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Spectre du Laplacien, graphes et topologie de Fell

Marc Burger

Depuis que B Randol ([Ri]) a montré, par une utilisation astucieuse de la

formule des traces de Selberg, l&apos;existence de surfaces de Riemann dont la

première valeur propre non nulle du Laplacien est arbitrairement petite, de

multiples travaux ont été consacrés surtout à l&apos;aspect géométrique de la question,
montrant que la première valeur propre du Laplacien A,(5) est contrôlée par la

longueur de petites géodésiques de 5, pourvu que le genre de S soit fixe

([S W Y ], [D P R S ]) Récemment, R Brooks ([Bri]) a examine le comportement

de la première valeur propre du Laplacien de revêtements Sn d&apos;une surface
donnée S par le biais de la constante de Cheeger de Sn qu&apos;il relie a la constante de

bipartition d&apos;un graphe associé au revêtement Sn —&gt; S Cette approche lui permet
d&apos;obtenir une condition nécessaire et suffisante pour que Ai (S,,) tende vers 0 si

Néanmoins, ce résultat pour satisfaisant qu&apos;il paraisse ne donne pas un

comportement précis de k\(Sn) en fonction des invariants combmatoires
considérés et surtout n&apos;explique pas le fait que les exemples de B Randol sont
des revêtements de S associés aux noyaux de caractères Xn du groupe fondamental

de 5, caractères qui ont la propriété de converger vers 1 pour n —? »
Notre travail a pour but de donner un cadre commun a ces travaux en

montrant des estimations optimales de A,(5W) en fonction d&apos;invanants qui relèvent
a la fois de la combinatoire du revêtement Sn-*S et de propriétés des

représentations du groupe de Galois de Sn/S

Pour expliquer notre point de vue, nous allons introduire deux notions que
nous utiliserons constamment par la suite

1 Soit M&apos;—&gt;M un revêtement Galoisien de variétés Riemanniennes
compactes Le groupe de Galois H du revêtement agit par isometnes sur M&apos; et donc
dans les espaces propres de valeur propre A du Laplacien de M&apos; soit ¥k(M&apos;) De

cette action on déduit une représentation unitaire cok de H dans %k(M&apos;)

o)k(h)f(x)=f(h~l x) ou heH xeM\ f e Sk{Mf)

* Extrait d un travail de thèse a I Université de Lausanne (|B ])
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On associe alors à toute représentation irréductible n de H un ensemble de
valeurs propres du Laplacien de M&apos;:

Sp(jï) := {À | n est une sous-représentation de a)k}.

De plus, la multiplicité de À dans Sp(jï) est le nombre de fois que n est

contenue dans wk. Par la suite, nous utiliserons souvent la notation À0(;r)â
Xx{ji) ^ • • • pour désigner Sp(jt).

2. Soit p:M&apos;^Mun revêtement de variétés Riemanniennes compactes, F&apos;, F
les groupes fondamentaux respectifs, M le revêtement universel de M et q, qr les

projections de M sur M, resp. sur M&apos;. On fixe une fois pour toutes un domaine
fondamental fermé &amp; de l&apos;action de F sur M et x() e 3&lt; un point.

Soit P= {*!,..., xm) p~lq(x()), xo xlt xm des relevés à M de

xu xm et rj, e F tels que 77,* =xn alors les fermés $• q&apos;(r]lcF) recouvrent
M&apos;.

Nous associons deux graphes au revêtement M&apos;-*M:

a) Le graphe &quot;géométrique&quot; -Sp est une structure de graphe sur P qu&apos;on

obtient en reliant x, à x} par une arête si 9t n ^ =£ 0 et i =£/.

b) Le graphe &quot;algébrique&quot; (#: soit ^4 un système de générateurs finis de Ttels
que A=A~l. Qb est le graphe de sommets F&apos;\F et dont les arêtes entre
F&apos;rj, et F&apos;rjj sont en bijection avec rj~lF&apos;r}l HA. Ce graphe est régulier de

valence r Card A
Enfin, les opérateurs M$ et M&amp; associent à une fonction F en x la somme des

valeurs de F sur les sommets adjacents à x pour les structures de graphes
considérés.

Les invariants qui nous permettront de comprendre les petites valeurs propres
de M&apos; sont les spectres des opérateurs M&amp; et Afw et la distance de n à la

représentation identité dans la topologie de Fell, quand on voit n comme
représentation du groupe fondamental de M.

Voici le type de résultat que nous allons montrer.

THÉORÈME A. Soit Vn-*V une suite de revêtements galoisiens finis de

groupe Gn d&apos;un espace V localement symétrique compact de rang un et nn des

représentations irréductibles de Gn qui tendent vers la représentation identité lr
dans la topologie de Fell du groupe fondamental F de V.

Alors, pour tout À valeur propre du Laplacien de V on a:

lim dist. (A, Sp(nn)) 0.
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En particulier:

lim kç{nn) 0.

