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Chapter 1. Introduction

The spaces Xn of complète quadrics is a compactification of the space of
nonsingular quadric hypersurfaces in complex projective n — 1 space. It was
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introduced by Chasles for n 3 in 1864 [C] and by Schubert for gênerai n in 1879

[Sch]. In this paper, we give a conceptual formula for the rational cohomology

groups of Xny including its ring structure.

1.1. In our view, the variety Xn of complète quadrics ranks with Grassmannians
and flag manifolds as one of the most important spécial varieties. Since they are
less well known, we summarize some background about them in the introduction.

First we identify Xn as a set. The points of the variety Xq of nondegenerate
quadrics represent nonsingular quadrics (degree two hypersurfaces) in complex
projective n - 1 space P&quot;&quot;1. The idea behind the variety of complète quadrics Xn
is to add to Xq points representing certain géométrie objects in Pn-1 called
degenerate quadrics. A degenerate quadric is a partial flag 0 /\)c=F1&lt;=/^c:
&apos;&quot;cFk Pn~l of linear subspaces of P&quot;&quot;1 together with, for each *&gt;0, a

nonsingular quadric in the projective space of planes of dimension (dim F(_x + 1)
which contain Fl-l and are contained in Ft. (We take the natural conventions that
dim Fo — 1, that P° consists of a single point and contains a unique quadric, and
that a nondegenerate quadric in a one dimensional projective space is a pair of
distinct points). A complète quadric is by définition either a nonsingular quadric
or a degenerate quadric. As a set, Xn is just the set of complète quadrics.
Complète quadrics are classified into strata according to the type of flag. For
n 3, there are four strata:

nonsingular quadrics

trivial flag with no point or Une

flag with one Une

flag with one point

flag with a point in a Une
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Now we need to put a topology on the set of complète quadrics. The topology
within each stratum is clear. The intuitive idea behind convergence of séquences
in one stratum to a point in another is illustrated by the following four pictures of
pairs of complète quadrics which represent points close together in X3.

Perhaps the simplest précise définition of Xn as a topological space is the

following one in the spirit of [FKM]: Let F be the flag variety of points contained
in hyperplanes in P*&quot;1. Map the variety Xq of quadrics into the space Sub(F) of
closed subsets of F by associating to a quadric the set of flags consisting of a point
and the tangent plane at that point. Then Xn is the closure of Xq in Sub(F)
endowed with the Hausdorff topology.

1.2. Complète quadrics hâve arisen in both algebraic geometry and algebraic

group theory, and the space Xn has modem constructions as an algebraic variety
from both points of view. We sketch thèse in this section, but we hâve minimized
our reliance on either of them in this paper since most readers are familiar with at
most one construction.

Constructions of Xn in Algebraic Geometry
The original use of the variety of complète quadrics was in enumerative

geometry, where they are used to count quadrics with certain sets of tangency
conditions. See [Kl], [K2] for a historical account. The importance of it there
stems from the following characterization of Xn: For each integer j, we can
associate to any nonsingular quadric the variety of its /-dimensional tangent
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planes. This turns out to be a nonsingular degree two subvariety of G,, the
Grassmannian of ail i-planes in Pn~l (with respect to the Plucker coordinates on
the Grassmannian). So for each i, we hâve a map cp, from Xç&gt; to Qn the variety of
ail degree two subvarieties of G, (singular or not). Then Xn is the minimal
compactification of Xq over which ail of the maps q&gt;, extend. This means that a

degenerate complète quadric has idéal tangent planes which are limits of tangent
planes of nearby nonsingular quadrics. For example, if Q is a quadric in the
stratum of X3 consisting of a line with a nondegenerate quadric (two points) in it,
the idéal tangent lines to Q are ail lines through those two points.

The algebraically simplest construction of Xn is a realization of this universal

property: A nondegenerate quadric is most conveniently represented by sym-
metric n x n complex matrix M with nonzero déterminant, with two being
considered équivalent if one is a scalar multiple of the other. This gives an
embedding of X% in the projectivization of the space of ail n x n matrices. The
closure X^we of X&quot;} in this space is called the naive compactification. If we
consider not only M but also of ail its exterior powers (or adjugates, in the
language of [T]), we similarly get an embedding in a product of projective spaces,
one for each exterior power, and Xn is the closure of X% in this product of
projective spaces ([T], [V]).

The variety Xn also has a construction by blowups from the naive
compactification A^na.ve which is stratified by the rank of the matrix M. To obtain Xn, first
blow Zna,ve up along the rank 0 stratum, then blow the resuit up along the proper
transform of the rank 1 stratum, and so on [V].

Constructions of Xn in Algebraic Group Theory

The variety Xq of nonsingular quadrics is an example of a symmetric variety.
A symmetric variety is a particular type of homogeneous space that is the
analogue in algebraic geometry of a Riemannian symmetric space. Any
symmetric variety X has a natural compactification C(X) which may be characterized
as the minimal one that is wonderful [DPI]. Hère wonderful means that C{X) is

equivariant and C{X) — X is a union of nonsingular divisors which intersect
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transversally and whose natural stratification as a divisor with normal crossings
coincides with its stratification by orbits. The compactification C(X) has a

construction as the closure of Xq in the space L of subalgebras of the Lie algebra
of the automorphism group, where Xq is embedded in L by sending each point to
the Lie algebra of its stabilizer group [DPI], [DP2]. It also has a construction as

the closure of an orbit homeomorphic to Xq in the projectivization of an
irreducible représentation of the automorphism group which is gênerai (in the
sensé that the highest weight is not in a wall of the Weyl chamber [DPI], [DP2].
(We note that the compactification C(X) is the analogue for symmetric varieties
of the largest Satake compactification of a symmetric space of négative curvature
[Sa].)

In our case, Xn C(Xq). We admit our bias in favor of the algebraic group
theoretic approach because of its generality and the beauty of its conceptual
framework. However, this paper does not rely on it. Only section 5.3 makes

explicit référence to any preexisting construction of Xn.

1.3. The cohomology H*(Xn) of the space X&quot; of complète quadrics has been the

subject of many studies. The manipulations of Chasles and Schubert, done many
years before homology was even defined, may be interpreted as calculations
inside the ring H*(Xn), as was first pointed out by van der Waerden [VW]. In
fact, Schubert&apos;s formulas represent an extensive understanding of the subring R

of the cohomology ring generated by classes in degree two. A number of people
hâve worked on making thèse formulas rigorous in the language of cohomology
(see [Kl], [K2]) and in [DPI] there is a complète calculation of R.

There are two modem approaches to the complète calculation of H*(Xn).
One is to realize X&quot; as a projective space with a séquence of varieties blown up as

described above, and to iteratively use the formula for the cohomology of a blow

up (Vainsencher [V]). This gives the ring structure in principle, but following the
formula through the interations leads to combinatorial difficultés ([V], p. 201).
The other is to find a paving of Xn by affine spaces (Strickland [Str]). See also

[Drl] and [Dr2].
Our object hère is to give a formula which is conceptual and non-iterative in

the sensé that Borel&apos;s calculation of the cohomology of the flag variety ([B01],
[B02]) or Danilov&apos;s calculation of the cohomology of a toric variety [D] are. We
hâve succeeded only at the expense of sacrificing the integers: our formula holds

only for rational cohomology H*(Xn,Q). This is, of course, sufficient for the

development of Schubert&apos;s calculus.

1.4. We now give the statement of our first main resuit, which is a formula for
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the cohomology of Xn as a rational vector space. It involves a flag variety 9S and
a toric variety 7^.

Let &amp;&gt;s be the space of ail direct sum décompositions C Pt © P2 © • • • ©
Ps © L2S+1 © £2*4-2© # • • © Ln where the Pt are two dimensional subspaces, the
Lk are one dimensional subspaces, and ail of the subspaces are orthogonal with
respect to the standard Hermitian inner product on Cn. The product of symmetric
groups 2, x 2n_25 acts on 9S by permuting the labelling of the planes Pt and the
labelling of the Unes L,. The space 9a is homeomorphic to the space of
(2,4,.. 2s, 2s + 1, 2s 4- 2, n - l)-flags in Cn. Hence its cohomology to-
gether with the action of 2S x 2n_2* on it is conceptually computable using [Bol]
or [Bo2]. (See [Ste] and [BM] for explicit calculations of the action.)

In order to specify a Toric variety, we need the following data: a real vector
space V, an intégral lattice L in V, and a rational polyhedral cône décomposition
Y of V. For any integer m, let Vm be the hyperplane in Um with coordinates

al9 a2,..., am defined by the équation Sta, 0. Let Lm be the lattice of points on
which each at takes on intégral values, and let Ym be the cône décomposition
generated by the hyperplanes in V which are defined by at a} for ail pairs i #/.
(This is a description of the décomposition into Weyl chambers for the root
System Am-V) Let 7^ be the toric variety corresponding to the data Vn^sf Ln_s,
and Yn_s. An action of the permutation group Zs x Sn^2s on ts is induced from
the following action on Vn-S:2s permutes the s coordinates aly a2,. as and
In-.2s permutes the n -2s coordinates as+1,.. an_2s. The cohomology of 7^

together with the action of Ss x In-2s on it is conceptually computable by [D]
§10. Also, there is a more explicit calculation of it in [P].

THEOREM. There is an isomorphism of groups

Hk(Xn;Q) © f © [Ha{®s\Q)®Hb(Ts;Q)p**

In this formula, the superscript Is x In_2s means to take the invariants. Note that
this could not be a ring isomorphism because the dimension shift of As would
contradict the grading.

(The constructions above hâve the following interprétation in terms of
algebraic groups. Let G be PGL(w), the automorphism group of the projective
plane P1&quot;1. Then the space 9S is G/Ps for an appropriate parabolic subgroup P5.

The vector space Vn_s is the subspace of the Cartan subalgebra of G given by
zéros of s orthogonal roots and Y is the restriction to V of the décomposition into
Weyl chambers. This formula is the extension to the case of complète quadrics of
a formula of deConcini and Procesi for the cohomology of the completion of an
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adjoint group viewed as a symmetric variety [DP3]. In the case of the adjoint
group, the first direct sum was unnecessary since there was only one term.)

1.5. Our second main resuit is a détermination of the ring structure on the
rational cohomology of the variety of complète quadrics.

Fix an integer 5 in {1,2,... [n/2]}. We will define an algebra Rs over the
rationals (see also §1.6). Consider the one dimensional cônes aXt o2t or in
the cône décomposition Yn of Vn (defined above) which lie in the closed quadrant
defined by ax ^ a2, a3 ^ a4, fl^-i ~ #2*- In each o,, let D, be the vector to the
first lattice point in Lr

Recall that the cohomology ring H*(&amp;st Q) of the flag variety &amp;s is generated
by the cohomology classes cl(Pf)f c2(Pj), and c\Lk) where PJf (for ;
1, 2,. s) and Lk&gt; (for k s + 1,...,«) are the tautological plane bundles and

line bundles over 9S and where cl dénotes the Chern classes.

DEFINITION. The ring R, is the polynomial ring

H*(9s\Q)[DuD2,...,Dr]

(in commuting variables Du Dr of degree 2), divided by the following four
relations:

1. The monomial DlxDn- Dlk 0 whenever a,t, a&lt;2,. and olk do not ail

lie in some cône of Yn.

2. For each D in {Du D2,. Dr) and each integer y in {1,2,. ,5} such

that a2j-.x(D)&lt;a2j(D), let D dénote the sum of ail the D, such that a2/-i(A)&lt;
a2j0t). Then

(D2 - 4c!(/î)2 + \(&gt;c\P}))D 0.

3. For each / in {1,2,... ,5}.

ÉA(fl2/(A) +«2,-.(A)) c&apos;(P,)

4. For each ifc in {2s + 1, 2s + 2, n},

1=1

The permutation grôup Is x E»^ acts on /?5. It acts on H*(&amp;s) as described
earlier, and it permutes the generators D, by acting on Vn as follows: Is permutes
the pairs of coordinates (a,, a2), (a3, a4),... (a^-i, a^) and ^.^ permutes the
coordinates a^+i,.. an.
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Next, we define a séquence of ring homomorphisms

Since H^i^aH*^,^), to define the map /?,-+/?,_! we only need to
describe where the generators D, of Rs go. If as-x(Dt) a5(z3f) then Dt goes to
itself. If as-i(D,)&lt; as(D,), then D, goes to D, + D; where /5y is the reflection of Dt
in the hyperplane as_x as.

THEOREM. The ring H*(Xn;Q) is isomorphic to the subring of R[n/2)

consisting of éléments r whose image in the ring Rs is invariant under Es x 2n-2s
for each s in {1, 2,.. [n/2]}.

1.6. The main technical tool of this paper is the idea of a diagonal quadric with
respect to a direct sum décomposition of the space C&quot;. This notion has a natural
extension to complète quadrics (see §2.2). The toric variety Tn is isomorphic to
the variety of ail complète quadrics which are diagonal with respect to a fixed

décomposition of Cn into Unes. The ring Rs is the cohomology ring of the variety
Ms which is the fiber bundle over the flag manifold 2FS whose fiber over the point
Pi © • • • © Ps © L2s+\ © • • • © Ln is the space of complète quadrics which are
diagonal with respect to this décomposition of Cn.

We wish to thank S. Abeasis, J. Carrell, W. Casselman, W. Fulton, and E.
Strickland for useful conversations on this material. We are grateful to an

anonymous référée for his extremely careful reading of the first draft of this

manuscript, and for his many helpful comments and corrections. We thank the

Conciglio Nazionale di Richerche of Italy and the National Research Council of
Canada for support during the préparation of this paper, and the Universita di
Roma &quot;La Sapienza&quot;, the Universita di Roma &quot;Tor Vergata&quot;, and the University
of British Colombia for hospitality.

Chapter 2. Définitions

Throughout this paper, we fix an integer n&gt;0. We will make use of the
standard basis and Hermitian product on Cn. Cohomology groups will always be

taken with coefficients in the rational numbers Q.

§2.1. Complète quadrics. A nondegenerate quadric cône Q in a vectorspace
V CN is a cône whose équations are given by the (multiples of) a complex
valued nondegenerate quadratic form on V. (i.e., with respect to the standard



346 C DECONCINl ET AL

basis, it is given by (ail multiples of) a nonsingular symmetric matrix of complex
numbers). The nondegenerate quadric cônes in Crt are in one to one correspon-
dence with nonsingular subvarieties of degree 2 in P&quot;~l P(C), which are calied

nonsingular quadrics.

Remark. By convention, a one dimensional vectorspace V contains a unique

quadric cône. A double hyperplane (i.e. a hyperplane with multiplicity 2) is

considered to be a singular quadric (even though its underlying space is

nonsingular).
Let X° dénote the variety of nonsingular quadric hypersurfaces of P&quot;&quot;1. It has

a smooth, projective compactification X, which is calied the variety of complète
quadrics in P&quot;&quot;1 ([DPI], [DP2], [Se], [T], [V]) which we now describe.

