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On weakly positive unit forms

HAaNs-JoacHIM vON HOHNE

In this paper we examine integral quadratic forms g : Z" — Z of the shape

q(x) = Zl x§+ Z qabxaxtr

a<b

We call such a q a unit form and say that q is weakly positive if g(x) > 0 whenever
x>0 (i.e. whenever x #0 and x,=0 for a=1, ..., n). Our main purpose is to
work out a criterion for weak positivity of unit forms.

This question arises variously in representation theory, in that of quivers [G1],
partially ordered sets [D], matrix problems [Ro] and certain classes of finite-
dimensional algebras [Br], [HR], [Bol, Bo4]: In each of these articles, the
considered structure £2 has up to isomorphism only finitely many indecomposable
representations iff some unit form g, naturally attached to £2, is weakly positive;
if this is the case, the indecomposable representations correspond bijectively to
the positive roots of g, i.e. to the x e N” such that go(x) = 1.

Given a unit form g on Z" and a nonempty subset [ ={i,<---<i,}c
{1,...,n}, we denote by ¢’ the quadratic form gd, where d,:Z™— Z" maps
e; € Z™ (the k-th natural basis vector) onto e;, € Z"; we shall call such a form g’ a
restriction of q. According to Ovsienko [Ov], q is called a critical form if q' is
weakly positive for each /& {1,...,n} though g itself is not. With this
definition, a unit form q is weakly positive iff ¢ has no critical restriction g’.

So it remains to examine the critical forms. In §1 we show that they can be
constructed by certain elementary transformations from the unit forms attached
to the extended Dynkin graphs A,, D,, E, E; and Eg. This has already been
observed by Ovsienko [Ov], but his proof is scarcely accessible (for partial results
see [HV], [Ri]). However, the construction is practicable only in case A, and D,.
To complete the classification of critical forms of type E,, 6 =n =8, we introduce
in §2 another construction, which proceeds by induction on the number of
variables and so relates critical forms of different extended Dynkin types.

As an application in representation theory, we obtain in §3 the criterion of
Kleiner-Nazarova—-Roiter [K, NR] characterizing representation-finiteness for
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On weakly positive unit forms 313

partially ordered sets and, for certain classes of finite-dimensional algebras, a
variant of the criterions of Bongartz [Bo3] and Ringel [Ri]. In particular, we have
a new approach to the lists of Bongartz [Bo2] and Happel-Vossieck [HV],
avoiding computers.

The results of this paper are parts of the authors doctoral thesis. This version
was written while the author was visiting the University of Ziirich supported by
the Deutsche Forschungsgemeinschaft. He would like to thank P. Gabriel for his
suggestions concerning the presentation.

1. Critical forms and extended Dynkin graphs

1.1 With each unit form q:Z"—Z with coefficients g, (=qf(e, +e,) —
q(e;) —q(e,)) we associate the weighted graph Q, given by the vertex set

{1, ..., n} and an ‘integrally weighted’ edge a 22 b for any two vertices a # b.
We visualize Q, by drawing

- .
~qa full edges a_: b ifg,, =0 and

rrrrr

., broken edges a i b if g, >0.

\\u-

Conversely, a weighted graph Q with vertex set Q= {1, ..., n} and weighted

edges a 2¢ b for a#b gives rise to the unit form go:Z"—>Z, qy(x)=

n_o1x2+ Yoy QupXaXp. So unit forms and weighted graphs correspond bijec-
tively. We call a unit form q indecomposable if any two vertices a #b are
connected by a sequence a =aq, a;,...,a,=b such that q, ,#0 for i=
1,...,s.

In this paper, a special role is played by the unit forms g, where A is an
extended Dynkin graph (Figure 1). The g, can be characterized as those
indecomposable unit forms which are nonnegative (i.e. g (x)=0 for all x),
degenerated and satisfy g ., =0 for all a # b. Moreover, each g, has a radical of
the shape rad g, =Zy, where y, >0 (i.e. y,,>0 for all a); the coordinates of
ya are the numbers given in Fig. 1 [Bou]. In particular, each g, is critical.

1.2 In order to investigate the remaining critical forms, consider an arbitrary
unit form q on Z" and a pair (a, b) of distinct indices such that g,, = 1. Denoting
by T,, € Gl (n, Z) the elementary transformation which fixes e, for ¢ # b and maps
e, onto e, — e, (= reflection of e, at the hyperplane orthogonal to ¢,), we obtain a
new unit form ¢’ =¢qT,, with q,, = —1; we shall call T,, the inflation of q with
respect to (a, b).
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A / - n +1 vertices, n =1,

~ ~ . e .
D, R n + 1 vertices, n =4,
' 1/ 1
1
I
: i
Eg 1—2—3—2—1
; i
Eq 1—2—3—4—3—2—1
~ 3
E I
8 1—2—3—4—5—6-—4——
Figure 1

Clearly, there is no critical form on Z" if n = 1. In case n = 2 the critical forms
are those of the shape xi + x3 + mx,x, where m = 2.

THEOREM (Ovsienko). Let q be a critical form in n =3 variables. Then
there exist an extended Dynkin graph A and an iterated inflation T of q such that
ga=qT. Up to isomorphism, A is uniquely determined by q.

Proof. Set V={xeR"| x>0 or 0>>x}, extend q to R" in the obvious way
and denote g(x, y) = q(x +y) — q(x) —q(y).