Remarquons que la topologie de Fell (cf. [Fe]) permet de formaliser la

condition de proximité de n à la représentation identité. Une autre manière de

dire que nn est proche de lr est la suivante: le groupe Gn agit par automor-
phismes sur le graphe algébrique (&amp;n du revêtement et son action dans €[($„]
commute à celle de M&amp;n. Soit alors C[^n] la composante isotypique de nn dans la

représentation régulière de Gn dans €[(#„] et Â0(jrn&gt; %n) la plus petite valeur

propre de la restriction de ri - MWn à £[nn]. Alors Jin tend vers lr si et seulement
si ko(jtnf (#„) tend vers 0 pour n-»oo. Le nombre Ao(^, ©) contrôle également
Â0(jr). Plus précisément:

THÉORÈME B. Soit V-+V un revêtement galoisien de groupe G d&apos;espaces

localement symétriques compacts de rang un, n une représentation irréductible de

G et A un ensemble fini de générateurs de T. Alors il existe des des constantes

positives cx{Vy A) et c2(V, A) telles que:

(«) â *«(*) =§ c2A0(jt, C«).

En particulier, CiÂi((4)^A1(V)^c2A|(C9) où A,(0i) e.sr la plus petite valeur

propre non nulle de ri — Afw.

Nous exposerons ces résultats (et d&apos;autres) dans les sections 1 à 3. L&apos;object de

la section 4 sera de montrer, comme application d&apos;une technique développée à la

section 3, une borne inférieure de la première valeur propre du Laplacien d&apos;une

surface de Riemann compacte, qui améliore un résultat récent de H. Huber
([H,]).

THÉORÈME C. Soit S une surface de Riemann compacte de genre g è 2, r
son rayon d&apos;injectivité, d son diamètre et V son volume. Alors, on a les inégalités:

et

c étant une constante universelle positive.

Les bornes inférieures du Théorème C ne font qu&apos;intervenir des invariants
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géométriques simples tels que le volume, le diamètre et le rayon d&apos;injectivité.

Mentionnons à ce propos que [D.P.R.S.] ont obtenu récemment kx ^cLJV3, où
Lx est la longueur minimale d&apos;un ensemble de géodésiques fermées simples
séparant 5 en deux et c une constante universelle. Néanmoins, la première borne
du Théorème C est optimale en r et V; en effet, en prenant des revêtement
cycliques Sn d&apos;une surface 5, on a kx(Sn)^C/V2n (Théorème B) et le rayon
d&apos;injectivité des Sn est borné inférieurement, le Théorème C montre alors que
Xl(SH)ZC&apos;/V2H.

De même, en prenant des surfaces Sn de volume fixé et ayant une géodésique
séparante de longueur rn-&gt;0, on sait que À^SJ ^crn ([S.W.Y.] ou [D.P.R.S.]) et
la borne inférieure du Théorème C a le même ordre de grandeur en rn. Il est à

noter qu&apos;il existe aussi des surfaces Sn de volume fixé telles que rn—»0 et

La seconde inégalité du Théorème C est intéressante si d &lt; V. Il résulte alors
de [R2] que r i£ ce~v et, donc À,(5) â ce~vV~2, en d&apos;autres termes, si d &lt; V, on a

une borne inférieure de At(5) ne dépendant que de V.

Je remercie Jean-Philippe Anker des nombreuses suggestions qu&apos;il a bien
voulu faire concernant ce travail, en particulier, les fonctions sphériques des

groupes de rang un.

1. Convergence de spectres

Notations et préliminaires: nous supposerons connus du lecteur les résultats
élémentaires concernant la classification des espaces symétriques non compacts
de rang un, des paires de Gelfand, des fonctions sphériques et leur relation avec
les représentations de classe un. Ces résultats sont exposés dans les § 3 et 4 de

([K]) et nous les utiliserons librement.
X est un espace symétrique de rang un, c&apos;est-à-dire un espace hyperbolique

//£ sur les corps réels, complexes, quaternioniens (R, C, IK) ou le plan des octaves
de Cayley Hq. Les groupes d&apos;isométries G correspondants sont SO(1, n),
5(7(1, n), 5p(l, n), F4(-2o).

Si G KAN est une décomposition d&apos;Iwasawa de G, M le centralisateur de A
dans K, les représentations de la série principale Rs sont les induites à G des

caractères matn-&gt;e~st du groupe MAN (A {at exp tH \ t e R}). Le paramètre
5 est complexe et on sait que Rs est équivalente à une représentation unitaire
irréductible si et seulement si s e Q, où

Q îR U {s e R | -p S s S p}, si G SO(1, n)y 5(7(1, n)
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et

Q îR U \s 6 R | -^~- 1 ^s g —^ + 1 ou s ±p\, si G Sp(l, n), F4(_20)

p est la demi-somme des racines positives {a, 2a} de G et ma est la multiplicité
de la racine simple. Remarquons que R±p lG&gt; en d&apos;autres termes, les groupes
5p(l, n) et F4(_20) ont la propriété (T) de Kazhdan ([Ka] et [D-K]), alors que
SO(l, n) et SU(1, n) ne l&apos;ont pas.