Let /= {1,, i2, ik-i} be any subset (possibly empty) of the numbers

{1, 2, 3, ...,n-l}. A partial flag F of type 1 is a séquence of subspaces,

0 Fo c Fx c F2 c • • • c Fk-X czFk Cn

such that for each p (with 1 &lt;p &lt; k - 1), dim (Fp) ip.

DEFINITION. The variety Xf of complète quadrics of type I is the variety of
ail pairs (F, Q), where F {Fp} is a partial flag of type /, and Q is a collection
which consists of a nondegenerate quadric cône Qp in each FPIFP^X (where
1 &lt;/? &lt; A:). (We make the convention that X0 X°.)

PROPOSITION 1.1. The variety X of complète quadrics (as defined in [DP2],
[Se], [Sch], [T], or [V]) is the union

Proof. The proof dépends on which rigorous définition of X is used (see the
introduction to this paper for a list of such définitions). For a proof starting from
the définitions in algebraic geometry, see [V]. For a proof starting from the group
theoretic construction of [DPI], see §5.6.

Remark. In fact the space X is a &quot;wonderful&quot; compactification ([DPI]) of X°,
i.e. it is nonsingular, X — X° is a union of nonsingular divisors Du D2, Dn

which meet transversally. (This was proven by Severi [Sv] for the case of conics,

by Semple [Se] for the case of quadrics, in space, by Àlguneid [A] for quadrics in
P4, by Tyrrell [T] in the gênerai case of quadrics, and by DeConcini and Procesi

[DPI] for gênerai symmetric varieties). If /= {ilt i2,..., ik-i} is any subset
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(possibly empty) of the numbers {1,2,3, ,n-l}, then (for an appropnate
renumbenng of the divisors D,) the closure Xt of the set of complète quadncs of
type I îs precisely the intersection X,= D, 0 Dt n H Dlk (See §5 6, or [V]
theorem 6 3)

EXAMPLE The vanety X of complète quadncs in P1 consists of ail
unordered pairs of (not necessanly distinct) points in Pl It îs isomorphic to P2 A
single point q e P1 with multiplicity 2 îs called a degenerate quadnc such points
form a subvanety which we will dénote by dP2 It îs isomorphic to P1 but îs itself
embedded as a quadnc hypersurface in X (See $5 8 for more détails)

§2.2. Diagonal Quadrics. Suppose we are given a direct sum décomposition,

of Cn mto a sum of complex vectorspaces A nondegenerate quadnc cône in i n îs

diagonal with respect to this décomposition if (with respect to a basis adapted to
this décomposition) the symmetnc matnx corresponding to the quadnc has no
nonzero off diagonal blocks

We now define the notion of a diagonal complète quadnc (which will turn out
to be the hmit in X of a séquence of diagonal nondegenerate quadncs) Pix

I - [l\&gt; h&gt; » h i} cz {1, 2, n - 1} as above An 1-filtration of this direct
sum décomposition of C&quot; îs a A:-step filtration of each Vm,

n_ 1/0 c 1/1 1/2 i/Zc-1 r-yk —y

such that for each p (where l&lt;/?&lt;/c-l)we hâve,

Each /-filtration of this direct sum décomposition gives nse to a flag F of type / by

setting

(but some flags of type / are not obtamed in this way)

DEFINITION A complète quadnc (F, Q) (of type /) îs diagonal with respect
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to the direct sum décomposition

if there exists an /-filtration {Vpm) of this direct sum décomposition such that
(a) The flag F arises from this /-filtration as described above.

(b) For each p (where 1 &lt;/;&lt;&amp;), the nondegenerate quadric cône Qp on

Fp/Fp-i is diagonal with respect to the induced décomposition

PROPOSITION 2.2. The set of complète quadrics which are diagonal with

respect to the décomposition C&quot; V^ © V2 © • • • © Vr is precisely the closure (in X)
of the set of nondegenerate quadrics which are diagonal with respect to this direct

sum décomposition. It is an irreducible algebraic subvariety of X.

Proof The proof will appear in §5.6.

§2.3. The spaces Zs and 9ZS. The following construction will be made with

respect to the standard basis of C&quot;.

DEFINITION. The variety Zv is the set of ail complète quadrics which are

diagonal with respect to the décomposition of C&quot; into the first s coordinate planes
and the last n — 2s coordinate lines,

C Jp| © P2 © &apos; * * © *s © Lj2s+1 © /&quot;2ç + 2 © * &apos; * ® Ln

There is an action of Fs Zs x 2n-2s on Zs: Fix o eZs and t e 2tn_2$ (which we

will think of as the permutation group on the numbers {2s -H 1, 2s + 2, n}.
Since we hâve chosen a basis of C&quot; compatible with the direct sum décomposition,

we obtain isomorphisms

which induces an isomorphism

G&quot; P\ © * • • © Ln Pa(\) © • * * © ^r(n) ^ C&quot;
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This isomorphism takes a complète quadric Q to some complète quadric Q&apos;, so it
induces an action on Z5. (A différent choice of basis of C&quot; and of a direct sum
décomposition of C&quot; which was compatible with that basis would induce a

homotopic action of Fs).

We obtain a canonical map

by associating to each complète quadric (F, Q) (which is diagonal with respect to
the above décomposition), its intersections

((FnpuQnpl),(Fnp2,Qnp2),...,(Fnps,Qnps))

(See the example of §2.1.) In other words, if (F, Q) is a complète quadric of type
I — {ht h» • • • y h) which is diagonal with respect to this décomposition of Cn,

then each partial flag

o c Ft n p} c F2 n Pj c • • • c Fr n p}

reduces to either a two-step flag

(which gives an élément of dSP2 c P2, and in which we say the intersection
(F fl Pn QC\Pj) is degenerate) or else to a one step flag,

and in this case, Q/HPj is a nondegenerate quadric in Pp so it also gives an
élément of P2.

PROPOSITION 2.3. This map is well defined, continuons, and algebraic.

Proof. The proof will appear in §5.9.1 (and its corollary).

DEFINITION. We define the divisors

A, P2 x P2 x • • • x 3P2 x • • • P2
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(where 3P2 appears in the ith position, and dénotes the set of degenerate
quadrics in P1), their union

s

1=1

and the pre-images,

It is easy to see that Es permutes the boundary divisors dtZs.

§2.4. The spaces Ms. We will use the standard Hermitian metric on C. For each

integer s, where 0 &lt; s &lt; [n/2] we define a space Ms of pairs ((P, L), (F, Q)) where

(P, L) is an orthogonal direct sum décomposition,

C P[ © P2 © * * * © /^ © ^2s + l © ^2s+2* &apos; &apos; ® L&gt;n

into two dimensional subspaces Pu P2, Pn and one dimensional subspaces

^2s+u L2s+2&gt;. &gt;., Ln, and where (F, Q) is a complète quadric which is diagonal
with respect to this décomposition of Cn. The space Ms is an algebraic variety, but
in an unnatural way, and the canonical map

(which is given by 4&gt;5((P, L), (F, Q)) (F, Q)) is not an algebraic map. There is

a canonical (real analytic but not algebraic) map j8:M5_!-»M5 which is obtained
by setting

where Pi JP, for 1 &lt; i &lt;s - 1, and L[ Lt for 2s -h 1 &lt;i &lt;n and

Ps L2S--1 © L&gt;2s

For each î, (where 1 &lt; / &lt; 5) we define the space

3,M5 {((P, L), (F, Q)) eMs\(FDPuQn Pt) is degenerate}
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(see §2.3). The symmetric group Is on s letters acts on Ms by permuting the

(labelling of the) P&apos;s, and the symmetric group In~2s acts on Ms by permuting
the L&apos;s. Thèse actions do not affect the quadric Qy so the fibres of the map &lt;PS are
invariant under the group Fs 2, x 2*n_2s. It is easy to see that 2S permutes the

components d,Ms, so it leaves invariant the subvariety

dMs Û
1=1

There is a canonical Fs — Zs x 2ln_2v—equivariant fibre bundle map

to the manifold 9S of partial flags of type Is {2, 4, 2s, 2s + 1, 2s +
2, n — 1} which associâtes to each pair ((P, L), (F, g)) the flag of partial
sums of the P&apos;s and L&apos;s. (Hère Fs Is x Xrt_2s acts on 3FS by permuting the F&apos;s

and L&apos;s, which can be recovered from the partial flag by using the Hermitian
metric.) It follows that F, acts on the cohomology sheaves Rl(4&gt;s)*(Q) of the fibre
Zç Jïïl(p). Since cFs is simply connected, thèse sheaves are constant, and we
obtain an action of Fs on the cohomology //*(ZV) of the fibre.

PROPOSITION 2.4. This action of Fs=Isx In_Zs on H*(ZS) coïncides with
the action defined in §2.3.

Proof. The proof will appear in §5.7.4.

§2,5. The toric varieties f and fs. Consider the torus (C*)s x (C*)n&apos;Zs which acts

on Cn by scalar multiplication on each of the factors in the above direct sum
décomposition. Each x e (C*)s x (C*)n~Zs thus corresponds to an n x n matrix.
This torus acts by projective transformations on Pn-1 and it transforms the set Zs

into itself under the induced action on quadrics. However the subtorus

D {xe (C*)s x (C*)n&quot;2s | xxT x2 XI for some A}

acts on the symmetric matrices which represent nondegenerate quadrics in Zs by
homotheties, so it induces a trivial action on Zs. Therefore the action factors
through an action of the quotient
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It is easy to see that the torus 7^ préserves the fibres of the map \i and that 7^ acts

with an open dense orbit on any fibre of \i. We fix the &quot;basepoint&quot; p ju(&lt;20),

where Qo dénotes the homogeneous quadric cône in C&quot; which corresponds to the

identity matrix.

DEFINITION. We define the toric variety Ts to be the fibre ju&quot;1^), together
with its action of 7^. We dénote by f the maximal torus, f f0 Zq.

The action of Fs £s x En-2s on Zs which was described in §2.4 restricts to an

action on 7^ fi~lfi(Qo) (because each of the isomorphisms fJ Pa(/) take

Thèse spaces and maps can be arranged in the following diagram:

TsœTc:Zs —£-» I]P2:34

X +^~ Ms

\

Chapter 3. Statement of results

§3.1. Statement of the main theorems. We use the notation of chapter 2. AH
cohomology groups will be taken with rational coefficients. Let m [n/2], The

maps &lt;PS :Afs-&gt; X fit together in a tower of spaces,

(The group actions Fs are not compatible with thèse maps. They are K~

equivariant maps, but are not G-invariant, where G PGLn(C) and K is the
maximal compact subgroup of G, i.e. the spécial unitary group).

Let &lt;PÏ:H*(X)-»H*(MS) and W*:H*(Mm)^H*(Ms) dénote the induced
homomorphisms on cohomology (where 0 ^ s ^ m).

THEOREM 1. The homomorphism ®m:H*(X)-^H*(Mm) is injective. Fur-
thermore the image is precisely those cohomology classes which, for ail s, pull back
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to rs-invariant classes, i.e.

The cohomology ring H*(MS) is completely described in theorem 6.1.2.
Now define the ideals, Is ker &lt;2&gt;* c H*(X). Thèse filter H*(X),

For each s (where 0&lt;s&lt;m) the subquotient Is_JIsc:H*(Ms) lies in the

2^-invariants.

THEOREM 2. The homomorphism H*(MS, dMs)-*H*(Ms) is injective and

/,»!//, (H*(MS, dMs))r*

THEOREM 3. There is a canonical isomorphism,

H&apos;(Ms,dM5)= 0 Ha{?s)®&amp;-*(%)

which is an isomorphism of représentations of Fs Zsx Zn-2s&apos;

Our proof of thèse results dépends on the following two results (§3.2 and

§3.3).

§3.2. The Main Lemma. The long exact cohomology séquence for the pair
(Ms, 3MS) breaks into a séries of Zs x Zn^2s—equivariant short exact séquences.

Furthermorey if we restrict to invariant cohomology, then we obtain a diagram

0 &gt; H&apos;(MS, dMsf &gt; H&apos;(M,f -7T* HË(dMs)n &gt; 0

and ker (a) ker (/3).
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§3.3. Rational Cell Décomposition of Ms and Zs.

DEFINITION. An algebraic rational cell C in an algebraic variety M is a

locally closed algebraic subset such that Hlc(C; Q) 0 for ail but one value of /,
which is called the dimension of the cell. (It is twice the dimension of C as an

algebraic variety).
A paving of M by (algebraic) rational cells is a décomposition

into finitely many rational cells Ca, together with a total ordering of the index set

/ such that for each /3 e/, the set

Mfi U Ca

is closed in M.
If M has a paving by rational algebraic cells, then thèse cells are even

dimensional and form a basis for the rational cohomology of M.
For each subset / c= {1, 2,.. s} we define subsets

THEOREM 4. There exists a paving of Ms into algebraic rational cells,

Ms U C,
*

1 1

such that
(a) each djMs is a union of cells

(b) The subvariety ZsczMs is a union of rational cells, each dtZs is a union of
rational cells, and the map jâ :Z5—? FE=i P2 takes cells to cells.

Proof The proof will appear in §5.11.
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§3.4. Niimerology. We will often use the following simple facts about
représentations of a finite group G:

PROPOSITION 3.4. (1) // V and W are two représentations of G, and if V is

isomorphic to a sum of copies of the regular représentation of G, then we hâve

\G\

(2) // V is the regular représentation of G, and H c G is a subgroup wah

normalizer NH in G, then the space VH (as a représentation of NHiH) /s

isomorphic to (G : NH) copies of the regular représentation.

We will apply thèse facts to the cohomology V H*(JF; Q) of the flag variety
in Pn~\ which is the regular représentation of !„. The cohomology of a partial
flag variety is of the form VHy for a suitable subgroup H. In the case of the

variety &amp;st we hâve

H (Z/(2))S and NH/H Is x In_Zs

and

DEFINITION. We define

Remark. The variety Ts is nonsingular and admits an action of the algebraic
torus 7;, with (n-s)\ fixed points, so by [BB1], dimH*(Ts) (n-s)L Since

^5) is a sum of regular représentations of Fs Is x In_s we hâve

x*= in x s™ i—~=C\ jf
PROPOSITION 3.5. 77*e Ewfer characteristic, %{X) satisfies

5=0

Proof See [Str]
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Chapter 4. Proof of theorems 1, 2, and 3

§4.1. &lt;Pm is injective. In fact we will show that the map Mm -&gt; X is a map of finite
and positive degree between nonsingular spaces of the same dimension (so by
Poincaré duality the induced homomorphism on cohomology is injective). It is

easy to see that the map #m :Mm-&gt;X is generically r n!/(2m) to 1: Let Q be a

generic diagonal quadric. Then a décomposition of C&quot; into m planes (and a Une,

if n is odd) which diagonalizes Q is just a décomposition of Cn into m coordinate
planes (and possibly a line). There are r such décompositions.

