of divisors S;, each of which is an orbit closure, and which all
meet transversally.

Proof. The proof follows the corresponding statement for X, which is proved
in [DP1]. Recall ([DP2]) that T intersects the closed orbit G/B of X in the n!
points fixed by 7. Let p € G/B be one of these points and let U be the unipotent
radical of the Borel subgroup of G whose opposite Borel subgroup fixes p.

In [DP1] it was shown that there is an affine U stable open cell V, centered at
p in X with the following properties:

(a) there is an isomorphism, V, N T— C"~' which takes the T orbit closures
of V, N T to the coordinate subspaces of C"~'
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(b) the map y:U x C"~'— V, which is defined by

(p(u’ Q)‘-:u'Q

is a U-equivariant isomorphism.

(c) The union |, (V,NT)=T where p varies over the T-fixed points in
G/B.

Since each G, orbit meets 7, it suffices to study Z, and its orbits in each of the
open sets V,. For such a fixed point p, let U be the corresponding unipotent
subgroup and let U, be the intersection U;,=UNG,. Since the map @ is
U-equivariant and T c Z; we have

(p(UI X Cn—l) c Z[ N V;,

But U, is a maximal unipotent subgroup in G; so

dim (p(U; x C* ")) =dim (Z,) =1 2, vi(vi+1)—1

i=1

But these are two irreducible closed subsets of the same dimension in V,, so they
coincide, i.e.

(p(Ul X Cn-l) = Zl N ‘/p

It follows that Z, is smooth (since @(U; X C*™") is an affine space).

We verify the other properties of this compactification locally. We shall show
that given p € G/B as above and given an orbit O c Z, such that V, N 0+,
there exists a unique T orbit S in V, N T such that

V,NO=@(U; XS)
Since the map ¢ is Uj-equivariant, and V N O is stable under U, we have,
V,NO= (U X3)
where S is a T stable subset of C"~'. But two elements of the form ¢(u;, Q,),
p(uz, Q,) are G-conjugate if and only if Q, and Q, are T conjugate. (cf. [DP1]

prop. 2.8) It follows that S is a unique T orbit.

§5.7. The spaces M,. From now on we restrict to a particular decomposition of
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C" into s coordinate planes and n — 2s coordinate lines,
C'=P&---OPDLy,,,D---DL,

and we denote the corresponding space Z; by Z; and the corresponding groups G;
by G;, etc.

Remark. The space M; is canonically identified with the space K X x Z;.
We obtain a commutative diagram where the horizontal maps are natural
identifications and the vertical maps are fibrations:

GXP,ZS‘ ——p KXK‘ZS ——fi—) MS

1 L

G/P, — K/K, — %

The map 6 identifies K X ¢ Z; with all pairs (f, (F, Q)) (where f is a partial flag of
type (2,2,2,...,2,1,1,...,1) and (F, Q) is a complete quadric which is
diagonal with respect to this flag) by assigning

0(k, z) = (k, kz)

Here, k € K/K, = %, denotes the corresponding partial flag. Since G, P,, and Z,
are algebraic, we see

PROPOSITION 5.7.1. The space M, is homeomorphic to an algebraic variety.
PROPOSITION 5.7.2. Each of the maps ®,: K X Z, = M;— X is surjective.

Proof of proposition 5.7.2. Since Z,c Z for each s, it suffices to show that
KXy Zy— X is surjective. But applying proposition 5.5 (with the trivial
decomposition C” = C*) we find that for any quadric Q € X°, there exists k € K so
that the quadric Q' =k - Q is an element of Z,, i.e. k™'- Q’'=Q. Thus P, is
surjective to the nondegenerate quadrics, which form a dense open subset of X.
But W, = K X ¢, Z, is compact, so P, is surjective.

6.7.3. Remark. The quotient X/K is homeomorphic to the m-cube. The
quotient map takes points of a given orbit type to a fixed face: Let K, denote the
normalizer of K, in K, i.e. the extension of K, which is given by allowing
permutations of the lines L,. From the surjective map K Xz, Z,— X we obtain a
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homeomorphism
Zo/Ko— X/K

by dividing by K. But Z,/K,= (Zo/K,)/(Ko/K,) where P = Zy/K, is the poly-
hedron which is the image of Z, under the Atiyah moment map (which is induced
from the T action) ([At]). In other words, Z,=T is a toric variety and P is the
associated convex polyhedron.) But this is a cube. In fact this map can be seen
directly, orbit by orbit as follows: the image X,/K is a union of faces of the cube,
with each face corresponding to certain coincidences of the eigenvalues |A;| of
§5.4. For example, X°/K contains all the faces whose closure contains the origin
(which is a vertex of the cube); the interior corresponds to all eigenvalues
different, the codimension 1 faces correspond to single coincidences of eigen-
values, etc.

5.7.4. Proof of proposition 2.4. Let G, = N(G,) be the normalizer of G, in G.
This is the subgroup of G which preserves the union of the subspaces in the
decomposition of C”, i.e. it includes permutations of the P’s and permutations of
the L’s. Then G,/G, =TI, =3, X X, _,,. Similarly the group K, = N(K,)=K NG,
acts on Z, and induces the action of I, = K, /K, on Z, which was described in §2.3.
On the other hand, K, acts on M, by

(k, (h, 2))—> (hk™', k - 2)
For each g € G define i, : Z,— M, to be the inclusion of the fibre,
ig(z) = (8, 2)
(where we identify M, = GXp Z;). Since G is connected, these maps are all

homotopic, i.e. they all induce the same homomorphism on cohomology.
Therefore, for any k € K; we have the following commutative diagram:

Z, —> M,

.,,1 l.k

Zs ,'k-l MS

Thus, i*:H*(M,)— H*(Z,) is equivariant with respect to the action of I,.
However this homomorphism is also surjective because the spectral sequence for
the fibration M, — %, collapses and Z; is the fibre. (It can also be seen to be
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surjective because M, has a decomposition into rational cells such that Z is a
union of cells. See §6.) It follows that the two actions of I, which were defined on
the cohomology of Z; coincide.

§5.8. Complete quadrics in P'. The following remarks about the variety P? of
quadrics in P' will be used in the analysis of the map pu:Zs— (P*)*. Using the
standard basis of C?, a complete quadric in P' (i.e. a quadric cone in C%)
corresponds to a symmetric matrix,

=5 o)

The solutions to the equation xAx’ = 0 consist of two lines, so a complete quadric
in P' is given by two (not necessarily distinct) points in P'. This variety of
complete quadrics is the symmetric product of P' and P', and is naturally
isomorphic to P?, with homogeneous coordinates [a:b:c]. A quadric is degener-
ate if b*=ac. (In this case the two points in the quadric coincide.) The
degenerate quadrics form a subvariety which we have been denoting by 3P*. The
diagonal complete quadrics (i.e., b =0) form a (flat) hyperplane which we will
denote by P'cP?. The action of the group G =PGL,(C) on the variety of
complete quadrics has two orbits: dP?* and P?>— 3P?. This second orbit is a
rational cell: it deformation retracts to RP? = CP? because a quadric in P* — 5P?
consists of a pair of distinct points in P', and these may be moved apart (along
the unique geodesic which joins them) until they are antipodal. This RP? is a
minimal K-orbit.

The action of the torus C* c G stabilizes P' and also 3P*. It has three fixed
points: [1:0:0], [0:0:1], and [0:1:0]. The first two of these points constitute the
intersection P> N P' and the third point lies in the RP?. These three points are
joined by two other flat hyperplanes, &' (the set where a =0) and 6° (the set
where ¢ = 0) which are tangent to 3P?. This geometry may be summarized in the

\\%
/ \I .1 ]

ol &7

a=0 \c=0
ac =b? .

0:0:1/° aP" \&@lp.
b=0
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Furthermore, let

v={(e )

Then U is the unipotent radical of a Borel subgroup of PGL,(C). The line &' is
left fixed under U and so is the complement of 8' in P? which we will denote by
A? and we will set A' =P' N A2 It is easy to verify that

ueC}

PROPOSITION. The map j: U X A'— A? which is given by j((u, x)) =u - x is
a U-equivariant isomorphism.

Note also that P' N\ A? is identified with the standard A' by the coordinate c/a.
§5.9. The map u: Z,— (P?)°. In this section we will show that the map u defined
in §2.3 is well defined, continuous, and algebraic. As in §5.3, we denote by T the
(completely) diagonal quadrics, and we let Q,e€ X denote the quadric cor-

responding to the identity matrix. Let exp (a;) be the character exp («;)(t) =
tis1/tiforany te T.

PROPOSITION. (a) The map exp(«;): T— C* has a unique extension,
exp(a;): T— P!

