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Fixed points and homotopy fixed points

E. DrRorR FaAriOUN and A. ZABRODSKY

Introduction

In this note we consider G-maps C— X from a contractible G-space C into a
finite G-simplicial complex X. The group G is almost always taken to be finite.

We consider the relation between the existence of G-fixed points in X (i.e.
limg X< X€ # (J) and the existence of homotopy G-fixed points, namely maps
EG — X (i.e. holim; X = mapg (EG, X) # ) where EG is a free, contractible
G — C.W.-complex.

A compact topological group G is said to have the homotopy fixed point
property (HFPP) if for every finite G-simplicial complex X one has X =& if and
only if X"®=0; where X"“ denotes the space of homotopy fixed points
X"6 =homg (EG, X). In other words G has HFPP if fixed point free finite

G-complexes do not admit G-maps from EG.

THEOREM A. A finite group has HFPP if and only if G is a p-group for
some prime p.

If G has no HFPP, i.e. there exist a finite G-complex with X“ = (% and a map
EG — X we say that G is compressible.

Since any contractible G-space X admits map EG — X, it follows that if for a
given group G there exists a contractible G-simplical complex K, on which G acts
without fixed points then G must be compressible. Now we use heavily the
following theorem of Oliver:

THEOREM [Oliver] p. 156). Let % be the class of all finite groups G having
the following subnormal decomposition: P <] H <\ G where P is a p-group H/P is

cyclic and G/H is a q group, p and q are (not necessarily distinct) primes. Then
the following are equivalent:

(1) Ge¢$
(2) G acts simplicially and without a fixed point on a contractible finite
simplicial complex.
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It follows that all groups not in % are compressible and our study can be restricted
to groups in 4.
This is done using the following steps.

Applying methods similar to [Tom Dieck, 7.1, 7.3] we show that p-tori (or
real tori T") have HFPP.

THEOREM B. Let G be an elementary abelian p-group G = ® Z/pZ, K a
finite simplicial G-complex. Then the following are equivalent:

(1) K¢+

(2) mapg (EG, K)#J

(3) The classifying map x:EG X5 K— BG induces a monomorphism on
mod-p cohomology.

Furthermore, the same holds for the torus T" =R"/Z", where rational
cohomology is used in (3).

To get from elementary abelian groups to general p-groups we use the fact
that the former are Frattini factors (see 2, below) of the latter. Using H. Miller’s
version of the “Sullivan conjecture” [Miller] one shows:

THEOREM C. A finite group G is compressible if and only if its frattini factor
is compressible.

From which one gets immediately
COROLLARY D. Finite p-groups have HFPP.

This last result has been proved independently by Haeberly and Jackowsky
[6, 7] using Carlsson’s version of the ‘“Segal conjecture.”

THEOREM E. Let p, q be two distinct primes, G,, G, a p-group and a
q-group. Then a semi-direct product G = G, X G, is compressible.

Since (Lemma 3.4 below) any group G in the Oliver class ¢ that is not a
p-group has a factor group of the form G, X G, for p # q it follows from Theorem
E and the results of Oliver mentioned above:

COROLLARY F. A finite group that is not a p-group is compressible. _

Theorem A is a combination of D and F.
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Remark. Theorem B is evidently related to the general Sullivan conjecture
[Miller] [Sullivan]. That conjecture can be formulated by saying: If K is a finite
G-simplicial complex with G a p-group then the natural map X¢ — homg (EG, X)
is a mod-p homology isomorphism.

In the special case where X© =(J it say that mapg (EG, X) =. But this is
the main content of Theorem B. Notice also that if X is a finite contractible
G-complex, it follows from Smith theory [Bredon] that H.(X°, Z,)=H .(pt, Z,)
in conformity with the conjecture for that case.

The “‘generalized Sullivan conjecture” has been proven independently by J.
Lannes, H. Miller, and G. Carlsson. Carlsson’s most recent version claims the
general case, independent of fundamental groups of fixed point sets.

The rest of this note is organized as follows: In the first section we prove
Theorem B. In the second and third we prove C, E and F.

Part of this work was done while the second author was visiting the Centre de
Recerca Mathematics Institut Destudis Catalans in Barcelona. We would like to
express our gratitude for their kind hospitality.