The group 2m Fm acts freely on the generic fibre &lt;&amp;ml{Q) so we get a

partition of this fibre into r/(m!) orbits of Em. Since t/(m!) is an odd integer, the

map &lt;Pm will hâve nonzero degree provided Zm acts in an orientation preserving
manner. This is a conséquence of the following facts: (a) jrm:Mm-* &amp;m is a

Sm—equivariant fibration whose fibres are algebraic varieties which are permuted
by Zm in an orientation preserving way; and (b) Em acts on 3Fm in an orientation
preserving way. (This argument even shows that the degree of &lt;Pm is exactly ml).

We will prove theorems 1, 2, and 3 in reverse order.

§4.2. Proof of theorem 3. The fibre bundle nx\M,-*9s (with fibre Zs) restricts

to a bundle

with fibre Z — 3ZS. Since each of thèse spaces has a &quot;rational cell décomposition&quot;

(§3.3) with even dimensional cells, the cohomology spectral séquence for the map

nl dégénérâtes at E2. Furthermore, 3FS is simply connected. Thus,

a+b=ï

and (by proposition 2.4) this is an isomorphism of représentations of Is x
On the other hand, the map ju : Zç-* (P2)s restricts to a fibre bundle,

with fibre ts (where À was defined in §2.3). The fundamental group ^i((P2)&quot; — A)
is a product (Z/(2))5 (see §5.8: P2- dP2 is homotopy équivalent to P2(IR)), but

we will show (§5.9.7) that it acts trivially on H&apos;(TS), from which we conclude that
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§4.3. Proof of theorems 1 and 2. Recall that 0* :H*(X)-+H*(MS) dénotes the
induced homomorphism on cohomology. We now define the following groups:

DEFINITION.

J5 Image (4&gt;*)c/f*(M5)

Is Kernel (0*)czH*(X)

As {£ e H*(MS) | for each r &gt; s, § pulls back to a jÇ invariant class in H*(Mr}

Since each /5 is contained in the invariant cohomology (see §1.1) we hâve a

diagram

H*(Mm) &gt;H*{Mm.x) &gt; &gt;H*(M0)

U U U
H*(Mm)r&quot; //*(Mm_1)r&quot;&apos; #*(M0)r°

U U U

u&quot; u&quot; u u
&apos;

Where 0*://*(MJ+1)-»/f*(M!) is the induced homomoq)hism on cohomology.
We also hâve the following inclusions,

/,_,//, {Js D ker (»;_,)) c (A, n ker (O,*.,)) c (H\M,Y- D ker (©;_,))

by the main lemma (§3.2). Since lm 0 (§4.1), we hâve

dim (/m) § dim (/, n ker (e;_,
5=0

s 2 dim H*(M,, 3Ms)n
s=0
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s=0

2 «*
5=0

(By theorem 3). Consequently the above inclusions are ail equalities, so

and the following diagram

0 n4,nker(0?_,) * A, » As.,

Il î î
0 * Js nker(er-i) * *&gt; * A-i * »

1 f
0 0

shows (by induction) that As — Js and, in particular,

which proves theorems 1 and 2.

COROLLARY. The homomorphism H*(X)-+A{) H*(M())r&quot; is surjective.

§4.4. Proof of main lemma. We hâve seen (§3.3) that both Ms and 9MS hâve

pavings by even dimensional &quot;rational cells&quot;. It follows that the odd rational
cohomology of each of thèse spaces vanishes. Therefore the long exact cohomol-

ogy séquence for the pair (Ms&gt; 3MS) splits into short exact séquences.
We now prove that ker (a) ker (fi) by analyzing the map fi:Ms_l-+Ms of

§2.4, which is obtained by setting fi((P, L), (F, £)) ((P&apos;, L&apos;), (F, Q))} where

P; Pt for 1 &lt;i &lt;5 - 1, and L\ Lt for 2s + 1 &lt; i &lt;n, and

The group Z/(2) acts freely on M5_i by switching the (labelling of) the subspaces

L2S-1 and L.2SJ and the map fi is equivariant with respect to this action. It is easy
to see that fi&quot;~x(dsMs) consists of two disjoint copies of dsMs which are switched
under the 1/(2) action. Thus we hâve a commutative diagram, where fi&apos; is an
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isomorphism:

H*(MS) -^ H*(dM)

n n

LEMMA. ker (â) ker (j3).

Proof of lemma. The homomorphism &amp; is surjective since (§5.11) Àfs has a

cell décomposition with even dimensional cells such that dsMs is a union of cells.
Since fïr is an isomorphism, it follows that y is surjective. But this means that f is

an isomorphism since

2 dim H\Ms.xfl{2) X dim H&apos;(3SMS)

(by corollary 5.9.4). This proves the lemma.
Now consider the following diagram.

0 &gt; H*(MS, 3MS)K H*(MS)&apos; -^ H*

H*(MS 0 H*O,MS)
I I

The homomorphism y is injective since 3M has a paving by rational cells such
that each intersection d,Ms fl d)Ms is a union of cells (and so that the same is true
for ail multiple intersections). Thus, for any § 6 H*(M,)r&apos; we hâve.

(since § is ^-invariant). This complètes the proof of the main lemma.
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Chapter 5. Complète quadrics and algebraic groups

§5.1. PGLn acts on X
Recall (§2.1) that X is a union of varieties XIf consisting of pairs (F, Q)y

where F {Fp} is a partial flag of type /, and Q is a collection of nonsingular
quadric hypersurfaces Qp in each P{FPIFP^X). There is an obvious action of the

group PGLn(C) of projective transformations on the variety X,: a transformation
A:Cn-*Cn takes each subspace Fp into some other subspace A(FP) and induces a

projective transformation ÂP:P(FPIFP-X)-+P{A(FP)IA(FP^)) which takes the

quadric hypersurface Qp into some other quadric hypersurface Â(QP), Since ail
nondegenerate quadric hypersurfaces in projective space are projectively équivalent,

we see that G PGLn(C) acts transitively on Xf.

PROPOSITION. This action of G on X is algebraic, and the orbits of G are
precisely the varieties Xt.

Proof This is precisely theorem 6.3 of [V] (p. 214); see also [Drl], [Dr2].

Remark. In this section we give an explicit construction of the pair (F, Q)
which corresponds to a complète quadric, as defined in §1.2 (&quot;Constructions of X
in algebraic geometry&quot;). We refer to §5.3, or [T] and [V] for proofs. Suppose (as

in §1.2) that C (COf Ct, C2,. Cw_2)eAr, where each C, is a point in the

variety Q,. (Hère, Q, is the set of ail degree 2 subvarieties of the Grassmannian
G, of (-planes in Pn~l.) Now consider those C, which are totally degenerate, Le.,
which consist of the &quot;double hyperplane sections&quot; of /-dimensional subspaces
which meet a fixed n — i — 2 dimensional subspace Ft. Let /, &lt;/2 ^ • • ^/r be the
indices for which this occurs. Then FJi id FJ2 3 • • • z&gt; FJr is the required flag F.

Now let k be any other index such that jr&lt;k&lt;jr+x (where —1=/0 and

n — 1 =7n)- Then Ck is the closure of its open part,

Ci {jt € Ck | n H Fh is proper}

This open part has an alternate description

C\ {^r | n H F)r is proper and is a tangent subspace

to Qr in Fh with kernel FJr+l}

for some fixed quadric Qr. This séquence of quadrics gives the élément Q.

§5.2. Revîew of toric varieties. To fix notation, we review some basic facts about

torus embeddings ([D], [Ash], [K]).
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5.2.1. Cone Décompositions. Let 5 (C*)r be an r-dimensional torus. We
dénote the group of one parameter subgroups of 5 by X*(S), and the dual group
of characters of 5 by X*(S). An S-embedding is a complète normal algebraic
variety 5 which contains 5 as a dense open subset, and which is an S-equivariant
compactification of S.

A rational polyhedral cone décomposition (R.P.D.) I of the vectorspace
Ar*(5) ® M is a décomposition,

X*(S)®U=Uca

into finitely many closed rational polyhedral convex cônes, ca which are centered
at the origin, such that

(1) no ca contains a line (i.e. a 1 dimensional linear subspace)

(2) for each a&gt; every face of ca is a cone cp e I
(3) for any a, j8, the intersection ca C\ Cp is a face of both ca and cp.

PROPOSITION. The possible S-embeddings are in one to one correspondence
with the possible R.P.D. of the vectorspace X*(S)®M. // 5 dénotes such an
S-embedding with associated R.P.D. X, then each closed cone cae S corresponds
to a unique S-orbit, (ca) in S, and

caczcpe&gt;(ca) =&gt;

In fact, the points in the orbit (ca) can be identified as follows; there is a

canonical isomorphism

where R is the subgroup of S which is generated by ail the one-parameter
subgroups in the closed cone ca. With this identification, convergence from the

largest orbit S (0) to a smaller orbit (ca) is given as follows: If A e ca is a one

parameter subgroup, and if 6 e S, then

lim ba bRe S/R
a—* oc

aeA

5.2.2. Maps between toric varieties. Suppose {&gt;,, ju2, jUr} is a basis for
X*(S), and let Tbe a subset of thèse basis éléments. Define
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to be the associated subtorus, and let

be the quotient mapping. We obtain an induced homomorphism of vectorspaces,

Now suppose we are given two toric varieties,

(a) S compactifying 5, with associated R.P.D. I ci X*(S) &lt;8&gt; M

(b) f compactifying T, with associated R.P.D. ûcJf*(r)®R

PROPOSITION. The homomorphism p;S-»T extends to an S-equivariant
homomorphism p :S—? f ifffor every cône œ e Q, thepreimage pil((o) is a union
of cônes in 21.

In this case, the preimage of any orbit in f is a union of orbits in S, i.e.

In fact one can say more: if a e X and if p#(a) c œ, and if a point p e (o) is

represented by a coset aR (where R is the subtorus of 5 which is generated by the

one parameter subgroups in o), then p(p) is represented by the coset p(a)R&apos;f

where R&apos; is the subtorus of T which is generated by the one parameter subgroups
in w. If T&apos; ker (p) is connected, then the fibre p&quot;[(l) is a T&apos; torus embedding
with associated R.P.D. equal to I n ker (p#).

§53. The closure of the diagonal matrices. Define the hyperplane

together with the linear functionals

Define the intégral points in V to be the points a such that each at(a) € Z. With
respect to this intégral structure on V, we define the following décomposition Z of
V into rational polyhedral cônes: Z is generated by the hyperplanes a, a, for
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i =£/. In other words, for each ordered partition {F,, F2, Fr) of the numbers

{1,2, n}, there is a closed cône acV, which is given by

Fs then a, a,lf^€^thena&lt; &quot;&gt; 1

if / e TS| and/ € Fs&gt; and 5, &lt;s2 then af &lt;a}\

(An ordered partition îs an ordered collection of disjoint, nonempty subsets

whose union îs the whole set {1,2, ,«} There îs no relation between the

ordenng of the T&apos;s and the ordenng of the numbers between 1 and n
Let TaX dénote the diagonal nondegenerate quadncs (1 e the nonsingular

diagonal matrices, modulo scalar multiples) This îs a torus T (under the

opération of matnx multiplication), and a basis for the character group X*(T) is

given by {exp(&lt;v,)&gt; exp(or2), ,(*„_,)} where exp(ar,)(f) fl+l/r, (Hère t},
t2, • tn dénote the diagonal entnes in the matnx t Thus the vectorspace
X*(T) &lt;8&gt; M has been identified with the hyperplane V above

PROPOSITION 5 3 1 This identification extends to an identification of the

closure t (in X) of the diagonal matrices with the toric vanety associated to the

cône décomposition E

Proof. We recall the proof of [DP2] theorem 5 3.) In [DPI] there is

constructed a basic T-stable affine open set A of 7\ whose associated polyhedral
cône is the fundamental Weyl chamber The action of In stabihzes t and hence

also U»v€i:w wA The open sets wA correspond to distinct Weyl chambers and

smce the chambers décompose V, we see that \&lt;JW€Sn hv! is complète and hence

coincides with T.

Recall that one of the properties of A is that each orbit of the action of the

projective group on the space of complète quadncs mtersects A in a T orbit

PROPOSITION 5 3.2. // oel is a cône corresponding to a partition
{Fu F2, Fr} of the set {1,2, n} then this identification takes the T-orbit
(a) into the stratum {or G-orbit) of X corresponding to the subset /
{*!, i2, ir-\) c {1, 2, n - 1} where

h Ê ICI
7=1

Remark. As an immédiate corollary of 5.3.2, we see that two T-orbits in t
are in the same G-orbit of X if and only if they are in the same orbit under the

symmetric group.
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The points in the toric variety t are identifiée! with points in X in an explicit
way: A point p e (a) is given by a coset tR (where t (f,, t2, tn) and where
R is the subgroup of T generated by the one parameter subgroups which are in
o).

PROPOSITION 5.3.3. The point tR is identifiée with the following diagonal
complète quadric (F, Q): F is the partial flag which is given by the direct sum
décomposition

where {er) dénotes the span of the basis vectors {ex | A e F,}. Within each {er) the

nondegenerate quadric Q, is given by the diagonal symmetric matrix (tr) whose

diagonal entries are the numbers {tx | A € F,}.

Remark. Observe that this identification dépends only on the coset of
t (mod R) because R is the subgroup of diagonal matrices (t) such that each (tr) is

some multiple of the identity matrix.

Remark. Since the boundary divisors (i.e. the codimension 1 orbits) in T are
given by two step flags OcFcC&quot;, thèse correspond to ordered partitions with
two éléments,

Proof of §5.3.2 and §5.3.3. We will use the construction of X which was
described in §1.2 and was explained in §5.1. The map #,:Ao-*G, (from the

space of nondegenerate quadrics to the space of quadric hypersurfaces of the
Grassmannian G,) is given in projective coordinates by the formula

M-&gt;A&apos;M

where M is a symmetric n by n matrix and AM is the matrix of déterminants of /

by i minors. This may be thought of as the matrix of a quadratic form on A&apos;C&quot;

(i.e. a quadric in Plucker coordinates). The open set A a t (see the proof of §5.1)
is then given as follows:

Let A&quot;&quot;1 be the affine space with coordinates (A,, A2,... ^n-i)- We map
Art~l to the diagonal « by n matrices by

(A,,... An_,)-»diag(A,A2- • • An_,,. A,A2, A,, l) Af
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Each entry of A1M is divisible by k\~lkl2~2 • • • Â,_!. Since we are using projective
coordinates, we may divide by this and obtain a well defined map &lt;f&gt;, : A&quot;&quot;1-» &lt;?,.

