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On trace forms of hilbertian fields

MARTIN KRUSKEMPER and WINFRIED SCHARLAU

1. Two conjectures

Let L/K be a finite separable field extension. With it we associate the trace
form which is the following symmetric bilinear form over K:

LXL—->K, (x, y)— Tr  x(xy).

This form will be denoted by Tr, x (1) or by (L). If P is an ordering of K, then
it is well known that sign, ((L)) = 0. More precisely, this signature is the number
of extensions of the ordering P to L. Given now a positive symmetric bilinear
form @ - that is sign, (¢) = 0 for all orderings P of K — one may ask: Does there
exist an extension L/K such that @ ~ (L). Here ~ denotes Witt equivalence. If
there exists such an L we call @ algebraic. In view of the methods used in [6], [7]
it seems natural to conjecture the following:

CONJECTURE 1. Let K be an hilbertian field (that is, a field for which
Hilbert’s irreducibility theorem holds). Then every positive form over K is

algebraic.
A special — perhaps more accessible — case of this conjecture is the following:

CONIJECTURE 2. Let K be a function field (that is a finitely generated
extension of transcendence degree >0 of an arbitrary field k). Then every positive
form over K is algebraic. (Note that K is hilbertian [4].)

The main result of [6] is the proof that conjecture 1 is true for algebraic number
fields. The proof proceeds in two steps: one is an application of Hilbert’s
irreducibility theorem, the other one considers field extensions given by ir-
reducible trinomials f(T)=T" + oT + .

The purpose of this paper is to show that these methods are sufficient to prove
the conjéctures in some interesting special cases, namely for

— hilbertian fields which are not formally real
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— function fields of transcendence degree 1 over R (or any real closed field)
— forms of dimension 1 and 2

- forms (ay, ..., a,) with all g totally positive.

In addition we will see that it is sufficient to prove the conjectures for
odd-dimensional forms.

It will turn out that one can combine the methods mentioned above in various
ways to get the desired results. Since our subject matter seems to be still
developing we include some of these possible alternatives.

We are very grateful to L. Brocker, A. Prestel, and W. Waterhouse for useful
remarks. In particular, Brocker pointed out to us that the crucial lemma 4 holds
for hilbertian fields. This allowed to prove corollary 1 in the present generality.
Exactly the same remark was made by Waterhouse. Prestel showed us his work
on real function fields [5]. Whereas it seems that our proof of his main result (our
corollary 5) is simpler than his, it should be noted that he gets more precise
results in this case.

2. Five lemmas

The purpose of this section is to construct explicitly a supply of “‘elementary”
algebraic Witt classes. The necessary field extensions L/K will always be given by
irreducible polynomials. To find these polynomials we will either use Hilbert’s
irreducibility theorem [4] or Eisenstein’s criterion. In the next sections we will
combine these elementary constructions to get our main results. One may hope
that it will be possible to realize more Witt classes by use of more sophisticated
explicit constructions (e.g. using polynomials with more nonzero coefficients).

We will consider only fields of characteristic not 2.

LEMMA 1. Let K be a field of characteristic p #0, 2 admitting a non-trivial
discrete valuation. Then for every A+ 0 there exists an extension L/K such that

<A> ~Tr <1>

Proof. (See [3] page 7.) Let & be a uniformizing parameter. Consider the
irreducible separable (Eisenstein) polynomial

F(T)=T" + An’T +

and let L =K[T]/f(T). Computation shows that the matrix of the trace form
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Tr.x (1) is the following (using the basis 1, 7, ..., T?7'):

0 --- 0Ax?
0 .
Ar?

This shows Tr, x (1) ~(A). O

Note that the upper left hand zero in the matrix is p € K, this makes the proof
work. We also remark that we will not use this lemma in what follows. It may,
however, replace the more difficult theorem 2 in the treatment of function fields
of finite characteristic.

LEMMA 2. If  is not a square in K then Tr,x (3a)=(a, ad) for a e K
and L = K(V9). In particular, (2,28) is algebraic.

Proof. Trivial computation. [

LEMMA 3. Let K be an arbitrary field, f(T)=T>+ aT + af an irreducible
polynomial over K and L = K[T}/(f(T)). Then

(L) - <1r 1, —6>

where 6 = a*(4*a + 5°B*) is the discriminant.

Proof. (See [1] V1.2.) We put aff = y and consider f(T)=T>+ aT + y. Let ¢
be a root of f(T) in L. Computation shows

Tr()=S, Tr()=0 Tr(?)=0, Tr()=0
Tr(t)=—4a, Tr(’)=-5y, Tr(®=0, Tr(")=0
Tr (¢%) = 402

Thus the matrix of Tr (1) is the following (Hankel) matrix

5 0 0 0 —da
0 0 0 —-4a -5y
0 0 —4a -5y O
0 —4a -5y O 0
—4a -5y -0 0 4o’
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Computation shows that the determinant of this matrix is 6 = 4%a° + 5°y*. The
form given by this matrix contains (5, —4a) = (5, —a) as a subform with
isotropic orthogonal complement. Therefore

Tr (1) ~ (5, —a, 5ad).