Soient A le Laplacien de X que nous choisirons défini positif et fk la fonction
sphérique associée à Rs, alors Afk kfk où À p2 —s2. Si C désigne l&apos;opérateur

de Casimir de G, T une représentation unitaire continue de G d&apos;espace E somme
directe d&apos;irréductibles et dT sa dérivée alors dT(C) agit scalairement dans chaque

sous-espace irréductible de T, De plus, le nombre de fois que Rs est contenue
dans T est égal à la dimension de l&apos;espace des vecteurs r(/Q-invariants de E dont
le coefficient associé est proportionnel à la fonction sphérique fk ou, ce qui revient
au même, la multiplicité de la valeur propre À p2 — s2 de la restriction de dT(C)
à l&apos;espace des vecteurs r(#)-invariants.

Soient F un sous-groupe discret cocompact dans G, a une représentation
unitaire de F de degré fini et d&apos;espace &lt;M. T Ind£ oc est la représentation de G

agissant par translations à droite dans E — L2(a, F) le complété pour la norme
$r\G\\F(g)\\2dg de l&apos;espace des fonctions continues F:G-&gt;9€ satisfaisant

F(yg) a(y)(F(g)), y e F, g e G. Si on choisit un système de coordonnées dans
*ffî et si F est une fonction C00, r(K)-invariante dans Ef on a dT(C)F
(Afly Afr) où F (/i,. ,/r) et A est la Laplacien de X. Comme F\G est

compact, T est somme directe d&apos;irréductibles ([G.G.P-S]) et la discussion
ci-dessus s&apos;applique à T.

Ceci dit, venons-en aux questions de convergence de spectres.
Soient donc V F&apos;\X-*V F\X un revêtement Galoisien fini de groupe

H F&apos;\F, V étant supposé compact et n une représentation irréductible de H.
Nous allons d&apos;abord interpréter Sp(jt) en terme de représentation de G.

LEMME 1. Soit jz* la contragrédiente de la relevée à F de n. Alors À e Sp{n)
si et seulement si Rs ê Ind£ ji* et la multiplicité de Rs dans Indr n* est égale à la

multiplicité de k dans eoA.

Démonstration. Soient ©£Li E, une décomposition orthogonale de la

composante isotypique de k dans eoA, {f[,. yflr) une base orthonormée de En r la

dimension de n et posons Ft(g) (fi(g)&gt; • • • &gt;fr(g)) où on envisage f) comme
fonction sur G. Alors F, est C00, T(iC)-invariante dans L\n*, F) et T(C)Ft AFr
De plus, {Flf..., Fm} est un système orthogonal. Donc m n&apos;excède pas la

multiplicité de Rs S T.
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Réciproquement, soit F une fonction propre de dT(C) de valeur propre A,

r(/Q-invariante, F (/i, ,/r). Alors, comme F e L2(jt*&gt; F), la restriction de

coA au sous-espace engendré par {/,, ,/r} est isomorphe à n de sorte que
{/i&gt; • • • &gt;fr) c 0 T=\ Er II existe alors des matrices complexes Alf Am telles

que

La relation F(yg) ;r*(y)F(g) montre alors que A, est un entrelacement de jt*,
donc A, fijd, c&apos;est-à-dire F E™ i jU,Fr D

Remarque. La lemme 1 appliqué à ;r 1 et F&apos; F montre que si V F\X est

un quotient compact d&apos;un espace hyperbolique quaternionien H^ ou du plan des

octaves Hl, alors la première valeur propre non nulle Xx de V ne peut pas être

petite, en fait, kx ê 8n 4- 8 dans le premier cas et Xx â 96 dans le second.

Le théorème 1 s&apos;énonce en termes de topologie de Fell; rappelons brièvement
qu&apos;une suite de représentations unitaires irréductibles an tend vers a si pour tout
vecteur v de l&apos;espace de ocn (en fait, un suffit) il existe des vecteurs vn de l&apos;espace

de ocn tels que \imn{an(g)vn, vn) (a(g)v, v) uniformément sur les parties
compactes de G.

THÉORÈME 1. Soient V F\X un espace localement symétrique compact de

rang un, Vn—*V une suite de revêtements Galoisiens finis de V de groupe Gn, nn
une représentation irréductible de Gn et jt* la relevée à F de la contragrédiente
de Jt.

Si la suite jz* tend vers la représentation identité lr, alors pour toute valeur

propre A du Laplacien de V, on a limn dist (A, Sp(jtn)) 0.

LEMME 2. Soient G un groupe localement compact à base dénombrable et
{n&apos;k} iï*2lun ensemble de représentations unitaires irréductibles de G. Supposons

que chaque coefficient de type positif de jt*, 0; jtL est limite uniforme de

coefficients de type positif associés aux représentations nk ©; JtJk. Alors pour
chaque j il existe des suites d&apos;entiers {;,}r=i e* {Mr=i avec k{&lt;k2&lt;&apos; - • telles que
n\t converge vers Jt^.