Then the map &lt;f&gt; (&lt;j&gt;u &lt;t&gt;n-i) maps A&quot;&quot;1 isomorphically to its image, which

we call A. (cf. [DPI], [Se], [T]). It is now easy to check that if p e A&quot;&quot;1 and if the

ith coordinate of p is 0, then 4&gt;,{p) is the set of i — 1 dimensional subspaces in
Pn~1 which meet the subspace defined by the vanishing of the last n-i
coordinates. Following the explanation given in §5.1, one can verify that the flag
obtained is a part of the standard flag, and that the quadrics Qt are diagonal. As
remarked in §5.3.1, the orbit of A under the symmetric group is ail of t. On the
other hand, this action of the symmetric group amounts to modifying the flag by
permuting the subspaces which are given by the coordinate axes. This shows that

t describes ail diagonal complète quadrics. The rest of §5.3.2 and §5.3.3 can be

verified by inspection.

§5.4. Partially diagonal quadrics. For any subset /= {il9 i2y ir) c
{1, 2,. n} there is a canonical décomposition of Cn into coordinate planes,

with dim (V,) v} *; - i,_x. We define

to be the group of projective transformations preserving each of the subspaces in
this décomposition. We dénote by G the projective linear group PGLn(C) and by
K c G the projective unitary group and Kj KH G,.

LEMMA 5.4.1. The subset ZjCiX (of complète quadrics which are diagonal
with respect to the above décomposition ofC&quot;) is stable under the action of Gt and

of K/. Furthermore, two points (F, Q) and (F&apos;f Q&apos;) of Zj lie in the same G7 orbit if
and only if for each /,

dim (F,) dim (F,&apos;)

(i.e., the flags F and F&apos; are of the same type) and for ail i and j,

dim (F, H Vj) dim (F/ n V}).

Proof. Thèse conditions are clearly necessary since G7 leaves the spaces Vy

stable. To see that they are sufficient, suppose we are given two such points



366 C DECONCINI ET AL

(F, Q) and (F&apos;, Q&apos;). Choose g, e GL(V;) so that for each î,

The élément g (gt, g2,... gr) e G, takes (F, 0) to (F&apos;, g&quot;). But this point is

G/-conjugate to (F&apos;, Qr) because the stabilizer of Facts on each /^//)_i as the full
linear group GL(/^//;_i).

In the next two sections we will prove proposition 2.2.

§5.5. Diagonalization by K. Let Z? dénote the collection of nondegenerate
quadrics which are diagonal with respect to the above décomposition.

PROPOSITION 5.5. For any nondegenerate quadric QeZ{} there is an
élément keKj such that k.Q is (completely) diagonal, Le. k.Q. e Z{1 T.

Proof of proposition. It suffices to show that each of the intersections Q H Vt

can be diagonalized separately, and since the argument is the same for each Vt we
will replace it with C&quot;. Thus, it suffices to show that for any nondegenerate
quadric Q in Cw, there exists an orthonormal basis of Cn with respect to which the
matrix representing Q is a diagonal matrix. (Hère, orthonormal refers to the
standard Hermitian metric on C&quot; which is given by

y)
1=1

We will also use the standard identification U2n Cn as (R-vectorspaces.)
This is a conséquence of the generalized Cartan décomposition

of [FI] (theorem 4.1, page 118) and [R] (theorem 10, page 169). Take G G1W(C)

(viewed as a real Lie group), H O(ny C), K U(n), and A+ c A the group of
real diagonal matrices with positive entries. The unitary matrix u e U(n) takes the
standard basis to the desired orthonormal basis.

Remark. There is also an ordering (which is possibly degenerate) induced on
this basis of C&quot; which is given by v} &lt; vk iff |Â;| ^ |Â*|.

CORROLLARY. For any G-equivariant compactification Y of the space X*] of
nondegenerate quadrics, the closure t of the diagonal quadrics meets every G
orbit.
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Proof of Corollary. By the diagonalization lemma, the image of K x t contains
X°. But X{) is dense in Y, and KxT is compact. Therefore Kxî-^Y is

surjective. So f meets every K orbit and hence it meets every G orbit.

Remark. A similar corollary holds for any G7 equivariant compactification of
z?.

§5.6. Proof of proposition 2.1 aiw/ 2.2. Proposition 2.1 now follows directly:
Each Xf is a G-homogeneous space, and every G orbit on X intersects T
nontrivially (§5.5). But the degenerate quadrics in T are described explicitly in
§5.3.

We now give the proof of proposition 2.2. The orbit G, • Q() of G, through the

identity matrix is the set of ail nondegenerate quadrics whose corresponding
symmetric matrices are in diagonal block form with blocks of size vxxvlt

PROPOSITION 2.2. The closure (in X) of this orbit G, • Q() is precisely the

variety Z7.

Proof. Lemma (5.4) shows that G/x T-*Z/ is surjective. Thus Z7 is a

constructible set in an irreducible algebraic subvariety of X. Furthermore the

diagonalization lemma shows that the image of the map K/f-^ZI contains ZK]

which is an open subset of Z,. Since the image of this map is compact, it must
equal Zf (which is compact and hence closed), so it contains the closure of
G/ • (?o, which is also irreducible. Therefore Z7 coincides with the closure of
G, • Go.

THEOREM 5.6. ([Ab]) Z7 is a &quot;wonderful&quot; Grequivariant compactification
of Z/, Le. each orbit closure in Z7 is smooth {in particular, Z, is smooth)y and

Zt — Z/ is a union of divisors SJ} each of which is an orbit closure, and which ail
meet transversally.

Proof. The proof follows the corresponding statement for X, which is proved
in [DPI]. Recall ([DP2]) that t intersects the closed orbit G/B of X in the n\
points fixed by T. Let p e G/B be one of thèse points and let U be the unipotent
radical of the Borel subgroup of G whose opposite Borel subgroup fixes p.

In [DPI] it was shown that there is an affine U stable open cell Vp centered at

p in X with the following properties:
(a) there is an isomorphism, VpH f-^C1&quot;1 which takes the T orbit closures

of Vp n f to the coordinate subspaces of C&quot;&quot;1
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(b) the map ^(/xC1&quot;1^^ which is defined by

is a ÎZ-equivariant isomorphism.
(c) The union UP (VP H f) T where p varies over the T-fixed points in

G/S.
Since each G7 orbit meets f, it suffices to study Z7 and its orbits in each of the

open sets Vp. For such a fixed point py let U be the corresponding unipotent
subgroup and let Uf be the intersection U/ U D G7. Since the map q) is

£/-equivariant and t a Z7 we hâve

But Uj is a maximal unipotent subgroup in G7 so

dim (&lt;p(Ut x C1&quot;1)) dim (Z7) \ X ^(v, + 1) - 1

But thèse are two irreducible closed subsets of the same dimension in Vp, so they
coincide, i.e.

It follows that Z7 is smooth (since q)(Ut x C1&quot;1) is an affine space).
We verify the other properties of this compactification locally. We shall show

that given peG/B as above and given an orbit ÛczZi such that Vpnû¥^0f
there exists a unique T orbit S in Vp n f such that

Vpn0=&lt;p(UtxS)

Since the map &lt;p is (//-equivariant, and V Dûis stable under U, we hâve,

Vpn0**q&gt;(U,xS)

where 5 is a T stable subset of C&quot;&quot;1. But two éléments of the form (p(uu Qt)f
&lt;p(&quot;2&gt; Qi) are G-conjugate if and only if Qx and Q2 are T conjugate. (cf. [DPI]
prop. 2.8) It follows that S is a unique T orbit.

§5.7, The spaces Ms. From now on we restrict to a particular décomposition of
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Cn into s coordinate planes and n — 2s coordinate Unes,

and we dénote the corresponding space Zt by Zs and the corresponding groups Gj
by Gs, etc.

Remark. The space Ms is canonically identified with the space KxKsZs.
We obtain a commutative diagram where the horizontal maps are natural

identifications and the vertical maps are fibrations:

GxPiZs ax^Z^M,
i i i

GIPS &gt; K/K, &gt; 9S

The map 6 identifies KxKZs with ail pairs (f, (F, Q)) (where fis a partial flag of
type (2,2,2,. 2,1,1,. 1) and (F, Q) is a complète quadric which is

diagonal with respect to this flag) by assigning

Hère, k e K/Ks 3FS dénotes the corresponding partial flag. Since G, PSf and Zs

are algebraic, we see

PROPOSITION 5.7.1. The space Ms is homeomorphic to an algebraic variety.

PROPOSITION 5.7.2. Each of the maps &lt;Ps:KxKsZs Ats-*Xis surjective.

Proof of proposition 5.7.2. Since Zo&lt;=Z5 for each s, it suffices to show that
KxKoZq—&gt;X is surjective. But applying proposition 5.5 (with the trivial
décomposition C&quot; Cn) we find that for any quadric Q e X°, there exists k e K so
that the quadric Qf k • Q is an élément of Zq, i.e. k&apos;1 • Q&apos; Q. Thus 4&gt;0 is

surjective to the nondegenerate quadrics, which form a dense open subset of X.
But Wo tfXj^Zo is compact, so 0O is surjective.

6.7.3. Remark. The quotient XIK is homeomorphic to the m-cube. The
quotient map takes points of a given orbit type to a fixed face: Let Ko dénote the
normalizer of Ko in K, i.e. the extension of Ko which is given by allowing
permutations of the lines Lh From the surjective map Xx^Zo-^Iwe obtain a
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homeomorphism

by dividing by K. But Zo/Ko (Zo/Ko)/(KO/KQ) where P Zo/Ko is the poly-
hedron which is the image of Zq under the Atiyah moment map (which is induced
from the T action) ([At]). In other words, Zo= T is a toric variety and P is the
associated convex polyhedron.) But this is a cube. In fact this map can be seen

directly, orbit by orbit as follows: the image XJK is a union of faces of the cube,
with each face corresponding to certain coincidences of the eigenvalues |À,| of
§5.4. For example, X°/K contains ail the faces whose closure contains the origin
(which is a vertex of the cube); the interior corresponds to ail eigenvalues
différent, the codimension 1 faces correspond to single coincidences of
eigenvalues, etc.

5.7.4. Proof ofproposition 2.4. Let Gs N(GS) be the normalizer of Gs in G.
This is the subgroup of G which préserves the union of the subspaces in the

décomposition of C1, i.e. it includes permutations of the P&apos;s and permutations of
the L&apos;s. Then Gs/Gs Ts Zsx 2&apos;rt_25. Similarly the group Ks N(KS) K n G5

acts on Zs and induces the action of Fs KJKS on Zs which was described in §2.3.

On the other hand, Ks acts on Ms by

(k,{h,z))-+(hk-\k-z)

For each g e G define ig :ZS~+MS to be the inclusion of the fibre,

ig(z) (8&gt; z)

(where we identify M5 GxPZs). Since G is connected, thèse maps are ail
homotopic, i.e. they ail induce the same homomorphism on cohomology.
Therefore, for any keKswe hâve the following commutative diagram:

ZSS
I h

Thus, i*:H*(Ms)~»H*(Zs) is equivariant with respect to the action of Fs.

However this homomorphism is also surjective because the spectral séquence for
the fibration Ms—&gt;3FS collapses and Zs is the fibre. (It can also be seen to be
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surjective because Ms has a décomposition into rational cells such that Z5 is a

union of cells. See §6.) It follows that the two actions of fs which were defined on
the cohomology of Zs coincide.

§5.8. Complète quadrics in P1. The following remarks about the variety P2 of
quadrics in P1 will be used in the analysis of the map \i.Zs—»(P2)\ Using the
standard basis of C2, a complète quadric in P1 (i.e. a quadric cône in C2)

corresponds to a symmetric matrix,

A
\b c

The solutions to the équation xAx* 0 consist of two Unes, so a complète quadric
in P1 is given by two (not necessarily distinct) points in P1. This variety of
complète quadrics is the symmetric product of P1 and P1, and is naturally
isomorphic to P2, with homogeneous coordinates [a :b :c]. A quadric is degener-
ate if b2 ac. (In this case the two points in the quadric coincide.) The
degenerate quadrics form a subvariety which we hâve been denoting by 3P2. The
diagonal complète quadrics (i.e., b =0) form a (flat) hyperplane which we will
dénote by P1 c P2. The action of the group G PGL2(C) on the variety of
complète quadrics has two orbits: &lt;9P2 and P2 - dP2. This second orbit is a

rational cell: it déformation retracts toRP2c CP2 because a quadric in P2 - dP2

consists of a pair of distinct points in P1, and thèse may be moved apart (along
the unique géodésie which joins them) until they are antipodal. This (RP2 is a

minimal &amp;-orbit.

The action of the torus C* c: G stabilizes P1 and also dP2. It has three fixed
points: [1:0:0], [0:0:1], and [0:1:0]. The first two of thèse points constitute the
intersection dP2C\Pl and the third point lies in the RP2. Thèse three points are
joined by two other flat hyperplanes, ô1 (the set where a 0) and ô2 (the set

where c 0) which are tangent to 3P2. This geometry may be summarized in the

following picture:

\[0:l:0]
ô1 X ô
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Furthermore, let

H(i î) «•=}

Then (/ is the unipotent radical of a Borel subgroup of PGL^C). The line ôl is

left fixed under U and so is the complément of ô1 in P2 which we will dénote by
A2 and we will set A1 P1 H A2. It is easy to verify that

PROPOSITION. The map j : U x A1 -» A2 which is given by j((u, x)) u-xis
a U-equivariant isomorphism.

Note ako that P1 D A2 is identifiée with the standard A1 by the coordinate cla.

§5.9. The map \i :Zs-&gt; (P2)s. In this section we will show that the map \i defined
in §2.3 is well defined, continuous, and algebraic. As in §5.3, we dénote by Tthe
(completely) diagonal quadrics, and we let QoeX dénote the quadric cor-
responding to the identity matrix. Let exp(ar,) be the character exp(al)(r)
tt+i/tt for any t e T.

PROPOSITION, (a) The map exp(ar,): T-+C* has a unique extension,

(b) The product mapping

Ês (exp (or,), exp (a3),.. exp (or^-i) : T-* ]

w a morphism of toric varieties and the pre4magef

is an R r\*-=i ker (exp(#2/_i)) embedding, which is isomorphic to the torus
embedding of (completely) diagonal quadrics in p*&quot;5&quot;1.

(c) The composition

coincides with the restriction of the map /i (of §2.3) to the toric variety T.
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Proof. (a) Since the R.P.D. corresponding to a product of P1 x • • • x P1 is

simply the décomposition of Us into quadrants (generated by the hyperplanes
#21-1 0, for 1 ^ i &lt;5-), it suffices to show that either &lt;x2i-\ has constant sign, or
else is identically zéro on each cône aelof the R.P.D. corresponding to t. But
this is clear from the explicit description (§5.3) of the cônes in Z.

(b) The torus embedding associated to the Weyl chambers of the root System

An-i can be combinatorially described as follows: Let ubea real vectorspace of
dimension n — 1 and let 0 c V* be a set of vectors (the positive roots) indexed by
pairs (/, /) of numbers such that 1 &lt; i &lt;j &lt; n. We dénote such a vector by ev e 4&gt;.

Assume that
(1) If i&lt;/&lt;*then &lt;?* &lt;&gt;,,+ c/ik

(2) The set {e12, e23, • • • &gt; £«-i,«} forms a basis of V^*.

