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Spectre du Laplacien, graphes et topologie de Fell

MARC BURGER

Depuis que B. Randol ([R,]) a montré, par une utilisation astucieuse de la
formule des traces de Selberg, I'existence de surfaces de Riemann dont la
premiere valeur propre non nulle du Laplacien est arbitrairement petite, de
multiples travaux ont été consacrés surtout a I'aspect géométrique de la question,
montrant que la premiére valeur propre du Laplacien A4,(S) est controlée par la
longueur de petites géodésiques de S, pourvu que le genre de S soit fixé
([S-W.Y.], [D.P.R.S.]). Récemment, R. Brooks ([Br,]) a examiné le comporte-
ment de la premiere valeur propre du Laplacien de revétements S, d’une surface
donnée S par le biais de la constante de Cheeger de S, qu’il relie a la constante de
bipartition d’'un graphe associ€ au revétement S, — §. Cette approche lui permet
d’obtenir une condition nécessaire et suffisante pour que 4,(S,) tende vers 0 si
n— o,

Néanmoins, ce résultat pour satisfaisant qu’il paraisse ne donne pas un
comportement précis de A,(S,) en fonction des invariants combinatoires
considérés et surtout n’explique pas le fait que les exemples de B. Randol sont
des revétements de S associ€s aux noyaux de caracteres y, du groupe fondamen-
tal de S, caractéres qui ont la propriété de converger vers 1 pour n— x.

Notre travail a pour but de donner un cadre commun a ces travaux en
montrant des estimations optimales de 4,(S,) en fonction d’invariants qui relevent
a la fois de la combinatoire du revétement S,— S et de propriétés des
représentations du groupe de Galois de §,/S.

Pour expliquer notre point de vue, nous allons introduire deux notions que
nous utiliserons constamment par la suite.

1. Soit M’'— M un revétement Galoisien de variétés Riemanniennes com-
pactes. Le groupe de Galois H du revé€tement agit par isométries sur M’ et donc
dans les espaces propres de valeur propre A du Laplacien de M’ soit &,(M'). De
cette action on déduit une représentation unitaire w; de H dans é,(M’):

w,(W)f(x)=f(h~"'-x) ot heH xeM', [e&WM).

* Extrait d’un travail de thése a I'Université de Lausanne ([B,]).
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On associe alors a toute représentation irréductible © de H un ensemble de
valeurs propres du Laplacien de M":

Sp(x):= {A| & est une sous-représentation de w, }.

De plus, la multiplicité de A dans Sp(m) est le nombre de fois que 7 est
contenue dans w,. Par la suite, nous utiliserons souvent la notation Ay(71)=
A(T) = - - - pour désigner Sp ().

2. Soit p: M'— M un revétement de variétés Riemanniennes compactes, I'', I'
les groupes fondamentaux respectifs, M le revétement universel de M et g, q' les
projections de M sur M, resp. sur M'. On fixe une fois pour toutes un domaine
fondamental fermé & de I’action de I' sur M et £, € % un point.

Soit P={xy,...,x,}=p 'q(%), X=%,,...,%, des relevés a M de
Xi,...,Xy et n,erl tels que n;x; =X%;, alors les fermés % = q'(n;¥) recouvrent
M'.

Nous associons deux graphes au revétement M'— M:

a) Le graphe ‘“géométrique” § est une structure de graphe sur P qu’on

obtient en reliant x; a x; par une aréte si N F ¥ J et i #J.

b) Le graphe “‘algébrique” &: soit A un syst¢me de générateurs finis de I tels

que A=A"". & est le graphe de sommets I''\I'" et dont les arétes entre

I''n; et I''n; sont en bijection avec n; 'I''n; N A. Ce graphe est régulier de
valence r = Card A.

Enfin, les opérateurs M, et M associent a une fonction F en x la somme des
valeurs de F sur les sommets adjacents a x pour les structures de graphes
considérés.

Les invariants qui nous permettront de comprendre les petites valeurs propres
de M' sont les spectres des opérateurs M, et My et la distance de & a la
représentation identité dans la topologie de Fell, quand on voit 7 comme
représentation du groupe fondamental de M.

Voici le type de résultat que nous allons montrer.

THEOREME A. Soit V,—V une suite de revétements galoisiens finis de
groupe G, d’un espace V localement symétrique compact de rang un et m, des
représentations irréductibles de G, qui tendent vers la représentation identité 1
dans la topologie de Fell du groupe fondamental I" de V.

Alors, pour tout A valeur propre du Laplacien de V on a:

lim dist. (4, Sp(z,)) = 0.
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En particulier:

lim Ay(7,) =0.

n—x

Remarquons que la topologie de Fell (cf. [Fe]) permet de formaliser la
condition de proximité de & a la représentation identité. Une autre maniere de
dire que x, est proche de 1, est la suivante: le groupe G, agit par automor-
phismes sur le graphe algébrique &, du revétement et son action dans C[(,,]
commute a celle de M . Soit alors C[x,] la composante isotypique de x, dans la
représentation réguliere de G, dans C[,] et Ay(x,, &,) la plus petite valeur
propre de la restriction de r/ — M_a C[n,]. Alors &, tend vers 1 si et seulement
si Ag(,, &,) tend vers 0 pour n— . Le nombre Ay(7, &) contréle également
Ao(t). Plus précisément:

THEOREME B. Soit V' — V un revétement galoisien de groupe G d’espaces
localement symétriques compacts de rang un, m une représentation irréductible de
G et A un ensemble fini de générateurs de I. Alors il existe des des constantes
positives ¢,(V, A) et c,(V, A) telles que:

C]A()(Jr, (‘Sj) = A()(.Tf) = 62/1(,(71', (‘3)

En particulier, c,A (&) =A(V')=c,A(B) ou A(S) est la plus petite valeur
propre non nulle de rl — M.

Nous exposerons ces résultats (et d’autres) dans les sections 1 a 3. L’object de
la section 4 sera de montrer, comme application d’une technique développée a la
section 3, une borne inférieure de la premiere valeur propre du Laplacien d’une
surface de Riemann compacte, qui améliore un résultat récent de H. Huber

((H.]).

