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The geometry and spectrum of the one holed torus

P. Buser and K.-D. SEMMLER

1. Introduction

This paper deals with the question whether isospectral Riemann surfaces can
occur accidentally. Two Riemann surfaces are called isospectral if their length
spectra, i.e. the lists of lengths of all closed geodesics, are the same. It had been
conjectured by Gel'fand [5] and was later proved in the generic case by Wolpert
[9] that a compact Riemann surface with the Poincaré metric of constant
curvature —1 is determined up to isometry by its length spectrum. But many
isospectral non isometric pairs have been found, even with quite small genus [38],
[7], [3], [2]. All these examples are obtained by gluing together building blocks in
two combinatorially different ways. However, isospectral pairs might also occur,
in some sense, accidentally.

Here we make a first attempt to prove that accidental pairs do not exist, by
investigating how the length spectrum behaves as a function of the parameters in
Teichmiiller space. This function is extremely complex, and we shall confine
ourselves to the simplest non trivial case, the Riemann surfaces of signature
(1, 1), or one holed tori.

The boundary is supposed to be a simple closed geodesic, the Teichmiiller
space has dimension 3. The length spectrum refers to the smooth closed
geodesics, including the boundary geodesic. Geodesics which bounce back at the
boundary are not considered. The result is

THEOREM A. Two Riemann surfaces of signature (1, 1) which have the
same length spectrum are isometric.

Under the additional hypothesis that the two surfaces have the same boundary
length, Theorem A has already been proved by Haas [6]. The other length
spectrum, which includes the geodesics which are reflected at the boundary, will
be considered in a forthcoming paper where the technique is extended to closed
Riemann surfaces of genus 2. We conjecture that Theorem A holds also for the
spectrum of the Laplacian with respect to Dirichlet or Neumann boundary
conditions.
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260 P. BUSER AND K.-D. SEMMLER

As a byproduct we obtain in section 4 an explicit solution of the moduli
problem for signature (1, 1):

THEOREM B. The set of isometry classes of one holed tori is in a natural
1-1-correspondence with the set

F={(c,b,m)eR3|1<c<bsm=<bc;c®>+b*>+m*<2cbm)}

In sections 2 and 3 we shall use a Z X Z-holed covering to provide various length
estimates. These will be brought together in section 5 to show how isospectrality
is ruled out. In the final section we shall use the Z X Z-holed covering again to
characterize the simple closed geodesics in terms of the canonical generators of
the fundamental group. This characterization has been a guide in our study of the
length spectrum and, although no longer used here, is of some interest by itself.

2. The one holed torus and its Z X Z-holed covering

A one holed torus is a compact bordered surface of signature (1, 1) carrying a
hyperbolic metric of curvature —1 in which the boundary is a closed geodesic. To
simplify the language, T will always stand for a one holed torus. We start by
constructing 7 via the standard gluing procedure [4]. At the same time we shall
obtain the Fenchel-Nielsen parameters and the Z X Z-holed covering plane. All
segments will be geodesic, and to simplify notation, we shall use the same symbol
for a segment and for its length.

Let By, 1, y be suitable positive numbers and glue together four identical
rectangular hyperbolic pentagons with sides B,/2, *, n/4, *, y/2 as shown in Fig.
1 to obtain a one holed hyperbolic rectangle Q.
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Fig. 1
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As is well known (cf. [1]) such pentagons exist for any positive values of y.n

and the following trigonometric formula holds
Bo Y_ 1 >

shzoshz—-ch4. (2.1)
It follows from standard hyperbolic geometry that the redecomposition of Q into
rectangular pentagons is unique. Hence Q is determined up to isometry by y and
n, which range freely in the interval (0, =). We shall denote by S, y, f,, ¥’ the
sides of Q (Fig. 1). The “hole” is .

Now think of Q as being realized by an ordinary one holed rectangle in R*
which is parallel to the standard coordinate axes. Translate Q in the vertical
direction to tesselate a Z-holed strip S, with copies Q,, (je€Z) of Q. Then
translate S, to tesselate a Z X Z-holed plane & with copies S; of S, (i € Z) resp with
copies Q,; of Q as indicated in Fig. 2, where each §, is shifted against S,_, by
«-y/2, «aeR being a free parameter, called twist parameter. ¥ carries the
hyperbolic structure of the Q;; and

Ir=7x7

has a natural action on Z by isometries such that the Q; are fundamental
domains.