1) We claim that ¢g(x)>0 whenever O0#xeR"\V. First let xedV
(=boundary of V). If x €e Z" or x € Q", the assertion is clear. In general, g(x) =0
by continuity. The equality g(x) =0 would imply Ag(x, e,) + A*=q(x + Ae,) =0
for small values of A, hence g(x, e,) =0 if x, > 0. Since the equations g(x, e,) =0
have integral coefficients, there would exist a vector y € Q" such that y,>0=
q(y,e;) if x,>0 and y,=0 if x,=0; hence ye dVNQ" and ¢q(y)=0, a
contradiction. Now let x e R"\(V U dV) and choose z € Z" such that z >>0 and
q(z)=0. The line z + Rx intersects dV in z + Apx #0 and z + A,x #0, where
Ao=max, o {—2,/x,} <O<A, =min,, 4 {—2./x,}. Therefore q(z + Ax) =
q(z) + Aq(z, x) + A’q(x) is >0, =0 and >0 for A = 4, 0 and A, respectively. This
implies q(x) > 0.

2) The set C,={x e Z"\(V U 3V) | g(x) =1} is finite. (Indeed, denoting by
ll-I| the Euclidian norm on R”, the set C' = {x e R"\V | ||x|| = 1} is compact, and
with & =min,.c {g(x)} >0 we have |lx|I>=|Ix||* &~ 'q(llx]| "' x) =& 'qg(x) =&~
for each x € C,.) If T, is an inflation of g, then q' =qT,, is critical (by 1)),
and T, induces an injection C, — C,, which is not surjective since e, —e, €
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C,\T,»(C,"). Consequently, in a sequence of unit forms g =q°, q', . .., g° where
q" is obtained from ¢~ by an inflation, the unit forms are pairwise distinct.

3) Since n =3, we have 0<q(e, xe,) =2 q,, for all a #b. Thus, there are
only finitely many critical forms on Z", and we can choose a unit form q' =qT
where T is an iterated inflation of q involving a maximal number of inflations. We
then have —1=¢q,, =0 for all a # b. Since g’ is not positive, the weighted graph
Q, contains an extended Dynkin graph A as a full subgraph. But since ¢’ and g4
both are critical they coincide.

4) If A and I are extended Dynkin graphs and A:Z*— Z" is an isomor-
phism such that g, =qrA, then A and I are isomorphic. Indeed, remove from A
a vertex a and from I' a vertex b where y,, =y, =1 and denote the resulting
Dynkin graphs by A’ and I'' respectively. Since A(rad q,) =rad g, A induces an
isomorphism A':Z*— Z" such that g, =qrA’'. In particular, the (symmetric)
coefficient matrices of g, and g, have the same determinant. It follows that
A'=T" and therefore A=T. qed.

1.3 Theorem 1.2 shows that each critical form ¢ is nonnegative and that
rad q is generated by a positive vector y satisfying y =y, where Zy, =rad g,. (If
T,, is an inflation of g then rad qT,, is generated by T.'y =y + y,e, >y.) Since
the coordinates of y, are bounded by 6 we obtain:

COROLLARY. A unit form q is weakly positive iff q(x) >0 whenever x >0
and x, = 6 for all indices a.

Remark 1. The classification of all critical forms on Z" is equivalent to the
classification of all pairs of a positive unit form on Z"~' together with a strictly
positive root. Namely, if g is a critical form on Z", the radical generator y >0 of
q has some coordinate 1, say y, =1 (as seen above, y =y, and y, has some
coordinate 1). Now, q(y —e,) =q(—e,) =1 and q(e,, e,) = —q(e,, y —e,) for all
a #n. This shows that the restriction g’ = q'"""! of g has a strictly positive
root y’ =y — e, (considered as an element of Z"~'), and that ¢ can be recovered
from q' and y' by q(x' +x,e,)=q'(x')+x:i—q'(x', y)x, for all x' +x,e, €
Z"~' x Z. Conversely, given a positive unit form ¢’ on Z"~! and a vector y’ >0
such that ¢'(y') = 1, the same formula for g yields a nonnegative unit form on Z"
with radq =Z(y' +e,).

Remark 2. Each indecomposable nonnegative unit form g on Z" with
rad g = Zy # 0 is Z-equivalent to g, for some extended Dynkin graph A. Further,
if radg,=7Zy,, then |y,|=|ya, for all a and a suitable numeration of the
vertices of A; in particular, |y, | =1 for some a,.
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Indeed, we can assume y > 0 (otherwise consider gA where A € Gl (n, Z) fixes
e, if y, =0 and maps e, onto —e, if y, <0). Now consider a sequence of unit forms
9=9° q', q°,... where ¢""'=q'T,,, q., =1, radq"=Zy" and y}, >0 for
r=0,1,2,...; then y’<y'<y*<.-. and the q°, q', q¢% ... are pairwise
distinct. Since all coefficients satisfy —2 = q;, =1, the sequence must stop, say at
q' with radq’' =Zy’, y'2y". We then have q., =0 whenever y.>0 and a # b.
But y, >0 for each a. (Otherwise, since inflations preserve indecomposability,
there are indices b and ¢ such that y,=0, y.>0 and ¢, .<0. We infer
q'(ep, y')=Xic1qbaYe= Xy:>09baya <0, contradicting y' eradq’.) Thus Q, is
an extended Dynkin graph (1.1). To prove the last assertion we can assume y >> 0
(otherwise consider a suitable restriction of g). In this case, the assertion has
already been seen.