Démonstration. Soient lê/&lt;°° fixé, v un vecteur de l&apos;espace de jtjx avec
1. Il existe par hypothèse des vecteurs v&apos;k dans l&apos;espace de nlk tels que

oc

pL(g) (nl(g)v, v) lim 2 {nlk(g)vlk, vlk).
k l==i
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Ainsi

où

et

Soit P()(G) l&apos;ensemble des fonctions continues de type positif sur G valant 1 en
e. Nous rappelons que

- P0(G) cz Lx(G) est une partie convexe faiblement compacte. (Topologie de

dualité avec Ll(G)).
- (Raikov) La topologie faible et la topologie de convergence uniforme sur les

parties compactes coïncident sur F0(G).
-L&apos;ensemble des points extrémaux de P{)(G) coïncide avec l&apos;ensemble des

Pis) - (n(g)v • u) où ||v|| 1 et jt est unitaire irréductible.
Pour chaque lë=/&lt;&lt;», soit Kt l&apos;adhérence dans P()(G) de l&apos;ensemble

{pi}/J*&lt;*et Ai son enveloppe convexe fermée. Alors K{ et Ai sont compacts et Kt
contient tous les points extrémaux de A{ ([Bo] II. §7.1), donc Kt contient pJx, ce

qui montre qu&apos;il existe une suite {pJu}7=\ convergeant faiblement vers pL et donc
uniformément sur les compacts.

Démonstration du Théorème 1. Le théorème de continuité d&apos;induction de Fell
([Fe]) et le lemme 2 montrent qu&apos;il existe, pour tout R.&apos;èlnd^ lr, une suite
d&apos;irréductibles wm ^ Indp n*m avec limm wm R,. En particulier, limm wm|A:

Rs]K^lK; comme K est compact, wm est de classe un pour m grand, donc de la

forme /£5(m) pour un s(m)eQ. Le Lemme 1, joint au fait que Â p2 — s2

lim (p2 — s{m)2)y permet de conclure.

COROLLAIRE 1. Sous les hypothèses du théorème 1, on a

Remarques. 1) Si nn ¥= lr pour tout n&gt; alors

Âo(jrM)&gt;0 et limA1(Vrn) O.
n

2) Les exemples de Randol sont obtenus en prenant un V dont le premier
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nombre de Betti fix est non nul; moyennant la projection F-^Z^1 on peut trouver
une suite de caractères %n de F, %n ^ 1, de noyaux d&apos;indice fini dans F et tendant
vers 1. Si %n désigne encore le caractère de F/Ker^n, groupe de Galois du
revêtement Vn associé à Ker %ny on a limrt X0(Xn) 0 et donc limn kx{Vn) 0.

3) On obtient d&apos;autres exemples en remarquant que, pour tout n ^4, il existe

F discret cocompact dans SO(n, 1) et une surjection de F sur le groupe libre à

deux générateurs ([M]). En particulier, il existe un surjection de F sur le groupe
de Heisenberg sur Z:

x,y, z

Pour N entier, wN(x,y, z)f{t) e2m/N{z-&apos;y)f(-x + t)y feC[Z/N2] définit une
représentation irréductible de A de degré N et dont le noyau est d&apos;indice N3 dans
A. De plus, limN_*oc wN 1A dans la topologie de Fell. Si nN est la relevée à F de

wN, VN le revêtement associé à Ker nNt alors k{)(jiN) comme valeur propre du
Laplacien de VN aura une multiplicité au moins égale à N, et lim/v A0(^/v) 0.

Remarquons à ce propos que les méthodes de ([B-C]) permettent de montrer
que si G SO(2, 1), il existe pour tout N une métrique hyperbolique sur VN telle
que ko{nN) soit la première valeur propre du Laplacien de VN.

4) Des méthodes analogues permettent de montrer que si V F\X est un
quotient de volume fini d&apos;un produit d&apos;espaces symétriques de rang un, Vn des

revêtements Galoisiens finis de groupes Hn et nn des représentations irréductibles
de Hnf si Jt* tend vers lr pour «~&gt;oo, alors il existe n{) tel que, pour
n^nQ, A0(jrn) soit valeur propre du Lapiacien de Vn correspondant à une fonction

propre de carré intégrable, et \\mn A()(^rw) 0.

Certains groupes discrets n&apos;ont pas la propriété (F), néanmoins la

représentation identité est isolée dans un large classe de représentations. La

remarque 4 permet de produire de tels exemples:

COROLLAIRE 2. Soit K un corps de nombres distinct de Q ayant au moins

une place réelle et 0 Vanneau des entiers de K, soit F 5L(2, 0). Alors la

représentation lr est isolée dans l&apos;ensemble des représentations unitaires dont le

noyau est d&apos;indice fini dans F.

Démonstration. Soient rx le nombre de places réelles, r2 le nombre de places

complexes de K. Alors F est un sous-groupe discret de covolume fini dans
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SL(2, Uf1 x 5L(2, C)1*. Soit T=Élr une représentation irréductible de F dont le

noyau F&apos; est d&apos;indice fini dans F et V le revêtement associé. Comme rx è 1 et
F possède la propriété des sous-groupes de congruence ([Se]), donc

F(a), où a est un idéal de 0. Par ailleurs, M. F. Vignéras ([V]) a montré que
la première valeur propre du Laplacien du revêtement associé à F(a) est

supérieure à 3(rt + 4r2)/16, en particulier, A0(jt) ^ 3(rj + 4r2)/16 ainsi, en vertu de

la remarque 4, n ne peut pas être trop proche de lr.