THEOREME C. Soit S une surface de Riemann compacte de genre g =2, r
son rayon d’injectivité, d son diametre et V son volume. Alors, on a les inégalités:

min (1, r) min (1, r)
A(S) éc————;—z——— et A;(S)%CW "

¢ étant une constante universelle positive.

Les bornes inférieures du Théoreme C ne font qu’intervenir des invariants
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géométriques simples tels que le volume, le diamétre et le rayon d’injectivité.
Mentionnons a ce propos que [D.P.R.S.] ont obtenu récemment A, ZcL,/V?, ou
L, est la longueur minimale d’un ensemble de géodésiques fermées simples
séparant § en deux et ¢ une constante universelle. Néanmoins, la premiere borne
du Théoreme C est optimale en r et V; en effet, en prenant des revétement
cycliques S, d’une surface S, on a ,(S,) =C/V}; (Théoreme B) et le rayon
d’injectivité des S, est borné inférieurement, le Théoréme C montre alors que
M(S,)ZC' VL

De méme, en prenant des surfaces S, de volume fixé et ayant une géodésique
séparante de longueur r, — 0, on sait que A,(S,) =cr, ([S.W.Y.] ou [D.P.R.S.]) et
la borne inférieure du Théoreme C a le méme ordre de grandeur en r,. 1l est a
noter qu’il existe aussi des surfaces S, de volume fixé telles que r,—0 et
M(S,)Zc>0.

La seconde inégalité du Théoreme C est intéressante si d < V. 1l résulte alors
de [R,] que r Zce " et, donc A,(S)=ce” "V 2, en d’autres termes, sid <V, on a
une borne inférieure de A,(S) ne dépendant que de V.

Je remercie Jean-Philippe Anker des nombreuses suggestions qu’il a bien
voulu faire concernant ce travail, en particulier, les fonctions sphériques des
groupes de rang un.

1. Convergence de spectres

Notations et préliminaires: nous supposerons connus du lecteur les résultats
élémentaires concernant la classification des espaces symétriques non compacts
de rang un, des paires de Gelfand, des fonctions sphériques et leur relation avec
les représentations de classe un. Ces résultats sont exposés dans les §3 et 4 de
([K]) et nous les utiliserons librement.

X est un espace symétrique de rang un, c’est-a-dire un espace hyperbolique

¢ sur les corps réels, complexes, quaternioniens (R, C, ) ou le plan des octaves
de Cayley H}. Les groupes d’isométries G correspondants sont SO(1, n),
SU(l’ n)) Sp(l, n): |}:4(—20)-

Si G = KAN est une décomposition d’Iwasawa de G, M le centralisateur de A
dans K, les représentations de la série principale R; sont les induites 8 G des
caractéres ma,n— e " du groupe MAN (A= {a,=exptH |t e R}). Le parametre
s est complexe et on sait que R, est équivalente a une représentation unitaire
irréductible si et seulement si s € £, ou

Q=iRU{seR|-p=s=p}, si G=80(Q,n),SUQ,n)



230 MARC BURGER

et
. mey m, .

Q=iR U{seR | -——2——1§s§7+10us= :!:p}, si G=3Sp(1, n), Fs_20
p est la demi-somme des racines positives {«, 2a} de G et m, est la multiplicité
de la racine simple. Remarquons que R,,= 15, en d’autres termes, les groupes
Sp(1, n) et Fy_20 ont la propriété (T) de Kazhdan ([Ka] et [D-K]), alors que
SO(1, n) et SU(1, n) ne 'ont pas.

Soient A le Laplacien de X que nous choisirons défini positif et f; la fonction
sphérique associée a R;, alors Af, = Af, ou A =p?*—s° Si C désigne I'opérateur
de Casimir de G, T une représentation unitaire continue de G d’espace E somme
directe d’irréductibles et dT sa dérivée alors dT(C) agit scalairement dans chaque
sous-espace irréductible de 7. De plus, le nombre de fois que R, est contenue
dans T est égal a la dimension de ’espace des vecteurs T(K)-invariants de E dont
le coefficient associé est proportionnel a la fonction sphérique f; ou, ce qui revient
au méme, la multiplicité de la valeur propre A = p*> — s? de la restriction de dT(C)
a I’espace des vecteurs T(K)-invariants.

Soient I' un sous-groupe discret cocompact dans G, a une représentation
unitaire de I' de degré fini et d’espace #. T =Indf « est la représentation de G
agissant par translations a droite dans E = L*(a, I') le complété pour la norme
frG IF(g)||*dg de l'espace des fonctions continues F:G— ¥ satisfaisant
F(yg) = a(y)(F(g)), vy eI, g € G. Si on choisit un systtme de coordonnées dans
H et si F est une fonction C*, T(K)-invariante dans E, on a dT(C)F =
(Afy, ..., Af,)ou F=(fy,...,f,) et A est la Laplacien de X. Comme I'\G est
compact, T est somme directe d’irréductibles ([G.G.P-S]) et la discussion
ci-dessus s’applique a T.

Ceci dit, venons-en aux questions de convergence de spectres.

Soient donc V' =I"\X—V =I'\X un revétement Galoisien fini de groupe
H =TI"'\I', V étant supposé compact et & une représentation irréductible de H.
Nous allons d’abord interpréter Sp() en terme de représentation de G.

LEMME 1. Soit n* la contragrédiente de la relevée a I" de n. Alors A € Sp(x)
si et seulement si R, =Indg n* et la multiplicité de R, dans Indg n* est égale a la
multiplicité de n dans w, _.