(b) The product mapping

7, = (exp (a,), exp (a3), . . ., exp (az_1): T— [] P!
j=1

J
is a morphism of toric varieties and the pre-image,
1, = 77 (#,(Qv))
is an .R = ("), ker (exp (ay—,)) embedding, which is isomorphic to the torus

embedding of (completely) diagonal quadrics in P" ™",
(c) The composition

T———>H P'— [] p?

j=1 j=1

coincides with the restriction of the map u (of §2.3) to the toric variety T.
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Proof. (a) Since the R.P.D. corresponding to a product of P! X ---x P! is
simply the decomposition of R* into quadrants (generated by the hyperplanes
a1 =0, for 1 =i=ys), it suffices to show that either a,;_, has constant sign, or
else is identically zero on each cone o € X of the R.P.D. corresponding to T. But
this is clear from the explicit description (§5.3) of the cones in 2.

(b) The torus embedding associated to the Weyl chambers of the root system
A,_; can be combinatorially described as follows: Let v be a real vectorspace of
dimension n — 1 and let @ c V* be a set of vectors (the positive roots) indexed by

pairs (i, j) of numbers such that 1 <i <j=n. We denote such a vector by ¢; € ®.
Assume that

(1) Ifi<j<k then g, =¢; + €y
(2) The set {€3, €23, - .., €,—1..} forms a basis of V*.
We define an integral structure on V by setting

A={veV|¢g;v)eZ (for all (i, j)}
and a cone decomposition which is given by the walls

H;={veV|gv)=0}

i.e., we consider as open cones of the R.P.D., the connected components of any
intersection of a set of H; minus the intersections of this set with any other H,,,,.
For each integer k with 1 <2k < n, define

vk = {veV|en(v)=¢eu)="""=¢éx_1(v)=0}
ie.,

VE=H,yNHyy N N Hyoy o

Given any ¢; € @, denote its restriction to V* by ;. For each j <k we have
(1) E2j-1,2=0
(2) &-1.n=Eyn (if h > 2k)
() &j_1,on-1=Egjon-1 = Eqjm1m = Eqm if j<h =k
Let us rename the nonzero forms &; as follows: For 1 =<i <j=<n — k define 7, by

o

2,2 ifi<j=sk
ek Mi=k<j
ivkjrk MHk<i<j

o

n; =

o
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It is easily seen that
(i) All the nonzero &; appear in this list
(ii) the vectors n; satisfy the axioms for the positive roots of type A,_;_,
(iii) The integral lattice A* c V* defined by the n; is ANV~
These facts are exactly those required to verify that the R.P.D. on V intersects
V¥ < Vin an R.P.D. of type 4,_,_s.
(c) First we shall show that the projection to the jth factor agrees with the
composition of u with the projection to the jth factor. Let H = span (e,;_;, e3)).
Suppose Q € T is a nondegenerate quadric, i.e. Q is given by

2!,-x,2=0

where t; #0 for each i. Then Q NP(H) consists of two distinct points which are
defined by the equation

2 2 _
tyj—1X%j-1+ x5 =0

or

ts;

2 Y .2

x2}_1+.__..x21__0
t2j-—1

In other words, exp (ayi_1)(¢) =t,/t;-; is the map which associates to each
nondegenerate diagonal quadric its intersection with P(H). This is exactly the

map K.

Using the explicit description (§5.2) of convergence in the toric variety T, it is
easy to see that the restriction of exp (a,;_;) to the toric variety T coincides with
the map u also.

PROPOSITION 5.9.1. There is a unique G,-equivariant map u:Z,— [I;—, P*
such that the following diagram commutes:

T — Z

COROLLARY. The above map u coincides with the map u of 8§2.3. In
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particular, the map p is well defined, continuous, and algebraic; and the above
map 7t has the geometric description which was given in §2.3.

Proof of corollary. The map u of §2.3 is G,-equivariant and its restriction to T
coincides with the map 7.

Proof of proposition 5.9.1. Uniqueness follows from lemma 5.4. 1 (every G,
orbit in Z; meets T in a nonempty set). Existence is by construction: exp (a,;_;)
extends equivariantly to Z? (the set of nondegenerate quadrics) because for any
Q € Z?, the quadric Q N P, is nondegenerate, i.e. it consists of two lines, giving a
point in P2. Let A be the set of all points p € Z, such that exp (a,;_,) is defined as
a morphism in a neighborhood of p. Then A o Z, and it is G, stable. Thus, in
order to show that A = Z_, it suffices to show that A meets each G, orbit. In §5.6
we found an open set V, N Z;, where p denotes a T-fixed point in the closed orbit
in X. Within this open set, each element can be written uniquely as uQ, where
qeV,NT and with ue U,. (Here, U, is a suitably chosen maximal unipotent
subgroup of G;.) We have seen that each G; orbit in Z; meets at least one of these
open sets in a nonempty subset. Thus, it suffices to extend u to V, N Z; for each
such p. But this can be done by the formula

u(u- Q) =u-exp(az-1)(Q)

The rest of this section contains technical results needed in the proof of the
main lemma.

Let g:[T;_, P>— P? denote the projection to the last factor, and let P' < P?
denote the hyperplane of §5.6 above.

PROPOSITION 5.9.2. (qu)~'(PHY=2Z,_,

Proof. This is immediate from the description (§1.3) of the map u, because
s—1

(qu)-—l('pl) - “—1<H pz % Pl)
i=1

which is the set of complete quadrics (F, Q) which are diagonal with respect to
the decomposition

Cn=P]®"‘®P_‘®L2‘-+1®"’@Ln

and such that the intersection (F, Q)N P, is diagonal with respect to the
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decomposition
P=L,_, @ Ly,
But this is precisely Z;_,.

Remark. We have the following diagram, where the top row is the (qu)-
preimage of the bottom row:

Z,_,cZ 03,7,

Lol

P! < P? o gp?
PROPOSITION 5.9.3. #(Z._,) = Z(3,Z,).

Proof. Both Z,_, and 3,Z; are stable under the action of T on Z, and this
action has finitely many fixed points. Furthermore, Z,_, is smooth and 3,Z; is a
union of nonsingular divisors with normal crossings (§5.6 and §5.9.7), and each
has cohomology in even dimensions only. Therefore, by the Bialynicki-Birula
decomposition ([BB1], [BB2]) and Mayer Vietoris, it suffices to show that both
Z,_, and 3,Z; have the same number of 7-fixed points. In fact they have the same
fixed points: Define

J=2Z,.,N3,Z =(qu)"'(P' NP
This is a T-stable set, since P! N 3P? is fixed under T. It follows that
JT = (ZS_I)T = (asZs)T

because every T-fixed point in Z; must lie over a T-fixed point in P?, and these
are just the points [0:1:0] and P' N 3P? (see §5.8).

COROLLARY 5.9.4. X rank H'(M,_,)?® = X rank H'(8,M,).
Proof. The space Ms_] is a fibre bundle over %,_, with fibre Z,_,, while the
space 9, M, is a fibre bundle over &, with fibre 3,Z;,. The spectral sequence for

these fibrations collapsed long ago, and %, is simply connected. Therefore

X(OM;) = Z(3,Z)X(F,) = X(Z, - )X(F,) = X(Z; ) X(F;-1)[2 = X(M,_1)/2
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since (by §3.4), Z/(2) acts on H*(F,_;) by a multiple of the regular
representation.

COROLLARY 5.9.5. p~'(w(T)) = p (AL, P) =T

Proof. This follows by induction (the case s = 0 is trivial since Z,= T and p is
the constant map), and proposition 5.9.2.

COROLLARY 5.9.6. Z(Z,) = Y50 C)(n — h)!

Proof. Divide the variety Z into T stable subvarieties, Z¥=pu"'(N?) where
yce{l,2,...,s} and

NY={(p1, p2>--.,ps)€(P?) |p;eP'ifi¢ yand p, =[0:1:0] if i € y}

Each T-fixed point of Z is contained in some Z7, and these Z" are disjoint. Thus,
#(Z)=2 2(Z") =2 (n—v))
Y Y
But for each h = |n|, there are (},) possible choices for y.

PROPOSITION 5.9.7. The action of m,((P?)* — A) on the cohomology of the
fibre of u is trivial.

Proof. The group G; acts on Z; and on (P?)* and the map u is equivariant with
respect to this action. Therefore, over the large open orbit U = (P?)* we have

M—I(U) = Gs xHF

where F is the fibre u~'(p) of a generic point p, and H is the stabilizer of F in G;.
We must show that H acts trivially on H*(F). Since H = G; (which is connected),
it follows that H acts trivially on H*(Z,). So it suffices to show that the map
H*(Z,)— H*(F) is surjective. This follows from the analysis in the next chapter
where it will be clear that the cohomology of F is generated by the classes which
are dual to the boundary divisors of F, and these are transversal intersections
with boundary divisors of Z,.

§5.10. Counting the G, orbits in Z. In this section we will give a one to one
correspondence between the codimension one G; orbits {D,, D,, ..., D,} in Z;
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and the one dimensional cones A in the cone decomposition 2 of V
(corresponding to the torus T §5.2) such that a,;_;(A) =0 for each j (1=j =<s).