We define an intégral structure on V by setting

A={v€V|cv(î;)€Z(forall(i,y)}

and a cône décomposition which is given by the walls

i.e., we consider as open cônes of the R.P.D., the connected components of any
intersection of a set of Hl} minus the intersections of this set with any other Hmn.

For each integer k with 1 &lt; 2k &lt; /i, define

V — {v eV \ £\2(y) e34(u) • • • e2k-ij2k(v) 0}

i.e.,

Given any etJ e ^, dénote its restriction to Vk by ël}. For each ; &lt; A: we hâve

(1) ^-1.2/ 0

(3) hj-it2h-i ê2h2h-i ë2y-i,2/t hh2h if j&lt;h&lt;k.
Let us rename the nonzero forms ëtJ as follows: For !&lt;/&lt;/&lt;« — &amp; define rjtJ by
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It is easily seen that
(i) AH the nonzero itJ appear in this list
(ii) the vectors rçi; satisfy the axioms for the positive roots of type An-^k
(iii) The intégral lattice Ak c Vk defined by the rçf/ is A n Vk.

Thèse facts are exactly those required to verify that the R.P.D. on V intersects
Vk c V in an R.P.D. of type A»-i-*.

(c) First we shall show that the projection to the ;th factor agrées with the

composition of fi with the projection to the y&apos;th factor. Let H span (e2j-u e2j).

Suppose Q € T is a nondegenerate quadric, i.e. Q is given by

where tt ¥= 0 for each i. Then Q C\ P(H) consists of two distinct points which are
defined by the équation

2 ~

or

In other words, exp(ar2y-i)(0 ^2;/^2y-i is the map which associâtes to each

nondegenerate diagonal quadric its intersection with P(//). This is exactly the

map pi.

Using the explicit description (§5.2) of convergence in the toric variety f, it is

easy to see that the restriction of exp {(x2)-\) to the toric variety t coincides with
the map \i also.

PROPOSITION 5.9.1. There is a unique Gs-equivariant map fi:Z,-^HUi P2

such that the following diagram commutes:

COROLLARY. The above map \i coincides with the map fi of §2.3. In
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particular, the map jU is well deftned, continuousy and algebraic; and the above

map n has the géométrie description which was given in §2.3.

Proof of corollary. The map /i of §2.3 is Gy-equivariant and its restriction to t
coincides with the map Jr.

Proof of proposition 5.9.1. Uniqueness follows from lemma 5.4. 1 (every Gs

orbit in Zs meets T in a nonempty set). Existence is by construction: exp(ar2,-i)
extends equivariantly to Z{)s (the set of nondegenerate quadrics) because for any
Q e Z°, the quadric Q fi Pt is nondegenerate, i.e. it consists of two lines, giving a

point in P2. Let A be the set of ail points p e Zs such that exp (a2l-1) is defined as

a morphism in a neighborhood of p. Then A 3 Zq and it is Gv stable. Thus, in
order to show that A Zsy it suffices to show that A meets each Gs orbit. In §5.6

we found an open set Vp n Zsy where p dénotes a T-fixed point in the closed orbit
in X. Within this open set, each élément can be written uniquely as uQ, where

q e Vp fl T and with ue Us. (Hère, V% is a suitably chosen maximal unipotent
subgroup of Gs.) We hâve seen that each Gs orbit in Zs meets at least one of thèse

open sets in a nonempty subset. Thus, it suffices to extend ju to Vp n Zv for each
such p. But this can be done by the formula

The rest of this section contains technical results needed in the proof of the
main lemma.

Let q:ïlU\ P2-»P2 dénote the projection to the last factor, and let P1 c P2

dénote the hyperplane of §5.6 above.

PROPOSITION 5.9.2.

Proof. This is immédiate from the description (§1.3) of the map ju, because

which is the set of complète quadrics (F, Q) which are diagonal with respect to
the décomposition

C Pi © • • • ® Ps © L%s +1 © • • • © Ln

and such that the intersection (F,Q)nPs is diagonal with respect to the
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décomposition

But this is precisely Zs_x.

Remark. We hâve the following diagram, where the top row is the

preimage of the bottom row:

Zs_, a Zs 3 dsZs

i i i
P1 C P2 3 3P2

PROPOSITION 5.9.3. âf(Zs_,) %(dsZs).

Proof. Both Z5_, and 35Z5 are stable under the action of Ton Z5, and this
action has finitely many fixed points. Furthermore, Zs-X is smooth and dsZs is a

union of nonsingular divisors with normal crossings (§5.6 and §5.9.7), and each
has cohomology in even dimensions only. Therefore, by the Bialynicki-Birula
décomposition ([BB1], [BB2]) and Mayer Vietoris, it suffices to show that both
Z5_! and 9SZS hâve the same number of T-fixed points. In fact they hâve the same
fixed points: Define

This is a T-stable set, since P1 H 3P2 is fixed under T. It follows that

7 (Z5.1) (a,Z5)

because every T-fixed point in Zs must lie over a T-fixed point in P2, and thèse

are just the points [0:1:0] and P1 H dP2 (see §5.8).

COROLLARY 5.9.4. I rank H\Ms^)m2) I rank H&apos;(9SMS)-

Proof The space Ms^x is a fibre bundle over 2Fs-\ with fibre Z5_!, while the

space dsMs is a fibre bundle over 3^, with fibre dsZs. The spectral séquence for
thèse fibrations collapsed long ago, and 9S is simply connected. Therefore
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since (by §3.4), Z/(2) acts on H*(Fs.t) by a multiple of the regular
représentation.

COROLLARY 5.9.5. fi&apos;l(fi(f)) fi&apos;^IÎ-i P1) T

Proof. This follows by induction (the case s 0 is trivial since Zq t and ju is

the constant map), and proposition 5.9.2.

COROLLARY 5.9.6. X{ZS) EJUo («)(« - *)&apos;

Proof. Divide the variety Zs into T stable subvarieties, Zy ju~1(Ary) where

yc{l, 2, ,s} and

Each T-fixed point of Zs is contained in some Zy, and thèse Zr are disjoint. Thus,

But for each h — \r\\9 there are (£) possible choices for y.

PROPOSITION 5.9.7. The action of ^((P2)5 - A) on the cohomology of the

fibre of fi is trivial.

Proof The group Gs acts on Z5 and on (P2)5 and the map jU is equivariant with
respect to this action. Therefore, over the large open orbit U cz (P2)5 we hâve

where F is the fibre ii~l{p) of a gerçeric point p, and H is the stabilizer of F in Gs.

We must show that H acts trivially on H*(F). Since H c Gs (which is connected),
it follows that H acts trivially on H*(Z5). So it suffices to show that the map
H*(ZS)-+H*(F) is surjective. This follows from the analysis in the next chapter
where it will be clear that the cohomology of F is generated by the classes which
are dual to the boundary divisors of F, and thèse are transversal intersections
with boundary divisors of Zs.

§5.10. Counting the Gs orbits in Zs. In this section we will give a one to one
correspondence between the codimension one Gs orbits {Dlf D2,... Dr} in Zs
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and the one dimensional cônes À in the cône décomposition I of V

(corresponding to the torus f §5.2) such that ar2/_i(A) &gt;0 for each j (1 &lt;/&lt;.?).

We hâve seen in §5.8 how the standard P2 contains a standard A2 which is

U-stable and isomorphic to U x A1. Taking products we hâve

(P2)5 3 (A2)5 a (U x A1)5 (U x U x • • • x U) x (A1)5

where the group Us is a unipotent radical of Gs. Let us now consider the open set

in Zs and Cs As H f (ju | f)~1((A1)5). We hâve seen in §5.9 that C5 is the torus

embedding corresponding to the R.P.D. of the quadrant Qs c V, which is defined

by

for l&lt;i&lt;s

PROPOSITION 5.10. 77ie map k:Us xCs-*As (which is given by A(w, c) a.c.)
is a Us equivariant isomorphism.

This follows from the gênerai resuit.

LEMMA. // X and Y are varieties with an action of a group G, and if
/* :X-* Y is a G equivariant inclusion, and ifYis isomorphic (in a G equivariant
way) to G x Z, then X is isomorphic to G x ii~l(Z) under the map j(gf x) gx.

Proof The inverse of j is given by j~l(x) (g, g~lx) where g is defined by
ti(x) (g, z).

COROLLARY. The Gs orbits in Zs intersect As in the sets Us x Û, where 0 is

a T orbit in C.

Proof. Every Gs orbit 6 meets As since every Gs orbit in (P2)5 meets (A2)5.

Since As is stable under the Borel subgroup B~ Us • T, it follows that €C\Asis
a union of B~ orbits. But every BJ orbit in As is of the form Us x 6&apos;, where €&apos; is

a T orbit in C. In order to prove the claim, it suffices to show that every B~ orbit
in As is the intersection of As with a G, orbit. This can be shown exactly as in
[DPI]. Thus, we hâve proven:

THEOREM. The Gs orbits of codimension k in Zs are in one to one
correspondence with the k dimensional cônes of the R.P.D. of the &quot;quadrant&quot; Qs.
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It will be useful to collect some further information on this picture. Consider

Zç_i c:Z5, As-U As, Cs_!, Cs as before. Let a be the élément of Gs which is the

identity except in the sth 2 by 2 block, where it is L Then a induces an

automorphism of order 2 on T&gt; and so also on the space V which is dual to the
character group of T. One easily vérifies that C,_, Cs U o(Cs), so

As_{ Us~l x Ct_, (v4s H Zs_,) U a(A n ZN_,)

since A5 flZH f/&apos;&quot;1 x Cs.

If we consider a boundary divisor £&gt; of Zv, we can analyze its intersection with
Z5_!. Let u be the first lattice vector in the one dimensional cône of the R.P.D. of
Cs which corresponds to D.

PROPOSITION. // cj(u) u, then DPiZs_x is an irreducible divisor cor-
responding to the vector ueftc^-i. // o(v) ¥= v, then D DZ^l is the union of
two irreducible divisors corresponding to the two vectors v and o(v)eQs_{.

Proof. To study DC\ZS^X it is enough to analyze DC\CS^X since every
boundary divisor in Zv_j meets C,_! in a boundary divisor. Now,

and D fl C°s (D H Cs)° since D D°. This proves the proposition, because of
the one to one correspondence (under a) between T orbits and cônes.

5.11. Paving of Mv and Zs by algebraic rational cells

§5.11.1. Introduction. The results of this paper would be much easier if X (or if
Z5) had a cell décomposition which was compatible with the action of G (or of
Gs). Unfortunately the Bialynicki-Birula cells (which corne from the torus action)
do not décompose the G-orbits, so although they may be used to compute the
Betti numbers of X ([Str]), the resulting formula is not immediately related to our
formula (§2). Our solution to this problem is to find a paving by rational cells
which are compatible with the map jU.

Recall that an (algebraic) rational cell C in a algebraic variety M is a locally
closed algebraic subset such that Hlc(C; Q) 0 for ail but one value of i (which is
called the dimension of the cell). A paving of M by rational cells is a
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décomposition

into finitely many (algebraic) rational cells Ca, together with a total ordering of
the index set / such that for each j3 e /, the set

Me U Ca
ar&lt;/3

is closed in M.

PROPOSITION. The variety Ms has a paving by {algebraic) rational cells

such that each d[Ms is a union of cellsy the subvariety Zs is a union of cells, each

d/Zs is a union of cells, and the map ju : Zs—» FIf=i P1 is a cellular map {with respect
to the standard paving of P1 by rational cells: see below).

Proof The proof will take the rest of §5.11.

5.11.2. Lemma on rational cell décompositions. The proof of the following
lemma is simple:

LEMMA. Suppose that

M= LJZA

is a décomposition of an algebraic variety M into finitely many locally closed

algebraic subsets ZA such that

(a) each closure ZA is a union of Z&apos;s, Le.

z,= U z,
TSK&apos;

for some K&apos; c K.

(b) each Zk has a décomposition into rational algebraic cells.

Then the induced décomposition of M into rational algebraic cells is a paving of
M if and only if each of the décompositions of ZA into cells is a paving of ZA.
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§5.11.3. Cell décompositions of toric varieties and their fibres

PROPOSITION. Suppose f:X-*Y is a morphism between nonsingular
projective toric varieties, Let p e Y and let {6lf 6n} be the set of torus orbits
in X which hâve nonempty intersection with the fibre f~l(p). Then there is a

partition {Fïf Fm} of the numbers {1, 2, n} such that each set

is an affine algebraic cell in f~\p), and the cells {elf em) form a paving of
r\p).

Proof This proof has 3 steps.

Step 1: For the case Y is a single point. Hère we recall Danilov&apos;s ([D])
construction of the cell décomposition of X. Let Z czV dénote the cône

décomposition of the vectorspace V which corresponds to the variety X. Let

Ci,. cm dénote the maximal cônes in Z, and let q e cx be a generic interior
point (which we will call the Danilov point) in a maximal cône cx € Z. Then to
each maximal cône cp Danilov associâtes certain faces facjy according to the

following rule: a face / is associated to a cône c} if there is an interior point qr e c;
such that the line segment qq1 has nonempty intersection with the face /. This
association détermines a partition {Fx,. Fm} ol the cônes in Uinto groups, one
for each maximal cône c, e Z. Furthermore, if 6(c) dénotes the T-orbit (in X)
which corresponds to a cône c eZ, then the set

et U 0(c)
ceT,

is a locally closed algebraic subvariety of X.

THEOREM. ([D]) If X is projective, then the subvarieties {eu em) are a

paving of X (i.e. they can be ordered so that each U/&lt;&lt;? ^ is closed in X)f and ifX
is nonsingular then each e, is an affine algebraic cell.

Remark. Although/&quot;^/?) is not a toric variety, it is a union of toric varieties
which intersect along torus orbits. Although it is not true that any union of toric
varieties has a paving by algebraic cells, we will show that the variety f~^1(p) has

such a décomposition.
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Step 2: For the case that p e Y is a fixed point. Now suppose that / : Jf —» Y is a

morphism of nonsingular toric varieties. We obtain a cône décomposition Q of a

real vectorspace H corresponding to Y, and a linear projection /# : V —» H which
takes cônes in S to cônes in Q. Let p e Y be fixed under the torus action. The
fixed point p corresponds to a maximal cône coe Q. Choose a Danilov point (for
the variety y), a e H to lie in the interior of co, and choose a Danilov point (for
the variety X), q e V to lie in the interior of an open cône c e 2 such that
/#(#) a (and hence also /#(c) c co). It is easy to see that, having made thèse

choices, the fibre f~l(p) will be a union of the cells in the cell décomposition of X
which was defined in step 1. It follows from the &quot;only if part of 5.11.2 that this
defines a paving off~~l(p) by affine algebraic cells.