NOTE. This paper was completed while the late Professor Alexander
Zabrodsky was still alive. He was killed in a car accident on November 20th,
1986. His death, at the prime of his life while in the midst of a vigorous
mathematical activity, has been a terrible loss to his many friends, students and

colleagues as well as to the ongoing research work in algebraic topology.
(E.D.F.)

1. Proof of Theorem B

We show (1) = (2)=>(3) > (1). The first one is immediate since every fixed
point x € K¢ gives a G-map EG — x - K® & K. To show (2)=>(3) let h: EG— K
be a G-map from a contractible free G-simplicial space EG. Consider the
factorization of the identity.

EG =5 EGx K 2 EG.

Take G orbit spaces, the composite gives the identity BG — BG, so that
pri/G =y is the right inverse of 1 X h/G, BG— EG X K, hence the mono-
morphism on cohomology.
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The implication (3)& (1) is given by Borel see [Hsiang p. 45, Cor. 1]. We
outline a direct, elementary proof: One uses an open covering of K X5 EG by
{K,} indexed by the vertices v of K/G, with K, homotopy equivalent to
EG x ;G/G, where G/G, is the orbit over v. Now if K¢ = ¢ we get that no orbit
is free, so for every v one can choose a polynomial generator U, in
H*BG,, Z/pZ), that goes to zero in H*(BG,, Z/pZ), this is possible for a
p-torus. Thus one gets [1 U, #0, but since {K,} is a cover this product pulls back
to zero in EG XK contrary to (3). Thus KY#¢ as needed.

1.1. Remark on function complexes

Although in the formulation of the theorems above the space of maps or
G-maps from X to Y is not used, it is used heavily in the proofs. For any two such
spaces we need a model for the space of all maps map (X, Y) and all equivariant
maps mapg (X, Y). Some care is needed to avoid point-set problems. The basic
property of this function spaces that we need is the exponential law: That is we
need a canonical identification mapg (X, map (Y, Z))— mapg (X X Y, Z).

This we can guarantee either by working in the Steenrod category of
compactly generated spaces or by taking map (X, Y) to be the simplicial set with
a discrete group G action, where the n-simplices are topological maps X X A, —
Y. The simplicial subset of G-fixed point will then be the equivariant function
complex mapg (X, Y).

2. Compressibility of Frattini factors

Recall that for a group G, the Frattini subgroup @G is the intersection of all
maximal subgroups of G; one gets a normal subgroup and the factor group
G/®G = G, is called the Frattini factor group of G. See [Gorenstein, p. 173]. In
the present section we establish Theorem C, namely prove that a finite group G is
compressible if its Frattini factor is compressible.

We start with a consequence of [Miller]:

LEMMA 2.1. Let a: G — G, be a surjection of groups with a finite kernel. Let
K be any finite Gy-simplicial complex. Then the natural composition

mapg, (EGo, K) <—=->mapc (EGy, K)— mapg (EG, K)

is a weak equivalence of spaces. (The second map is induced by an G-
map EG — EG,.)
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Proof. Let H c G denote ker a. Then
mapg; (EG, K) = map; (EG/H, K) = map (BH, K)

H has a trivial action on K, and EG is a free contractible H-space.
Now consider the diagram

map(EG, K) — map,(EG/H, K)

| i

map(,‘”(EG(;, K) — map(;(BH, K)

In order to show that the map on the left is a weak equivalence it is sufficient to
show that the bottom arrow is a weak equivalence. But taking the full function
spaces, the map on the bottom becomes map (EG,, K)— map (BH, K). By
[Miller] the right hand side is homotopy equivalent to K since K is finite complex
and H is a finite group. Thus this last map is a G-map that, ignoring the G-action,
is a weak homotopy equivalence. Therefore. the map induces equivalence on the
homotopy fixed points [Bousfield-Kan]. However, both EG, and BH = EG/H
are free Gy-spaces. Thus the above map must be a weak G-equivalence by the
following Lemma 2.2, and therefore their fixed point are weakly equivalent as
needed.

LEMMA 2.2. Let F be any free G-simplicial complex and X any G-space,
consider the G-space map (F, X) with the diagonal action by G, then the natural

map mapg (F, X) = (map(F, X)) map; (EG, map (F, X)) is a homotopy
equivalence.

Proof. We use the exponential law 1.2. For a free G-simplicial complex F the
projection EG X F— F is actually a G-homotopy equivalence by Bredon’s
Theorem. Therefore mapg (F, X)— map; (EG X F, X) is a homotopy equiv-
alence. By 1.2 this is the same as the map in the lemma.