We have seen in §5.8 how the standard P? contains a standard A which is
U-stable and isomorphic to U X A!. Taking products we have

(P o> (A =(UXAY' =(UxUx---xU)x A"
where the group U’ is a unipotent radical of G;. Let us now consider the open set

A, = p~((A%Y)

in Z,and C, = A,N T = (u | T)"'((A')*). We have seen in §5.9 that C; is the torus
embedding corresponding to the R.P.D. of the quadrant Q° < V, which is defined
by

ay_1=0 for 1=i=s

PROPOSITION 5.10. The map A:U* X C;— A, (which is given by A(u, ¢) = u.c.)
is a U’ equivariant isomorphism.

This follows from the general result.

LEMMA. If X and Y are varieties with an action of a group G, and if
u:X—Y is a G equivariant inclusion, and if Y is isomorphic (in a G equivariant
way) to G X Z, then X is isomorphic to G X u~'(Z) under the map j(g, x) = gx.

Proof. The inverse of j is given by j~'(x) = (g, g 'x) where g is defined by
ux)=(g, 2).

COROLLARY. The G, orbits in Z, intersect A, in the sets U° X O, where O is
a T orbit in C.

Proof. Every G, orbit 0 meets A, since every G, orbit in (P?)° meets (A%)".
Since A, is stable under the Borel subgroup B; = U’ - T, it follows that O N A; is
a union of B orbits. But every B, orbit in A, is of the form U’ X 0’, where 0’ is
a T orbit in C. In order to prove the claim, it suffices to show that every B; orbit
in A, is the intersection of A; with a G, orbit. This can be shown exactly as in
[DP1]. Thus, we have proven:

THEOREM. The G, orbits of codimension k in Z  are in one to one
correspondence with the k dimensional cones of the R.P.D. of the “quadrant” Q°.
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It will be useful to collect some further information on this picture. Consider
Z,_,cZ, A,_,, A, C,_,, C, as before. Let o be the element of G, which is the

1
). Then o induces an

0
identity except in the sth 2 by 2 block, where it is (1 0

automorphism of order 2 on 7, and so also on the space V which is dual to the
character group of T. One easily verifies that C,_, = C, U 0(C,), so

As-—l = Us_] X Cv—-l = (As nZs—l) U O(As mZ\—l)

since A,NZ,_,=U""xC,.

If we consider a boundary divisor D of Z,, we can analyze its intersection with
Z,_,. Let v be the first lattice vector in the one dimensional cone of the R.P.D. of
C; which corresponds to D.

PROPOSITION. If o(v)=uv, then DN Z,_, is an irreducible divisor cor-
responding to the vector ve Q,c Q,_,. If o(v)# v, then D N Z, _, is the union of
two irreducible divisors corresponding to the two vectors v and o(v) € Q,_,.

Proof. To study DNZ,_, it is enough to analyze D NC,_, since every
boundary divisor in Z,_; meets C,_, in a boundary divisor. Now,

DNC,_,=DN(C,NC

and DN Cy=(DNC)? since D=D° This proves the proposition, because of
the one to one correspondence (under o) between T orbits and cones.

5.11. Paving of M, and Z; by algebraic rational cells

§5.11.1. Introduction. The results of this paper would be much easier if X (or if
Z,) had a cell decomposition which was compatible with the action of G (or of
G;). Unfortunately the Bialynicki-Birula cells (which come from the torus action)
do not decompose the G-orbits, so although they may be used to compute the
Betti numbers of X ([Str]), the resulting formula is not immediately related to our
formula (§2). Our solution to this problem is to find a paving by rational cells
which are compatible with the map wu.

Recall that an (algebraic) rational cell C in a algebraic variety M is a locally
closed algebraic subset such that H.(C; Q) = 0 for all but one value of i (which is
called the dimension of the cell). A paving of M by rational cells is a
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decomposition

M=0IEI]C¢,,

into finitely many (algebraic) rational cells C,, together with a total ordering of
the index set J such that for each 8 € J, the set

M5=Uca

a=f

is closed in M.

PROPOSITION. The variety M, has a paving by (algebraic) rational cells
such that each 3;M; is a union of cells, the subvariety Z, is a union of cells, each
3,Z, is a union of cells, and the map u: Z,— [I;—, P? is a cellular map (with respect
to the standard paving of P by rational cells: see below).

Proof. The proof will take the rest of §5.11.

5.11.2. Lemma on rational cell decompositions. The proof of the following
lemma is simple:

LEMMA. Suppose that

M- g

is a decomposition of an algebraic variety M into finitely many locally closed
algebraic subsets Z, such that
(a) each closure Z, is a union of Z’s, i.e.

ZA= U Zt

teK’

for some K' c K.

(b) each Z, has a decomposition into rational algebraic cells.

Then the induced decomposition of M into rational algebraic cells is a paving of
M if and only if each of the decompositions of Z, into cells is a paving of Z,.
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§5.11.3. Cell decompositions of toric varieties and their fibres

PROPOSITION. Suppose f:X—Y is a morphism between nonsingular

projective toric varieties. Let p € Y and let {0, . .., 0,} be the set of torus orbits
in X which have nonempty intersection with the fibre f~'(p). Then there is a
partition {I,, . . ., I,} of the numbers {1, 2, ..., n} such that each set

ei=U (6,0f7(p)

is an affine algebraic cell in f~'(p), and the cells {e,, ..., e,} form a paving of

f~(p).
Proof. This proof has 3 steps.

Step 1: For the case Y is a single point. Here we recall Danilov’s ([D])
construction of the cell decomposition of X. Let X<V denote the cone
decomposition of the vectorspace V which corresponds to the variety X. Let
Ci, ..., Cyn denote the maximal cones in X, and let g € ¢; be a generic interior
point (which we will call the Danilov point) in a maximal cone ¢, € 2. Then to
each maximal cone c;, Danilov associates certain faces f c ¢;, according to the
following rule: a face f is associated to a cone ¢; if there is an interior point ¢’ € c;
such that the line segment gq' has nonempty intersection with the face f. This
association determines a partition {I, . . ., I;,} of the cones in 2 into groups, one
for each maximal cone c; € 2. Furthermore, if O(c) denotes the T-orbit (in X)
which corresponds to a cone c € X, then the set

e;= U O(c)

cel;

is a locally closed algebraic subvariety of X.

THEOREM. ([D]) If X is projective, then the subvarieties {e,, .. ., e,} are a
paving of X (i.e. they can be ordered so that each \ <, e; is closed in X), and if X
is nonsingular then each e; is an affine algebraic cell.

Remark. Although f~'(p) is not a toric variety, it is a union of toric varieties
which intersect along torus orbits. Although it is not true that any union of toric
varieties has a paving by algebraic cells, we will show that the variety f ~'(p) has
such a decomposition.
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Step 2: For the case that p € Y is a fixed point. Now suppose that f: X— Y is a
morphism of nonsingular toric varieties. We obtain a cone decomposition Q2 of a
real vectorspace H corresponding to Y, and a linear projection f4:V — H which
takes cones in X' to cones in Q. Let p € Y be fixed under the torus action. The
fixed point p corresponds to a maximal cone w € §2. Choose a Danilov point (for
the variety Y), a € H to lie in the interior of w, and choose a Danilov point (for
the variety X), qeV to lie in the interior of an open cone c € X such that
f#(q) = a (and hence also fz(c) c w). It is easy to see that, having made these
choices, the fibre f ~'(p) will be a union of the cells in the cell decomposition of X
which was defined in step 1. It follows from the “only if” part of 5.11.2 that this
defines a paving of f~'(p) by affine algebraic cells.

Step 3: Reduction to the case that p is a fixed point in Y. The point p € Y lies
in some orbit O in Y, and this corresponds to some w e £ of the cone
decomposition of the vectorspace H associated to Y. Let (w) be the vector
subspace of H which is spanned by w. Then (w) N R is a cone decomposition of
(w), and f"'({w))N X is a cone decomposition of f3z'({w)). Therefore these
cone decompositions are associated to a morphism of toric varieties,

fl:X'-Y

where X' c X and Y' c Y, and where p € Y’ is a fixed point of the torus action on
Y’'. Furthermore, (f')"'(p)=f"'(p), so the cell decomposition of (f')"'(p)
which is provided by step 2 above is the desired decomposition.

Remarks. Unfortunately, X' may be a singular toric variety. However, it will
be nonsingular in a neighborhood of (f')~'(p), and Danilov’s proof that the
varieties e; are cells uses only the nonsingularity near the e;. The varieties X' and
Y’ can be easily described: The stabilizer S = Stab; (p) acts on Y, and Y’ is the
closure of a generic orbit of S. The variety X' is the complete pre-image, f~'(Y"),
i.e. it is the closure of a generic orbit of the pre-image torus, fz'(S).

§5.11.4. The standard paving of [[;_, P°. Define the standard paving of P* to be
the decomposition into cells

P = {po} U (9"~ { po}) U (P* - OF)

where po=8P?*N 6'=[0:0:1] (in the notation of §5.8). Note that P> — 3P? is an

algebraic rational cell (of dimension 4) since it deformation retracts to RP?,
Define the standard paving of [I;., P* to be the product decomposition. The

group G, acts on [[.,P* with one orbit §,[Ii-; P*> for each subset Ic
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N _{Pz—apz if i ¢!
| ap? ifiel

Each 9,[I;—, P* is a union of rational cells in the product decomposition of
[T P2

§5.11.5. Paving of Z by rational cells. In this section we show that Z; has a
paving by rational algebraic cells such that each 9,Z; is a union of cells.