Step 3: Réduction to the case that p is a fixed point in Y. The point p eY lies
in some orbit 0 in Y, and this corresponds to some co e Q of the cône

décomposition of the vectorspace H associated to Y. Let {co) be the vector
subspace of H which is spanned by co. Then (co) (1 Q is a cône décomposition of
(co)y and f~l((co))n2 is a cône décomposition of f^((co)). Therefore thèse

cône décompositions are associated to a morphism of toric varieties,

f&apos;:X&apos;-*Y9

where X&apos; e X and Y&apos; c= Y, and where p g Y&apos; is a fixed point of the torus action on
Y&apos;. Furthermore, (ff)~l(p)==f~ï(p), so the cell décomposition of (f&apos;)~l(p)

which is provided by step 2 above is the desired décomposition.

Remarks. Unfortunately, X&apos; may be a singular toric variety. However, it will
be nonsingular in a neighborhood of (f&apos;)~&quot;l(p), and Danilov&apos;s proof that the
varieties et are cells uses only the nonsingularity near the et. The varieties X&apos; and
Y&apos; can be easily described: The stabilizer S Stabr (p) acts on Y, and Y&apos; is the
closure of a generic orbit of S. The variety X&apos; is the complète pre-image, f~l( Y&apos;),

i.e. it is the closure of a generic orbit of the pre-image torus, f#l(S).

§5.11.4. The standard paving of II^i P2. Define the standard paving of P2 to be

the décomposition into cells

P2 \p0} U (9P2 - {p0}) U (P2 - 3P2)

where p0 9P2 D ô1 [0:0:1] (in the notation of §5.8). Note that P2 - 3P2 is an
algebraic rational cell (of dimension 4) since it déformation retracts to IRP2.

Define the standard paving of Of«i P2 to be the product décomposition. The

group Gs acts on Of=i P2 with one orbit d,TlUi^2 for each subset /c
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{1,2,... ,s}:

where

rp2-dP2 if *

l &lt;9P2 if * e /

Each 3/IK=iP2 is a union of rational cells in the product décomposition of
re=i p2.

§5.11.5. Paving of Zs by rational cells. In this section we show that Zs has a

paving by rational algebraic cells such that each &lt;97ZV is a union of cells.

By lemma 5.11.2, it suffices to find a paving of each dtZs by rational cells.
Recall (§2.3) that

It follows that the restriction

is a fibre bundle (since it is Gs equivariant and the base is Gs homogeneous). Let
Pi - (P\&gt; • • • &gt; Ps) € Si I1i=i P2 dénote the basepoint,

_f[l:0:l] if Hl
Pl~l[0:0:l] if i e /

First we give a paving of ju \pt) H dfZs. But this is precisely the fibre (over /?,) of
the map between toric varieties,

(see §5.9), so it has a paving by affines {eu em}, according to §5.11.3. (Note
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that the basepoint p{ was chosen so as to lie in TlU\ P1)- We will now show that
the subsets of the form

constitute a rational cell décomposition of dfZs, where Gy • ey is the GT-saturation
of the cell ejy and where ck is a rational cell in the standard (§5.11.4)
décomposition of d, UUi P2-

Note that Gs • e} D ju &quot;*(/?/) et because each intersection

(G5-orbit in Zv) H H~\pt) (T-orbit in f H ti~l(P/)

and the cell e} is a union of such intersections (see §5.10). It follows that the cells
ëjk give a décomposition of d,Zs, and that they form a paving (using the
lexicographie ordering induced from the ordering of the cells in ju~ *(/?,) and the
cells in 87 Of=i P2). We now show that êjk is a rational cell. The restriction

is a Gs-equivariant fibration with fibre er The restriction

fi :ëlk Gs -e} H ii~\Ck)-&gt;ck a d, f\ P2

is a fibre bundle over ck with contractible fibre. Since ck is a rational cell, it
follows that êjk has no rational homology except in dimension 0. However êjk is a

complex manifold and hence is oriented. By rational Poincaré duality, it follows
that the cohomology with compact support of êjk vanishes except in the top
dimension, so ëjk is a rational cell.

§5.11.6. Pavîng of Ms by rational cells. The projection (§5.7) MS-*3FS is an

algebraic fibre bundlè which is trivial over each of the Bruhat cells in &amp;s. The

fibre is Zs. Therefore the pre-image of each Bruhat cell is paved with rational

(algebraic) cells by the product paving. Lemma 5.11.2 implies that this gives a

paving of Ms by rational cells.
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Chapter 6. The cohomology ring of Z5 and Ms

§6.1. Statement of resuit

§6.1.1. Cohomology of Z5. Our formula for H*(ZS) involves the rational
polyhedral décomposition described in §5.3 and §5.9, i.e.

I the cône décomposition of V which is generated by hyperplanes at a,

(for/#/)
H Us, with coordinates au a3, or^-i
a : V —» H the projection given by a2l-i(a) a2l -alt-i
Q the cône décomposition of H into quadrants, generated by the hyperplanes

We will be concerned with the one dimensional cônes aeZ such that

ar2/-i(a)&gt;0, for each i, (l&lt;i&lt;s). Let us dénote the primitive generating
vectors of thèse cônes by Du D2, Dr. (See §5.10 for an analysis of thèse

vectors: each vector Dl corresponds in a natural way to a codimension one orbit

A of Gs on Z5).

DEFINITION. Let Q[DU Dr] be the polynomial ring generated by the
(commuting) variables [DJ, [D2], [Dr] of degree 2. Let Ix be the idéal
generated by the monomials [AJJDJ • • • [Dlk] such that the vectors Dft,
Dl2, Dlk do not form a cône in I.

For each y (1 ^j^s) consider the subset j c {Dlf D2,. £&gt;r} which is given
by

Let [j] dénote the idéal generated by the (third degree) polynomials

{(2[D})\e) Eei]

Let l2 be the idéal [1] + [2] + [3] + • • • + [s], i.e. the sum of the ideals [j]. Let /3 be
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the idéal generated by the linear forms

2/(A)[A]
1=1

where / is any one of the following fonctions:

jt-l ;=2s+l

where the integers m, and n, satisfy

THEOREM. 77*e cohomology ring H*(ZS) is naturally isomorphic to

Furthermore the isomorphism is induced by the map which assigns to each variable

[Dt] the cohomology class [£&gt;,] 6 H2(ZS) which is dual to the divisor D,.

The homomorphism 4&gt;*:/f*(Z5)-*/f*(Zs_1) is easily described by its action

on the generators [D,]. Let o:Zs^&gt;Zs dénote the involution which is induced

by exchanging the (labelling of the) coordinate axes, L^ and L^-i (where
Ps L,2s ® L25-1). (This corresponds to an involution, which we also dénote by a,
of H W, and which is given by multiplication by -1 in the last coordinate.

THEOREM {continuée). The image of the class [D,] under the homomorphism
&lt;P* is

«A
otherwise

§6.1.2. Cohomology of Ms. The rational cohomology ring of Ms is an algebra

over the cohomology H*{@*s) of the flag manifold 98i and it is generated by the

(degree 2, commuting) dual classes to the boundary divisors DXt D2,..., Dr. In
the notation of §6.1.1 above, we define ideals Ju J2, and J3 in
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H*(^; Q)[DU Dr] as follows:
(a) /, is the idéal generated by the monomials [D,J[D,2] • • • [Dlk] such that the

vectors Df|, D,2, Dlk do not form a simplex in 2.
(b) For each y (1 &lt;y &lt; s) let [y] dénote the idéal generated by the polynomials

where c&apos;(/}) dénotes (§6.11) the chern class of the tautological bundle P} of
2-planes over 2FS. Let J2 be the idéal

Js [ï] + [2] +¦¦¦ + [*]

(c) Let /* be the idéal generated by the first degree polynomials

É(/(A)[A])-c&apos;(/\2P;)
/ 1

where / is any one of the following functions:

and by the first degree polynomials

É(/(A)[AD -c\L,)
i l

where / is any one of the following functions:

a; (where 2s + l&lt;y&lt;n)

THEOREM. 77ie cohomology ring H*(MS) is naturally isomorphic to

H*{9s)[Du...,Dr\l[{Jx+J2 + h)

Furthermore the isomorphism is induced by the map which assigns to each

variable [Dt] the cohomology class [/),] of the divisor D, KxK Dta KxK
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Remark. The cohomology ring H*(9,;Q) is the subring of
Q[XU f Xn]/(S) which is invariant under the exchanges X2l-i*+X2t (for
1&lt;i&lt;5), where (5) is the idéal generated by the elementary symmetric
functions.

§6.1.3. Outline of proof. The proofs will occupy the rest of this chapter. First we
give a différent présentation for the cohomology of Zç by introducing new
divisors, ô] and ô? and by showing that Zs has the cohomology of a toric variety
with one codimension 1 orbit for each divisor in the collection {Dn ô}, ôf}. This
is done by generalizing (§6.2) Danilov&apos;s construction ([D]) for the cohomology of
a toric variety, and then by verifying (§6.3, 6.4, 6.5, 6.6, 6.7) that Zv satisfies the
axioms of Danilov. Then (§6.10) we find a formula for the cohomology classes

represented by the new divisors, à) in terms of the cohomology classes

represented by the codimension 1 orbits D, of the G, action on Zv. Substituting
for thèse classes gives the formula of theorem 6.1.1. Finally, in §6.11 we &quot;twist&quot;

the cohomology of Zs over the cohomology of the flag manifold 3&lt;s to obtain
theorem 6.1.2.

§6.2. The space Zv has the cohomology of a toric variety

§6.2.0. Although Zs is not a torus embedding, it can be associated to an R.P.D.
of Euclidean space, and the method of Danilov can be used to présent its

cohomology. Since this construction works in a much more gênerai setting than
that of toric varieties, we will formulate the procédure in gênerai.

§6.2.1. Définition of the ring Q[D]/(1 + /). Suppose Z is a complète nonsingular
complex algebraic variety, and Du D2f. Dr are irreducible divisors in Z. Let
F be the group (under multiplication) of regular invertible functions on the space
2° Z — UA&gt; modulo the constant functions. Then Fis a free abelian group of
some rank, m. From this data we can form a ring and a homomorphism to H*(Z)
as follows: Let Q[D] dénote the polynomial ring in the formai variables [D,],
[D2],.. [Dr]. Let / c Q[D] be the idéal generated by the monomials

[DJfDJ • • • [Dlk] for which the intersection Dh D Dl2 D • • • n D,k is empty. Let

/ c Q[D] be the idéal which is generated by the linear forms

ÉordDf(/)[A]

for each / € F. Consider the ring Q[D]/(1 -h /).
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PROPOSITION ([D]). The association which assigns to each divisor Dt the

cohomology class which is dual to its fundamental class, induces a ring
homomorphism

In the next 2 sections we will develop Danilov&apos;s criterion that this be an

isomorphism.

§6.2.2. The cône décomposition of Hom(r,R). Let V Homz(/\ R). Each
divisor D, defines an (intégral) vector Dt e V by

A(/) ordD&lt;(/)

Fix f e F. For any Dt, we hâve ordD( (/) e Z. If this number is 0 for ail Dt, then /
is a constant function. Since F is contained in the lattice of intégral functions on
the set {Du Dr}, it is free of rank &lt; r.

For each collection Dtl, Dl2, Dtk of divisors such that their total intersection

is nonempty,

we can define a cône of positive convex combinations of the corresponding
vectors, i.e.

§6.2.3. Proposition ([D]). Suppose that
(1) rank (F) dimc (Z)
(2) The cônes c(Dl{, Dlk) form a simplicial rational polyhedral

décomposition É of the vectorspace V.

(3) The number of cônes c{Dlx, Dlk) of maximal dimension is equal to the

Euler characteristic of Z
(4) //*(Z;Q) is generated by the cohomology classes which are dual to the

fundamental classes of the divisors D\, D2, • Dr.
Then the homomorphism Q[D)/(I + /)-&gt;//*(Z; Q) is an isomorphism.

Remark. Although this resuit is not stated explicitly in [D], it is équivalent to
this analysis for the cohomology of a torus embedding.
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§6.3. Application to Zs

§63.1. In the variety Zs we consider the following list of divisors:

(a) D\y D2,. Dr, the (closures of the) codimension 1 orbits of the Gs

action on Zs

(b) ôi=fi-\5])
(C) ôf /i&quot;1(ô?)

where ju :Zs--&gt;rï*=i P2 is the map of §2.3 and §5.9, and where

^ p2 x P2 X • • • X ôJ X • • • X P2

(the ô7 appearing in the ith factor). (Recall from §5.8 that ôl is the closure in P2

of the set of symmetric matrices l such that a 0, while ô2 is the closure of

the set of such matrices with c 0).

§6.3.2. Proposition. The collection of divisors Du Dr&gt; ô\,... ,ôj,
àh - • • &gt;

ô2 (in the variety Zs) satisfy the hypothèses of Danilov&apos;s theorem (§6.2.3),
so the cohomology ring of Zs is isomorphic to Q[D, ô1, ô2]/(I + /).

Proof The proof of this proposition will cover sections 6.4, 6.5, 6.6, 6.7, 6.8.

§6.4. The vectorspace V generated by F. Let us dénote by Zf} the set

(to distinguish this from Z°S ZS-
Since Z™ consists entirely of nondegenerate quadrics, the éléments can be

represented (modulo multiples) by symmetric matrices with s 2 x 2 blocks

h,-i b, \
\ aj

and with /î-2s 1x1 blocks, (a;) (where 2s + l^/^n). Since the quadric is

nondegenerate, the déterminant of each block is nonzero. We hâve removed the

ô[ and the ôl2 so the numbers a, are nonzero.

PROPOSITION. The group F of regular invertible functions on Z™ is the free
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abelian group generated by the following n + s — 1 fonctions:

Proof. This follows immediately from the following more gênerai statement:

LEMMA. Let Sx, S2, S, 6e irreducible hypersurfaces with irreducible

équations f\y f2, ft in an affine space Am. 77ien f/ie group of invertible fonctions
on Am — US*» modulo the constants, w f/ie /ree abelian group generated by (the
classes of the) f.

Proof. The proof is clear by unique factorization of rational functions and the

description of the regular functions on Am - {JSt.

Remark. We hâve chosen certain fractions as generators, in order to préserve
Us equivariance. This will become important in §6.6.

COROLLARY. Property (1) of Danilov&apos;s lemma (6.2.3) is satisfied by the

collection of divisors {Dn ôlJf ôj}, and the vectorspace V* has a basis given by the

functions {An Fn Gn £,}.

§6.5. Lemma on simplicial décompositions. The following lemma will be the
main technical tool for verifying Danilov&apos;s property (2).

Suppose ôc.V—*H is a surjective homomorphism between two real vec-

torspaces. Fix a simplicial R.P.D. Û of H and a single closed cône co e Û.
Suppose the remaining one dimensional cônes in H - œ are given by the positive
multiples of certain rational vectors {/c,, kly kr). Suppose a collection î of
cônes in V is given, with a partition of the one dimensional cônes into two
disjoint collections, {A,, Àr} and {rj]} rjs} which satisfy the following
properties:

HYPOTHESIS 1. The set â~\co) is a union of cônes in ît {rjly r/J are
the one dimensional cônes in Sr\â~l((o)t and É H â~l(a&gt;) is a simplicial
décomposition of â~l(co).