Démonstration. Soient €L, E; une décomposition orthogonale de la com-
posante isotypique de = dans w,, {f, ..., fi} une base orthonormée de E;, r la
dimension de 7 et posons F(g)=(fi(g),...,fi(g)) ol on envisage f; comme
fonction sur G. Alors F, est C*, T(K)-invariante dans L*(w*, I') et T(C)F; = AF,.
De plus, {F,, ..., F,} -est un syst¢tme orthogonal. Donc m n’excéde pas la
multiplicité de R, = T.
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Réciproquement, soit F une fonction propre de d7T(C) de valeur propre A,
T(K)-invariante, F = (f, .. ., f,). Alors, comme F € L*(x*, I), la restriction de
w; au sous-espace engendré par {f;,...,f,} est isomorphe a x de sorte que

{fi,...,f}c D, E;. 1l existe alors des matrices complexes Ay, ..., A, telles
que

F=> A(fi, ..., fH™
i=1

La relation F(yg) = n*(y)F(g) montrc alors que A; est un entrelacement de 7%,
donc A; = w;ld, c’est-a-dire F = Y70, w,F,. O

Remarque. Lalemme 1 appliqué a 7w =1 et I'' = I'montre que si V = I'\ X est
un quotient compact d’un espace hyperbolique quaternionien Hi ou du plan des
octaves Hj, alors la premiére valeur propre non nulle A, de V ne peut pas étre
petite, en fait, A, = 8n + 8 dans le premier cas et A, =96 dans le second.

Le théoréme 1 s’énonce en termes de topologie de Fell; rappelons bri¢vement
qu’une suite de représentations unitaires irréductibles «,, tend vers « si pour tout
vecteur v de I’espace de a,, (en fait, un suffit) il existe des vecteurs v, de I’espace
de «a, tels que lim,{(a,(g)v,, v,) = (a(g)v, v) uniformément sur les parties
compactes de G.

THEOREME 1. Soient V = '\ X un espace localement symétrique compact de
rang un, V,— V une suite de revétements Galoisiens finis de V de groupe G, =,
une représentation irréductible de G, et m, la relevée a I' de la contragrédiente
de m.

Si la suite 7, tend vers la représentation identité 1, alors pour toute valeur
propre A du Laplacien de V, on a lim,, dist (A, Sp(=x,,)) = 0.

LEMME 2. Soient G un groupe localement compact a base dénombrable et
{7} 12757 un ensemble de représentations unitaires irréductibles de G. Supposons
que chaque coefficient de type positif de n.=;nl, est limite uniforme de
coefficients de type positif associés aux représentations m, = D, 7. Alors pour
chaque j il existe des suites d’entiers {j;};=, et {k;};=, avec k, <k, <--- telles que
7T} converge vers .

Démonstration. Soient 1=j < fixé, v un vecteur de I'espace de zL avec
lv]| = 1. 1l existe par hypothese des vecteurs v}, dans ’espace de ) tels que

pL(g) = (nl(g)v, v) = lim 2:31 (T8 Vi)
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Ainsi

p(g) = lim 2 Xpilg),

= 17/ 1ol et pie) = THER )

llvill?

Soit Py(G) '’ensemble des fonctions continues de type positif sur G valant 1 en
e. Nous rappelons que
— P(G) =« L*(G) est une partie convexe faiblement compacte. (Topologie de
dualité avec L'(G)).
- (Raikov) La topologie faible et la topologie de convergence uniforme sur les
parties compactes coincident sur P)(G).
— L’ensemble des points extrémaux de F,(G) coincide avec !'ensemble des
p(@)=(m(g)v -v) ot ||v|| =1 et & est unitaire irréductible.

Pour chaque 1=/<x, soit K, I’adhérence dans F,(G) de l'’ensemble

Sj<ee

P} 1=J<% et A, son enveloppe convexe fermée. Alors K, et A, sont compacts et K,
contient tous les points extrémaux de A, ([Bo] II. §7.1), donc K, contient p’,, ce

qui montre qu’il existe une suite {p/ };=, convergeant faiblement vers p’. et donc
uniformément sur les compacts. []

Démonstration du Théoréme 1. Le théoréme de continuité d’induction de Fell
([Fe]) et le lemme 2 montrent qu’il existe, pour tout R,=Ind{ 1, une suite
d’irréductibles w,, = Ind§ n; avec lim, w, =R,. En particulier, lim, w,, =
R, k= 1x; comme K est compact, w,, est de classe un pour m grand, donc de la
forme R, pour un s(m)e Q. Le Lemme 1, joint au fait que A=p>—s*=
lim (p? — s(m)?), permet de conclure. [J

COROLLAIRE 1. Sous les hypotheses du théoreme 1, on a

lim Ao(7,,) = 0.

Remarques. 1) Si n,, # 1 pour tout n, alors
Ao(m,) >0 et limA(V,)=0.

2) Les exemples de Randol sont obtenus en prenant un V dont le premier
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nombre de Betti 8, est non nul; moyennant la projection I'— Z°' on peut trouver
une suite de caracteres x, de I, x,, # 1, de noyaux d’indice fini dans I" et tendant
vers 1. Si x, désigne encore le caractere de I'/Kery,, groupe de Galois du
revétement V,, associé€ a Ker x,,, on a lim,, A,(x,,) =0 et donc lim, A,(V,) =0.

3) On obtient d’autres exemples en remarquant que, pour tout n =4, il existe
I' discret cocompact dans SO(n, 1) et une surjection de I' sur le groupe libre a
deux générateurs ([M]). En particulier, il existe un surjection de I sur le groupe
de Heisenberg sur Z:

1
A=4310
0

S = =

z
y xX,y,z€l
1

Pour N entier, wy(x,y, 2)f(t) =e*™"N="f(—x +1), f eC[Z/NZ] définit une
représentation irréductible de A de degré N et dont le noyau est d’indice N> dans
A. De plus, limy_,. wy = 1, dans la topologie de Fell. Si 7wy est la relevée a I de
wn, Vi le revétement associ€é a Ker my, alors Ay(my) comme valeur propre du
Laplacien de V) aura une multiplicité au moins €gale a N, et limy Ay(Tn) = 0.

Remarquons a ce propos que les méthodes de (|[B-C]) permettent de montrer
que si G =S80(2, 1), il existe pour tout N une métrique hyperbolique sur V), telle
que Aq(7ty) soit la premiere valeur propre du Laplacien de Vy.

4) Des méthodes analogues permettent de montrer que si V =I'\X est un
quotient de volume fini d’'un produit d’espaces symétriques de rang un, V, des
revétements Galoisiens finis de groupes H, et &, des représentations irréductibles
de H,, si &, tend vers 1, pour n—x, alors il existe n, tel que, pour
n = ng, Ag(,) soit valeur propre du Laplacien de V, correspondant a une fonction
propre de carré intégrable, et lim, A,(x,) =0.