2. Critical diagrams

2.1 For a further combinatorial analysis of critical forms we need some more
notation.

We call (Q, y) a weighted pair, if Q is a weighted graph (in the sense of 1.1)
and y is an element of Z<¢". If moreover the components of y are >0, have no
common divisor and satisfy 2y, + X,.» Q.»y» =0 for each a € Q,, (i.e. y e rad q),
we call (Q, y) a diagram. Each critical form g with rad g = Zy and y > 0 gives rise
to a diagram (Q,, y); but not every diagram is of this shape.

(Q,y) (Q, y) T
ya T ya‘kyb a
I a
' \ LN \ c#a,b
' / Yo e / Ye arbitrary
! a+B Tab B
Yy b

Figure 2

Two weighted pairs (Q, y) and (Q’', y') are called Z-equivalent, if g, =q,T
and y' = T~y for some isomorphism T :Z%"— Z2; if T maps the natural basis of
Z9 onto that of Z<", we call (Q, y) and (Q’, y') isomorphic. Of special interest
are the transformations 7, (1.2) and its inverse T,,, which fixes e. for ¢ # b and
maps e, onto e, +¢,. If a, b € Q,, satisfy Q,, = 1, we call T, an inflation of (Q, y)
and write (Q, y)T., =(Qq,7 Tany)s if Qu=-1 and y,>y,, we call T,, a
deflation of (Q, y) and write (Q, y)T ., = (Q,,71..» T.sy)- Under these conditions,
(Q, y)T,, and (Q, y)T,, are diagrams if so is (Q, y). What changes in (Q, y)
under T,, is shown in Figure 2.
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We call a diagram (Q, y) critical, if the unit form g, is critical or,
equivalently, nonnegative of corank 1. In this case, (Q, y) is Z-equivalent to
some well determined extended Dynkin diagram (4, y,) (1.2); we shall say that

(@, y) is of type A. Clearly, diagrams obtained by inflations and deflations of
critical diagrams are critical of the same type.

_ THEOREM. 1) A diagram is critical of type A, iff it is isomorphic to
(An’ y/i,,)' _
2) The critical diagrams of type D,, n Z 4, are those with n + 1 vertices shown
in Figure 3.

1\2* “2/1
1/ \1
TN L TN LT
S S NG

!/

I} —

//

\..

.\1 .\

Figure 3

For the proof, we have to determine all diagrams which can be obtained by
iterated deflations from (4, y,) where A=A, or A= D,. Clearly there is no
deflation of (A4, y; ). The examination of the case A= D, is left to the reader as
an easy exercise.

2.2 The deflation algorithm used to determine the critical diagrams of type
A, and D, is not appropriate in the general case, because there are too many
critical diagrams of type E,. However, the combinatorial complexity displayed by
the diagrams of type Ej is related to the linear subgraph

6——5 4 3 2 1
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of Eg, and we can attain some simplification if we examine the effect of deflations
restricted to this subgraph.

For this, we call a non-empty set A of vertices of a weighted pair (Q, y) a
branch, if its  elements admit a lexicographic indexation
a,,ay,...,0Q1,,Qy2,...,0Qa,...,0d1;,-..such that:

a) Q. = QO forall c ¢ A if a, b are joint-vertices of A, i.e. have index-length
one: a=a;, b =a,
b) Qp=-1ifa=a;. ,and b=a

ij-pq

¢) Op=1ifa=a,. ,,andb=a,. ,, qFr
d) Q., =0in all cases a € A, b € Q, not mentioned above
e) y. — 1 equals the number of successors of a in A, i.e. of vertices of the form

> 1 -
amr=l ifa=a,..,

Qij...pq,---q,

Figure 4

The link of A is by definition the family (Q,).con4 Where a is a fixed
joint-vertex of A, and the ramification is the sequence m = (m,, m,, . ..) where
m, denotes the number of vertices a;.; with index-length s. For a given
cardinality |A| of A, the branch with the smallest ramification (in the lexico-
graphic ordering) is the twig:

/ 1 11 111
B

Figure 5

PROPOSITION. Let a, b belong to a branch A of (Q, y) with ramification m.
a) If Q. =1, A is a branch of (Q, y)T,, with the same link as in (Q, y) and
with ramification <m.
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b) If Qup = —1and y,>y,, A is a branch of (Q, y)T, with the same link as in
(Q, y) and with ramification >m.

Proof. Evident on the pictures: In case a), if a =a;..,, and b =a;..,,, the
index-length s of b increases by 1, and the first changing component m, of m is
replaced by m, — 1. In case b), if a =a,,..,, and b = a;;..,,, the index-length s of b
decreases by 1, and the first changing component m,_, of m is replaced by
m,_, + 1. In each case, the joint-vertices of A different from b coincide in (Q, y),
(Q, ¥)T,, and (Q, y)T, respectively. ged.

The proposition shows that each branch A of (Q, y) can be transformed into a
twig by iterated inflations located in A. Of course, the indexation of the vertices
of A in the resulting weighted pair will depend on the performed inflations. But
the isomorphism class of the new weighted pair depends only on (Q, y) and A
(see Figure 4 and Figure 5). We shall say that it is obtained from (Q, y) by
stretching the branch A. Up to isomorphism, there are 1, 2, 4, 9, 20 and 48
branches which can be stretched into a twig of cardinality 1, 2, 3, 4, 5 and 6
respectively.