We define T(7n, v, @) to be the marked surface &/I" where the marking
consists of recalling the parameters 7, y, a which have lead to the construction of
T(n, v, ). Sides y and y’ of Q yield a closed geodesic on T(n, y, ) which we
also denote y. The set

T={T(n,y, a)|n, yeR", ¢ eR}

is the Fenchel-Nielsen-model of the Techmiiller space of Riemann surfaces of
signature (1, 1) [4].
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In order to express the twist parameter « in terms of the length of a closed
geodesic, consider P e y < Q and P’ € y' < QO with the oriented distance

. 14 d 14 a
dist (P, Bg) =dist (P’, By) = 57

(later on we shall restrict ourselves to 0 < a <3).

Connecting P and P' with the midpoints M’ and M of B,resp B, we obtain
two isometric rectangular triangles with base /2 and angle ¢ at P resp. P’ for
which the following formulae hold

B_nbo. ™

chz—ch2 ch > (2.2)
Po_ B

sh > -—sh2 sin @. (2.3)

Since each §; is shifted against S;,_; by ay/2, point P’ of Q; ;. matches with
point P of Q;, and it follows that segments PM’ and MP’ together define a
smooth closed geodesic f on T(7n, y, a) whose length is determined by (2.2).

The two geodesics y and B will be used as canonical generators of the
fundamental group. Now define

F={T(n,v,0)eT|0sas=

N e

Yy < B}, (2.4)

where B is calculated in terms of (7, y, a) via (2.1-2).

It is easy to see that ¥ contains each one holed torus 7. In fact, it suffices to
cut open T along the shortest non boundary geodesic and then drop common
perpendiculars between the boundary geodesics to find the above one holed
rectangle Q. That, in fact, two different tori in & are not isometric will be proven
in section 4.

Some of our arguments will use PSL(2, R). Consider the transformations of
the upper half plane H = {z € C | Im z > 0} which are given by the matrices

ch —-—-2‘ + cos @ - sh ——-2‘ ~sin® @ - sh BN
mp __mﬁ - . _..””E 2.5
sh > ch > cos @ - sh 5 (2.5)

nyl2 0 i
C'=(%)  mn)i mmneZ
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where @ is the angle between y and B at P (Fig. 1). B™ is the m-th power of

B=B' and C" is the n-th power of C=C! The traces are tr B=2ch —g-,
Y
2
follows that the axes of B and C intersect at an angle @, and there exists a
universal covering H— T(7, v, «) for which C and B are the generators of the
deck group which correspond to the generators y and B of the fundamental group
of T=T(n, v, «); H a simply connected domain in H.

Any closed geodesic w on T is known to be freely homotopic to a word
priy™ - - - B y" which is determined up to conjugation in the fundamental
group. Moreover, since geodesics which differ by parametrization are not
distinguished, two such words represent the same geodesic if and only if one is
conjugate to the other or to the inverse of the other. The length of w is given by

tr C=2ch=. The fixed points of C are 0,0 and those of B are *1-cos @. It

1
Chi ) ==% |tr (B™'C"' - - - B™C™)|. (2.6)

We shall use the notation

1
1B™y™ -+ Bmy™ || = flw]| = ch w

and abbreviate
b=BIl, c=llyll,e=lnll, m=1By~"|l

172
A=(sh2—§--sh2§—-ch22—) =sh§--shg-cosq)

(cf. (2.1), (2.3)). We shall compute some lengths via matrices:

27 LEMMA. Let T=T(n, y, o)e &. Then
i) m=|By Y |=bc—A=b.

(i) |IByll=bc+A<|IB*I<|IBy~'Br "Il
(i) Byl <lIB*y~"Il.

) 1Byli=ch("22y)-chspi  UBYIZUBYI it n#0, -1

(V) BByl =e+2c”
vi) N1By’B~'y Il =11By™ Byl = c + 2ec
and the two words in (vi) represent different closed geodesics.
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B

Proof. From (2.2), (2.3) we obtain shg -cos @ =ch 5 th %)-,. Since 0 < a <1,
this implies

Y. shY=p(c -
A<b-thy-shz=b(c 1)

This yields the inequality in (i). The remaining statements follow from direct
computation with (2.5), (2.6).

The next lemma will play a crucial role in the study of the length spectrum.

2.8 LEMMA

(i) ch22=1(e+1)=2cbm+l—cz—bz—mz.

4 2

(i) IfT(n,y, a)e Fthenl<csbs=m=<bc.

(iii) In the domain 1<c<b <m <bc the function (c, b, m)—2 cbm +1—c*—
b? — m? is monotone increasing in all 3 variables.