Considérons maintenant un revêtement V&apos;—» V qui ne soit pas nécessairement
Galoisien. Soit © le graphe de T&apos;YTpar rapport à un système de générateurs A
de F, tels que A=A~l. (cf. Introduction).

La forme hermitienne

f e C[@], est semi-définie positive et n&apos;annule que les fonctions constantes.

Désignons par 0 &lt; Â^©) S A2(@) S • • • Am_x(@) le spectre de ri - MCsj, m est le

degré du revêtement. Le lemme suivant relie le comportement de Â^©) à celui
de certaines représentations.

LEMME 3. Soient F un groupe discret, Fn&lt;F des sous-groupes d&apos;indice finiy
@(n) le graphe de Fn\Fpar rapport à un ensemble de générateurs A A~l de F et

ocn la restriction de la représentation quasi-régulière de F dans C[Fn\F] à

l&apos;orthogonal des fonctions constantes. Alors, 1 est limite d&apos;une suite de coefficients
de type positif associés aux représentations {an}n=u si et seulement si

lim, *,(©(«)) 0.

Démonstration. Si /eC[fn\f] est orthogonale aux constantes et de norme
un, alors l&apos;inégalité

montre un sens de l&apos;équivalence.

Réciproquement, notons Mn M^(n) et f e C[Fn\F], alors

r*&lt;/,/&gt;-Re&lt;Jlf*/,/&gt; * E 11/-«„
5i. ,skeA
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Si || y || est la longueur d&apos;un élément y e F par rapport à A, on aura:

sup ||/-*n

Si on choisit /=/„, fonction propre de Mn de valeur propre r - ki(&amp;(n)), on
verra que pour chaque k:

lim SUp \\fn-C*n(y)fn\\=0.

Soit V—&gt;V un revêtement. On appellera spectre générique de V l&apos;ensemble

Spg(V&apos;) {X\ A est valeur propre du Laplacien de V et
dim

THÉORÈME 2. Soit Vn-+V une suite de revêtements de degré fini de V çt
&amp;(n) les graphes &quot;algébriques&quot; associés. Supposons que limÂ1((y(n)) 0. Alors,
pour toute valeur propre À du Laplacien de V&gt; on a:

limdist(S/7g(Vw),A) 0.
n

Démonstration. On applique le théorème d&apos;induction par étage:

Ind£ lj; IndF Indfw lFn Ind£ lr0 Ind? an.

Le lemme montre que an-^&gt;lr, en vertu du lemme 2 on conclut que pour
chaque Rs ê Indr lr il existe une suite /?S(m) Indr ocm telle que RS(m)-+ Rs.

On remarquera que —s(m)2 + p2e 5pg(Vrm). D

Remarque. Dans ces conditions, limn Âj(Vn) 0.

2. Bornes supérieures

Soit a une représentation unitaire de F, d la distance Riemannienne sur X&gt; x{)

le point fixé par K. Il est naturel de mesurer la distance de or à la représentation
identité par la quantité:

J(&lt;x, r)= inf sup (1 - Re {oc{y)v9 v)).
1 d()^
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En effet, si r^2Z&gt; où D diam(V), l&apos;ensemble {y € F| d(yx{), x())^r}
engendre F, ainsi limn ocn 1 dans la topologie de Fell si et seulement si

limrt J(an, r) 0 pour un r ^ 2D, et donc pour tous les r ^ 0.

Soient ju0(o&apos;) ê ju^or) ^ • • • le spectre de la restriction de dT(C) à l&apos;espace des

vecteurs T(K) invariants de L2(a, F), T Indr a, et 0&lt;À, ^ A2= • • le spectre
du Laplacien de V F\X

La proposition suivante donne une borne de /i*(ar) en fonction de kk pourvu
que ces deux quantités soient petites:

PROPOSITION 1. a) Supposons que max (/**(#), h) p2- 4fors i
constante E(D) &gt; 0 re//e que:

b) Supposons que [x()(a)&lt;p2. Alors, pour tout j3, 0&lt; j3 p tel que
p%-(p- fi)2 et tout r &gt; In c(p - j8)//?, on a:

2P

^ In c(p-r fi

Remarque, c est la fonction d&apos;Harish-Chandra de X (cf. lemme 2 ci-dessous).

La proposition 1 nous permet de montrer une partie du théorème B (avec les

hypothèses et notations du théorème B).

THÉORÈME 3. // existe une constante C(V, A) &gt; 0 telle que

Enfin, l&apos;analogue du théorème 3 dans le cas non Galoisien s&apos;énonce comme
suit:

THÉORÈME 4. Soient V-+V un revêtement d&apos;espaces localement
symétriques compacts de rang un, Oi le graphe &quot;algébrique&quot; associé, alors il existe

C(V,A)&gt;0telque

Remarque. On choisit, bien sûr, un système de générateurs A de F une fois
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pour toutes, nous prendrons ici

Nous ferons précéder la démonstration de ces résultats d&apos;un préliminaire
concernant les fonctions sphériques.