2.3. PROPOSITION. If two branches A and B of (Q, y) intersect, then AU B
is a branch of (Q,y), unless |A|,|B|>1, ANB={a} and a is the only
joint-vertex of A and of B.

Proof. Suppose that a; .., =b; .. for some lexicographic indexation of the
points a,,... of A and bj,... of B. If s #1, say s <t, we have a;,..;_ = b;,..;_, for all
re{0,...,s—1}, a; is a successor of b; .., in B, and so are all joint-vertices of
A by 2.2c) and d); this implies Ac B. If s=t, we have a,.,; =b;. . for all
pe{l,...,s}; in particular, a; = b, , i.e. the sets A and B of joint-vertices of A
and B intersect. In case |A U B| > 1, the set of successors of points of AN B in A
and B coincide (for instance, if a’ is an immediate successor of a€e AN Bin A, we
have Q,,,=—1 and Q. =0 for all c e (AU B)\{a}, hence a’ € B by 2.2a)); it
follows that A U B is a branch with set of joint-vertices AU B. In case |[AU B| =1
but |[A N B|>1, the unique joint-vertex a € A N B has some common immediate
successor in A and B; therefore all immediate successors of a in A and B coincide
(2.2c) and d)) and A = B. In the remaining case |[AUB|=1and A=4 or B =B,
we clearly have Ac Bor Bc A. ged.

The proposition implies that any two distinct maximal branches of (Q, y) are
disjoint, or else they intersect in a unique joint-vertex. Consequently, if we
stretch all maximal branches of (Q, y), the isomorphism class of the resulting
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weighted pair (Q, y) does not depend on the order of stretchings (indeed, two
inflations T, and T.,, commute if a#*d+#b+#c, and a branch A remains
unaffected by T, if ¢, d ¢ A). Moreover, each branch of (Q,y) is a twig.
(Namely, denote by A,, ..., A, the maximal branches of (Q, y); they become
twigs in (Q, 7). Assume that B is a branch of (Q, §) having at least two
joint-vertices. If BNA,= for all ie{1,...,r}, B is a branch of (Q, y) not
contained in a maximal one, contradiction. If BN A, #(J for some i, BUA,; is a
branch of (Q, y) by the above propositon, hence a branch of (Q, y); but
BUA,;#A,, contradicting the maximality of A;.) We shall say that (Q, y) is
stretched, i.e. (Q, 7) = (Q, 7), or the stretched form of (Q, y). For instance, up to
is9m0rphism’ (An, y/i,.)’ (l-j4’ yf)4): (Dns1s yﬁnu)) (E6: yE‘(,)’ (E7, yE7) and
(Es, yg,) are the stretched forms of 1, 2, 3, 10, 30 and 48 diagrams respectively.

2.4 The notion of a branch does not essentially simplify the deflation
algorithm, which is based on the edges a—b such that y, # y,; but it reduces the
classification of all critical diagrams to that of the stretched critical diagrams. In
order to determine these, it is more convenient to proceed by induction on the
number of vertices. This is possible with the following ‘funnel-construction’.

Consider a bunch of a weighted pair (Q, y), i.e. a set U of at least two
pairwise disjoint twigs. Each twig I € U has one joint-vertex, which we denote by
a;. From (Q, y) and U we construct a new weighted pair (Q, y)Y =(QVY, yY) as
follows: Cut off all twigs I € U with the exception of the joint-vertices a;. For the
remaining vertices of Q, set QY =Q,, if a or b is not of the form a,,
QY. =Qua+1if I, JeU and yY=y, for all a. Finally, add a twig U with
cardinality —1+ ¥,.y|I| and joint-vertex a, such that Q7 , = -1 if [ e U and
Qﬁ’ub =0 if b € Qo\U,ev I. The pair (Q, y)Y is a diagram iff so is (Q, y), and the
numbers of vertices of Q and QY are related by |QY| = |Qo| + |U| — 1> |Qy|.

Q QY
By et —— ar
\x \x\
{3 aJ ’3+4 aJ aU-——-—- 0000000
1
"
ag—- g

Figure 6

EXAMPLES. The bunches shown in Figure 7 give rise to the diagrams

(An+l1 y/i,,ﬂ)’ (D4’ yl-)4)y (Dn+l)yl.),,+1); (E&yé(,)’ (57,)’&7) and (Es,}’Eg)
respectively.
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Figure 7

THEOREM. Each stretched critical diagram not of type A, is isomorphic to
(Q, y)Y for some diagram (Q, y) and some bunch U.

Proof. 1t is enough to prove the following assertion: Each critical (Q’, y’) not
of type A, contains a branch A such that Q;, € {0, —1} for all b€ Q)\A, a€ A,
and that the set Ay ={beQ)\A|JaeA, Q;,#0} has at least two elements.
(Indeed, if (Q', y') is stretched, A is a twig, and we can construct (Q, y) and U as
follows: Delete from Q' the twig A. For the remaining vertices of Q, set
Qpe=0 if bg Ay or c¢Ap:, Qp.=0p—1if b, c€e Ay and y, =y, for all b.
Finally, graft a new twig I, with joint-vertex b and cardinality y, for each b € A,
andset U={l, |beAy}.)

