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Fixed points and homotopy fixed points

E. Dror Farjoun and A. Zabrodsky

Introduction

In this note we consider G-maps C—? X from a contractible G-space C into a

finite G-simplicial complex X. The group G is almost always taken to be finite.
We consider the relation between the existence of G-fixed points in X (i.e.

limG Xd= XG =£0) and the existence of homotopy G-fixed points, namely maps
EG~-*X (i.e. holimG Jf mapG (EG,X)*0) where EG is a free, contractible
G - C.W.-complex.

A compact topological group G is said to hâve the homotopy fixed point
property (HFPP) if for every finite G-simplicial complex X one has Xe&apos; 0 if and

only if XhG 0; where XhG dénotes the space of homotopy fixed points
XhG s homG (£G, X). In other words G has HFPP if fixed point free finite
G-complexes do not admit G-maps from EG.

THEOREM A. A finite group has HFPP if and only if G is a p-group for
some prime p.

If G has no HFPP, i.e. there exist a finite G-complex with X° 0 and a map
EG —» X we say that G is compressible.

Since any contractible G-space X admits map EG-^&gt;X, it follows that if for a

given group G there exists a contractible G-simplical complex K, on which G acts

without fixed points then G must be compressible. Now we use heavily the

following theorem of Oliver:

THEOREM [Oliver] p. 156). Let &lt;§ be the class of ail finite groups G having
the following subnormal décomposition: P&lt;H&lt;G where P is a p-group H/P is

cyclic and G/H is a q group, p and q are {not necessarily distinct) primes. Then
the following are équivalent:

(1) Gf«
(2) G acts simplicially and without a fixed point on a contractible finite

simplicial complex.
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It follows that ail groups not in ^ are compressible and our study can be restricted
to groups in (S.

This is done using the foliowing steps.
Applying methods similar to [Tom Dieck, 7.1, 7.3] we show that p-ton (or

real tori Tn) hâve HFPP.

THEOREM B. Let G be an elementary abelian p-group G= (BZ/pZ, K a

finite simplicial G-complex. Then the following are équivalent:
(1) KG*0
(2) mapG(£G, K)#0
(3) The classifying mapx&apos;EG XGK-*BG induces a monomorphism on

moA-p cohomology.
Furthermore, the same holds for the torus Tn Mn/Zn, where rational

cohomology is used in (3).

To get from elementary abelian groups to gênerai p-groups we use the fact
that the former are Frattini factors (see 2, below) of the latter. Using H. Miller&apos;s

version of the &apos;&apos;Sullivan conjecture&quot; [Miller] one shows:

THEOREM C. A finite group G is compressible if and only if its frattini factor
is compressible.

From which one gets immediately

COROLLARY D. Finite p-groups hâve HFPP.

This last resuit has been proved independently by Haeberly and Jackowsky

[6,7] using Carlsson&apos;s version of the &quot;Segal conjecture.&quot;

THEOREM E. Let p,q be two distinct primes, GpyGq a p-group and a

q-group. Then a semi-direct product G Gpx\Gq is compressible.

Since (Lemma 3.4 below) any group G in the Oliver class ^ that is not a

p-group has a factor group of the form Gp xGqforp¥=q it follows from Theorem
E and the results of Oliver mentioned above:

COROLLARY F. A finite group that is not a p-group is compressible.^

Theorem A is a combination of D and F.
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Remark. Theorem B is evidently related to the gênerai Sullivan conjecture
[Miller] [Sullivan]. That conjecture can be formulated by saying: // K is a finite
G-simplicial complex with G a p-group then the natural map XG —? homG (£G, X)
is a mod-p homology isomorphism.

In the spécial case where XG 0 it say that mapG (EG, X) 0. But this is

the main content of Theorem B. Notice also that if X is a finite contractible
G-complex, it follows from Smith theory [Bredon] that H*(XG, Zp)^H*(pt, Zp)
in conformity with the conjecture for that case.

The &quot;generalized Sullivan conjecture&quot; has been proven independently by J.

Lannes, H. Miller, and G. Carlsson. Carlsson&apos;s most récent version claims the

gênerai case, independent of fundamental groups of fixed point sets.

The rest of this note is organized as follows: In the first section we prove
Theorem B. In the second and third we prove C, E and F.

Part of this work was done while the second author was visiting the Centre de

Recerca Mathematics Institut Destudis Catalans in Barcelona. We would like to

express our gratitude for their kind hospitality.

NOTE. This paper was completed while the late Professor Alexander
Zabrodsky was still alive. He was killed in a car accident on November 20th,
1986. His death, at the prime of his life while in the midst of a vigorous
mathematical activity, has been a terrible loss to his many friends, students and

colleagues as well as to the ongoing research work in algebraic topology.
(E. D. F.)