Using the above formula for 6 we see that 6 is represented by (a, 5), that is
(a, 5) = (6, Sad). Therefore

Tr (1) ~ (5, —a, a, 5, —=8) ~ (1,1, =8). O

LEMMA 4. Let K be an hilbertian field and let 6 € K. Then there exist
a, Be K such that f(T)=T+ aT + af is irreducible of discriminant 8. In
particular (L) ~ (1,1, —6) and all forms (1,1, —8) are algebraic.

Proof. First let B be an indeterminate X and put a = 4% 6 — 5°X*). Then
£(T, X) = T° + «(X)T + a(X)X € K(X)[T]

has discriminant 8 (up to squares). Moreover it is irreducible since it is an
Eisenstein polynomial with respect to an irreducible factor of the separable
polynomial «(X). Since K is hilbertian we can choose f3€ K such that
f(T)=f(T, B) is irreducible. Now we apply lemma 3. O

Remark. In order to prove lemma 4 one can avoid Hilbert’s irreducibility
theorem if one is only interested in algebraic number or algebraic function fields.
The lemma is proved for K = Q in [1] VI.2.8, but it is pointed out in [2] lemma 1
that the proof carries over to an arbitrary algebraic number field. In the function
field case one may argue as follows:

We consider first the special case where 6 = X is transcendental over k and
K =k(X). We choose an arbitrary B €k’ and o = X — 5°47*8*. By lemma 3 the
discriminant of f(T) is 6 = X in K'/K'? and f(T) is an Eisenstein polynomial with
respect to the prime a(X)=X —5°47*B* of k[X]. Since L is ramified exactly at
the primes a(X) and X of k(X) we get in fact infinitely many suitable field
extensions L/K (at least if k is infinite).

We consider now the special case 6 € k" and K = k(X) for some transcenden-
tal element X. We choose an arbitrary linear polynomial 8 = g(X) = X — 8, and
take o = a(X) so that

8 = 4*a(X) + S°B(X)*.
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By lemma 3 the discriminant of f(T) is é in K'/K"% Since a(X) has only distinct
roots, f(T) is an Eisenstein polynomial with respect to a prime divisor of a(X).
Again we get infinitely many suitable L.

In the general function field case we choose an intermediate field K, = k(X),
k = K, K having the properties of the field K above. Since K/K| is finitely
generated, one of the infinitely many fields L/K, constructed above will be
linearly disjoint from K. Then f(T) is irreducible over K. O

LEMMA 5. Let L/K be a separable extension of odd degree m. For any
0 € K’ there exists a A € L such that

Trux (A) ~(8).

Proof. This is well-known: Choose a primitive element x and define a “‘trace”
s:L—->Kbys(1)=---s(x""?)=0, s(x""")= 8. Then s(1) is given by the matrix

&
~(8)

. *
6
and s(1) =Tr (A) for a suitable A. O

3. Two theorems

Most of the results mentioned in the introduction follow from two basic

theorems. The first has been proved independently by Waterhouse [7] and the
second author [6].

THEOREM 1. Let K be an hilbertian field and @ an arbitrary form over K.
Then there exists a separable extension L/K and a A€l such that @ =
Trox(A). O

Separability is not explicitly mentioned in [6], but it is clear from the proof that
one can construct a separable extension L/K. As long as we are interested only in
the Witt class of ¢ we may alternatively replace @ by a Witt equivalent form
whose dimension is not a multiple of the characteristic. Then L/K is automati-
cally separable.

THEOREM 2. Let K be an hilbertian field and let € K™ be totally positive.
Then {8 is algebraic.
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Proof. We shall first show that for any n there is an extension L, /K such that
(L,)~2"%x(1) L(2"=1)Xx (-6).

This will be shown by induction on n. The case n =1 follows from lemma 4. Let
us assume we have constructed L,_,. By lemma 5 there exists A € L,,_, such that

Tr,,_x (A) ~(—6). By lemma 4 there exists an extension L,/L,_, such that
(L,)r,,~ (1,1, 4). Then

(Lp)xk~2X%(L,-;) LTr,, sk (A)
~2"x (1) L 2-R"'=1)x(=5).

By the Artin-Schreier theorem in the formally real case and trivially otherwise
there exists an n such that 2" X (1) represents 6. Since 2" X (1) is a Pfister form
we have 2" x (1) =2" x (§). Therefore (L, ) ~(5). O

Theorem 2 was first proved for algebraic number fields by Conner [2]. His
proof required some number theory, in particular the Estes—Hurrelbrink—Perlis
norm theorem. Our proof uses no number theory except that which is required to
prove Hilbert’s irreducibility theorem for algebraic number fields. Since theorem
2 is crucial for the proof of conjecture 1 for algebraic number fields, our
simplification of the proof of theorem 2 leads also to a simpler proof in the
number field case.