Proof of Theorem C. First note that if G, is any factor group of a group G
and G, is compressible so is G. (Every G, space is a G space). Thus Theorem C
in one direction is obvious.

Let K be a finite G-simplicial complex with K¢ =@. Let K,= K/®G. Then
K, is a G, = G/®G-simplicial complex. @G has the following property. If H & G
then (®G, H)$G [5).
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Hence, the G, isotropy groups of K|, are proper subgroups of G, and K% = .
If G, is incompressible mapg, (EG,, Ko)=&. By 2.1 mapg, (EG,, K)=
(EG, Kg)=<. But as one has a map mapg (EG, K)— mapg (EG, K,),
mapg (EG, K) = .

As the Frattini factors of p-groups are elementary abelian the following is an
immediate consequence of Theorems B and C:

COROLLARY D. p-groups have HFPP.
The following is a simple application of Corollary D:

EXAMPLE D1. Let G be a compact Lie group, G, — a closed subgroup of G.
i:Gy— G. Given a homomorphism @ : 71— G (where x is either a p-group or a
torus) then ¢(mr) is conjugate in G to a subgroup in G, if and only if
B, ;Br— BG lifts (up to homotopy) to Br — BG,,.

Proof. If gp(m)g~"' = G, for some g € G consider the composed homomorph-
ism @q:x— @(7)—>ge(n)g™' = G,. If a,:G— G is the conjugation by g then
i°c@,=az°q@, hence B;°Bg,= Ba,>oBp. But Ba,~1 implies that Bg, is the
desired homotopy lifting.

Conversely, choose the following models for Bxr, BG, BG,, B; and Be: Consider
EG and G/G, as m-spaces via ¢. Then B;: BG,— BG and Be: Ba— BG could
be chosen to be the fibration BG,= G/G,X; EG— EG/G = BG and the map
Ba =EG/a— EG/G = BG. Using Be to pull the fibration B; over Br one
obtains the fibration h: W = G/G, X, EG— EG/x = B and a homotopy lifting
of B corresponds to a section of j, hence, to an element in map, (EG, G/G,).
As G/G, is a finite w-complex [1] by Theorem B (for & —a torus) and Corollary
B (for & —a p-group) (G/G,)" # . But this is equivalent to the existence of g
with gmg ™' < G,

3. Proof of Theorem E

Let p, g be distinct primes and let G, and G, be nontrivial p-group and
q-group respectively. Let G =G, *XG,. Embed G,cU(n,), G = U(n) where
U(n,), U(n) are any compact connected Lie groups. Then U(n,) and the
homogenous space U(n)/G, are fixed point free G spaces and so in their joint
W =U(n,)* U(n)/G,. Theorem E follows from the following:

PROPOSITION 3.3. There exists a G map EG— W and WY = .
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Proof. Fix a point u € U(n;) = W and let u denote the constant map u: EG—
W (u(EG) = u). Then u is a G,-map as W = U(n,). Since this set is a connected
G-subspace of W — the path component of u in mapg, (EG, W), which we denote
mapg, (EG, W), is a G subspace of the G-space map (EG, W). Consider the
inclusion i:mapg (EG, W),—map (EG, W) as G, map (by restriction). Note
that the G-action on mapg, (EG, W) factors through a G, action which coincides
with the restriction of the G action to G,. As W%#J there exists a
G, mapv: EG,— map (EG, W) where v is a constant map. To complete the
proof of 3.1 suffices to show that v can be deformed into a G, map 0: EG,—
mapg, (EG, W), for then the adjoint ¥4:EG, X EG— W will be a G map from
the contractible free G space EG, X EG into W.

The fact that v could be deformed into a G, map ¥ is a consequence of the
following two lemmas.

LEMMA 3.2. Let G, be a discrete group and f : X — Y a G, map between the
Go spaces X and Y. Let h: EGy— Y be a G, map and choose u € EG,, x, € X, with
h(n) = f(xo) = 8o- If F; — the homotopy fiber of f over y, - is path connected, then
the obstructions to deforming (EG,, u)— (Y, yo) to a Gy map (EG,, u)— (X, x,)
are given as follows: The first obstruction is an element of H*(G,, Z(n,F;), where
Z( ) denotes the center of a group. If this vanishes one can define a G, action on
%,(F;), n>1 and the subsequent obstructions are in H"*'(G,, n,(F;)), n=2. (F,
has a natural base point once x, y, are given).