Clearly, the assertion is true for extended Dynkin diagrams. In general, we
proceed by induction on the maximal number of deflations producing (Q’, y') out
of an extended Dynkin diagram. So assume that the assertion holds for (Q’, y')
and let i, jeQq be such that Q;=—-1 and y;>y;,. We must show that
(Q",y")=(Q', y')T; contains a branch A’ with the required link.

In case i, j € A, we can choose A’ = A (Proposition 2.2).

Next, consider the case i, j¢ A. If i ¢ Ap,, we have Q;,=0forallaeA;s0 A
and its link remains unaffected by T;. Now assume that i € A,.. This implies

j ¢ Ag; otherwise Q' would contain the critical subgraph i/]\a for some

a € A, which is impossible. Thus, for each joint-vertex a € A and each b € Ay\{i}
we have the situation of Figure 8 in Q' and Q" respectively. We infer that A' = A
is a branch of (Q", y") with Ay = Ay U {j}.

Now assume that j¢ A buti€ A, i.e. j € Ay and i is a joint-vertex of A. Since
0<y;<y,, the set A’ of successors of i in A is non-empty and therefore is a
branch of (Q’, y') with Ay, = {i}. As in the preceding case, A’ is a branch of
(Q", y") with Ay = {i, j}.

Finally, we must consider the case i¢ A but jeA, i.e. ieAy and jeA
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N g

a a+B

N
e

wde = = = e m— T

Figure 8

(=set of joint-vertices of A). Then we have A # {j}. (Otherwise, since (Q’, y’')
is a diagram and Ay # {i}, we would have 0=2y;—(y; — 1)~ Xpea, y»=
yi—=yi+1=Ypuys=y;—yi, contradicting y; >y/.) Thus, for all be A, \{i}
and all a € A\{j}, we have the situation of Figure 9 in Q' and Q" respectively.
We infer, that the subbranch A’ of A consisting of A\{j} and all successors of
points of A\{j} is a branch of (Q”", y") and that Aj.= A, has the required
property. qed.

o

- - -
=4

Figure 9

2.5 Theorem 2.4 raises the question of describing the critical bunches of a
given diagram (Q, y), i.e. the bunches U such that (Q, y)Y is critical.

Given a bunch U of (Q,y), we say that an inflation T,. of (Q,y) is
U-admissible if the vertex b belongs to no twig of U. In this case, U is also a
bunch of (Q, y)T,., and the diagrams ((Q, y)T,.)" and (Q, y)"T,. are isomorphic.
In particular, U is critical in (Q, y) iff it is critical in (Q, y)T,..

The following proposition implies that only critical diagrams admit critical
bunches.

PROPOSITION. Let U be a bunch of a diagram (Q, y). Then U is critical iff
there is an iterated U-admissible inflation T of (Q, y) such that (Q, y)T is extended
Dynkin and U critical in (Q, y)T.

Proof. Clearly the condition is sufficient. To prove necessity, note first that, if
(Q, y)Y is critical, each sequence of composable U-admissible inflations of (Q, y)
must stop, since so does the sequence of associated inflations of (Q, y)¥. So we
can assume further on that (Q, y) admits no U-admissible inflation. We must
show that this forces (Q, y) to be extended Dynkin. If Q,. was =1 for some
vertices b, ¢ of O, we would have Q,.=2, or else b and ¢ would be the
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joint-vertices of two twigs of U; in each case, we .would have Qf. =2, which is
impossible if (Q, y)V is critical. Thus, Q,. =0 for all b#c¢. Since y is a
radical-vector of q, with strictly positive components, all connected components
of O must be extended Dynkin graphs [BMW]. Now assume that P is one of
these components but not the only one, and denote by V the set of twigs of U
lying in P. Then P¥ or P (in case |V|=1) can be identified with a full weighted
subgraph of QY supported by a proper subset of QY. So we have qovu(x) =0 for
some vector x # 0 supported by this proper subset. Contradiction. qed.

Remark. If UcV are bunches of (Q, y) and V is critical, then so is U.
Indeed, we can assume V =UU {A} for some branch A of (Q, y). Then
W = {A, U} is a bunch of (Q, y)V. If a and b denote the joint-vertices of A and
U, we have (Q,y)""T,,=(Q,y)". Hence, if (Q,y)V is critical, then so is
(Q, y)YY and therefore (Q, y)".

2.6 If we want to use our funnel-construction to classify the critical diagrams
with n vertices, we need the critical bunches of all critical diagrams with <n
vertices. On the other hand, we only list the stretched critical diagrams. So we
have to describe the critical bunches of an arbitrary diagram (Q, y) in terms of
the stretched form (Q, 7).

We first notice that each twig I of (Q, y) is contained in exactly one maximal
branch of (Q, y) by Proposition 2.3. This again becomes a twig of (Q, y) and
contains exactly one bud (= twig of cardinality 1) of (Q, y), which we denote by
I. If U is a bunch of (Q, y), we denote by U the bunch of buds of (Q, y) formed
by all  where I € U.

PROPOSITION. A bunch U of a diagram (Q, y) is critical iff U is critical in
(Q,y) and |U| = |U|.