Certains groupes discrets n’ont pas la propriété (7), néanmoins la
représentation identité est isolée dans un large classe de représentations. La
remarque 4 permet de produire de tels exemples:

COROLLAIRE 2. Soit K un corps de nombres distinct de Q ayant au moins
une place réelle et 0 lanneau des entiers de K, soit I =SL(2,0). Alors la
représentation 1 est isolée dans ’ensemble des représentations unitaires dont le
noyau est d’indice fini dans I.

Démonstration. Soient r; le nombre de places réelles, r, le nombre de places
complexes de K. Alors I' est un sous-groupe discret de covolume fini dans
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SL(2, R)" x SL(2, C)~. Soit t# 1 une représentation irréductible de I" dont le
noyau I’ est d’indice fini dans I" et V' le revétement associé. Comme r, =1 et
K#Q, I posséde la propriété des sous-groupes de congruence ([Se]), donc
I' o I'(a), ou a est un idéal de 0. Par ailleurs, M. F. Vignéras ([V]) a montré que
la premiere valeur propre du Laplacien du revétement associé a I'(a) est
supérieure a 3(r, + 4r,)/16, en particulier, Ay(7r) = 3(r, + 4r,)/16 ainsi, en vertu de
la remarque 4, 7 ne peut pas étre trop proche de 1. 0O

Considérons maintenant un revétement V' — V qui ne soit pas nécessairement
Galoisien. Soit & le graphe de I''\I" par rapport a un systéme de générateurs A
de T, tels que A =A"". (cf. Introduction).

La forme hermitienne

Q(f)=3 gb If(@) = f®)I* = (1 - M)f, f),

f eC[®], est semi-définie positive et n’annule que les fonctions constantes.
Désignons par 0 <A(B)=2A,(GB)=---=4,,_,(8) le spectre de rl — M, m est le
degré du revétement. Le lemme suivant relie le comportement de 4,(®) a celui
de certaines représentations.

LEMME 3. Soient I" un groupe discret, I,, <I des sous-groupes d’indice fini,
&(n) le graphe de L\TI par rapport & un ensemble de générateurs A=A"" de I' et
a, la restriction de la représentation quasi-réguliere de I' dans C[I\I'] a
I’orthogonal des fonctions constantes. Alors, 1 est limite d’une suite de coefficients

de type positif associés aux représentations {a,},-,, Si et seulement si
lim,, A,(&(n)) = 0.

Démonstration. Si f e C[I,\I'] est orthogonale aux constantes et de norme
un, alors I'inégalité

M) = X (1-Re(a, (), f))

SEA

montre un sens de I’équivalence.
Réciproquement, notons M, = M, et f € C[I,\I'], alors

Y —Re (MEFFY =4 3 IIf — ausrr - - -0 s
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Si ||7|| est la longueur d’un élément y € I par rapport a A, on aura:

sup |If — @, (Y)fII”S2Re ((r* — Mp)f, f).

sk

Si on choisit f =f,, fonction propre de M, de valeur propre r — 4,(&(n)), on
verra que pour chaque k:

lim sup |If, — a,(v)fall=0. O

n—x |lyji=k

Soit V'—V un revétement. On appellera spectre générique de V' I’ensemble

Spg(V')={A]|A est valeur propre du Laplacien de V' et dim &(V')>

THEOREME 2. Soit V,— V une suite de revétements de degré fini de V et
&(n) les graphes “algébriques” associés. Supposons que lim A,($(n)) =0. Alors,

pour toute valeur propre A du Laplacien de V, on a:

lim dist (Spg(V,.), A) =0.

Démonstration. On applique le théoreme d’induction par étage:

Ind§ 1 = Ind¢ Indf, 15, = Indf 1@ Indf a,,.

Le lemme montre que a,— 1, en vertu du lemme 2 on conclut que pour
chaque R, =Indf 1 il existe une suite Rymy = Ind{ «,, telle que R;,,,— R;.

On remarquera que —s(m)*+ p?e Spg(V,,). O

Remarque. Dans ces conditions, lim, A,(V,)=0.

2. Bornes supérieures

Soit & une représentation unitaire de I', d la distance Riemannienne sur X, x,
le point fixé par K. Il est naturel de mesurer la distance de a a la représentation
identité par la quantité:

J(a,r)= inf  sup (1-—Re (a(y)v, v)).

lull=1 d(yxg,x0)=r



236 MARC BURGER

En effet, si r=2D ou D =diam(V), I’ensemble {ye I'|d(yxq, xo)=r}
engendre I, ainsi lim,a,=1 dans la topologie de Fell si et seulement si
lim, J(«,, r) =0 pour un r 22D, et donc pour tous les r = 0.

Soient puo(@) = u (o) =- - - le spectre de la restriction de dT(C) a I’espace des
vecteurs T(K) invariants de L*(a, '), T=Ind¥ o, et 0<A, S A, =- - - le spectre
du Laplacien de V =T\ X.

La proposition suivante donne une borne de u,(a) en fonction de A, pourvu
que ces deux quantités soient petites:

PROPOSITION 1. a) Supposons que max (u,(a), A,) = p*. Alors il existe une
constante E(D) >0 telle que:

u(a) <A, + E(D)(k + 1)J(a, 3D).

b) Supposons que u(a) < p?. Alors, pour tout B, 0<B=p tel que p(a)=
pt—(p—PB) et tout r>Inc(p — B)/B, on a:

2p
uo(@)=J(a, r +2D) ﬁ(ZP“ﬁHr_mc(p—ﬁ) :

B

Remarque. c est la fonction d’Harish-Chandra de X (cf. lemme 2 ci-dessous).

La proposition 1 nous permet de montrer une partie du théoréme B (avec les
hypothéses et notations du théoré¢me B).

THEOREME 3. Il existe une constante C(V, A) >0 telle que
Ao() = C - Ay, ©).