By lemma 5.11.2, it suffices to find a paving of each 3,Z, by rational cells.
Recall (§2.3) that

8,2, =u~(3, 11 ¥)
i=1
It follows that the restriction
u:8,Z,— 3, [ P2
i=1

is a fibre bundle (since it is G, equivariant and the base is G, homogeneous). Let
pir=(p:,...,p,) €3, Ilj-, P? denote the basepoint,

i

_{[1:0:1] ifigl
~1[0:0:1) ifiel

First we give a paving of u~'(p,) N 9,Z,. But this is precisely the fibre (over p,) of
the map between toric varieties,

J"t:T—-—)ﬁP'
i=1

(see §5.9), so it has a paving by affines {e,, ..., e,,}, according to §5.11.3. (Note
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that the basepoint p, was chosen so as to lie in [I;-, P'). We will now show that
the subsets of the form

€x =GN 1= (ce)

constitute a rational cell decomposition of 3,Z;, where G; - ¢, is the G;-saturation
of the cell ¢;, and where ¢, is a rational cell in the standard (§5.11.4)
decomposition of 3, [[-, P

Note that G, - ¢; N u~'(p,) = ¢; because each intersection

(G,-orbit in Z,) N u~'(p,) = (T-orbit in T)N u~'(p,)

and the cell ¢; is a union of such intersections (see §5.10). It follows that the cells
€ give a decomposition of 9,Z;, and that they form a paving (using the
lexicographic ordering induced from the ordering of the cells in u~'(p,) and the
cells in 3, [T, P?). We now show that €;x 1s a rational cell. The restriction

u:G,-e—9,[] P
i=1

is a G,-equivariant fibration with fibre e;. The restriction

pu:ep=G;-¢nN u(C)—>ccd, H p?

i=1

is a fibre bundle over c, with contractible fibre. Since c, is a rational cell, it
follows that &, has no rational homology except in dimension 0. However é; is a
complex manifold and hence is oriented. By rational Poincaré duality, it follows
that the cohomology with compact support of é; vanishes except in the top
dimension, so € is a rational cell.

§5.11.6. Paving of M, by rational cells. The projection (§5.7) M,— % is an
algebraic fibre bundlé which is trivial over each of the Bruhat cells in %. The
fibre is Z,. Therefore the pre-image of each Bruhat cell is paved with rational
(algebraic) cells by the product paving. Lemma 5.11.2 implies that this gives a
paving of M, by rational cells. :
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Chapter 6. The cohomology ring of Z  and M,

§6.1. Statement of result

§6.1.1. Cohomology of Z. Our formula for H*(Z,) involves the rational
polyhedral decomposition described in §5.3 and §5.9, i.e.

V={aeR"|2a =0}

2 =the cone decomposition of V which is generated by hyperplanes a; = a;
(for i #j)

H = R’, with coordinates «a,, a3, ..., a,_,

« :V — H the projection given by ay,_(a) = ay — a5,

€2 = the cone decomposition of H into quadrants, generated by the hyperplanes
ay_1=0 (for 1=i=ys).

We will be concerned with the one dimensional cones o€ 2 such that
a,_1(0) =0, for each i, (1=i=<s). Let us denote the primitive generating
vectors of these cones by D,, D,, ..., D,. (See §5.10 for an analysis of these
vectors: each vector D; corresponds in a natural way to a codimension one orbit
D; of G; on Z,).

DEFINITION. Let Q[D,, ..., D,] be the polynomial ring generated by the
(commuting) variables [D,], [D,], ..., [D,] of degree 2. Let I, be the ideal
generated by the monomials [D,][D.]---[D,] such that the vectors D,,
D,, ..., D, do not form a cone in .

For each j (1 =j =s) consider the subset j= {D,, D5, ..., D,} which is given
by

i={D|ay-.(D)>0}

Let [j] denote the ideal generated by the (third degree) polynomials

(Z0)iE)|Ees)

Dej

Let L, be the ideal [1] + [2] + [3] + - - - + [s], i.e. the sum of the ideals [j]. Let L be
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the ideal generated by the linear forms
2 f(D)ID]

where f is any one of the following functions:

k) n
2 mi(az-,+ ay) + 2 n;a;

where the integers m; and n; satisfy

n

22m,-+ Z n=0
i=1

j=2s+1

THEOREM. The cohomology ring H*(Z,) is naturally isomorphic to

Q[Dy, D,, ..., D)/ (L+ L+ L)

Furthermore the isomorphism is induced by the map which assigns to each variable
[D;] the cohomology class |D;] € H*(Z,) which is dual to the divisor D,.

The homomorphism @*:H*(Z,)— H*(Z,_,) is easily described by its action
on the generators [D;]. Let o:Z;— Z; denote the involution which is induced
by exchanging the (labelling of the) coordinate axes, L, and L,_; (where
P,=L, ® L,,_,). (This corresponds to an involution, which we also denote by o,
of H =R*, and which is given by multiplication by —1 in the last coordinate.

THEOREM (continued). The image of the class [D;] under the homomorph-
ism P* is

(D] if o(D;) = D;
D D,' ={
D) [D:] +[o(D;)] otherwise
§6.1.2. Cohomology of M,. The rational cohomology ring of M, is an algebra
over the cohomology H*(%,) of the flag manifold %, and it is generated by the
(degree 2, commuting) dual classes to the boundary divisors D, D,, ..., D,. In
the notation of §6.1.1 above, we define ideals J,, J,, and J; in
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H*(%,;Q)[D,, ..., D,] as follows:
(a) J, is the ideal generated by the monomials [D, ][D,,] - - - [D;] such that the
vectors D;, D,,, ..., D, do not form a simplex in 2.

b) For each j (1 <j <s) let [j] denote the ideal generated by the polynomials
g

(2 1) =4ty +1608) 121 (BT e

Dej

where c'(P) denotes (§6.11) the chern class of the tautological bundle P, of
2-planes over %,. Let J, be the ideal

L=[1+(2]+ - +[5]

(c) Let J; be the ideal generated by the first degree polynomials
2, (f(D)D) = c'(A°P)

where f is any one of the following functions:
ai—1+ay; (wherel=j=ys)

and by the first degree polynomials
2 (F(DYDD (L)

where f is any one of the following functions:

a; (where2s +1=j=n)

THEOREM. The cohomology ring H*(M,) is naturally isomorphic to
H*(%)[D,, ..., D)/, + )+ J3)
Furthermore the isomorphism is induced by the map which assigns to each

variable [D;] the cohomology class [D;] of the divisor D,=K Xy D,c K Xg
Z,= M;.
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Remark. The cohomology ring H*(%,;Q) is the subring of
QlX;, ..., X,])/(S) which is invariant under the exchanges X,_, < X, (for
1=i=<s), where (S) is the ideal generated by the elementary symmetric
functions.

§6.1.3. Outline of proof. The proofs will occupy the rest of this chapter. First we
give a different presentation for the cohomology of Z; by introducing new
divisors, 8] and 87 and by showing that Z has the cohomology of a toric variety
with one codimension 1 orbit for each divisor in the collection {D,, 8}, 87}. This
is done by generalizing (§6.2) Danilov’s construction ([D]) for the cohomology of
a toric variety, and then by verifying (86.3, 6.4, 6.5, 6.6, 6.7) that Z satisfies the
axioms of Danilov. Then (§6.10) we find a formula for the cohomology classes
represented by the new divisors, 8] in terms of the cohomology classes
represented by the codimension 1 orbits D; of the G, action on Z,. Substituting
for these classes gives the formula of theorem 6.1.1. Finally, in §6.11 we “twist”
the cohomology of Z; over the cohomology of the flag manifold % to obtain
theorem 6.1.2.

§6.2. The space Z; has the cohomology of a toric variety

§6.2.0. Although Z is not a torus embedding, it can be associated to an R.P.D.
of Euclidean space, and the method of Danilov can be used to present its
cohomology. Since this construction works in a much more general setting than
that of toric varieties, we will formulate the procedure in general.

§6.2.1. Definition of the ring Q[D]/(/ +J). Suppose Z is a complete nonsingular
complex algebraic variety, and D, D,, ..., D, are irreducible divisors in Z. Let
I' be the group (under multiplication) of regular invertible functions on the space
Z° = Z —\UD;, modulo the constant functions. Then I'is a free abelian group of
some rank, m. From this data we can form a ring and a homomorphism to H*(Z)
as follows: Let Q[D] denote the polynomial ring in the formal variables [D,],
[Di],...,[D,] Let IcQ[D] be the ideal generated by the monomials
(DD} - -[D,] for which the intersection D; N D;,N---N D, is empty. Let
J = Q[D] be the ideal which is generated by the linear forms

2’: ordp, (f)[Di]

i=1

for each f € I. Consider the ring Q[D}/(I +J).
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PROPOSITION ([D}). The association which assigns to each divisor D; the

cohomology class which is dual to its fundamental class, induces a ring
homomorphism

Q[D)/(I+J)— H*(Z; Q).