Proof. Let a—a'— - - - be a twig I of U with joint-vertex a and cardinality >1.
If we set I'=I\{a} and U’ =(U\{I})U{I'}, Figure 10 shows that (Q, y)" =
(Q, )V T, T, T.a, Where d denotes the joint-vertex of the branch U’ of (Q, y)Y'
(b is the joint-vertex of some other twig of U, and c is some vertex belonging to
no twig of U). We infer that U is critical iff so is U’. So we may assume further on
that U is a bunch of buds.

Now suppose that (Q, y)Y is critical or that |U| = |U|. Then Q,.=0 for any
two buds {b}, {c} € U which lie in a common branch of (Q, y). We infer that we
can stretch the various maximal branches of (Q, y) using only U-admissible
inflations. In this way, U and U coincide, and (Q,y)” and (Q, 7)V are
Z-equivalent. qed.
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2.7 The Propositions 2.6 and 2.5 reduce the classification of all critical
bunches to the description of the critical bunches of buds U of the extended
Dynkin diagrams (A4, y,). These can be easily determined directly and are listed
in Figure 11 below. Indeed, our knowledge of the critical diagrams of type A,, and
D, reduces the examination to the case where A has =8 vertices. In these few
remaining cases, we expect the reader to determine himself when a produced
diagram (4, y,)Y is critical (for instance, use Remark 2.5, replace some buds of
U by twigs of cardinality >1 in the way suggested by 2.6, or consider iterated
inflations of (A, y,)Y). In the list, each pictured extended Dynkin graph A has
n + 1 vertices, the critical bunch of buds U is given by the encircled vertices, and
the symbol [A,,.|, |D..q|, ... describes the type of (A, y,)Y.

Using Proposition 2.5, we can describe the critical bunches of buds of an
arbitrary critical diagram (Q, y) of type D,. We remind that Q has one of the
shapes shown in Figure 12, where mixed edges ’\\/ are to be removed if r =1
or s =1. The critical bunches of buds U of (Q, y) are those satisfying the
following conditions: 1) Uc {{a;}, {a:+1}, {b;}, {b+:}} for some indices
0=i<r, 0=5j<s,2) U +n=9if ({a;}, {air1}} #U#{{b;}, {bjs1}}

2.8 Now we are ready to construct the stretched critical diagrams of type Eg,
E, and E;.

First note that, if (Q, y) is to be stretched, (Q, y) must be stretched modulo
U, i.e. each branch of (Q, y) which is not a twig must contain a twig of U. In
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particular, the maximal branches of (Q, y) of cardinality 2, 3 or 4 must have one

of the shapes shown in Figure 13; up to symmetry, one of the twigs with
underlined joint-vertex must be contained in U.

. 2 —1 . ,
./ 'B 1
. B o.___._‘l
. . B
e a 1 R
'.\3.__.2___1 \3/: :a :
e ~7 N\ 2y
.8 8 1 SE 1
1 PP
- : o :
\&4 3—2—1 .\64 ;7 >
i 3y . - \ . ,
. 1 s ]
B T B S )
R S L I bRy G e
. ' . ' 1 . '
, . . '
BNY BNy BN
B = = - BN\ B
Figure 13

2.9 In the following theorem we present the diagrams in a truncated form;
we encircle the joint-vertices of some twigs of cardinality >1 and cut off the rest
of these twigs. Further, to each diagram (Q, y) we attach a graph Gy, which has
the buds of (Q, y) as vertices (note that each twig contains exactly one bud) and
an edge A—B iff {A, B} is a critical bunch of (Q, y). Then each critical bunch of
buds of (Q, y) is the vertex set of some complete subgraph of G, by Remark 2.5.
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THEOREM. 1) Up to isomorphism, the stretched critical diagrams of type E
are those of Figure 14.

1 1
l I/l \\l '
\ 1 1

ll
1\1,/

/} //le 1/}\‘\1
:
' 1
1

Figure 14

The critical bunches of buds are the vertex sets of triangles 2. or of edges .__.
in the corresponding graph in Figure 15.

T ./ I\./l |\./l
== ] =2 =2
— ~

Figure 15

2) Up to isomorphism, the stretched critical diagrams of type E, are those of
Figure 16. The critical bunches of buds have cardinality 2. The corresponding
graphs consist of the full points and the edges of Figure 17.

3) Up to isomorphism, the stretched critical diagrams of type Ey are those of

Figure 18 and the diagrams of the shape (Q, y)V where (Q, y) is critical of type E,
U is a critical bunch and (Q, y) is stretched modulo U.

Proof. The construction of the stretched critical diagrams should be clear: In
case E;, we must determine all diagrams (Q, y)Y where (Q, y) is a critical
diagram with =6 vertices and U is a critical bunch of (Q, y) of appropriate
cardinality and shape (see 2.6, 2.7 and 2.8). In this way we have to examine 14
pairs ((Q, y), U); S of them yield nonstretched diagrams, and further 4 yield
stretched diagrams which are isomorphic to others. Similarly, in the case E, (Ey),
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we have to examine 86 (672) pairs, where 11 + 38 (13 + 194) are redundant. Thus,
in case Eg we obtain 465 stretched critical diagrams; but we have listed here only
those which are not isomorphic to (Q, y)Y for some (Q, y) of type E,.