.;1 _ Shzg - sh? 325 — A2, where A= (m — bc)?, (2.7(i)), and

check. (ii) ¢ <b is from the definition of %; the remaining inequalities are from
2.7(i). (iii) The partial derivatives are positive.

Proof. (i) Write ch®

3. The bottom of the spectrum

We define Sp (T') to be the increasing sequence of all ||w||, where @ runs
through the primitive closed geodesics of 7. We split Sp (T') into the disjoint
subsequences

Sp* (T) = {l|lw]| € Sp (T) |0 Ny = &}

Sp® (T) = {llw|| € Sp(T) |o Ny # T}.
3.1 LEMMA A. The values e, e + 2c¢%, ¢ + 2ec occur in Sp* (T), and c + 2ec at
least twice. If ||w|| occurs in SP* (T) and w # 1 then ||w|| = min {e + 2¢?, ¢ + 2ec}.

(T € F).

Proof. Clearly e =||n||€Sp® (T). From 2.7 e+2c*=||fyB 'y|| and c+
2ec = ||BY*B~ 'y Y| = IBy"'B'¥?||. Looking at the Z X Z-holed covering Z of T
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we see that each of the three words has a lift in & which stays in one of the strips
S;, say in S,. By standard hyperbolic geometry the lift of the corresponding
geodesic stays in S, as well, and we obtain the first statement.

As for the second, let ||w|| € Sp® (T), w # 1. As before, w has a lift @ in &
which stays in §,. We think of §, as being realized by a vertical strip in R2. For
each Q,; in $, we denote by o,, o; the common perpendicular from the hole in
Q; to the left resp. the right vertical boundary geodesic of S,, and by B; the side
of Qo; which is a lift of B,. There are two cases:

a) @ has local maxima (like e.g. point M in Fig. 3a). Then @ also has local
minima and therefore @ has two subarcs whose projections in T intersect in only
finitely many points, where each arc A looks as follows (Fig. 3a): A is contained in
some Q,,. It starts on B, or B,.,, crosses one of the perpendiculars o,, o, and ends
on the other.

Let the endpoints of A move freely on B, resp. B,,, and on o, resp. o,, and let
A" < Q be the unique minimal curve in this homotopy class. We obtain a
rectangular hexagon with sides of length B,, y/2, *, A, *, y, for which

ch)t'=shy-sh%-chﬂu“chy-chg. (3.2)

([1]) For the hexagon with sides B, y/2, *, n/2, *, y/2 (half of Q,) we have
similarly

Chg=Sh2%°Chﬁn_Ch2%’.

The two formulae together yield ch A =ch A’ = ¢ + 2ec which proves Lemma A in
this first case.

b) @ has no local maxima and minima. Since w # y", @ intersects some of the
o; as well as some of the o, and we find two subarcs of @ with projections in T
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intersecting in only finitely many points, where each arc A looks as follows (Fig.
3b): For some j, A starts on o;_, (or 0;_,) crosses f; and ends on o; (resp. o;). Let
again the endpoints of A move freely on o0;_,, o/ (resp. g;_,, 0;) and take the
minimal curve A’ in this homotopy class. For symmetry reasons we obtain two
isometric trirectangles with sides of length A'/2, *, y/2, B,/2 (Fig. 3b). By
trigonometry ([1])

/1'_ Bo Y
hz-—ch2 h2. (3.3)

Together with (2.1) we obtain

A' 0
r=14+2sh?> = 2_7.( + 2.__/3)
chi 1+ 2sh > 14+ 2sh > 1+sh >

=2c*+2ch’n/4—1=2c*+e
Hence ||@|| = 2c¢* + e which proves Lemma A also in the second case.

3.4 LEMMA B. Let Te%. If ||o|| occurs in Sp®(T) and if w is not
representable by vy, B, By~', then ||w| = ||Byl| = bc + A.

Proof. Let @ be a lift of w in Z. We consider two cases.

a) @ has locally left most points (like e.g. point L in Fig. 4a). Then & also has
locally right most points and, since w intersects y we find two subarcs of @ whose
projections in T intersect in only finitely many points, and where each arc A looks
as follows (Fig. 4a): A is contained in one of the strips ;. It starts on one of the
perpendiculars v which connect neighbouring holes in §;, then crosses another
such perpendicular and ends on one of the two vertical boundary geodesics of S;,
say on ;.