In the next 2 sections we will develop Danilov’s criterion that this be an
isomorphism.

§6.2.2. The cone decomposition of Hom (I",R). Let V =Hom;, (I', R). Each
divisor D; defines an (integral) vector D; € V by

Di(f) = ordp, (f)

Fix f e I For any D;, we have ordp, (f) € Z. If this number is O for all D;, then f
is a constant function. Since I' is contained in the lattice of integral functions on
the set {D,, ..., D,}, it is free of rank <.

For each collection D; , D,,, ..., D, of divisors such that their total intersec-
tion is nonempty,

Di‘ﬂDizﬂ"'ﬂDik?&@

we can define a cone of positive convex combinations of the corresponding
vectors, 1.e.

C(Dil’ e ey Dik)= {Za]D]|al>0}

§6.2.3. Proposition ([D]). Suppose that
(1) rank (I') = dim¢ (Z)

(2) The cones c(D;,, ..., D,) form a simplicial rational polyhedral decom-
position X of the vectorspace V.
(3) The number of cones c(D;,, . .., D, ) of maximal dimension is equal to the

Euler characteristic of Z

(4) H*(Z; Q) is generated by the cohomology classes which are dual to the
fundamental classes of the divisors Dy, D, . . ., D,.

Then the homomorphism Q[D)/(I +J)— H*(Z; Q) is an isomorphism.

Remark. Although this result is not stated explicitly in [D], it is equivalent to
this analysis for the cohomology of a torus embedding.
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§6.3. Application to Z;

§6.3.1. In the variety Z, we consider the following list of divisors:

(a) Dy, D,, ..., D,, the (closures of the) codimension 1 orbits of the G,
action on Z;

(b) 8;=u""(8})

(c) 6Z=pu""(6))
where p: Z,— [}, P is the map of §2.3 and §5.9, and where

5{:=PZXP2X"°X(§jX-~-XPZ

(the & appearing in the ith factor). (Recall from §5.8 that é' is the closure in P’

. a b ) .
of the set of symmetric matrices ( c) such that a =0, while 62 is the closure of

b
the set of such matrices with ¢ = 0).

§6.3.2. Proposition. The collection of divisors D,,...,D,8},...,68;,
83, . .., 8% (in the variety Z,) satisfy the hypotheses of Danilov’s theorem (§6.2.3),
so the cohomology ring of Z, is isomorphic to Q[D, &', 8*)/(1 +J).

Proof. The proof of this proposition will cover sections 6.4, 6.5, 6.6, 6.7, 6.8.

§6.4. The vectorspace V generated by I'. Let us denote by Z% the set
Z’=2Z,-UD;-d; -7
(to distinguish this from Z?=Z, - \UD)).

Since Z2° consists entirely of nondegenerate quadrics, the elements can be
represented (modulo multiples) by symmetric matrices with s 2 X 2 blocks

(a2i——l bi) (1=<i=s)

b; az;
and with n —2s 1X1 blocks, (a;) (where 2s + 1=<j=n). Since the quadric is

nondegenerate, the determinant of each block is nonzero. We have removed the
6% and the 65 so the numbers a; are nonzero.

PROPOSITION. The group I of regular invertible functions on Z is the free
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abelian group generated by the following n + s — 1 functions:

A, =ay_,/a, 2=i=ss)
F, = (a5i-1az — b7)/(a3;-1) (I1=i=s)
G;= ay/az_, (1=iss)
E;=a;/a, 2s+1=<j=n)

Proof. This follows immediately from the following more general statement:

LEMMA. Let S, S,,...,S, be irreducible hypersurfaces with irreducible
equations fi, f>, . . . , f, in an affine space A™. Then the group of invertible functions

on A™ —S;, modulo the constants, is the free abelian group generated by (the
classes of the) f..

Proof. The proof is clear by unique factorization of rational functions and the
description of the regular functions on A™ —S..

Remark. We have chosen certain fractions as generators, in order to preserve
U’ equivariance. This will become important in §6.6.

COROLLARY. Property (1) of Danilov’s lemma (6.2.3) is satisfied by the
collection of divisors {D;, 8}, 6?}, and the vectorspace V* has a basis given by the
functions {A,, F,, G;, E;}.

§6.5. Lemma on simplicial decompositions. The following lemma will be the
main technical tool for verifying Danilov’s property (2).

Suppose @:V— H is a surjective homomorphism between two real vec-
torspaces. Fix a simplicial R.P.D. Q of H and a single closed cone w € Q.
Suppose the remaining one dimensional cones in H — w are given by the positive
multiples of certain rational vectors {k;, k5, . . ., k,}. Suppose a collection X of
cones in V is given, with a partition of the one dimensional cones into two
disjoint collections, {A,,..., A,} and {n,,..., n,} which satisfy the following
properties:

HYPOTHESIS 1. The set & '(w) is a union of cones in 3 {n,, ..., n) are
the one dimensional cones in XNa& '(w), and ¥ Na '(w) is a simplicial

decomposition of & '(w).

HYPOTHESIS 2. The projection & defines a one to one correspondance
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between the one dimensional cones {A;, A,,...,4,} in £ and the vectors
{ky, k3, ...,k }, i.e. each A, contains a (unique) vector v; €4A; such that
a(v;) = k;.

HYPOTHESIS 3. Let {w,, w,, ..., w,} denote rational vectors which gen-
erate the one dimensional cones {7,,..., n,} in £ N & '(w) and suppose that
Ic{1,2,...,r}andJ = {1, 2,..., s} are subsets. Then the collection of vectors
{vi, w;liel,jeJ} span a cone in 2 if and only if the following two conditions
hold:

(a) there is a single closed cone in £ which contains all the vectors

{a(v), a(w)) |iel jel}

(b) The positive combinations of the vectors {w;} form a cone in the given
R.P.D. of a '(w).

LEMMA. If a collection of cones X in V satisfy hypothesis 1, 2, and 3 above,
then they form a simplicial R.P.D. of the vectorspace V.

Proof. First we will show that the cones ¢ form a decomposition of the space
V, i.e. every nonzero point p € V has a unique representation as a convex
combination of a collection of the v’s and w’s which satisfies the conditions (a)
and (b) above. For any point p € V, the image &(p) lies in a unique cone of the
decomposition Q, so it has a representation

a(p)= 2 a;a(v;) + 2 bryx

iel k

(for some subset / = {1, 2, ..., r} and vectors y, in the one dimensional faces of
), and the numbers g, are uniquely determined. Therefore, p — Za;v; € @ ()
so it has a unique representation,

P~ Za,-vi = z C,'Wj

jeJ

(for some subset J = {1,...,s}) as a convex combination of a subset of the
vectors {w,, ..., w;} which span a cone. The vectors v;, w;, (for i €1, jeJ) span
a cone in 2 because hypothesis 3 is satisfied.

Now we will show that this cone decomposition £ of V is simplicial, i.e. if the
vectors {v;,, ..., v;, w;, ..., w;) satisfy conditions (a) and (b), then they are
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linearly independent. But suppose some linear combination vanishes,
Zaiv,- + Eble = O

By applying & we see that a,=0 (since the vectors {&(v;)} are linearly
independent modulo the &(w;)). However the vectors {w;} span a simplicial cone
in V, so the b; =0 also.

In the same way we see that the cones in £ are disjoint.

§6.6. Four cone decompositions. We wish to apply lemma 6.5 to the cones in the
set £ in V (§6.2.2, §6.3.2) to see that it is a simplicial cone decomposition. For
this we will associate vectorspaces and cone decompositions to each of the
varieties in the following diagram (which was studied in §5.9.1),

C.=a'(A'Y c T — Z

N

Ay c [P — [P
=1 1=1

We will describe a combinatorial relationship between the corresponding cone
decompositions. First we describe a simplicial cone decomposition € of the space
H =[Ii_, R? which corresponds to the variety [T;-, P

The quadrics which lie in the open subset P®=P?-§'—6%— oP? are

b
parametrized by the (multiples of the) symmetric matrices (Z c) with a #0,

¢ #0 and ac — b*# 0. The functions F = (ac — b*)/a* and G = c/a form a basis of
the group of regular invertible functions on P® (modulo the constant functions),
and the orders of their zeroes and poles on the above divisors are:

ords: (F)= —2  ords (G)= —1
ords: (F)=0 ords: (G) =1
ord; (F)=1 ord; (G) =0

Thus the variety P? of complete quadrics in P' is associated to the following
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R.P.D. of R?

DIAGRAM

We will denote the vector (—2, —1) by ', the vector (0, 1) by 8%, and the vector
(1,0) by .