Enfin, Panalogue du théoréme 3 dans le cas non Galoisien s’énonce comme
suit:

THEOREME 4. Soient V'—V un revétement d ‘espaces localement
symétriques compacts de rang un, & le graphe ‘‘algébrique™ associé, alors il existe
C(V, A)>0 tel que

M(VY=C - A ().

Remarque. On choisit, bien slir, un systéme de générateurs A de I' une fois
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pour toutes, nous prendrons ici
A={yelI|d(yxy, x0)=3D}.

Nous ferons précéder la démonstration de ces résultats d’un préliminaire
concernant les fonctions sphériques.

Rappelons que nous notons f; la fonctions sphérique associée a la
représentation R, p?—s*=A; G=KAK la décomposition de Cartan de G,
A= {a,=exptJ |teR}, J étant un générateur de norme un de 'algébre de Lie de

A. Alors fi(g) =fi(a), ou g=kak’' et fi(a))=fi(a_,), nous supposerons donc
toujours ¢t = 0.

LEMME 1. Soit p la demi-somme des racines positives de G et A réel non
négatif.

a) fi(a,)>0,teR,0=SA=p?

b) f1(@)Sfa(a) teR, 0S4 =4, =p?

O @) =f,(a), te R, A Z

LEMME 2. 0=A<p? p?>—s*=4,5>0,teR

fila,) <c(s)e®—Pm

ou
F(%)F(s)

dn——p+s) (p+s)
(=55

est la fonction d’Harish-Chandra de X et d =1, 2, 4, 8 suivant que X = Hg, F =R,
C, KouO.

c(s) =

Remarques. 1) Ces deux lemmes sont classiques. Le premier peut se
démontrer en utilisant ’équation differentielle que satisfait f, (cf. [H,] pour le cas
G =SL(2, R)), le second se démontre en utilisant la représentation de f, comme
intégrale sur N.

2) La fonction ¢ apparait dans I’estimation de po(a) et dans la condition
r>Inc(p — B)/B (cf. Proposition 1). Voici son comportement sur I'intervalle

[0, pl:
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—X est hyperbolique réel ou complexe, ¢ est strictement décroissante sur
[0, p] et c(p) =1, en particulier ¢(s) > 151 0 <s < p; de plus c(s)— », si s—0.

— X est hyperbolique quaternionien ou octonien, alors il existe &, (m,/2) +
1<k <p, tel que c soit strictement décroissante sur [0, k], strictement croissante
sur [k, p] et c(m,/2) +1)=c(p)=1.

En particulier, pour s € [0, p], c(s) 21, si et seulement si R, est équivalente a
une représentation unitaire.

LEMME 3. a) Soit >0et p—B=s=p, alors

f(a) = [fpee-m(a)]® "

b) SOitO§A1§AQ§p2 et

fAxa)

YO = @)’

alors
y()=1-(A,—A)h(?)

ou

ho)= [ 5 [ swia) av

6(u) étant le volume de la sphére de rayon u.

Démonstration. a) On utilise la représentation de f;, comme intégrale sur K
(IKD p- 20, 3.22) que ’on écrit comme suit:

ﬁ(a,)=j u(eH@-Rdky of  u(x) =xP"",
K

Comme u est concave pour p—fB=s=p, on peut appliquer Iinégalité de
Jensen, ce qui permet de conclure.

b) Si 6(¢) est la superficie de la sphere de rayon ¢ dans X et ¢,(f) =f; (a,),
®2(t) = fi,(a;), on sait que ¢; satisfait & 'équation différentielle —(¢;8)' = A,9,6,
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d’ou on conclut que y vérifie:

(y'édﬁ)' =0¢,10,(A — Ay)

en intégrant deux fois on obtient:

t d u
YO =1— (- Ay) f e [ dud(v)$1(v)$(v)
=1-(A—A)h(),

en utilisant le lemme 1. O

Le reste de la section est consacré a la démonstration des propositions 1,
Théorémes 3 et 4.

LEMME 4. a) Soit v € #, ¢ continue a support compact sur G et
Foo(g)= 2 (v )(v)¢(v8),

vell

alors F,4€ L%, I), de plus ||F,4||=c|l¢l.llvll, ot ¢ ne dépend que du
support de ¢.

b) Soient ¢ et y des fonctions de carré intégrable et a support compact sur G,
v, we X, alors:

(T@Fue Fuy) = 5, (v w) | dho(hgypirh).

vyel

c) Soit {F,},=, un systétme orthonormé complet de fonctions propre de d T(C),
T(K)-invariantes et ¢, y des fonctions de carré intégrable, a support compact sur
G et K-invariantes a droite. Alors:

<T(g)Fv,¢’ Fw,w) = 2 Cn&nfu,,(ar)(ar)r
ou
r= d(gx()’ xO)’ Cn = (Fu,q” F,,), dn = (Fw,w) Fn)

Les calculs démontrant le lemme 4 sont classiques dans les questions relatives
a la formule des traces de Selberg, et nous les omettons.
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Soit 9 un domaine fondamental de l'action a gauche de I sur G. Nous
prendrons pour % la préimage dans G de l'ensemble {xe X |d(x,, xy)=
d(x,y, xo) p-t. yYe I, y # e} par la projection G — X, x, étant fixé par les éléments
de K. On remarquera que & est K-invariant a droite.

LEMME 5. Soit q:G—V = I'\G/K la projection canonique, {f,|n =0} un
systeme orthonormé complet de fonctions propres réelles du Laplacien de V,
¢.(g) =(f.°9)(8)xx(8), ot xu est la fonction caractéristique de 9 et

Cg = {Y € F l d(‘}’x(), x”) é ZD + d(ng, X())}.

Alors:
a) (Fye.,Fuvg,)=0,mUVe, |v]=1
b) KT(©)F..0, Fu.p,) = Onmf,(8) =supyec, (1 = Re (a(y)v, v)).

Démonstration. a) Le résultat est immédiat en appliquant le lemme 1b).
b) On a:

(T@F a4y Fus) = 3, (Re (atr)v, v) = 1) [ 9 (hg)on(h) dh

yel”

+ 3 | 0.hg)on(rh) .

vel

Ce dernier terme de la somme vaut évidemment: [ ¢,(h)f,.(hg™") dh.