HYPOTHESIS 2. The projection à defines a one to one correspondance
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between the one dimensional cônes {Ai, A2,... Ar} in É and the vectors
{kuk2&gt;. ,kr], i.e. each À, contains a (unique) vector vlekl such that
à(vt) k,.

HYPOTHESIS 3. Let {wïf w2, h&gt;5} dénote rational vectors which gen-
erate the one dimensional cônes {rfu rj5} in É n &amp;~\œ) and suppose that

/ cz {1, 2,. r) and / c {1, 2,.. s) are subsets. Then the collection of vectors
{vn Wj | i e /, / €/} span a cône in 21 if and only if the following two conditions
hold:

(a) there is a single closed cône in Û which contains ail the vectors

{£(1;,), à(wf)\ieIJeJ}

(b) The positive combinations of the vectors {w,} form a cône in the given
R.P.D. of à~\o)).

LEMMA. If a collection of cônes 2 in V satisfy hypothesis 1, 2, and 3 above,
then they form a simplicial R.P.D. of the vectorspace V.

Proof. First we will show that the cônes c form a décomposition of the space
V, i.e. every nonzero point p eV has a unique représentation as a convex
combination of a collection of the t/&apos;s and w&apos;s which satisfies the conditions (a)
and (b) above. For any point p e V, the image â(p) lies in a unique cône of the

décomposition Ûy so it has a représentation

tel k

(for some subset /c{l, 2, ...,r} and vectors y* in the one dimensional faces of
o)), and the numbers at are uniquely determined. Therefore, p — 2a,v, e â~1(o})
so it has a unique représentation,

(for some subset /c{l,...,s})asa convex combination of a subset of the

vectors {wlf..., ws} which span a cône. The vectors vn wp (for i e /, jeJ) span
a cône in Ë because hypothesis 3 is satisfied.

Now we will show that this cône décomposition É of V is simplicial, i.e. if the

vectors {vh,..., vtm, wh,..., wJn) satisfy conditions (a) and (b), then they are
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linearly independent. But suppose sortie linear combination vanishes,

Salvl + ZbjWj 0

By applying â we see that a, 0 (since the vectors {à(vt)} are linearly
independent modulo the à{w})). However the vectors {vv;} span a simplicial cône
in V, so the b} 0 also.

In the same way we see that the cônes in É are disjoint.

§6,6. Four cône décompositions. We wish to apply lemma 6.5 to the cônes in the
set S in V (§6.2.2, §6.3.2) to see that it is a simplicial cône décomposition. For
this we will associate vectorspaces and cône décompositions to each of the
varieties in the following diagram (which was studied in §5.9.1),

W&apos;ciî &gt;ZS

ir &lt;= n p1 —? fi p2

We will describe a combinatorial relationship between the corresponding cône
décompositions. First we describe a simplicial cône décomposition Û of the space
H FE=i U2 which corresponds to the variety Ilf=i P2.

The quadrics which lie in the open subset P°° P2- ôl - ô2- dP2 are

parametrized by the (multiples of the) symmetric matrices f
J with a ^ 0,

c =£ 0 and ac-b2± 0. The functions F (ac- b2)/a2 and G cla form a basis of
the group of regular invertible functions on P00 (modulo the constant functions),
and the orders of their zeroes and pôles on the above divisors are:

ordôi (F) - 2 ordôi (G) - 1

ordô2 (F) 0 ordô2 (G) 1

orda(F) l orda(G) 0

Thus the variety P2 of complète quadrics in P1 is associated to the following
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* *f

DIACiRAM

We will dénote the vector (—2, —1) by ô1, the vector (0,1) by ô2, and the vector
(1,0) by d.

DEFINITION. Let Û be the product cône décomposition of the space
H nf=i R2 and let œ be the s dimensional cône in Û which is spanned by the
standard basis vectors (1,0) in each copy of R2, i.e.

where 3t (0, 0,..., dn 0,..., 0) e (M2)5.

Recall that in §6.2.2 we hâve associated a cône décomposition Ë of the

vectorspace V corresponding to the variety Zs. In §5.3 we hâve associated a cône
décomposition S of the vectorspace V corresponding to the toric variety T,

together with a cône preserving homomorphism a:V-*H Us, where H is

decomposed (by a collection of cônes Q) into quadrants. (Unfortunately the
coordinates of oc are denoted ocXy a3,.. ar^-i). Notice that co is a union of
cônes in Q. We define I1 to be the set of cônes in I which are mapped by a into
the closed quadrant a). Notice that the vectors which span the cônes in 2*1 are the
ones associated to the divisors in the open set Cs (ir)&quot;1(A1)5. By §5.10, thèse

vectors are in natural one to one correspondence with the boundary divisors Dt in
Zs. The following facts are easy to verify: (notation as in §6.4).

Fact 1: The subgroup of F (the regular invertible functions on Z00) which is

generated by Ft and G, is the pullback (by jm) of the regular invertible functions on
UUi P00 (ie. they form a basis for the vectorspace H).
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Fact 2: The éléments An Fn and E} in Tare invariant under the action of the

subgroups

,0,(i i)

in the various s blocks of Gs. Thèse invariant functions, when restricted to the

diagonal torus T a Z° generate the group of characters of T (i.e. they form a

basis for the vectorspace V*).

Remark. The diagonal conics in Zs are the intersection T ffiZ^ and so

the diagonal quadrics in H)=ï P2 are the intersection

V,-i /

Thèse fit in the following diagram

f
(X)

Thus we hâve four lattices of regular invertible functions modulo constants,

î î

r(T) +*- r(n p2
00

where the vertical arrows are injective and the horizontal arrows are surjective,
by fact (2) above.

The one dimensional cônes in É According to §6.2.2 and §6.4.2, the one
dimensional cônes in ï are given by the positive multiples of the (three kinds of)



396

vectors,

C DECONCINI ET AL

(1 &lt; t &lt;

ordDi(f)

as / varies over the basis éléments (§6.4) for the group F of regular invertible
functions on Z™. Thèse orders are computed in the following matrix:

A,
F,

E,
G,

Dk
as for T

&gt;0 as for T
as for T

0

ôi(
1&lt;

-2-

-1-

ô(i, k)
0

ô(i, k)

ôl
0
0
0

1 • ô(i, k)

ô\
-1

- 2ô(i,
-1

- ô(i,

1)

1)

(where 1 if i /c and is 0 if i ^ A:).

Proof. By the géométrie description of the open set As t/5 x Csy which was

given in §5.10, and the fact that the functions An Fn E, are Us invariant, it follows
that for any function/on this list, we hâve

which gives most of the first column in the above table. The fact that G, vanishes

on Dk follows from the fact that G, is invertible outside 8} U S? and that every
divisor Dk meets this complément. The computation of columns 2 and 3 is easily
performed by restricting to the open set Z&quot; which meets the divisors ô{. In this

open set the coordinates an bn are homogeneous coordinates and ôj has the

homogeneous équation a^-i =0, while ôf has the homogeneous équation a2l 0.

An inspection of the functions gives the above calculation.
Consider the combinatorial correspondence (§5.10) between the T-stable

divisors Dt H Cs in Cs and the G5-stable divisors D, in Zs. Corresponding to each

divisor we hâve a vector in V and in V (respectively). This correspondence
extends to a unique linear embedding V-*V because of the above calculation. It
identifies V with the subspace of V which is generated by the vectors £&gt;,

{T-stable divisors in C\} «-» {Gs-stable divisors in Zs}
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The map â.V^H takes V to the subspace H czH which is spanned by the §t.

We obtain a diagram of vectorspaces

&quot;| 1* and cônes J J

H -s-*// W Û

§6.7. Proof of property (2) of Danilov

PROPOSITION. The cônes â\ï-*Û of §6.6.2 satisfy the hypothèses of
lemma 6.5 and therefore they form a simplicial décomposition of V {where the

spécial cône (o e Û is the s dimensional cône which is spanned by the unit vectors
(1, 0) in each copy of R2).

Proof. We will show that
(1) â~l((o) is a union of cônes in È, and that Énâ~1(a)) is a simplicial

décomposition
(2) For each one dimensional cône in H - co, there is a unique one

dimensional cône in É which lies over it
(3) For any choice of subsets / &lt;z {1, 2, s}, / c {1, 2,. s}, K cz

{1, 2, r} the collection of divisors

{6lô*,Dk\ieI,jeJ,keK}

hâve nonempty intersection in Zs (i.e. they span a cône in É) if and only if
(a) the divisors {5J, ôf, ii(Dk) \i el, j eJ, k e K} hâve nonempty intersection

in llf=i P2 and

(b) the divisors {f D Dk \ k e K} hâve nonempty intersection in t
Proof of (1). It is easy to see that â~{(œ) is a union of cônes in É: thèse are

precisely the cônes in X c î which lie over the positive quadrant q)^l{(o)czH. In
particular, they form a simplicial décomposition of â~l((o).

Proof of (2). This follows directly from the computation of the matrix (§6.6).

Proof of (3). This is straightforward, since the divisor Dk projects (in each P2

factor) either to dP2 or to ail of P2, and the pattern of intersections of the divisors
9P\ ô1, and ô2 is given by the diagram in §5.8.
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§6.8. Proof of property (3) of Danilov. We must count the number of maximal

cônes in Ë.
Notational Remark: Since the s projections to the coordinate axes, V-&gt; R are

labelled by the roots ocXi or3, ot^-u we will dénote the corresponding
projections V-*U2 by àx&gt; â3,. &amp;2s-\-

Each maximal cône in Ë projects to a maximal cône in Û. Thèse project to
maximal cônes in each U2 factor, and there are 3 such maximal cônes: span
(ô1, ô2), span (3, ô1), span (3, ô2). Consider the set â~~l{(û) in V which we call
the (y-quadrant. Since the eo-quadrant is in the image of 0* we may identify it
with a (generalized) quadrant of the vectorspace V. For any subset le
{1, 2,... 1} we define the corresponding (closed) corner of the co -quadrant to
be

{p e ôc-\(û) | oc2l.x{p) 0 for ail i e /}

Now suppose that c eË is a maximal cône. We dénote by c&apos; the unique largest
cône in c H â~1(w) (where c dénotes the closure of c). This lies in some smallest

corner F of the co quadrant, which in turn corresponds to some subset

/ c {1, 2, s}. For each / € / we hâve,

because à2l-i(c) is a maximal cône in R2 which does not contain 3 as a face. On
the other hand, if i | /, then

spanfd, ô1)

We conclude that the number of maximal cônes ceîsuch that c&apos; is the maximal
cône in cnâ~1(co) cornes to 25~171. Furthermore, the corner F has (n -
|/|)!/(25&quot;171) maximal* cônes c&apos;. This is because the vector subspace of V spanned
by F is decomposed into cônes according to the cône décomposition of the toric
variety 7j/, which has (n —1/|)! maximal cônes, divided equally among 2*~171

generalized quadrants isomorphic to F. Also, there are II corners F of



On the geometry of quadrics and their degenerations 399

codimension |/|. In summary, the number of maximal cônes in É is

as desired.

§6.9. Proof of property (4) of Danilov. We hâve seen (§5.11) that Zs has a

paving by even dimensional (algebraic) rational cells such that the closure of each

rational cell is a union of proper intersections of some collection of divisors in the
list

{Du...,Dr, ô\9 ...,ô], Ô2U...,Ô2}

But the rational cells form a basis for the rational cohomology of Z5, so the

cohomology classes of the above divisors must generate the cohomology of Zv.

§6.10. Proof of theorem 6.1.1. In this section we will solve for the cohomology
classes [&lt;5J] in terms of the cohomology classes [Dp], and then substitute into the

équations (§6.2.2) for the relations in H*(ZS).

§6.10.1. Lemma. In H*(ZS;Q) the following relations hold:

where the sum is taken over ail codimension 1 orbits Dp of Gs on Zs such that for
each i (1 &lt; i &lt; s) we hâve

H.{DP) 3

Le.,

Proof of Lemma. In the cohomology H*(P2) we hâve the following relation:
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This can be seen from the R.P.D. (§6.6) of M2 which is associated to P2. Each of
the regular invertible functions on P2 — ô1 — ô2 — 3 gives a relation in P2, which
(for the functions F and G) read

G(d)[d) + Giô&apos;ftô1] + G(&lt;52)[&lt;52] 0

or

It follows that, in H*(ZS) we hâve the relations

where /v.Z5 —»P2 is the composition of ju with the projection to the ith factor.
Now compute juf([3]): For each codimension one Gs orbit D on Zs we hâve

and therefore there are numbers r; such that

where the sum is taken over ail D} such that a2l-\(Dj) &gt;0, where r; is given by

However, it turns out that the numbers r} are ail equal to 1 since the vectors D}

are the minimal lattice vectors such that cc^-iiD^el. and ar2l_i(£&gt;,)&gt;0. (see

§5.3) •

§6.10.2. Completion of the proof. The substitution (§6.10.1) gives rise to a

surjective ring homomorphism,

• • •, Dr, ô\f. ôl ôl..., ô*]-Z&gt;Q[Du Dr]
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and we will show that &lt;P{1 + /) (Ix +12 + /3). First we show that 4&gt;(/) Ix + /2: If
a collection of vectors {Da, &lt;5)j, ô*}a€AtpeBtY€C do not form a cône in 2&quot; (and
hence give a relation in /), then there are two possibilités:

(1) the vectors {Da}a€A do not form a cône in S
(2) there is an index i (where 1 &lt; i &lt;s) such that

(a) both 6} and ô2 are présent in the collection and

(b) some Da in the collection projects (under ju,) to 8P2.

(see §6.7 and §5.10 for this combinatorics). In case (1) we hâve one of the

generating functions in the idéal Ix. In case (2) we hâve one of the generating
functions in l2 for the following reason: If jw,(Da) dP2 then [^[(^[A*] 0

(since ô^ô^ dP1 0). Substituting from §6.10.1 for [ô}] and [ô2] gives

(where the sum is taken over those Dp such that a2l-i(Dp) &gt;0), which is one of
the generating éléments of /2.

Now consider the linear relations &lt;P(J). Each of the functions An Fn Gn E}
gives a relation in /. The G, hâve already been considered in §6.10 and give

The remaining 3 types of relations can be read from the matrix of §6.6: we only
need to substitute &lt;5f \1[DP]. Since the vectors Dt are éléments of V, we hâve

ordDk/&lt;= ordDfcnf (Ftr\T)

according to the table in §6.6. In other words, in order to compute ordDa for the
functions An Fn or Ep we can restrict thèse functions to the torus embedding.
This gives rise to the following relations:

At: 2ord0.(—Wj + tf-ai-O (lsi
oc \ ax i

F, : 2 ordD. (-^W] -26{ 0 (1 si

E, ¦ 2 ordDa i^)[Da] -ô\ 0 (2s + 1 &lt;; s n)
oc \Q\J
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adding équations (Ft) to twice (At) gives

F&apos;, : S ord^ (m^)[Da] -ô\
\ (l(l /

The relations (F/) and (£;) are now équivalent to the following: For any
collection of integers m, (l^i^s) and n} (2s + 1 &lt;y &lt;aï) such that

we hâve

So

y=2$ + l /

Taking logarithms to pass to Lie algebra notation, we hâve
whenever

provided

and thèse are the generating functions of the idéal /3.