4. Five corollaries

The following corollary is the main result of this paper.

COROLLARY 1. Let K be an hilbertian field which is not formally real. Then
every form @ over K is algebraic.

Proof. Using theorem 1 we write @ =Tr,x (A) for a suitable L. By [4] L is
hilbertian. Since L is non-real A is totally positive and by theorem 2 there is an
extension M/L such that Tr,,,, (1) ~ (A). Therefore

Trpk <1> =Trpk <1> ~@. U

COROLLARY 2. Let K be an hilbertian field and ¢ = «,, . . ., «,) with all
«; totally positive. Then g is algebraic.
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Proof. Using theorem 1 we write @ =Tr, x (A). If P is an ordering of K it
has at most n =[L:K] extensions Q to L. Using our assumption sign, (@) =n
and the well-known formula

signy (9) = X signg (A)

Q\pP

we see that P has in fact exactly n extensions and that A is positive for all of them.
Now we apply theorem 2 in the same way as in the proof of corollary 1. O

COROLLARY 3. Let K be an hilbertian field and let ¢ = (a, B) be positive.
Then ¢ is algebraic.

Proof. By corollary 2 we may assume that é = «f8 is not a square. For
L = K(V8) we have ¢ =Tr,x (1a). Take an ordering Q of L, then & must be
positive with respect to Q. Hence a and 8 must have the same sign, necessarily
positive with respect to Q. Therefore j« is totally positive in L and we apply
theorem 2 in the same way as in the proof of corollary 1. [

COROLLARY 4. Let K be any field. If every odd-dimensional positive form
is algebraic, then every even-dimensional form @ + (—1, —1) is also algebraic.

Proof. By assumption y = (2)@ L (1) is algebraic. Therefore write y ~
Trx (1). By lemma 5 we can choose A€ L such that Tr, (1) ~(—1). The
element A cannot be a square because then one would get (—1) ~Tr, « (1) =
Tryx (1) ~ ¢ and therefore ¢ ~(2)(—1, =1} =(~1, —1). For M = L(V4) we
get by lemma 2

Trax (1) =Tr (2,24) ~ )y L(-2) ~¢. O

The trivial example of an algebraically closed field shows that the hypothesis
@ + (—1, —1) cannot be eliminated completely.

Our final application will be concerned with function fields in one variable
over the reals. We will use a few standard facts from the theory of quadratic
forms over such fields (see [7], [8]).

FACTS. Let K/R be finitely generated of transcendence degree 1.
(1) A quadratic form of dimension =3 is isotropic if and only if it is indefinite
with respect to all orderings.
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(2) Quadratic forms over K are classified by dimension, signatures, and
determinant.

(3) If X is the space of orderings of K and X=X, UX,, X,NX,=0, X,
open, then there exists f € K positive at X, and negative at X, (SAP-property).

A consequence of (1) is the following:
(4) Let @ be positive of dimension n=2m or n=2m—1, m>1. Then
p=mx (1) Ly. O

We deduce from these facts the following results stating that every form over K
has an essentially unique ‘‘dyadic development”.

PROPOSITION. Let K/R be finitely generated of transcendence degree 1 and
let @ be an odd-dimensional form over K. Assume dim (@) <2". Then there exist
6,eK,i=0,...,n—1 such that

n—1
w -~ ..L 2i X (6,’).

i=0
The 6;, i=1,...,n—1 are unique up to totally positive factors and &, = det @.

Proof. Adding hyperbolic planes we may assume dim(@)=2"—1. Let X be
the space of orderings of K and define

X;={PeX|signp(¢)=2"~1-2j}
so that we have a disjoint union of clopen subsets:
X=X()UX1 U--- UX2"——1'

Note that P € X; exactly if @ has j negative and 2" — 1 —j positive coefficients in
any diagonalization. There exist d, which are positive at X; if the summand 2’ is
not contained in the dyadic development of j and which are negative otherwise.
We may choose &,=det (¢) and then the forms @ and L2’ x () have equal
invariants and are therefore isometric. The uniqueness statement follows from the
fact that the signatures of the 6, are uniquely determined everywhere. [J

COROLLARY 5. Let K/R be finitely generated of transcendence degree 1.
Then every positive form @ over K is algebraic.
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Proof. By corollary 4 we may assume dim (@) odd and without loss of
generality dim (¢) =2"*' — 1. By fact (4) we have @ =2" X (1) L ¢ where ¥ can
be written as in the proposition. By lemma 4 there exists an extension L/K such
that Tr,,{(1)~(1,1,6,_,) and by lemma 5 there are ;e L such that
Trx (6!) ~ (8;). Therefore

n—-2
@~Trox @', @'=2"""x (1)1 .-1-02'X<5;>

and we can repeat this construction with ¢'. O
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