1. Proof of Theorem B

We show (1)^&gt;(2)^&gt;(3)=^&gt;(1). The first one is immédiate since every fixed

point x € KG gives a G-map EG-*x&lt;~&gt;KG &lt;-*K.To show (2) ^ (3) let h.EG-^K
be a G-map from a contractible free G-simplicial space EG. Consider the
factorization of the identity.

/f^U EG.

Take G orbit spaces, the composite gives the identity BG—&gt;BG, so that

prJG—x *s the right inverse of Ixh/G, BG-+EGxG K, hence the mono-
morphism on cohomotogy.
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The implication (3)&lt;=&gt;(1) is given by Borel see [Hsiang p. 45, Cor. 1]. We
outline a direct, elementary proof: One uses an open covering of KxGEG by
{Kv} indexée! by the vertices v of K/G, with Kv homotopy équivalent to
EG xGG/Gv where G/Gv\s the orbit over v. Now if KG (f&gt; we get that no orbit
is free, so for every v one can choose a polynomiai generator Uv in
H2(BGV, Z/pZ), that goes to zéro in H2(BGvy Z/pZ), this is possible for a

p-torus. Thus one gets n Uv ^0, but since {Kv} is a cover this product pulls back
to zéro in EG x G K contrary to (3). Thus KGi=&lt;p as needed.

1.1. Remark on fonction complexes

Although in the formulation of the theorems above the space of maps or
G-maps from A&quot; to Y is not used, it is used heavily in the proofs. For any two such

spaces we need a model for the space of ail maps map (X, Y) and ail equivariant
maps mapG (X, Y). Some care is needed to avoid point-set problems. The basic

property of this function spaces that we need is the exponential law: That is we
need a canonical identification mapG (X, map (Y, Z))-^ mapG (X x y, Z).

This we can guarantee either by working in the Steenrod category of
compactly generated spaces or by taking map (X, Y) to be the simplicial set with
a discrète group G action, where the /t-simplices are topological maps A&quot; x 4M—»

Y. The simplicial subset of G-fixed point will then be the equivariant function
complex mapG (X, Y).

2. Compressibility of Frattini factors

Recall that for a group G, the Frattini subgroup &lt;PG is the intersection of ail
maximal subgroups of G; one gets a normal subgroup and the factor group
G/&lt;PG Go is called the Frattini factor group of G. See [Gorenstein, p. 173]. In
the présent section we establish Theorem C, namely prove that a finite group G is

compressible if its Frattini factor is compressible.
We start with a conséquence of [Miller]:

LEMMA 2.1. Let a:G-*Gobe a surjection ofgroups with a finite kernel. Let
K be any finite G^simplicial complex. Then the natural composition

mape^ (£G0, K) ^ mapG (£G0, K)-&gt; mapG (£G, K)

is a weak équivalence of spaces. (The second map is induced by an G-

map£G-»£G0.)
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Proof. Let H c G dénote ker oc. Then

mapG (£G, K) mapG (EG/H, K) map (BH, K)

H has a trivial action on K, and EG is a free contractible H-space.
Now consider the diagram

mapo

mapr,(

(£G,

î
(£C,

K) -^
K) »

map&lt;,(£G7W, K)
i

mapf,(B/y, K)

In order to show that the map on the left is a weak équivalence it is sufficient to
show that the bottom arrow is a weak équivalence. But taking the full function
spaces, the map on the bottom becomes map(£G0, K)—&gt; map (BH, K). By
[Miller] the right hand side is homotopy équivalent to K since K is finite complex
and H is a finite group. Thus this last map is a G-map that, ignoring the G-action,
is a weak homotopy équivalence. Therefore, the map induces équivalence on the

homotopy fixed points [Bousfield-Kan]. However, both EG{) and BH EG/H
are free G0-spaces. Thus the above map must be a weak G0-equivalence by the

following Lemma 2.2, and therefore their fixed point are weakly équivalent as

needed.

LEMMA 2.2. Let F be any free G-simplicial complex and X any G-space,
consider the G-space map (F, X) with the diagonal action by G, then the natural

map mapG (F, X) s (map(F, X))^+ mapG (£G, map (F, X)) is a homotopy
équivalence.

Proof. We use the exponential law 1.2. For a free G-simplicial complex F the

projection EGxF-*F is actually a G-homotopy équivalence by Bredon&apos;s

Theorem. Therefore mapG (F, X)-&gt;mapa (EG x F, X) is a homotopy
équivalence. By 1.2 this is the same as the map in the lemma.