DEFINITION. Let £ be the product cone decomposition of the space
H=T1E., R? and let w be the s dimensional cone in € which is spanned by the
standard basis vectors (1, 0) in each copy of R?, i.e.

o= {Eai(éi) | a; =0}
where 3,=(0,0,...,3;,0,...,0)e(R?".

Recall that in §6.2.2 we have associated a cone decomposition £ of the
vectorspace V corresponding to the variety Z;. In §5.3 we have associated a cone
decomposition X of the vectorspace V corresponding to the toric variety T,
together with a cone preserving homomorphism «a:V— H =R’, where H is
decomposed (by a collection of cones ) into quadrants. (Unfortunately the
coordinates of « are denoted oy, as,..., @y_;). Notice that w is a union of
cones in Q. We define X' to be the set of cones in X which are mapped by « into
the closed quadrant w. Notice that the vectors which span the cones in X' are the
ones associated to the divisors in the open set C, = (%) '(A')’. By §5.10, these
vectors are in natural one to one correspondence with the boundary divisors D; in
Z,. The following facts are easy to verify: (notation as in §6.4).

Fact 1: The subgroup of I' (the regular invertible functions on Z%) which is
generated by F; and G; is the pullback (by u) of the regular invertible functions on

L)

:_1 P% (i.e. they form a basis for the vectorspace H).
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Fact 2: The elecments A, F, and E; in I" are invariant under the action of the
subgroups

10 )
iz vx 1

in the various s blocks of G,. These invariant functions, when restricted to the
diagonal torus T < Z' generate the group of characters of T (i.e. they form a
basis for the vectorspace V*).

Remark. The diagonal conics in Z, are the intersection T =T N Z7, and so
the diagonal quadrics in [T}_, P are the intersection

R

s 00
T= (n pz) NI P
i=1 i=1

These fit in the following diagram

¢ 00
F —— Z,

L

v, ([“1‘ pl)m

t

Thus we have four lattices of regular invertible functions modulo constants,

r(7) «—— Iy

T T

r(T) «* r([]l W)m

where the vertical arrows are injective and the horizontal arrows are surjective,
by fact (2) above.

The one dimensional cones in X According to §6.2.2 and §6.4.2, the one
dimensional cones in X are given by the positive multiples of the (three kinds of)
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vectors,

8X(f)=ordy (f)  (1=iss)
0i(f)=ords: (f) (1=i=s)
Dy(f) = ordp, (f) (I=j=r)

as f varies over the basis elements (§6.4) for the group I' of regular invertible
functions on ZX. These orders are computed in the following matrix:

D, Sx(k#1) 8% H
as for T 1-6(, k) 0 -1 R=i=sys)
=0 as for T —-2-8(i, k) 0 —-28(i,1) |(1=i=ys)
as for T 0 0 -1 2s+1=i=n)
0 —-1-6(, k) 1-6(, k) -0(i,1) [(=i=sy)

Qbm>

(where 6(i, k)=1if i=k and is 0 if i # k).

Proof. By the geometric description of the open set A, = U* X C;, which was
given in §5.10, and the fact that the functions A;, F, E; are U® invariant, it follows
that for any function f on this list, we have

ordp, (f) =ordp,nc, (f | C;)

which gives most of the first column in the above table. The fact that G; vanishes
on D, follows from the fact that G, is invertible outside 8! U 67 and that every
divisor D, meets this complement. The computation of columns 2 and 3 is easily
performed by restricting to the open set Z? which meets the divisors &.. In this
open set the coordinates a;, b;, are homogeneous coordinates and &, has the
homogeneous equation a,;_; =0, while 7 has the homogeneous equation a,; = 0.
An inspection of the functions gives the above calculation.

Consider the combinatorial correspondence (§5.10) between the T-stable
divisors D; N C, in C, and the G,-stable divisors D; in Z,. Corresponding to each
divisor we have a vector in V and in V (respectively). This correspondence
extends to a unique linear embedding V — V because of the above calculation. It
identifies V with the subspace of V which is generated by the vectors D,

{T-stable divisors in C,} © {G,-stable divisors in Z,}

l 1

1% >V
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The map &:V — H takes V to the subspace H c H which is spanned by the 3;.
We obtain a diagram of vectorspaces

VooV S\, §
“l l& and cones 1 1
H——H w—> Q

§6.7. Proof of property (2) of Danilov

PROPOSITION. The cones &:3— Q of §6.6.2 satisfy the hypotheses of
lemma 6.5 and therefore they form a simplicial decomposition of V (where the

special cone w € 2 is the s dimensional cone which is spanned by the unit vectors
(1, 0) in each copy of R?).

Proof. We will show that

(1) @ Y(w) is a union of cones in £, and that £ N & '(w) is a simplicial
decomposition

(2) For each one dimensional cone in H— w, there is a unique one
dimensional cone in £ which lies over it

(3) For any choice of subsets I<={1,2,...,s}, J={1,2,...,s}, Kc
{1, 2, ..., r} the collection of divisors

{8, 6%, Dy |iel,jel, ke K}

have nonempty intersection in Z, (i.e. they span a cone in X if and only if

(a) the divisors {6}, 8%, u(D,)|i€l, jeJ, k € K} have nonempty intersection
in [I:_, P? and

(b) the divisors {T N D, | k € K} have nonempty intersection in T

Proof of (1). It is easy to see that @ '(w) is a union of cones in X: these are
precisely the cones in X < 3 which lie over the positive quadrant ¢;'(w) < H. In
particular, they form a simplicial decomposition of & '(w).

Proof of (2). This follows directly from the computation of the matrix (§6.6).
Proof of (3). This is straightforward, since the divisor D, projects (in each P?

factor) either to 3P or to all of P?, and the pattern of intersections of the divisors
oP', 8', and 87 is given by the diagram in §5.8.
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§6.8. Proof of property (3) of Danilov. We must count the number of maximal
cones in .

Notational Remark: Since the s projections to the coordinate axes, V— R are
labelled by the roots a;, as,..., @s_;, we will denote the corresponding
projections V— R? by &;, &, . . ., &_1.

Each maximal cone in £ projects to a maximal cone in Q. These project to
maximal cones in each R? factor, and there are 3 such maximal cones: span
(8, 62), span (3, 6'), span (3, 67). Consider the set @ '(w) in V which we call
the w-quadrant. Since the w-quadrant is in the image of @, we may identify it
with a (generalized) quadrant of the vectorspace V. For any subset Ic
{1,2,...,1} we define the corresponding (closed) corner of the w-quadrant to
be

{(pea (w)| ay_(p)=0foralliel}
={pea(w)|ay_,(p)=0foralliel}

Now suppose that ¢ € 3 is a maximal cone. We denote by ¢’ the unique largest
cone in ¢ N & '(w) (where ¢ denotes the closure of ¢). This lies in some smallest
corner F of the w quadrant, which in turn corresponds to some subset
I={1,2,...,s}. Foreachiel we have,

@»;_1(c) = span (8%, 6%)

because &,;_;(c) is a maximal cone in R* which does not contain 3 as a face. On
the other hand, if i ¢ /, then

span (8, ')

@,;_1(c) = either {span (3, 6%)

We conclude that the number of maximal cones c € £ such that ¢’ is the maximal
cone in ¢Na& '(w) comes to 2°~". Furthermore, the corner F has (n—
[1])!/(2°~"") maximal cones c’. This is because the vector subspace of V spanned
by F is decomposed into cones according to the cone decomposition of the toric
variety T, which has (n —|I|)! maximal cones, divided equally among 2°~'!

generalized quadrants isomorphic to F. Also, there are (I’;l) corners F of
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codimension ||. In summary, the number of maximal cones in X is

> (%) - hyt =22

h=0
as desired.

§6.9. Proof of property (4) of Danilov. We have seen (§5.11) that Z has a
paving by even dimensional (algebraic) rational cells such that the closure of each
rational cell is a union of proper intersections of some collection of divisors in the
list

{Dl)---)Dr)6}:-*-765"96%)---’63}

But the rational cells form a basis for the rational cohomology of Z;, so the
cohomology classes of the above divisors must generate the cohomology of Z,.

§6.10. Proof of theorem 6.1.1. In this section we will solve for the cohomology

classes [8]] in terms of the cohomology classes [D,], and then substitute into the
equations (§6.2.2) for the relations in H*(Z).