Finally, we show how to compute the critical bunches of buds of the stretched
critical diagrams (Q, y) of a fixed type (E, or E;). We proceed by decreasing
induction on y. The induction basis, i.e. the case where Q is extended Dynkin,
has been treated in 2.7. If (Q, y) is not extended Dynkin, we choose vertices a
and b of Q such that Q,, =1. If (y,, y,) #(1, 1), say y, # 1, the inflation T,, of
(Q, y) is certainly admissible for each bunch of buds of (Q, y) (2.5); so the
critical bunches of buds of (Q, y) coincide with those of (Q, y)T,,, which are
known by induction because the ‘radical vector’ of the stretched form of (Q, y)7T,,
is 2T,y >y. In the remaining case y, =y, =1, we must consider (Q, y)7T,, as
well as (Q, y)T,,. Since no critical bunch of (Q, y) can contain both {a} and {b},
a bunch of buds is critical in (Q, y) iff it is so in (Q, y)T,, or in (Q, y)T,,. qed.

A complete list of the stretched critical diagrams of type E5 can be obtained
from the author upon request.

Below, we give the complete numbers of critical diagrams of the respective
extended Dynkin types:

A, 1
1 — 2 4 =
o, (in 75 & 021 o
E, 17
E, 142
Eq 1717

3. Applications in representation theory

In this section, we show how our list of critical forms involves the well-known
lists of Kleiner-Nazarova—Roiter [K, NR] and of Bongartz—Happel-Vossieck
[Bol], [HV]. These play a decisive role in the characterization of representation-
finite partially ordered sets and finite-dimensional algebras.

3.1 Let (S, =) be a finite partially ordered set. According to Drozd [D], S is
representation-finite (in the sense of Nazarova and Roiter) iff the unit form
gs(x) =x5+ Yaes X2 — Vaes XoXa + Lawh XaXp is weakly positive (x, denotes an
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additional variable). Now, g is weakly positive iff it has no critical restriction (see
the introduction). This induces us to pick out all those critical forms which can
occur as restrictions of unit forms of the shape gs, i.e. which themselves have
such a shape. This results in confirming the statement of Kleiner, Nazarova and
Roiter saying that § is representation-finite iff it does not contain a subset for
which the induced order structure is one of the following (compare our approach
with Ringel’s [Ri]):

o—e

*o—eo

*o—eo
*—o—o
o—o—e
*o—o
*—0—@—o—8
o—o

yd

*—o
*—eo—o—0

y

-

Figure 19

3.2 Now consider a finite-dimensional algebra A over an algebraically closed
field k and denote by mod A the category of finite-dimensional (right) A-modules.
Covering theory [BG], [G3], [BGRS] reduces the characterization of
representation-finite algebras to the case where there is a bound on the length of
sequences of nonzero noninvertible morphisms

5 fi- 5 h
M—>M_,~——> ... 25 M — M,=P

where all M; e mod A are indecomposable and P is projective; in this case we call
A prehereditary. Prehereditary algebras enjoy great popularity in representation
theory, because these algebras and a great deal of their indecomposable modules
can easily been constructed from combinatorial data (see [G2]).

Denote by S;,...,S, an exhaustive sequence of nonisomorphic simple
A-modules and consider the quadratic form g, :Z" — Z defined by

ga(x)= i (i (—1)' dim, Ext}, (S;, Sj))xix,-.

i,j=1 \I=0

LEMMA. If A is prehereditary, then q, is a unit form, and for all i, j we have
Ext} (S;, S;) = Exty (S;, S;) =0 or Ext}; (S, ;) = Ext (S, S;) =0.

Proof. Here and in the following, we denote by < the smallest transitive
relation on the indecomposable A-modules which satisfies X <Y if there is some
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noninvertible nonzero morphism X— Y. So, if A is prehereditary, there is no
cycle P, < X <P, involving the projective cover P, of some §,.

Note that Ext (S;, S;) # 0 for some />0 implies P, < P,. From this it follows,
that g, is a unit form (End,(S;)=k!) and that Extj (S, S;)#0 implies
Ext4 (S;, $;)=0. It remains to show that Ext} (S, S;)#0 also implies
Ext (S, S;) =0. Indeed, from Ext} (S, ;) # 0 and the Auslander—Reiten formula
dim, Ext (X, Y) = dim, Hom, (Tr DY, X) [Au], we obtain Hom,, (Tr DS,, S;) #
0, hence P, <TrDS;. We infer that 0=dim, Hom, (Tr DS, P)=
dim, Hom, (Tr DS, rad P,) Z dim, Ext} (rad P, S,) = dim, Ext (S, S;), where
rad P, denotes the radical of P.. qed.

3.3 According to Bongartz [Bol], a prehereditary algebra A is
representation-finite iff g, is weakly positive. Our purpose is to sift out a minimal
set of critical forms in which g, has a restriction (see the introduction) for each
representation-infinite prehereditary algebra A. For this, we consider the
weighted graph Q,, (see 1.1) and the quiver O, of A, given by the vertices
1,...,n and dim, Ext} (S, S;) arrows from i to j.

PROPOSITION. If A is prehereditary, then Q,, satisfies one of the following
conditions :

a) Q,, contains an edge of weight =-2 or a full weighted subgraph
isomorphic to A,, for some m = 1.
b) For each full weighted subgraph of Q,, of the form

a, ¢ as -
/ N, sz,
Ay----=-r====-=-s-cssssem-o-oo-o- a
the corresponding full subquiver of Q4 has the shape a,—a,— - - - —a, or
A€ a, € < Q.