Proof of Theorem C. First note that if Go is any factor group of a group G
and Go is compressible so is G. (Every Go space is a G space). Thus Theorem C

in one direction is obvious.
Let K be a finite G-simplicial complex with KCjr 0. Let K{)= K/&lt;PG. Then

#0 is a Go G/4&gt;G-simplicial complex. 4&gt;G has the following property. If H g G
then (&lt;PGfH) g G [5].
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Hence, the Go isotropy groups of K() are proper subgroups of Go and KGo 0.
If Go is incompressible mapQ)(£G{), Ko) 0. By 2.1 mapGo (£G0, K) «
(£G, tf0) 0. But as one has a map mapG (EG, /C)-&gt;mapG (£G, Ko),
mapG (£G, /C) 0.

As the Frattini factors of p-groups are elementary abelian the following is an
immédiate conséquence of Theorems B and C:

COROLLARY D. p-groups hâve HFPP.

The following is a simple application of Corollary D:

EXAMPLE Dl. Let G be a compact Lie group, Go - a closed subgroup of G.

i\G{)-+G. Given a homomorphism cp:jt-*G (where k is either a p-group or a

torus) then (p(jt) is conjugate in G to a subgroup in G() if and only if
Bv ;Bjt-*BG lifts (up to homotopy) to Bjt-

Proof. If g&lt;p(n)g~] c: G(, for some g eG consider the composed homomorphism

q)0:jz-+ &lt;p(n)-*gq&gt;(jr)g~l^*G(). If a^.G-^G is the conjugation by g then
i°q)0 ag°cp, hence B,°Bq){) BaH°Bq). But Bag~\ implies that Bcp{) is the
desired homotopy lifting.

Conversely, choose the following models for Bji, BG, BG(), B, and Bcp\ Consider
EG and G/G() as n-spaces via (p. Then Bi&apos;.BG^BG and By\Bji-&gt;BG could
be chosen to be the fibration BG0 G/GoxGEG-*EG/G BG and the map
Bjï EG/jt—&gt;EG/G BG. Using Bq) to pull the fibration B, over Bjt one
obtains the fibration h : W G/G{) xn EG-^&gt; EG/jt Bjï and a homotopy lifting
of Bq) corresponds to a section of y, hence, to an élément in map^ {EG, G/Go).
As G/G{) is a finite jr-complex [1] by Theorem B (for n - a torus) and Corollary
B (for jr-a p-group) (G/Go)* ¥^0. But this is équivalent to the existence of g

3. Proof of Theorem E

Let /?, q be distinct primes and let Gp and Gq be nontrivial p-group and

&lt;?-group respectively. Let G GpxGtf. Embed GqaU(nx), G aU(n) where

V(nx)y U(n) are any compact connected Lie groups. Then U(nx) and the

homogenous space U(n)IGq are fixed point free G spaces and so in their joint
W U{nx) * U{n)IGq. Theorem E follows from the following:

PROPOSITION 3.3. There exists a G map £G-&gt; W and WG 0.
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Proof. Fix a point u e U(nx) c W and let u dénote the constant map u :

W (u(EG) m). Then u is a Gp-map as WGp £/(rti). Since this set is a connected

G-subspace of W - the path component of w in mapG (EG, W), which we dénote

mapGp (£G, W% is a G subspace of the G-space map (EG, W). Consider the
inclusion i:mapG (EG, W)u —» map (EG, W) as G^ map (by restriction). Note
that the G-action on mapGp (EG, W) factors through a Gq action which coincides
with the restriction of the G action to Gq. As WGq±0 there exists a

Gq map v:EGq~* map (EG,W) where u is a constant map. To complète the

proof of 3.1 suffices to show that v can be deformed into a Gq map v:EGq~*
mapG (EG, W)u for then the adjoint v#:EGq x EG—» W will be a G map from
the contractible free G space EGq x EG into W.

The fact that v could be deformed into a Gq map ô is a conséquence of the

following two lemmas.

LEMMA 3.2. Let Go be a discrète group and f:X-*Y a Go map between the
Go spaces X and Y. Let h : EG0—&gt; Y be a Go map and choose u e EGQ, xQ e Xo with
Mw) =/(xo) §o- // Ff - f/te homotopy fiber of f over y0 - is path connected, then
the obstructions to deforming (EGOf m)-» (Y, y0) to a Go map (EG0, u)-* (X, x0)
are given as follows: The first obstruction is an élément of H2(GQ, Z(nxFf), where

Z( dénotes the center of a group. If this vanishes one can define a Go action on
JTn(Ff), n&gt;\ and the subséquent obstructions are in Hn+l(G0, Jin(Ff)), n&gt;2. (Ff
has a natural base point once x0, yQ are given).