Rappelons que nous notons fx la fonctions sphérique associée à la

représentation Rs, p2-s2 k\ G KAK la décomposition de Cartan de G,

A- {at- expt/ 1t e R}, J étant un générateur de norme un de l&apos;algèbre de Lie de

A. Alors/A(g)=/A(a,), où g katkf et fx(at) =/A(fl_,), nous supposerons donc

toujours t ^ 0.

LEMME 1. Soit p la demi-somme des racines positives de G et À réel non
négatif.

a) fx(at)&gt;0, teM,0^k^p2
b) fk2(at) £fki(at), t e U, 0 ^ A, S Â2 ê p2

c) lfA(^)l^/p^)^€[R,Aèp2.

LEMME 2. 0^Â&lt;p2, p2-s2 À,s&gt;0, r e

ou

c(s) -

est la fonction d&apos;Harish-Chandra de X et d 1, 2, 4, 8 suivant que X H$, F R,
C, K ou 0.

Remarques. 1) Ces deux lemmes sont classiques. Le premier peut se

démontrer en utilisant l&apos;équation différentielle que satisfait fk (cf. [H2] pour le cas

G SL{2y R)), le second se démontre en utilisant la représentation de^ comme
intégrale sur N.

2) La fonction c apparaît dans l&apos;estimation de juo(ar) et dans la condition
r &gt; In c(p - /3)/j8 (cf. Proposition 1). Voici son comportement sur l&apos;intervalle
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—X est hyperbolique réel ou complexe, c est strictement décroissante sur

[0,p] et c(p) 1, en particulier c(s)&gt; 1 si 0&lt;s &lt;p; de plus c(s)-»°°, si s-*0.
—X est hyperbolique quaternionien ou octonien, alors il existe k, (ma/2) +

1 &lt; k &lt; p, tel que c soit strictement décroissante sur [0, k], strictement croissante

sur [k, p] et c(ma/2) +1) c(p) 1.

En particulier, pour s e [0, p], c(s) g 1, si et seulement si Rs est équivalente à

une représentation unitaire.

LEMME3. a) Soit p&gt;0et p-fi^s^-p, alors

b)

alors

OU

ô(u) étant le volume de la sphère de rayon u.

Démonstration, a) On utilise la représentation de fk comme intégrale sur K
([K]) p. 20, 3.22) que l&apos;on écrit comme suit:

h{at) f u(e-H(a-&lt;k}dk) où u{x)~xp~s/fi,
JK

Comme u est concave pour p - fi Si s ^ p, on peut appliquer l&apos;inégalité de
Jensen, ce qui permet de conclure.

b) Si Ô(t) est la superficie de la sphère de rayon t dans X et &lt;t&gt;x(t) =fkï(at)&gt;
(O=/à2(û&apos;)&gt; on sait &lt;luê &lt;t&gt;t satisfait à l&apos;équation différentielle -(0,&apos;ô)&apos;
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d&apos;où on conclut que y vérifie:

en intégrant deux fois on obtient:

y(t) 1 - (A2 - A,) f f&quot; f dvà{v)&lt;}&gt;x{v)4&gt;2{v)

en utilisant le lemme 1. D

Le reste de la section est consacré à la démonstration des propositions 1,

Théorèmes 3 et 4.

LEMME 4. a) Soit v e M, (f&gt; continue à support compact sur G et

alors Fv&gt;&lt;t&gt;eL2(a, T), de plus ||FU&gt;0|| ^c ||0||2 \\v\\, où c ne dépend que du

support de $.
b) Soient $ et ip des fonctions de carré intégrable et à support compact sur G,

v, w e 3€f alors:

(T(g)Fv,+, Fw^) 2 (a(y)v, w) f dh&lt;t&gt;(hg)xl&gt;(rh).

c) Soit {Fn}nm un système orthonormé complet de fonctions propre de d T(C),
T(K)~invariantes et &lt;t&gt;, ty des fonctions de carré intégrable, à support compact sur
G et K-invariantes à droite. Alors:

{T(g)Fv&gt;4&gt;, FWi%p) 2j Cndnfnn(a)(ar),

OÙ

r d(gx0, x0), cn (FVt4&gt;, Fn), dn (FWty, Fn).

Les calculs démontrant le lemme 4 sont classiques dans les questions relatives
à la formule des traces de Selberg, et nous les omettons.
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Soit 2 un domaine fondamental de Faction à gauche de F sur G. Nous

prendrons pour 3) la préimage dans G de l&apos;ensemble {x eX | d(xu x())^=.

d{xxY&gt; jc0) p.t. y eF, y # e} par la projection G~*X, x() étant fixé par les éléments
de K. On remarquera que 2 est ^-invariant à droite.

LEMME 5. Soit q.G-*V F\G/K la projection canonique, {/„ | n ^0} un
système orthonormé complet de fonctions propres réelles du Laplacien de V,
&lt;t&gt;n(g) (fn °q)(g)X°Ag)&gt; où %cjs est la fonction caractéristique de 3) et

Cg {y e F | rf(yx0, x») S 2D + d(gxiU x0)}.

a) &lt;Fv^,Fv^&gt;=&lt;5n,m,u€^
b) Kr^F,,.^, F,,^) - ôWiW/Àjt(g)| Ssupy€Cf (1 - Re (a(y)u, t/&gt;).