Let the endpoints of A move freely on v and y;, and take A’ minimal in this
homotopy class. We obtain a rectangular hexagon with sides of length B,, *, ',

* %’, ky, where k € N\{0}. By the same formula as in (3.2) and (2.1) we have
chA’=chky-shﬁ(,-sh§—9-—chﬁo chg
— ﬂO ( ﬁo 2ﬁ()
ch > 2sh > -chky—2sh > —-1)

ﬁo (4 chzﬁ—— 1)
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v /.

A’ - w
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Lir Lt
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l S ly,
Fig. 4a Fig. 4b
By Lemma 2.8
chzgamax{l,zc3—3c2+1} (3.5)

and by (2.7(ii)) and (2.2) ||Byll<b(2c —1)=<ch %—9- (2c = 1)(c +1)/2. Altogether
we find ch % =ch A=ch A’ =||By|| which proves Lemma B in the first case.

b) @ has no locally left and right most points. Then w is representable by a
word of the form By™By">- - - By™. In view of Lemma 2.7 and the hypothesis in
Lemma B we may restrict ourselves to the case that k=2. If Kk =2 we may
suppose in addition that n, ¢ {0, —1} or n, ¢ {0, —1}. We consider the particular
case k =2 first and assume w.l.o.g. that n; ¢ {0, —1}.

Here @ can be chosen to have the following properties (Fig. 4b): @ is
contained in §, U S; with its endpoints on the vertical boundary geodesics y, and
Y, of S U §;. It connects the perpendicular v between the holes of Qg and Qy, in
So with the perpendicular v’ between the holes of Q,,, and Q;,,+, in §; and
intersects no further such perpendicular. Let the endpoints of @ move freely on
Yo and y,, and let A’ be minimal in this homotopy class.

By symmetry, A’ forms two isometric trirectangles with sides of length
ilni+aly, Bo, *, A'/2. By the same formula as in (3.3) and by (2.7(iv))

sh%:ch (L’Z}__E_“_)l') - sh B,
=2ch (-(—1%9’—2)—/> .sh%’,ch%g
Bo

=2sh 22 |1Byll-
sh=2- 1By
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By (2.1) and (3.5)

1 2ct-c—-1 1
hZQ_Q? { } -
W Em e D+’ c+1 Ja

’

Since ||w|| = ChT’Z_ we have thus proved that

By By™||=1IByll forall ny n,eZ.

It remains to consider the geodesics represented by By™' - - - By™, k = 3. Here @
contains two subarcs A, u whose projections in 7 intersect in at most finitely many
points and which have the following properties: A is contained in S,U S,
connecting Yo with y,, and p is contained in S, connecting the vertical boundary
geodesics y,, y; (Fig. 2). Clearly u = f,. And by (2.2), since T € %,

—_= — ._.> —
ch 2 = (ch ch ch

i.e. Bo=y/2. We may therefore replace u by an arc u’ < p on y, such that AU u’
projects to a closed curve in T which is representable in the form By*'By*“:. Since

loff=A+p=A+pu =By By| =By,

Lemma B is now fully proved.

4. The space of one holed tori

As remarked in section 2, every one holed torus T occurs in #. We shall now
use Lemma B to prove that the elements in & are pairwise non isometric.

To this end observe that every simple closed geodesic in T € F except 7
intersects y. Hence it follows from Lemma B that the three smallest members of
the sequence Sp (7') which belong to simple closed non boundary geodesics are
precisely ¢, b, m where ¢ <b <m. Therefore, if T, T' € ¥ are isometric then T
and T' have the same values of ¢, b, m. Since the parameters 7, y, a are uniquely
determined by ¢, b, m (via (2.1), (2.2), (2.8(1))), T is T'. This proves Theorem B.

In view of (2.1), (2.2) we may rewrite & in the form

' 1
F={T(n v, )1n>0,0<a=<30<f(a y)<c}
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where

172

This function is monotone increasing in y if 0 < a <3. An even simpler form is
obtained if ¢, b, m are used as parameters: By Lemma 2.8 we have

1<c<sb=s=m<bc,
and since chg> 1 also

¢+ b+ m><2chbm.

Conversely, if three numbers ¢, b, m satisfy these inequalities then 2b%(c — 1) <
2cbm — m? < b*c* by the monotonicity of the function m— 2cbm —m? in this
domain. Hence, (2.8(i)), (2.1) and (2.2) allow to solve for n, y, « with, in fact,
n,vy>0;0<a<3and y<p. Thus we have 1-1 correspondences between

F={(c,b,m)eR’|1<csb<sm<bc;c?+b>+m’><2cbm)

and & and the set of isometry classes of one holed tori. (Theorem B).