§6.10.1. Lemma. In H*(Z,; Q) the following relations hold:

[6i1=1[67]=22[D,]

where the sum is taken over all codimension 1 orbits D, of G, on Z, such that for
each i (1 =i=<s) we have

w(D,) =9
ie.,
&z 1(D,) >0
Proof of Lemma. In the cohomology H*(P?) we have the following relation:

[6']=[6%] = 3[3]
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This can be seen from the R.P.D. (§6.6) of R* which is associated to P>. Each of
the regular invertible functions on P? — 8' — 8% — 3 gives a relation in P?, which
(for the functions F and G) read

F(3)[3] + F(8")[8"] + F(6*)[8°] =0

G(3d)[3] + G(8M)[8'] + G(87)[6”] =0
or

(51=2(6']

[6']=[67]
It follows that, in H*(Z,) we have the relations

pr((8']) = u!([8°]) = 3ul([3])

where u;: Z,— P? is the composition of u with the projection to the ith factor.
Now compute u;([3]): For each codimension one G; orbit D on Z; we have

u(D)=90& ay1(D)>0

and therefore there are numbers 7; such that
u(9) = =(D))

where the sum is taken over all D; such that a,;,_(D;) >0, where 7, is given by
10 = az;i—1(D))

However, it turns out that the numbers 7; are all equal to 1 since the vectors D;

are the minimal lattice vectors such that a,_,(D;)eZ and ay_(D;)=0. (see
§5.3)

§6.10.2. Completion of the proof. The substitution (§6.10.1) gives rise to a
surjective ring homomorphism,

Q[D,,...,D, 8 ...,8., 8 ...,80—>Q[D,,...,D]
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and we will show that @(I +J) = (I; + I, + ;). First we show that ®(I) =1, + L, If
a collection of vectors {D,, 6},, 63},,6A,ﬁ63,yec do not form a cone in 3 (and
hence give a relation in /), then there are two possibilities:
(1) the vectors {D,},e4 do not form a cone in X
(2) there is an index i (where 1 =i =ys) such that
(a) both &} and 87 are present in the collection and
(b) some D, in the collection projects (under ;) to 3P,
(see §6.7 and §5.10 for this combinatorics). In case (1) we have one of the
generating functions in the ideal [;. In case (2) we have one of the generating
functions in L, for the following reason: If u,(D,)= dP? then [6}][67][D.]=0
(since 6' N 82N 3P? = ). Substituting from §6.10.1 for [8{] and [67] gives

(GZ[D,))’[D.]=0

(where the sum is taken over those D, such that azi_l(ﬁp) > 0), which is one of
the generating elements of 1,.

Now consider the linear relations @(J). Each of the functions A;, F, G, E;
gives a relation in J. The G; have already been considered in §6.10 and give

6;=67=13[D,]

The remaining 3 types of relations can be read from the matrix of §6.6: we only
need to substitute 65 =3X[D,]. Since the vectors D; are elements of V, we have

ordp, F;=ordp, 7 (EN T)

according to the table in §6.6. In other words, in order to compute ordp,_ for the
functions A;, F, or E;, we can restrict these functions to the torus embedding.
This gives rise to the following relations:

A;: D, ordp, (02—1)[Da]+ 8! -61=0 (1=i=<y)
o 1

F: Doy, (-2)(D,]-261=0  (1=i=s)

azi—1

E;: ZordDa (%)[D,,]—61= 2s+1=<j=n)
@ 1
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adding equations (F,) to twice (A,) gives

Fl: S ordp, (“l‘f?if-‘)[o,,] —81=0 (1=<i=s)

a,a,

The relations (F;) and (E;) are now equivalent to the following: For any
collection of integers m; (1=i=s) and n; (25 + 1 =j =n) such that

O=22m,~+2n,-
i j

we have

S

S mF)+ 3 (E)

i=1

n

=¥ (Zl m; ordp, (aza:—l) -m267+ D, njordp, (gl) - njal)[Da] =0

141 j=2s+1 1

So
S ordp, (T @@ [1 (@)")[Da]=0

i=1 Jj=2s+1

Taking logarithms to pass to Lie algebra notation, we have ¥, f(D,)[D.]=0
whenever

n

S
f= E my(az + azi—y) + 2 n;a;
=1 ;

j=2s+1

provided
22 m+ 2 n=0
i j

and these are the generating functions of the ideal L.

§6.11. Proof of theorem 6.1.2

§6.11.1. We will apply the theorem of Leray-Hirsch ([Bol], [Bo2]) to the fibre
bundle n: M, — %, using our computation (§6.1.1) of the cohomology of the
fibre, Z,. Recall that the flag manifold %, consists of all orthogonal direct sum
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decompositions,
C'=POPLD-- - OPDLy,, D ---OL,
and therefore the planes F; and the lines L; are tautological vectorbundles over %..

The cohomology classes [D,] € H*(Z,) are restrictions of classes [D,] e H¥(M,),
where

D~a =KXK,DachK,Zs =Ms

It follows that the cohomology of M, is generated (over H*(%,)) by the classes
{[D.]}, and we have surjections

H*(‘%)[Dl’ R Dr] "'"!S"') H*(Ms)
@[Dl, Pe sy D,] Em— H*(Zs)

It follows that the kernel of k is I; + L, + I;, where I, is the unique ideal such that
o(f)=1; and x(I)) =0.

§6.11.2. The ideal J,. The vectors {D;, D,,,..., D} do not form a cone in X if
and only if the divisors {D,, D,,, ..., D;} have empty intersection in Z, if and
only if the divisors {D;, D, ..., D,} have empty intersection in M,. Therefore
the ideal 1, is J,.

§6.11.3. The ideal J,. Fix j with 1=j=<s. We will show that if ay_,(D,)>0,
then

(z[ﬁk])z[ﬁp] = 4((C1)2 - 462)[D~p]

where the sum is taken over all D, such that a,;_;(D;) >0, and where ¢' and c?
are the first and the second Chern classes of the tautological two dimensional
vectorbundle, P,— %,. Consider the space K X x P of all pairs ((P, L), Q) where
(P, L) is an orthogonal direct sum decomposition of C" as above, and where Q is
a complete quadric in the plane P. This contains the submanifold K X x 8P of all
direct sum decompositions

C"=PI®”'®L2j—1®L2j®'"®R®L2;+l®'°'®ldn

(which is the same as the manifold % except that we have broken the two
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dimensional space P, into two one dimensional spaces). Let i: K X x 0P*— K X x
P? denote the inclusion and let v denote the normal bundle of this inclusion. The
bundles P, on %, pull back to bundles (which we also denote by P) on K X x P°.

SUBLEMMA. c'(v)? = 4i*((c'(P)2 — 4cX(P)).

Remark. The advantage of this sublemma is that it gives c'(v) in terms of a
vectorbundle which is pulled back from K X x P2,

Proof of sublemma. First we show that the normal bundle v is T ® T, where
T is the bundle of tangents to the fibre of the projection moi:K X x dP*—> %,.
Note first that the normal bundle of 3P? in P? is T; ® T, where T, is the tangent
bundle of 3P* because

(a) 9P? is the image of the diagonal A under the quotient mapping
P'xP'-P*=P'x P/t

where the involution 7 switches factors,
(b) The normal bundle of 3P in P? is thus the quotient T,/t where

T, =normal bundle of A in P' X P' = tangent bundle of A
= tangent bundle of IP?

(c) For any line bundle L, if 7: L— L denotes multiplication by —1, then the
quotient L/t is isomorphic to L @ L.

The same argument applies to the fibres of the projection K X x dP*— %,

It is easily seen that

T=Hom (§, F,/§)=E"Q B/

where & is the tautological line bundle on K X, 8P? which is associated to the
fibres of s oi. The relation

EOB/E=F
gives

c'(B)=c'(§) +c'(R/&)
c(P)=c'(§) - c'(R/§)
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SO

(€' (M)’ =4(=c'(§) +c(R/E))
=4(c'(§)* + c'(P/E)* — 2¢'(8) - ¢'(P/8))
=4(c'(B)* —4c*(R))

which proves the sublemma. Now consider the following fibre square:

U{b,) —> M,=KxyZ
ﬁ,l ‘2/1
KXy dP? —  KxgP°

1

Z,

where the union U {D,} is taken over all D, such that fi,(D,) = K X« 3P (i.e.
@y;_1(Dy) >0). We will use {D,} to denote the homology class in Hgim(s,)( D,)
represented by D,, and [D] to denote the cohomology class represented by D in
H*(M,). We shall also use the notation {K Xy P’} to denote the fundamental
homology class in H (K X x 8P?). We use “dual” to denote the Poincaré duality
isomorphism. Now compute

auwal (315,07 8,1) = (S 15) - LB

-L(F(Zw.) - 0,))

=1,(i* dual (i.{K X, 8P?})* - {D,})
=I,(i}(i* dual i, {K x ¢, 6P?})*- {D,})
=3} (c'(v))* - {D,})

=, (i}i*(4c'(B)* = 16¢*(P)) - {D,})
= 1,(i* 1} (4c'(B)* — 16¢*(P)) - {D,})
= i} (4c'(BY —~ 16¢*(P)) - i.({D,})

= dual (4c'(P)* — 16¢*(P)) - [D,]

as desired.
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6.11.4. The ideal J;. (This section is parallel to that in [DP3] so we will only
sketch the calculation). The character f =a,,_; +a, (1=<j=s) of K, induces a
line bundle A*(P,) on % = K/K,. For each of these characters we have a relation

2 ords, (f)[D.] = c'(A*(P))

because the function f gives a section of A*(P) whose zeroes and poles are
contained in the divisors D, (and c¢'(A?P) = ¢'(P,)). Similarly the character g =g,
(2s+1=j=n) induces a section of the line bundle L; on % and this gives a
relation

2. ordp, (8)[De] = c'(Ly)
These are the generators of the ideal J;.