Proof. Assume that b) fails. Then O, contains a full subquiver W (Figure 20)
which satisfies 0=5, <s,<---<s§,_;=s5,=:5, 1=t odd, and the following two

a, w as a

\c‘l / £ -
-3 g+ / x
a S, \Sz 1 \s,,lﬂ
& AN
s, S s
\ l/““l'l \ t

S1 St

Figure 20
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conditions:
1) (Q4.)aq =0 whenever a; # q; are connected by a path in W,
2) there exists a path

w.ap= b()

of O, which is not contained in W. (Note that there exists a path i—:-.-—j
whenever Ext} (S, S;)#0 (3.2).) Among all subquivers of 0O, with these
properties we choose one with a minimal number of vertices. We then have
0<s,, 5,.4<s, and the convex hull Q’ of W in QA (= full subquiver of QA
formed by the vertices x lying on some path ¢,— - -—x—---—g,) is the union
of W and of a quiver Q" with unique source a,, unique sink a, and such that
wn Q" = {ay, a,}.

Let A’ = eAe where e is the sum of primitive idempotents of A corresponding
to the vertices of Q’. Then g4 can be identified with the restriction of
qa to Z2 [Bol]. Further, since A is prehereditary, so is A’ (the functor
~®.4 eA:mod A’—>mod A preserves projectivity and is fully faithful). So we
can assume further on that A=A’ i.e. 0,=0".

Now assume that also a) fails. Since the full weighted subgraph of Q,, formed
by the vertices of W and o is not isomorphic to some A,, there is an edge of
weight =1 connecting vertices of w, i.e. Ext} (S, S ) #0 for some 0=i<j=r.

If j<r, i.e. if there is a path b;—---—b,_,, we consider the A-module M
given by the following representation of O, M,=---=M, =M, =k M; =
+--=M;z =Mp =id, and M, =M; =0 for all other vertices a and arrows & of
Q.. Using the notation of 3.2, we then have P, <P, <M <S, < Sy, (Where <
means < or =). Further S, <P, since 0# Ext}, (S,,, S, ) =Ext}, (rad P,, S5 ). So
we have a cycle P, <M < P,, which is impossible.

In the case j=r, let M' be the A-module given by M, =---=M, =k,
5,='"=Mj;=id, and M,= M;=0 otherwise. Let M" be the factor-module
of M’ givenby M; =---=M; =k, Mz , =---=Mj =id, and Mj=Mz;=

0 otherwise. Then clearly P, <P, <M'=<M". Further, we have §, (=S,) > M"
and Ext} (S,, M"[§,)=0 (since t>1 if i=0 and Ext} (S, S, )=0 for all
s,-1=m=s,). We infer that the natural map Ext} (S,,, S, )— Ext] (S, M") is
injective and obtain a cycle P, <M’ <M" <P, . Contradiction. qed.

3.4 Bongartz and Happel-Vossieck have produced well-known lists of
prehereditary algebras, whose quadratic form is critical [Bo2], [HV]. The
algebras of the list of Happel-Vossieck [HV], including the algebras of ‘frame’
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A, and the path algebra of the quiver -7 : - with at least two arrows, will here

~
be called BHV-algebras.

THEOREM. A prehereditary algebra A is representation-finite iff q, has no
restriction of the form q,- where A' is BHV.

Proof. By the result of Bongartz [Bol] mentioned in 3.3, the necessity is
clear. To prove sufficiency it is enough to show that if g, has no coefficient =—2
and no critical restriction of type A,, then each critical restriction g of ¢, has the
form g, where A" is BHV. Indeed, the Proposition 3.3 immediately implies that
Q.. — and therefore Q, — does not contain a full weighted subgraph of one of the

shapes shown in Figure 21 (-———— and -———— denote subgraphs of the form
a—a,— - + - —4a,, where m =1 and m = 0 respectively).
T N N
\/:\./ /\I/ \/‘ 'I \\\ b, " '\,\I/:
N X / \ | , ! _ N _ \\ i ;
\/ \\'/.\/ _l-_———__l \/-_\,
Figure 21

An inspection of the list of critical diagams (2.1 and 2.9) shows that the
diagrams (Q, y) where Q contains no such subgraph are isomorphic to (Q,,., y')
for some BHV-algebra A'. For the inspection, the following remarks might be
useful:

1) If Q contains no full weighted subgraph of Figure 21 then neither does the
weighted graph O of the stretched form (Q, y). (For instance, in Figure 14,
Figure 16 and Figure 18, only the first 4, 20 and 6 stretched forms respectively are
possible.) Further, if A is a branch of (Q, y) having a joint-vertex ¢ which lies in a

full weighted subgraph of the form / \ , then A is a sub-

branch of the branch shown in Figure 22 (compare [HV]).

2) If (Q, y) is critical of type E; and U is a critical bunch such that QY
contains no full weighted subgraph as shown in Figure 21, then Q itself does not
contain such a subgraph, and the two buds of (Q, y) lying in U (see 2.6) are
contained in two twigs whose joint-vertices are connected by an edge of weight
~1in Q. qed.

ANTO/ANTA

R R Y AT

Figure 22
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In case A is given by a graded tree [BG], the above theorem is already known
by the criterion of Bongartz [Bo2, Bo3]: A is representation-finite iff it contains
no BHV-algebra as a convex subalgebra eAe (i.e. where e € A is an idempotent
corresponding to the vertices of a convex subquiver of Q.,). It can be shown, that
our theorem also implies this stronger version.
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