Démonstration, a) Le résultat est immédiat en appliquant le lemme lb).
b) On a:

&lt;T(g)Fv.+H, F^J 2 (Re (a(Y)v, v) - 1) f 4&gt;n(hg)&lt;pm{h)dh

yer Jg

+ lLr\c&lt;t&gt;n(hg)&lt;t&gt;m{rh)dh.

Ce dernier terme de la somme vaut évidemment: JG &lt;pn(h)fm(hg~l) dh.

On vérifie que cette fonction de g est bi-/C-invariante, fonction propre du

Laplacien pour la valeur propre Âm et valant ànm en g e. Il suit que cette

intégrale vaut:

La valeur absolue du premier terme de la somme s&apos;estime par

sup(l-Re&lt;*(y)i/,t/»2 f \^n(hg)\ |0m(y*)| dh,
r*Cg yerJG

et cette dernière somme sur F vaut:

T/G
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OÙ

*n(h) S XoAïh) \fn°q(h)\ \fn(h)\

presque partout.

LEMME 6. 5/ max (À*, fik(a)) =§ p2, alors:

f»kU&quot;r) ^fxk(ar) -(k + l)J(«, r + 2D).

(Rappelons que D diam (V)).

Démonstration. Soit a{), ak des nombres complexes non tous nuls tels que
la somme F =^^oanFv ^ soit orthogonale à Fo, Fk_x et de norme 1.

Alors:

\(T(g)F, F)\ ^ S \cn\2
n k

en vertu des lemmes le) et 4c). Par ailleurs:

(T{g)F,F)= £ anàm{T(g)Fv.&lt;t&gt;n,Fv^J;
n,m—()

en vertu du lemme 5, on a alors:

8) - sup (1 - Re (a(y)v, v)
yeCg

l.

Démonstration de la proposition 1. a) Appliquons le lemme 6: r D, on aura
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donc:

on peut bien sûr supposer f*k(&lt;x) è A*. Le lemme 3b) montre alors que

pk(a)-kk*{k

b) En vertu du lemme 6:

Les lemmes 2 et 3a) montrent que

Supposons d&apos;abord J(ay r + 2D) &lt; 1. Alors

1

1 — J(a, r + 2D)~~

en supposant r &gt; In c(p - /?)//? et en prenant le logarithme des deux côtés, on
trouve:

A (p-i l-J(a,r

ou, encore, .A/(l+y4)&lt;/. Remarquons que cette inégalité est trivialement
vérifiée si J(a, r + 2D) ^ 1. On en conclut que:

en multipliant par p -f s et en utilisant l&apos;inégalité p2 — 52 iio(&amp;) /3(2p — j8), on
obtient le résultat.
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Démonstration du Théorème 3. Soit n\ la relevée à F de la contragrédiente de

jzy alors A*(;r) iik{nt) (Lemme 1, sect. 1). Par ailleurs, ïio(ji*)^
E(D)J(jvÎ, 3D) et

J(jtt 3D)=J(jtu3D)= inf sup (1 - Re {n(y)v, v))
||u|| l yeA

^2 inf ^Z \\n(Y)v-v\\2 Ul(ji,®). D
\W\\ 1 YeA

Démonstration du Théorème 4. On applique la même démonstration que pour
le Théorème 3 en remarquant que si a est la restriction à l&apos;orthogonal des

fonctions constantes de la représentation quasi régulière de F dans CjT&apos;YT],

alors:

3. Bornes inférieures

Nous allons maintenant borner inférieurement les petites valeurs propres du
Laplacien d&apos;un revêtement de variétés Riemanniennes compactes en termes de

spectre du graphe géométrique !q associé (cf. introduction).
En fait, nous ne ferons que citer ce résultat (Théorème 5), l&apos;ayant déjà

montré ailleurs (cf. [B^), d&apos;autant plus que la méthode d&apos;estimation sera reprise
un peu modifiée à la section 4. Nous énonçons également le pendant du théorème
5 dans le cas galoisien et dans celui où Mf est de volume infini, les méthodes de

démonstration étant les mêmes. Nous obtiendrons quelques corollaires, en

particulier des résultats de R. Brooks ([Br^, [Br2]) et un phénomène de

bicontinuité de l&apos;induction pour la topologie de Fell.
Soit v(x) la fonction valence du graphe $, i.e. le nombre d&apos;arêtes émanant de

x. Soit encore

f y e F,

et

r Card A alors v (x ê r.

Soit B (LV-Mt))L^(Lu+2 + M^)) où Mc, est l&apos;opérateur de moyenne du

graphe $ (cf. introduction), La l&apos;opérateur de multiplication par une fonction
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aeC[|)] et /*(*) [(r + l)(v(x) + l)]&quot;1. Alors B est un opérateur symétrique
semi-défini positif qui n&apos;annule que les constantes. Nous verrons que son spectre
est relié à celui de Lv — M$ (cf. preuve du corollaire 1), cet opérateur jouant le

rôle du Laplacien combinatoire de $.
Soit 0&lt;A1(B)âA2(J3)- • ^km.}(B) son spectre, m étant le degré du

revêtement M&apos;-*M.