On vérifie que cette fonction de g est bi-K-invariante, fonction propre du
Laplacien pour la valeur propre A, et valant 6, , en g=e. Il suit que cette
intégrale vaut:

6n,mflm(g)'

La valeur absolue du premier terme de la somme s’estime par

sup (1—Re {a(y)v, v)) 2, | |$.(hg)| |p.(vh)| dh,

yeCy vel'7G

et cette derniére somme sur I vaut:

dhu;(hg)um(h) = llunl 2 =1

r'G
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u,(h) = 2, xa(vh) |fuoq(h)| = |f.(h)]

yer
presque partout. [
LEMME 6. Si max (A, u.(a)) = p?, alors:
fu(@)=f(a)— (k+1)J(a, r +2D).

(Rappelons que D = diam (V)).

Démonstration. Soit a,, . . ., a, des nombres complexes non tous nuls tels que
la somme F=Y%_, a,F, , soit orthogonale a F,, ..., F,_, et de norme 1.
Alors:

'( T(g)F’ F)‘ = Zk |C,,‘2 lfun(n)(g)' éf#k(a)(g)
en vertu des lemmes 1c) et 4¢). Par ailleurs:

k
(T@)F, F)= 2, 8,a,{T(g)F..4, Fuo);

n,m=(

en vertu du lemme 5, on a alors;

KT(Q)F, F)|Z ) la,l*f1,(8)

n=0

k
- Z Ia,,a,,,l l(T(g)FU,(P"’ Fv.¢,,,> - 6n.mf/l,.(g)l

n,m=0

=f(8) - gg&(l — Re (a(y)v, v)) (2 Ian|> ,

n=0

mais (8_y |a,)2<k +1. O

Démonstration de la proposition 1. a) Appliquons le lemme 6: r = D, on aura
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donc:

[ an) >1_ (k +1)J(A, 3D)
fi(ap) - fi(ap) ’

on peut bien siir supposer u,(a)= A,. Le lemme 3b) montre alors que

#(@) = A = (k + DJI(e, 3D)[A(D)f ,(ap)] ™"
< (k + 1) (a, 3D)[A(D)f (ap)] ™

b) En vertu du lemme 6:
fue(@)Z1=J(a, r+2D).
Les lemmes 2 et 3a) montrent que
fu (@) =c(p — B)P~Peb=P" ou p?—s®= py(a).

Supposons d’abord J(a, r +2D) < 1. Alors

1 > (o7 1/8\p—s
1=J(a,r+2D)= ¢ /cp = F) )

en supposant r >Inc(p — B)/B et en prenant le logarithme des deux cotés, on
trouve:

Inc(p — [3)) < J(a, r +2D)

A=(p—-s)(r—— B 1-J(a, r+2D)’

ou, encore, A/(1+ A)<J. Remarquons que cette inégalité est trivialement
vérifiée si J(a, r + 2D) = 1. On en conclut que:

(p—s)<J(a, r+2D)

1
Tnee—p) PV

B

en multipliant par p + s et en utilisant P'inégalité p? — s> = uo(a) = B(2p — B), on
obtient le résultat. O
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Démonstration du Théoréme 3. Soit n{ la relevée a I' de la contragrédiente de

m, alors Ag(w)=p(ry) (Lemme 1, sect. 1). Par ailleurs, po(n})=
E(D)J(r%, 3D) et

J(nt,3D)=J(n,;,3D)= inf sup(1—Re (n(y)v, v))

lvll=1 yeA

=4 inf D la(yv—v|P=(n ®). O

lil=1yea

Démonstration du Théoréme 4. On applique la méme démonstration que pour
le Théoréme 3 en remarquant que si « est la restriction a I'orthogonal des
fonctions constantes de la représentation quasi réguliere de I' dans C[I"'\I],
alors:

uo(a)=A(V"). O

3. Bornes inférieures

Nous allons maintenant borner inférieurement les petites valeurs propres du
Laplacien d’un revétement de variétés Riemanniennes compactes en termes de
spectre du graphe géométrique § associé (cf. introduction).

En fait, nous ne ferons que citer ce résultat (Théoreme 5), I'ayant déja
montré ailleurs (cf. [B,]), d’autant plus que la méthode d’estimation sera reprise
un peu modifiée a la section 4. Nous énongons également le pendant du théoréme
5 dans le cas galoisien et dans celui ou M’ est de volume infini, les méthodes de
démonstration étant les mémes. Nous obtiendrons quelques corollaires, en
particulier des résultats de R. Brooks ([Br,], [Br,]) et un phénoméne de
bicontinuité de I'induction pour la topologie de Fell.

Soit v(x) la fonction valence du graphe 9, i.e. le nombre d’arétes émanant de
x. Soit encore

A={yel|\yFNF+,yel,y+e}
et
r=CardA alors v(x)=r.

Soit B = (L, —Mg)L,(L,.>+ My) o M est Popérateur de moyenne du
graphe © (cf. introduction), L, 'opérateur de multiplication par une fonction
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aeC[9] et h(x)=[(r+1)(v(x)+1)]”". Alors B est un opérateur symétrique
semi-défini positif qui n’annule que les constantes. Nous verrons que son spectre
est relié a celui de L, — M, (cf. preuve du corollaire 1), cet opérateur jouant le
role du Laplacien combinatoire de 9.

Soit 0<A(B)=A,B)---=A,,_,(B) son spectre, m étant le degré du
revétement M'— M.

THEOREME 5. Soit 0<A,(M')=A,(M') - - - le spectre du Laplacien de M'.
Alors il existe une constante ¢ = c(M) >0 telle que

MMYZc A (B) 0=k=m-1

Si d’aventure le revétement M'— M est galoisien de groupe H et m est une
représentation irréductible de H, alors B agit dans C[xr, ], la composante
isotypique de & dans C[9]; soit alors A(B, w) = A,(B, w)= - - - le spectre de cette
restriction.

THEOREME 6. Il existe une constante ¢ = c(M) >0 telle que
A(mYZc-A(B,n) O0=k=(degn)’—1.