§6.12. Proof of theorem 6.1.2. Assume the integers m; and n; satisfy 23m, +
2n; =0. Then the character

S n
f= 2 (ay +az_y)+ Z n;a;
i=1 j=25+1

induces a line bundle

Li=QAP)"® & L

j=2s+1

on ¥, = K/K,. For each of these characters we have a relation
2 ords, (f)[Da] = c'(Ly)

because the function f gives a section of L, whose zeroes and poles are contained
in the divisors D,. These are the generators of an ideal which coincides with J;
because of the following lemma:

LEMMA. In V* =Hom (V, R) the following two subspaces are equal.:

Wy =span {ay +ay_,, ;| 1=i<s,2s+1=<j=n)}
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s n s n
W= (S matan)t S n|Som+ S n=o)
=1 j=2s+1 i=1 j=2s+1

Proof of lemma. In V* we have the relation Y7 ,a,=0, so dim (W)=
n—s—1. Clearly W,c W,. In fact, it is the image of the map ®:R"*"'> W,
which is the restriction to the subspace };; 2m; + Y jn; =0 of the map &:R" 7 —
W, which is given by

R n
D(my, my, ..., My, Moy, ..., )=, may+ay )+ > n;a;
i=1 j=25+1

We claim @ is injective. But
ker((p)z{(rﬁ’ ﬁ)|m|=m2=“'=ms=n2;+l=° § .-_—nn}

because the only linear combination of the a’s whichis 0 in V* is }; a;. If we let b
denote the value of m; = n; then (since 2 ¥, m; + ¥ n; =0) we have (n —s)b =0,
ie. b=0.

§7. Larger Compactifications

In [DP1] a family of “larger” compactifications of X" (the symmetric variety
of nondegenerate quadrics) is defined. In this chapter we give the cohomology of
these larger compactifications. The proofs of the results here are exactly parallel
to the proofs of the analogous statements for X, so we will omit them.

§7.1. Identifying the larger compactifications. Let T < X° denote the subset of
completely diagonal nondegenerate quadrics (i.e. the nonsingular symmetric
matrices, modulo multiples of the identity). The torus embedding T is a
compactification of T which is associated to the rational polyhedral decomposition
2 of the vectorspace V, as in §5.3. The R.P.D. X' is nonsingular in that each
closed cone o is simplicial and the one dimensional cones in the faces of o form a
basis (over Z) for the lattice of one parameter subgroups of T which lie in the
plane of o. It is also X, -invariant, i.e. it is invariant under the reflection through
the hyperplanes a, =a; (for i#j). For any X, -invariant simplicial nonsingular
R.P.D. 3’ which refines the R.P.D. X, the associated toric variety is a
“wonderful” T-equivariant compactification T’ of T, and there is a canonical
T-equivariant morphism ¥ :T'— T.
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THEOREM. [DP1] Given X' as above, there is a wonderful G-equivariant
compactification X' of X°, such that T' is the closure in X' of T, and there is a
G-equivariant surjection

VX' —>X

(where X is the variety of complete quadrics) whose restriction to T' is the
morphism Y.

§7.2. The spaces Z; and M,

DEFINITION. Given such a compactification, and an integer s (with
1=s5=[n/2)) let

Z,=v\Z)
M; =KXK,Z.;

PROPOSITION. The variety Z; is the closure in X' of the set of nondegener-
ate quadrics which are diagonal with respect to the orthogonal direct sum
decomposition into coordinate planes and lines,

Cn;—P]@"'@PS®Lb+1®"‘@Ln

This proposition gives rise to natural maps Z;— Z;_, and therefore to a tower
of spaces

! ’ ’ ’
X'—>M, <M, < --<M,

(where m =[n/2]) with an action of I, =3 X X, _, on M;. We also obtain by
composition a map

wz~ 1P

i=1

from which we define

0,Z;= (“,)—l(al 'E[l Pz)
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for any subset I < {1, 2, . . ., s}. Define the toric variety
T:=(u")"'(p)

where p = u'(Q,) denotes the basepoint of [[{-, P* (as in §2.5).

§7.3. Statement of results
THEOREM. The homomorphism

H*(X'; Q)— H*(M,,; Q)

is injective. The image is precisely those cohomology classes which, for each s,
(0=s =m) pull back to I;-invariant classes in H*(M;; Q). The ideals

Iy =ker (H'(X")— H'(M)))
filter H'(X"), and there are canonical isomorphisms

L../Ii= © HY(%)QH"*(T;)

a+b=i

§7.4. Cohomology ring structure of M,. The cohomology ring of M, is also
described as in §6.1, to which we now refer for the notation to be used in this
section. The linear map a:V — H =R’ takes cones in X’ to cones in £, since X'
is a refinement of the cone decomposition X. (The components of « are called
@y, &3, ..., &y_;). Let D{,..., D, denote the primitive generating vectors of
the one dimensional cones in X' such that, for each i (with 1 <i <s) we have

®_1(D;)=0

There is a one to one correspondance between the vectors D; and the
codimension one orbits D; of G, on Z;.

THEOREM. The cohomology ring H*(M;; Q) is naturally isomorphic to

H*(%;Q)[Ds, ..., D/J/U1+];+1]3)
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where
(a) J, is the ideal generated by the monomials [D;)[D;,)] - - - [D,] such that the
vectors D{, ..., D; do not form a cone in X’

(b) J; is the ideal generated by the polynomials

{( 2 lD'l)2 — 4c'(P)? + 16¢*(P) - [E] | [E'le ,}

D'ej’
where
i’ ={D'| D' is a codimension 1 orbit and a,;_,(D') >0}

and where j is allowed to vary over the numbers 1,2, ... ,s.
(c) J3 is the ideal generated by the first degree polynomials

(2 r@p-1Di1) - c'(a%p)
where f is any one of the following functions:

azi_1+a2,- (Where ISISS)

and by the first degree polynomials

(S r@p- o) - e

where f is any one of the following functions:
a; (where2s+1=<j=<n)

Furthermore, the isomorphism is induced by the map which assigns to each
variable [D;] the cohomology class dual to the divisor K X Z,.

Chapter 8. Problems and conjectures

§8.1. Intersection homology. There is a vector bundle E over X and a map
m:E— pgl (n) to the Lie algebra of PGL, (C) called the “moment map”. The
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space E is the closure in X X pgl(n) of X" which is embedded by sending a
quadric Q to (Q, L) where L is the (Killing) orthocomplement to the stabilizer
algebra of Q. The map m is projection on the second factor. We conjecture that
the Decomposition Theorem [BBD] applied to the map m gives the same
decomposition of H*(X; Q) = H*(E; Q) as in theorem 1.4. We calculated this for
n <4, and the effort to explain the surprising result led to the research of this

paper.

§8.2. Perfect filtration of X. A rationally perfect filtration of X is a filtration
by closed subsets ¢p=Y_ c¥,cY,c---Y,=X such that H*(X, Q)=
@ o H*(Y, Y;_; Q) (i.e. such that the spectral sequence from the right side to
the left degenerates). For each stratum X, of X, we define the height to be
Y. [(gi + 1)/2] where the integers g; are the lengths of the gaps in / (a gap is a
string of consecutive integers j with 1 <j=<n that are not in /). We conjecture
that if Y; is the union of all strata of X of height <i, then the filtration is rationally
perfect, and the resulting decomposition of the cohomology of X coincides with
that of Theorem 1.4. Most filtrations by closed unions of strata are not perfect.
This conjecture (and our first main theorem) would be trivial if Y;~Y,_; had a
paving by affines, but this is not the case.

§8.3. The varieties Z, and toric varieties. In §6.2, we prove that the variety Z, of
diagonal complete quadrics has the same rational homology as a specific toric
varlety T. We conjecture that Z, has the same rational homotopy type as T, and
that T is a specialization of Z; as an algebraic variety.

§8.4. Other symmetric varieties. We conjecture that the rational cohomology of
every complete symmetric variety has a direct sum decomposition like that of
Theorem 1.4. As remarked in the introduction, there are such decompositions for
the completions of the adjoint groups [DP3]; in this case there is only one
summand. In general, there should be a summand for every class of associated
parabolic subgroups corresponding to strata on which the maximal torux acts with
fixed points. These strata are classified in [DS].

§8.5. Cells. The variety X has a decomposition into complex affine spaces, or
cells, by the theory of Bialynicki-Birula. It would be interesting to compute their
dual cohomology classes explicitly in our formalism.

§8.6. Schubert calculus. In [DP2] is defined a universal ring for the Schubert
calculus of X°. It is the limit of the cohomology rings of the compactifications X’
of §7. This ring can be defined intrinsically on X° by a certain equivalence of
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cycles. It would be interesting to exhibit cycles in X° which represent basis
elements in this ring, and to determine which cohomology classes can be
represented by positive cycles in X°.

§8.7. Contact formulae. One might analyze conditions of osculation (as one does
for tangency in the contact formula) and study the corresponding cohomology
classes in the appropriate compactifications.
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