§6.11. Proof of theorem 6.1.2

§6.11.1. We will apply the theorem of Leray-Hirsch ([Bol], [Bo2]) to the fibre
bundle n\Ma-*&amp;s, using our computation (§6.1.1) of the cohomology of the

fibre, Zs. Recall that the flag manifold 2FS consists of ail orthogonal direct sum
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décompositions,

C i] ffi f2 ffi &apos; &apos; &apos; ffl i j W Lj2s +1 © * * * © ^n

and therefore the planes Pt and the Unes L} are tautological vectorbundles over ^.
The cohomology classes [Da] e H2(ZS) are restrictions of classes [Da] e H2(MS),
where

Da KxKsDa czKxKsZs M,

It follows that the cohomology of Ms is generated (over H*(^)) by the classes

ÂJ}, and we hâve surjections

H*(9s)[Dl9 Dr] ~^+ //*(Ms)

It follows that the kernel of ic is ïx + /2 4- 73, where /j is the unique idéal such that
/

§6.11.2. The idéal Jx. The vectors {/),,, Dl2, DtJ do not form a cône in 2 if
and only if the divisors {Dh, Dl2,. Dlk) hâve empty intersection in Z5, if and

only if the divisors {Dh, Dl2,. Dlk} hâve empty intersection in Ms. Therefore
the idéal ïx is/^

§6.11.3. The idéal J2. Fix j with 1 &lt;/&lt;5. We will show that if ar2/_1(Dp)&gt;0,
then

where the sum is taken over ail Dk such that a2j-\{Dk) &gt;0, and where c1 and c2

are the first and the second Chern classes of the tautological two dimensional
vectorbundle, /&gt;-* 9S. Consider the space KxKsP2 of ail pairs ((F, L), g) where
(P, L) is an orthogonal direct sum décomposition of CM as above, and where Q is

a complète quadric in the plane Pr This contains the submanifold KxKsdP2 of ail
direct sum décompositions

C Pi © • • • © L&gt;2j-\ © L2j © * &quot; * © ^5 © ^2s+i © &quot; * * © Ln

(which is the same as the manifold 9S except that we hâve broken the two
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dimensional space Pt into two one dimensional spaces). Let i:KxKsdP2-*KxK
P2 dénote the inclusion and let v dénote the normal bundle of this inclusion. The
bundles Pt on 9a pull back to bundles (which we also dénote by P}) on KxKsP2.

SUBLEMMA. c\vf 4i*((c1(P/)2 - 4c2(Py)).

Remark. The advantage of this sublemma is that it gives cl(v) in terms of a

vectorbundle which is pulled back from KxKP2.

Proof of sublemma. First we show that the normal bundle v is T ® T, where
T is the bundle of tangents to the fibre of the projection Jï°i:KxKsdP2-+ 9S.

Note first that the normal bundle of dP2 in P2 is 7, &lt;8&gt; Tx where Tx is the tangent
bundle of dP2 because

(a) 3P2 is the image of the diagonal A under the quotient mapping

P1 x P1 -* P2 P1 x PVt

where the involution t switches factors,
(b) The normal bundle of 3P2 in P2 is thus the quotient TJr where

Tx normal bundle of A in P1 x P1 s tangent bundle of A

s tangent bundle of 3P2

(c) For any Une bundle L, if t:L~»L dénotes multiplication by — 1, then the

quotient L/r is isomorphic to L ® L.
The same argument applies to the fibres of the projection KxKsdP2~+ $FS

It is easily seen that

where § is the tautological Une bundle on KxKsdP2 which is associated to the

fibres of n ° i. The relation

gives
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SO

4(c\P])2-4c\P)))

which proves the sublemma. Now consider the following fibre square:

U{Da}

KxK 3P2 &gt; KxKP2

i
where the union U {A*} is taken over ail Da such that fi,(Da) KxK$dP2 (i.e.
(x2j-i{Da) &gt; 0). We will use {Dp} to dénote the homology class in Hdtm0p)({J Da)
représentée! by Dp, and [D] to dénote the cohomology class represented by D in
H2{MS). We shall also use the notation {KxKidP2} to dénote the fundamental
homology class in H*(KxKsdP2). We use &quot;dual&quot; to dénote the Poincaré duality
isomorphism. Now compute

dual (2 [Da])2 ¦ [£&gt;„]) (S [Da]f ¦ U{DP})
\ a &apos; \ oc f

L(l*ft dual (i*{KxKidP2})2 ¦ {Dp})

iT.(£;(f duali*{KxKs3P2})2 ¦ {Dp})

h(H?(cl(V)f-{Dp})

î.(fiïi*(4cl(P,)2 - 16c2(P,)) • {Dp})

L&lt;J*iiîUc\PF - 16c2(P,)) ¦ {Dp})

iïï(4cl(Pl)2-\6c2(Pl))-h({Dp})

dual(4c1(P,)2-16c2(P;))-[Ôp]

as desired.



406 C DECONCINI ET AL

6.11.4. The idéal J3. (This section is parallel to that in [DP3] so we will only
sketch the calculation). The character f — a2j-\ + a2j (l^j^s) of Ks induces a

line bundle A2(Pj) on 3FS K/Ks. For each of thèse characters we hâve a relation

because the function / gives a section of A2(P;) whose zeroes and pôles are
contained in the divisors Da (and cl(A2Pj) cl(Pj)). Similarly the character g a}

(2s + l^/&lt;«) induces a section of the line bundle L; on 9S and this gives a

relation

Thèse are the generators of the idéal J3.

§6.12. Proof of theorem 6.1.2. Assume the integers m, and n} satisfy 21m, +
Erij 0. Then the character

induces a line bundle

Lf ë(A2PÊ)m&apos;® è L}
i l /=2s + l

on 3^ ^l//C5. For each of thèse characters we hâve a relation

because the function / gives a section of L^ whose zeroes and pôles are contained
in the divisors Da. Thèse are the generators of an idéal which coincides with /3
because of the following lemma:

LEMMA. In V* Hom (V, M) the following two subspaces are equal:

Wi span {a2l + a2l-i, ay 11 &lt;i &lt;5, 2î + 1 &lt;/ &lt;n}
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{*
n s n -\V/i \iV V&apos;-iiV niZj mi\a2t + a2i-\) + 2j niaj 2j lmi + 2j nj U

|
i l j 2s + \ i l )=2s+\ J

Proof of lemma. In V* we hâve the relation Er=iû, =0, so dim(W,)
n -s -1. Clearly W2czWl. In fact, it is the image of the map &lt;P&apos;Mn~s-1-* Wl

which is the restriction to the subspace E, 2my 4- Ey «; 0 of the map &lt;P:Un~s—»

W, which is given by

s n

&lt;P(mlf m2f ms, n^+i, nn) 2 w*(fl2/ 4- a2/_i) -f Zj n}a}

We claim 0 is injective. But

ker (4&gt;) {(m, n) \ mx m2 • • • m, n^+i •••=«„}

because the only linear combination of the a&apos;s which is 0 in V* is E a,- If we let b

dénote the value of m, n} then (since 2 E rn, 4- E n} 0) we hâve (n — 5)6 0,
i.e. b 0.

§7. Larger Compactifications

In [DPI] a family of &quot;larger&quot; compactifications of X° (the symmetric variety
of nondegenerate quadrics) is defined. In this chapter we give the cohomology of
thèse larger compactifications. The proofs of the results hère are exactly parallel
to the proofs of the analogous statements for X, so we will omit them.

§7.1. Identifying the larger compactifications. Let T a X{) dénote the subset of
completely diagonal nondegenerate quadrics (i.e. the nonsingular symmetric
matrices, modulo multiples of the identity). The torus embedding t is a

compactification of T which is associated to the rational polyhedral décomposition
2* of the vectorspace V, as in §5.3. The R.P.D. Z is nonsingular in that each

closed cône o is simplicial and the one dimensional cônes in the faces of o form a

basis (over Z) for the lattice of one parameter subgroups of T which lie in the

plane of o. It is also Zn-invariant, i.e. it is invariant under the reflection through
the hyperplanes a, ay (for i **=;). For any ^-invariant simplicial nonsingular
R.P.D. 2&quot; which refines the R.P.D. I, the associated toric variety is a

&quot;wonderful&quot; T-equivariant compactification T&apos; of T, and there is a canonical

T-equivariant morphism W : T&apos;—» T.
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THEOREM. [DPI] Given Z&apos; as above, there is a wonderful G-equivariant
compactification X&apos; of X°, such that T&apos; is the closure in X&apos; of T, and there is a

G-equivariant surjection

(where X is the variety of complète quadrics) whose restriction to T&apos; is the

morphism W.

§7.2. The spaces Zv and M,

DEFINITION. Given such a compactification, and an integer s (with
l&lt;5&lt;[w/2])let

PROPOSITION. The variety Z&apos;s is the closure in X&apos; of the set of nondegener-
ate quadrics which are diagonal with respect to the orthogonal direct sum
décomposition into coordinate planes and Unes,

G&quot; P\ © &apos; * * @ Ps ® h&gt;2s +1 © &apos; &apos; * © Ln

This proposition gives rise to natural maps Z&apos;S-*Z&apos;S-X and therefore to a tower
of spaces

(where m [n/2]) with an action of F, 2&quot;T x In-2s on M&apos;s. We also obtain by
composition a map

from which we define
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for any subset /c:{l, 2, ...,$}. Define the toric variety

where p ju&apos;(Ôo) dénotes the basepoint of UUi P2 (as in §2.5).

§7.3. Statement of results

THEOREM. The homomorphism

H*(X&apos;;Q)-»H*(M&apos;m;Q)

is injective. The image is precisely those cohomology classes which, for each s,
(0 &lt;s &lt; m) pull back to rs-invariant classes in H*(M&apos;S; Q). The ideals

filter Hl(X&apos;)&gt; and there are canonical isomorphisms

a+b=i

§7.4. Cohomology ring structure of Ms. The cohomology ring of M&apos;s is also
described as in §6.1, to which we now refer for the notation to be used in this
section. The linear map a : V-&gt; H Us takes cônes in 2&quot; to cônes in £?, since I&apos;

is a refinement of the cône décomposition 2&quot;. (The components of a are called
#1, ar3,. a^-i). Let D[y D&apos;r dénote the primitive generating vectors of
the one dimensional cônes in 2&quot; such that, for each i (with 1 &lt; / &lt;5) we hâve

There is a one to one correspondance between the vectors D] and the
codimension one orbits D] of Gs on Z&apos;s.

THEOREM. The cohomology ring H*(M&apos;S; Q) is naturally isomorphic to
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where

(a) J[ is the idéal generated by the monomials [D[][D,&apos;J • • • [D,&apos;J such that the

vectors D[xf.. D[k do notform a cône in 2&quot;

(b) J2 is the idéal generated by the polynomials

f S [D1])2 ~ 4CHP,)2 + 16c2(Py) • [£&apos;] [E&apos;] 6 j&apos;}.

j&apos; {D&apos; \Dr is a codimension 1 orbit and a2j_l(D&apos;)&gt;0}

and where j is allowed to vary over the numbers 1, 2, s.

(c) Jf3 is the idéal generated by the first degree polynomials

where f is any one of the following functions:

&lt;*2i-i + &lt;*2t (where 1 &lt; i &lt; 5)

and by the first degree polynomials

where f is any one of the following functions:

a} (where 2s 4-1 &lt;/ &lt; n)

Furthermore, the isomorphism is induced by the map which assigns to each

variable [D&apos;t] the cohomology class dual to the divisor KxKsZ&apos;s.

Chapter 8. Problems and conjectures

§8.1. Intersection homology. There is a vector bundle E over X and a map
m:£-»pgl(n) to the Lie algebra of PGLW (C) called the &quot;moment map&quot;. The
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space E is the closure in Xxpg\(n) of X{) which is embedded by sending a

quadric Q to (Q, L) where L is the (Killing) orthocomplement to the stabilizer

algebra of Q. The map m is projection on the second factor. We conjecture that
the Décomposition Theorem [BBD] applied to the map m gives the same

décomposition of H*(X; Q) H*(E; Q) as in theorem 1.4. We calculated this for
n &lt; 4, and the effort to explain the surprising resuit led to the research of this

paper.

§8.2. Perfect filtration of X. A rationally perfect filtration of X is a filtration
by closed subsets $ Y., c Y{) a Yx c • • -Yk X such that H*{X, Q)
(BÎ=oH*(Yn Yt-{;Q) (i.e. such that the spectral séquence from the right side to
the left dégénérâtes). For each stratum Xt of X, we define the height to be

E [(g, + l)/2] where the integers g, are the lengths of the gaps in / (a gap is a

string of consécutive integers j with l&lt;/&lt;n that are not in /). We conjecture
that if Y, is the union of ail strata of X of height &lt;i, then the filtration is rationally
perfect, and the resulting décomposition of the cohomology of X coincides with
that of Theorem 1.4. Most filtrations by closed unions of strata are not perfect.
This conjecture (and our first main theorem) would be trivial if Y, — Y,_, had a

paving by affines, but this is not the case.

§8.3. The varieties Zs and toric varieties. In §6.2, we prove that the variety Zs of
diagonal complète quadrics has the same rational homology as a spécifie toric
variety t. We conjecture that Zv has the same rational homotopy type as T&gt; and
that t is a specialization of Zs as an algebraic variety.

§8.4. Other symmetric varieties. We conjecture that the rational cohomology of
every complète symmetric variety has a direct sum décomposition like that of
Theorem 1.4. As remarked in the introduction, there are such décompositions for
the complétions of the adjoint groups [DP3]; in this case there is only one
summand. In gênerai, there should be a summand for every class of associated

parabolic subgroups corresponding to strata on which the maximal torux acts with
fixed points. Thèse strata are classified in [DS].

§8.5. Cells. The variety X has a décomposition into complex affine spaces, or
cells, by the theory of Bialynicki-Birula. It would be interesting to compute their
dual cohomology classes explicitly in our formalism.

§8.6. Schubert calculus. In [DP2] is defined a universal ring for the Schubert
calculus of X°. It is the limit of the cohomology rings of the compactifications X&apos;

of §7. This ring can be defined intrinsically on X° by a certain équivalence of
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cycles. It would be interesting to exhibit cycles m X° which represent basis

éléments in this ring, and to détermine which cohomology classes can be

represented by positive cycles in X{\

§8.7. Contact formulae. One might analyze conditions of oscillation (as one does

for tangency in the contact formula) and study the corresponding cohomology
classes in the appropriate compactifications.
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