5. Proof of Theorem A

For T € &#, the spectrum is an increasing sequence L = Sp(T) of “spectral
lines”” where four of them are labeled e, ¢, b, m and the others will be considered
unlabeled. L has the following properties.

(i) Al lines smaller than min {e + 2c*; ¢ + 2ec; bc) are labeled.

(i) If b<e then m <min {e + 2c*; ¢ + 2ec; bc}

(i) 1<csb=s=m=bc.

(iv) e=dcbm + 1 —2c*-2b*-2m".

(v) L splits into two disjoint increasing subsequences Sp™ (T), Sp”? (T'), where
Sp? (T)={c, b, m, ...} and where Sp* (T)={e,e+2c% ..., c+2ec, c+
2ec} if c<eresp. Sp* (T)={e,c+2ec,c+2c,...,e+2c%...}ife<c

(vi) Sp* (T) is a function of c and e alone.
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Proof. (i) and (v) are from Lemmata A, B. (vi) holds because Sp“ (T) lives
on the 3-holed sphere obtained by cutting open T along y, whose geometry is
determined entirely by y and . (iii) is (2.8(ii)) and (iv) is (2.8(i)). To prove (ii)
suppose on the contrary bc=e +2c?=b + 2c% It follows that b(c —1)=2c%
Since m = b we conclude (cf. 2.8(iii))

bc=e +2c* = 4cbm + 1 — 2m* — 2b* = 4b*(c — 1) = 8bc?

which is impossible for ¢ > 1.
In view of (i)-(iii) the labeling in the sequence L has one of the following
forms (L is ordered by size)

(1) L={c,b,m,...,e,...} withm<e.

2) L={c,b,e,m,...} withb<e,

(3 L={ce...,b,...,m,...} withc<e,
4 L={ec...,b...,m, ...}

(The dots indicate that there may or may not be unlabeled lines in between).
Now let T' € ¥ have the same spectrum as T. Then some other four lines in L are
labeled e’, ¢’, b’', m’', (i)—(vi) hold for T’, too, and the new labeling also has one
of the forms (1)-(4). We shall prove that

’

(*) C=C” b=b’, m=m-.

By section 4 this implies T = T' and will prove Theorem A. Our main argument
is the following consequence of (iv).

(vil) If c=<c’, b<b’, m=<m' where at least one inequality is strict, then e <e'.

(For the proof use increasing functions t— c(¢), b(t), m(t) satisfying 1 <c(r) <
b(t)<m()<b(t)-c(t); 0=<t=<1 with boundary values ¢, b, m and ¢', b’', m’,
and apply 2.8(iii)).

We proceed by cases. If the labeling for T has form (1), then (vii) implies that
the labeling for T' has the same form, and (*) is obvious. The same argument
works if the labeling for T has form (2). If both labelings have the same form (3)
or (4), then (vi) implies Sp™ (T) = Sp* (T’) so that Sp? (T)=Sp? (T’) and (*)
follows from (v). It remains the case that one labeling has form (3) and the other
has form (4) where we may assume w.l.0.g. ¢ <e so that simultaneously

L={c,e,...,e+2c,...,c+2ec,c+2ec,...} with ¢ <e

L={e,c,..., * ,..., * , * ,...,c+2'c,...}.
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We shall lead this to a contradiction. First observe that ¢’ + 2ec’ <e' +2c¢'? so
that by (i)

b'c' <c + 2ec

(since line ¢ + 2ec has no '-label). Hence b’ s—c7+ 2c <e +2c% and we obtain
c

from (v) that L={c,e,b,...}={e’,c’,b’,...} with b=b'<e+ 2% Next

observe by (i) that m<bc=b'c’ gs (c + 2ec) .56< e+2¢® so that by (v)

L={c,e,b,m,...}={e',c',b’, m'}. This contradicts (vii), and Theorem A is
proved.

6. Simple closed curves

6.1 DEFINITION. A finite sequence of nonzero integers N, ..., N, is said to

have small variation if sums of m consecutive elements never differ by more than
+1:

2 Njvi— Z Newif =1
i=1 i=1

for all m,A,x (indices mod p).

Thus the sequences 5, 5, 5, 4and 5, 5, 5, 4, 5,5, 5, 4,5, 5, 4 have small
variation, but 5,5,5,3and 5, 5,5, 4,5, 5,5, 4, 5, 4 have not. Observe also that
no change of sign occurs.