LEMMA 3.3. The homotopy fiber of the mapi:mapg (EG, W),—
map (EG, W) (say over n) is path connected and its homotopy groups are

p-profinite groups.

3.2 and 3.3 imply the solution of the deformation v— ¥ in the proof of 3.1
and H'(G,, M) =0 for i >0, M a p-profinite group.

Proof. For any G, space M mapg, (EG,, M) is homeomorphic to the space of
sections EG,Xs; M— BG,, thus deforming h is equivalent to the ordinary

20

homotopy lifting problem
* —— EG() X Go X

| [

BG, — EG,xg, Y

This is equivalent to finding a section to f:E— BG, where E is the homotopy
pullback of f X, EG, and h'. The homotopy fiber of f is homotopy equivalent to
the homotopy fiber of f. As F; = F; is path connected one has a short exact
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sequence
1- 7,(F)— my(E)— m,(BGp) = Gy— 1

and the first obstruction to obtain a section is the splitting of that exact sequence.

This is an element in H*(Gy, Z(w,F)) ([MacLane] Theorem IV 8.8). The
vanishing of this obstruction yields a lifting of the second skeleton of BG):

E
BzG() s BG()

and a homomorphism G,— x,(E) which induces an action of G, on x,(E)~
n,(F), n>1. The remaining obstructions are the classical ones for an ordinary
extension problem

BZG() — BGU
E

hence elements in H"*'(BG,, n,(E)) = H"*(G,, n,(F)).

Proof of 3.3. As map (EG, W) is connected all homotopy fibers of i are
homotopy equivalent. The homotopy fibre over u consists of all diagrams

EG 1w

L

CEG — W

I

* —> W

where h is a G,-map that is G,-homotopic to the constant mapu. This is
homeomorphic to a path component the space of pointed G,-maps M EG —> W
where M EG is the G,-Hopf-Milnor construction of £G, i.e. the pushout of

action

EG—— G, X EG— G, X CEG. (Mg, EG =~ EG) the base point in M; EG is
taken to be 1, X (vertex CEG) and the path component in map.q, (Mg, EG, W)
is of the constant map u. This space is homotopy equivalent to the path com-
ponent of map.(BG,, EG Xg W).,,, uy:BG,— EG,Xg u=BG,cEGXg,U.
Now, the action of G, on W can be extended to a U(n) action by U(n) acting
trivially on U(n,) and naturally on U(n)/G, (this action does not extend to the
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G action!). Hence the G, action on W is simple (every g € G is homotopic to the
identity as a map W— W) and consequently as W is simply connected
EG X, W is nilpotent (n-simple for n > 1). It follows that x,(map, (BG,, EG X;,
W), uy) is an inverse limit of m,(map, (BG,, (EG X W),), uy,r) (EG X,
W), —the r-th Postnikov section. These are finite p-groups as H'(BG,,
7, (EG X, W)) (simple coefficients) are such and 3.3 follows.

Remark 3.3.1. Note that &;(map.(BG,, X), f) are not necessarily p profinite
if X is not nilpotent and f is not null-homotopic. For example take X = BG, v
BG, and f:BG,— BG, v BG, - the inclusion. If &,(map.(BG,, BG, v BG,), f)
is a p-profinite group one can lift the inclusion BGZ— BG, v BG, of the second
skeleton of BG, to the unpointed function space map (BG,, BG, v BG,),;. By
adjointing this yields a map BG, x BG? — BG, v BG,. Now on the fundamental
group one gets a splitting G, X G,— G, * G,— G, X G, which is impossible.

Now Corollary F will follow from Theorem E if one shows:

LEMMA 3.4. A group G € § which is not a p-group for any p has a factor
group of the form G, X G, for some primes k # l.

Proof. G € 4 it has a normal decomposition P <| H <] G where P is a p-group,
H/P cyclic and G/H a g-group for some primes p, q. If G/P is a g-group we are
done by a lemma of Schur that says that any extension of a p-group by a g-group
for p # q splits. If not there must be a prime / # g such that [ | |[H/P|. Let S be the
intersection of all the normal subgroups T < H such that H/T is an [-group. Then
S # H and S is characteristic in H hence normal in G. The group H/S must itself
be an [-group because it is embedded in a product of /-groups. Thus G/S§ has the
required property for the primes /, g.
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