LEMMA 3.3. The homotopy fiber of the mapi:mapGp(EG,W)u~*
map (EG, W) (say over n) is path connected and its homotopy groups are

p-profinite groups.

3.2 and 3.3 imply the solution of the déformation i;-&gt; v in the proof of 3.1

and H&apos;(Gq, M) 0 for i &gt; 0, M a p-profinite group.

Proof. For any Go space M mapGo (EG0, M) is homeomorphic to the space of
sections £GoXGoM-&gt;BGo, thus deforming h is équivalent to the ordinary
homotopy lifting problem

* &gt; EG()xGl)X

BG() -*-&gt; EG{}xGoY

This is équivalent to finding a section to /:£-» BG0 where E is the homotopy
pullback of fxG{)EG() and h&apos;. The homotopy fiber of fis homotopy équivalent to
the homotopy fiber ôf /. As Ff *» F/ is path connected one has a short exact
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séquence

and the first obstruction to obtain a section is the splitting of that exact séquence.
This is an élément in H2(G0, Z(nxFf)) ([MacLane] Theorem IV 8.8). The
vanishing of this obstruction yields a lifting of the second skeleton of BG0:

B2G0 &gt; BG{)

and a homomorphism GQ-*JZi(E) which induces an action of Go on jin{E)~
Jtn(Ff), n&gt;\. The remaining obstructions are the classical ones for an ordinary
extension problem

B2G() -^ BGt)

E

hence éléments in Hn+l(BG{), nn(E)) Hn+\G{)y nn(Ff)).

Proof of 3.3. As map(£G, W) is connected ail homotopy fibers of i are
homotopy équivalent. The homotopy fibre over u consists of ail diagrams

EG —

I

CEG —

1

«

-» W

I
* —* w

where h is a G^-map that is Gp-homotopic to the constant mapw. This is

homeomorphic to a path component the space of pointed G^-maps MGpEG-*W
where MGpEG is the Gp-Hopf-Milnor construction of EG&gt; i.e. the pushout of

EG^+Gp xEG-*Gpx CEG. (MGpEG ~Gp EG) the base point in MGpEG is

taken to be 1G x (vertex CEG) and the path component in map*G;) (MGpEG, W)
is of the constant mapw. This space is homotopy équivalent to the path
component of map*(BGp,EGxGpW)U{), u{):BGp^ EGpxGpu BGpa EG xGpU.
Now, the action of Gp on W can be extended to a U(n) action by U(n) acting
trivially on U{nx) and naturally on U(n)/Gq (this action does not extend to the
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G action!). Hence the Gp action on W is simple (every g e G is homotopic to the

identity as a mapW —*W) and consequently as W is simply connectée
EG xGp W is nilpotent (n-simple for n &gt; 1). It follows that jrn(map* (BGpy EG xCp
W), u{)) is an inverse limit of ^(map* (BGP, (EG x(if}W)r), u(), r) (EGxO(
W)r-the r-th Postnikov section. Thèse are finite p-groups as H&apos;(BGP,

ms(EG xG W)) (simple coefficients) are such and 3.3 follows.

Remark 3.3.1. Note that jrl(map*(BGp, X)yf) are not necessarily p profinite
if X is not nilpotent and / is not null-homotopic. For example take X BGP v
BGq and f:BGp-*BGp v BGq- the inclusion. If ^(map^flG,,, BGP v BGq)J)
is a p-profinite group one can lift the inclusion BG2q-+ BGP v BGq of the second
skeleton of BGq to the unpointed function space map(BG^, BGP v BGq)f. By
adjointing this yields a map BGP x BGq2)-* BGP v BGq. Now on the fundamental

group one gets a splitting Gp x Gq^&gt;Gp*Gfi-*Gp x Gq which is impossible.

Now Corollary F will follow from Theorem E if one shows:

LEMMA 3.4. A group G €&lt;£ which is not a p-group for any p has a factor
group of the form Gk x G/ for some primes k¥^l.

Proof G e ^ it has a normal décomposition P &lt; H &lt; G where F is a p-group,
H/P cyclic and G/H a g-group for some primes p, q. If G/P is a g-group we are
done by a lemma of Schur that says that any extension of a p-group by a g-group
for p =£ q splits. If not there must be a prime / =£ q such that /1 \H/P\. Let S be the
intersection of ail the normal subgroups T c H such that HIT is an /-group. Then
S^H and S is characteristic in H hence normal in G. The group H/S must itself
be an /-group because it is embedded in a product of /-groups. Thus G/5 has the

required property for the primes /, q.
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