6.2 THEOREM. Let y, B e n\(T) be canonical generators of the fundamental
group of a one holed torus T. Then every non trivial simple closed curve w on T
can, after suitably renaming the generators, be represented by one of the following
words.

(i) o*=y

(i) w*=yBy~ '~

(iii) w*=ypMyp™- .- yp%

where the sequence N,, . . ., N, has small variation.

Conversely, each of these words is homotopic to a multiple of a simple closed
curve.
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In the above, “renaming” means that we interchange y, $ and/or replace a
generator by its inverse.

Proof. We use the Z X Z-holed covering & which we visualize as a small
e-neighbourhood in R? of the grid

G={(x,x)eR?*|x,€Z or x,eZ}

In this model of %, the vertical lines {(x,, x,) | x, =m}, m € Z are lifts of y and
the horizontal lines {(x,, x,) | x, =n}, n € Z are lifts of §. the deck transformation
group I consists of the mappings (x,, x,)— (x, + k, x,+ 1), k, l e Z.

Now let w* represent a simple closed curve w on T and assume w* cannot be
put into form (i) or (ii) by renaming the generators. Then

w* — YM]ﬁN] . e ,),MpﬁNp

with all exponents # 0. Since the space y U B is a deformation retract of T and
since w is simple it follows that the curve w* (cy U f) has only inessential self
intersections in the sense that arbitrarily small homotopies in T remove all self
intersections of w*. Accordingly each lift @* « G of w* has but inessential
self intersections and any two lifts intersect but inessentially. (Otherwise the
intersection projects to a self-intersection of w). An inessential intersection is
shown in Fig. 5b, the intersections of the bold and dotted lines in Fig. Sa, Sc are
essential.

We proceed by eliminating cases. By “subsequence of w” we also mean
sequences like Yy gy BM etc.

STEP 1. All |N]|=1or all | M,|=1

Proof. If for some i and j, |N;|=2, a given lift of w* in G contains a
horizontal and a vertical segment of length =2. Using a suitable deck transforma-
tion we find two lifts of w* which, at some point, intersect like in Fig. 5a. This is
impossible if w is simple.

'] 3 X Y

' L

Fig. 5a . Fig. 5b Fig. Sc
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Fig. 6a Fig. 6b Fig. 6¢

We may from now on assume that, say all |[M;| =1
STEP 2. w* contains no sequence y*B"y~* with [IN| =2, € = 1.

Proof. Using deck transformations again, we would find two lifts of w* which
intersect like in Fig. Sc.

STEP 3. w* contains no sequence y*B°y~° with e, 6 € {—1, 1}.

Proof. Let such a sequence, say y~'By be given. Select a lift of w*. It
contains a ‘“‘local minimum” as shown in Fig. 6a, b, ¢ and consequently also a
local maximum.

Figure 6a shows a local minimum which corresponds to the sequence
B~ 'y 'ByB~'. If we try to continue this curve without introducing essential
intersections and without allowing to write - - - yy~'---or---BB~"- - - we would
have to circle around the same square infinitely often. Hence the configuration of
Fig. 6a does not occur (recall that w* is already assumed to be not of type (ii)).
Accordingly, the local minimum must be ‘“casserole shaped” like in Figs 6b, 6c,
and moreover, because of Step 2, the local maximum is also a casserole, upside
down. A deck transformation brings the two casseroles together like in Fig 6b or
6¢c. In Fig. 6b, the intersection is essential, in Fig. 6c we have the same
continuation problem as in Fig. 6a. Hence casseroles do not occur. This proves
Step 3.

Because of Step 2 and 3 we may from now on assume that

w*=ypMypN- - yB"

STEP 4. The sequence Ny, . . ., N, has small variation.

Proof. Assume on the contrary that [N+ -+ N, —(N;y +- -+ N, =2
for some [/ and m (indices mod p). Choose again a lift of w*.

The parts of the lift in G which correspond to yB™ ---yB™ resp.
yBN+1 .. yBN-» have height m, the directed horizontal differences of their
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endpoints differ by at least 2. Hence a decktransformation may bring the parts
together such that they start and end both at the same altitude but such that one
of them starts on the left and ends on the right of the other. This causes an
essential intersection. The first part of the theorem is now proved.

As for the second part let two lifts of w* be given where w is primitive and of
type (iii). If @ does not lie in the homotopy class of a simple closed curve, these
lifts can be found such that they have an essential intersection. This is only
possible if two stair like parts occur with the same height but with horizontal
lengths differing by at least 2. Theorem 6.2 is now proved.
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