COROLLAIRE 1. a) Soit 8 le graphe algébrique de I''\I" déduit du systéme
de générateurs A de I'. Alors:

A,(M') Z c(M)A(S).

b) Si M'— M est galoisien de groupe H et w une représentation irréductible de
H, alors:

Ao() Z c(M)Ay(m, &).

Démonstration. a) L,(L, ., + M) est un opérateur symétrique préservant les
fonctions constantes, donc leur orthogonal, et dont le spectre est borné
inférieurement par 2/(1+ r)?, donc A,(B)=2/(1+ r)?A,(D); par ailleurs on tire
de v(x) =r que A,(D) = 4 (G) =rA, (D), ce qui montre a).

b) C’est le méme raisonnement: dans le cas galoisien v est constante et
L,(L, .2+ M) commute a I’action de H. [

Le corollaire 1 achéve donc la démonstration du théoréme B modulo la
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remarque suivante: dans la section 2 nous avions montré I'inégalité
MV ) =c-A(9),

ou & est le graphe de I''\I" par rapport au systtme de générateurs A =
{yeTI'|d(yxy, xo)=3D} ou D =diam (V). Mais A, A’ étant des systeémes de
générateurs de I', &,, &, les graphes correspondants sur I'"\I, on vérifie
facilement que

MG =c(A, ANA(G,), A(S 4, T)=c(A, A)A(G ., ),
si H=T"\I" est un groupe et & une représentation irréductible de celui-ci.
Il est facile de montrer a 'aide du minimax que A,,(M')=c(M); en fait le

méme phénomeéne se passe pour 4,,_,(M'):

COROLLAIRE 2. Soit M'—>M un revétement galoisien de degré m de
variétés Riemanniennes compactes connexes, alors il existe c(M) >0 tel que

A i(M") = c(M).

Démonstration.

(M) trB= (M)

1m——l
_ Y= - A(M') = .
A'm I(M) m kzz() k( ) m (r+ 1)

En effet,

1 . m
DA}

THEOREME 7. Soit M'— M un revétement de variétés Riemanniennes
connexes, M étant compact et A (M') Uinfimum du L*-spectre du Laplacien de M'.
Alors il existe une constante c(M) >0 telle que

A(M)Z ¢ - Ao(S).

Remarque. Dans le cas ou le graphe associ€ au revetement est infini son
laplacien combinatoire est un opérateur symétrique borné positif sur I’espace des
fonctions de carré sommable.
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Voici un corollaire qu’on peut lire dans [Br,], Théoreme 3:

COROLLAIRE 3. Supposons que I' = n,(M) ait la propriété (T), alors il
existe une constante ¢ = c(M) >0 telle que:

a) Si M’ est un revétement fini de M, alors A,(M') > c.

b) Si M' est un revétement infini de M, alors A((M') > c.

Démonstration. a) Découle directement du Corollaire 1 du Théoréme S et du
lemme 3, section 1.

b) 11 suffit de minorer Ayo((). Mais si 1,(8) =0, cela signifie qu’il existe une
suite de coefficients de type positif de la représentation quasi réguliere w de I
dans C[I'"\I'| qui tend vers 1; par ailleurs, I''\T étant infini, @ ne contient pas
I'identité, d’ou une contradiction avec le fait que I" posseéde la propriété (7). O

Le corollaire suivant peut se lire dans [Br,]:

COROLLAIRE 4. Soit I" un groupe opérant de maniére totalement discon-
tinue sans points fixes sur une variété Riemannienne N telle que I'\ N soit compact.
Alors T est moyennable si et seulement si Uinfimum du L*-spectre de N est nul.

Démonstration. Soit & le graphe de I" par rapport au systéme de générateurs
A={yel|y¥FNF+J}, ¥ étant un domaine fondamental fermé de I’action de
I'sur N.

Si I' est moyennable, il possede la propriété de Folner ou, ce qui revient au
méme, inf|9B|/|B| =0, I'infimum étant pris sur toutes les parties B de &, B
désignant le bord de B, c’est-a-dire le nombre d’arétes reliant B a son
complémentaire. Il est alors clair, en considérant des parties de N de la forme
Uyes Y& que

Vol (6B
;2{, V%l(ﬁz =0 ouencore AyN)=0.

Réciproquement, si A¢(N) =0, en vertu du théoréme 7, on a 4o(®) =0, donc
il existe une suite de coefficients de type positif de la représentation réguliere w
de I" dans L*(I') qui converge vers 1, en d’autres termes, 1 adhére 3 w dans la
topologie de Fell, ce qui est équivalent & la moyennabilité de I. [J

Voici enfin 'application a la bicontinuité de I'induite:

THEOREME 8. Soit I' un sous-groupe discret cocompact de G = SO(n, 1) ou
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SU(n, 1) et {my}x=1, une suite de représentations irréductibles de I' de noyaux
d’indice fini dans I.

Si 1 adhere a la suite {Ind ..}, alors m, tend vers 1, dans la topologie de Fell
de I

Démonstration. 1l existe en vertu du lemme 2, section 1, une suite de
représentations irréductibles w,  Ind{ 7, avec lim, w, =15; on peut donc
supposer wy = R;), s(k) € Q. Donc s(k)— p pour k— ; par ailleurs, on a
aussi (lemme 1, section 1) que p®—s*(k) est dans Sp(x}) ol on envisage 7}
comme représentation de I \I, I} = Ker x,. Soit V, = [\ X, alors, en vertu du
corollaire 1 du théoréme 6, on a p°—s*(k)Z Ay(w})Zc(I\X) - Ay(TF, &,).
Donc, puisque A(mg, &,)—0 si k—x, on en conclut, comme au lemme 3
section 1, que w; — 1, et donc 1, — 1. O

4. Bornes inférieures de la premiére valeur propre du Laplacien d’une surface
de Riemann

Cette section est consacrée a la démonstration du théoréme C.

Nous utiliserons un résultat de Peter Buser ([Bu,]) qui montre que I’on peut
trianguler convenablement une surface de Riemann §. Nous estimerons ensuite
A(S) par la premiere valeur propre du graphe associé a cette triangulation.
Enfin, des bornes inférieures de la premiére valeur propre du graphe donneront
le résultat annoncé.

Nous décrivons d’abord la triangulation de S d’apres ([Bu,]:

Soient y,, ..., V.. les géodésiques fermées simples de S de longueurs
[=2In2. Z,={xeS|d(x,y)=d;} le cylindre autour de vy, ou d,=
Arc sh (cosech [;/2).

On munit alors Z; du systtme de coordonnées (x,y) ou 0=x</; et
—d; =y =d, et on distingue quatre points

l; In2

A,‘ = (O, -di + ln 2/2), Bi = (5, _d,' +_I']2—"),
In 2 l; In2

| = sy &y — 57 ) l'= ~—I,'di__-__)'
a=(0a-%5)  Bi=(a-3

On joint A, B; par les deux géodésiques de longueur minimale o;, 6;, de méme
A|, B] par o] et 3. On obtient alors deux trigones W, et W; dont les cotés sont
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respectivement og;, §;, v; €t o;, 6;, y;. La longueur des géodésiques o,, G,, 6,, 0,
est comprise entre In 2 et  In 2, enfin leur volume est compris entre 7/3 et 27/3.

Sois §' le complémentaire dans S de l'intérieur de U™, (W, U W,). Alors il
existe une triangulation de §' par des triangles géodésiques T dont la longueur
des cotés est comprise entre In2 et 2In2 et le volume entre 7 — 6 Arsin V2/3 et
/2.

Notons & l'’ensemble des triangles et trigones. Le graphe (& que nous
considérons a pour sommets les éléments de & et deux sommets sont reliés par
une aréte si les triangles ou trigones correspondants ont un co6té en commun.

LEMME 1. Soit t € & et B, I'union de t et des triangles ou trigones adjacents
at.

Alors il existe une constante c, >0 telle que si u,(B,) est la premiére valeur
propre non nulle du probléme de Neumann de B,, on a:

a) u,(B,)Zc,, sitestun triangle.

b) u(B)=c,\l;, sit est un trigone W, ou W,.

Démonstration. a) Si t est un triangle, B, contient au plus un trigone. S’il n’en
contient pas, les informations sur la longueur des cotés et le volume des triangles
jointes a I'inégalité de Cheeger montrent le lemme. S’il contient un trigone W, ou
W/, on remarque simplement que la longueur d’une courbe 7 homotope a y, est
minorée par le volume du trigone compris entre n et y; (cf. [Bu,] lemme 1.13).

b) On procéde exactement comme dans la preuve du théoreme 1.1', du §5 de
[D.P.RS.]. O

LEMME 2. Soient a(t) le volume de t € & et

f_(_‘)ﬁfﬁ_’_))z
a(t) a(t)/’

Uinfimum étant pris sur toutes les fonctions

A(®) =inf S (

t=t’

F:929-R

telles que

_ F()* _
ZF(t)-—O et 2 0 = 1.

Alors, il existe ¢, >0, constante universelle telle que A\(S)Zc, - r - A(8), r étant
le rayon d’injectivité de S.
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Remarque. On notera que A,(®) est la premiére valeur propre non nulle d’'un
Laplacien combinatoire sur un graphe dont les sommets sont pondérés.

Démonstration. Soient f € C*(S), t € 9, a(B,) le volume de B,. On a, en vertu
du lemme 1:

g0z e[ 0P - ([ rom) ]

En sommant sur ¢t € D, on obtient:

4| 1Ty 2 4] sy ay - }:a(;) ( j&ﬂy) dy)z}.
Divisions par 4 [sf(y)*dy et remarquons que:
[rorar=3 [rora=S 2 ([0 o).

En posant F(t) = [,f(y) dy, on obtient que le quotient de Rayleigh de la fonction
f est minoré par:

F( [+MFQ)
2 { a(t) 4 + M)a(r) }
F(t)? ’
2720

4

Cl'r

ou

MF(t)= D, F(t').

t' =y

On applique I'identité:

b b3 b} bi (by+by+bs+by)
__1+_g+__3_+__§__( 1 +by+ b3+ by)
a, 4, Qi Qa, a,ta,+as+a,

1 -1 b, b\?
=3(a, +a,+az+ay) Zaiaj._____ ’

i#j a a
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ou b, =F(t), ay=a(t), b;=F(t'), a,=a(t'), 2=i =4, t' =t. Le numérateur de la
fraction ci-dessus vaut alors:

\5__b®)
LI+ M)’

ou
b0~ S a@a)( o -2’

la somme étant sur les couples z, y adjacents ou égaux a t. Il s’ensuit que:

F F
b(022 3 aa(e); ((f)) ;g—)))

On obtient le lemme en remarquant que c;=a(t)=c4, c; et c, étant des
constantes universelles. [J

LEMME 3. Si |8| est le nombre de sommets de &, D(®) le diametre de &,
alors il existe cs> 0 telle que:

Cs

A(®) = 'D—M .

Démonstration. Soit F:%— R, fonction de norme 1 de moyenne 0 réalisant
le minimum de la forme quadratique du lemme 2.

Soient u, u'€® et ty=u,t,, t,,..., 4 =u’, une suite de sommets tels que
=t pour 0=i=k—1et k=d(u, u’), la distance de u a u’ dans &. Alors:

(F(u) _ F(u'))2 _ ("2‘ F(t) F(t,~+1))2 <d(u, u')- A(G).

a(u) a(u’) izoa(t;) a(t)
Donc:
) a(u)a(u')(g ((;‘)) L ((:))) <c, A(G)D(G) - |G
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Par ailleurs, la somme de gauche vaut:

2 Y, a(u) Z2c, |G|, d’on le résultat. [

COROLLAIRE. Soient S une surface de Riemann compacte de genre g=2,d
son diamétre, V son volume et r son rayon d’injectivité.
Alors il existe une constante ¢ >0 telle que:

¢ -min(r, 1)

a) L(§)>— =,
¢ -min (r, 1)
b) AI(S)>-——VZ——.

Démonstration. 11 est clair qu’il existe une constante universelle ¢, > 0 telle

que

D(®) = cqd.

Par ailleurs: ¢;D(®) et c; || sont inférieures a V. Les lemmes 2 et 3 permettent
alors de conclure. 0O
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