THÉORÈME 5. Soit 0&lt; A1(M&apos;)^A2(M&apos;) • • le spectre du Laplacien de M&apos;.

Alors il existe une constante c c(M) &gt; 0 telle que

Si d&apos;aventure le revêtement M&apos;—&gt;M est galoisien de groupe H et n est une
représentation irréductible de //, alors B agit dans C[;r, $], la composante
isotypique de n dans C[.$J; soit alors Ao(#, ;r) ê A,(B, ri) ë • • • le spectre de cette
restriction.

THÉORÈME 6. // existe une constante c c(M) &gt; 0 telle que

Xk(n) g c • A*(fl, jt) 0 â * ^ (deg ;r)2 - 1.

COROLLAIRE 1. a) Soit Qi le graphe algébrique de T&apos;\r déduit du système
de générateurs A de F. Alors:

b) Si M&apos;—» M est galoisien de groupe H et n une représentation irréductible de

Hy alors:

A0(jr)èc(M)A()(jr, G»).

Démonstration, a) Lh(Lv+2 + M§) est un opérateur symétrique préservant les

fonctions constantes, donc leur orthogonal, et dont le spectre est borné
inférieurement par 2/(1 + r)2, donc A,(fî)^2/(1 4- r)2A,(£)); par ailleurs on tire
de u(x) S r que A*(£&gt;) g A*((#) â rA*(&lt;p), ce qui montre a).

b) C&apos;est le même raisonnement: dans le cas galoisien v est constante et

Lh(Lv+2 + Affc) commute à l&apos;action de H. D

Le corollaire 1 achève donc la démonstration du théorème B modulo la
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remarque suivante dans la section 2 nous avions montré l&apos;inégalité

où &amp; est le graphe de JT&apos;\r par rapport au système de générateurs A
{y e T \ d(yx0, xo)^3D} où D diam(V) Mais A, A1 étant des systèmes de

générateurs de r,(&amp;A,QbA les graphes correspondants sur r\r, on vérifie
facilement que

si H F&apos;YT est un groupe et jt une représentation irréductible de celui-ci
II est facile de montrer à l&apos;aide du minimax que Âw(Af&apos;)èc(M), en fait le

même phénomène se passe pour Âm_,(M&apos;)

COROLLAIRE 2 Soit M&apos;^&gt;M un revêtement galomen de degré m de
variétés Riemanmennes compactes connexes, alors il existe c(M)&gt;0 tel que

Démonstration

En effet,

THÉORÈME 7 Soit M&apos;-*M un revêtement de variétés Riemanmennes

connexes, M étant compact et Â()(M&apos;) Vinfimum du L2-spectre du Laplacien de M&apos;

Alors il existe une constante c(M)&gt;0 telle que

ko(M&apos;)^c Ao(@)

Remarque Dans le cas où le graphe associé au revêtement est infini son

laplacien combmatoire est un opérateur symétrique borné positif sur l&apos;espace des

fonctions de carré sommable
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Voici un corollaire qu&apos;on peut lire dans [Br^, Théorème 3:

COROLLAIRE 3. Supposons que F jzx{M) ait la propriété (T), alors il
existe une constante c c(M) &gt; 0 telle que:

a) Si M&apos; est un revêtement fini de Af, alors k\{M&apos;) &gt; c.

b) Si M&apos; est un revêtement infini de Af, alors A0(Af &gt; c.

Démonstration, a) Découle directement du Corollaire 1 du Théorème 5 et du
lemme 3, section 1.

b) II suffit de minorer Ao(©). Mais si Ao(©) 0, cela signifie qu&apos;il existe une
suite de coefficients de type positif de la représentation quasi régulière co de F
dans C[r&apos;\F] qui tend vers 1; par ailleurs, F&apos;\F étant infini, co ne contient pas
l&apos;identité, d&apos;où une contradiction avec le fait que F possède la propriété (T). D

Le corollaire suivant peut se lire dans [Br2]:

COROLLAIRE 4. Soit F un groupe opérant de manière totalement discontinue

sans points fixes sur une variété Riemannienne N telle que F\N soit compact.
Alors F est moyennable si et seulement si Vinfimum du L2-spectre de N est nul.

Démonstration. Soit © le graphe de F par rapport au système de générateurs
&gt;4 {yer|y^n^#0}, 9 étant un domaine fondamental fermé de l&apos;action de

Tsur N.
Si Test moyennable, il possède la propriété de Fôlner ou, ce qui revient au

même, inf \3B\/\B\ 0, Pinfimum étant pris sur toutes les parties B de ©, SB

désignant le bord de B, c&apos;est-à-dire le nombre d&apos;arêtes reliant B à son

complémentaire. Il est alors clair, en considérant des parties de N de la forme
UyeB Y

Vol (9B)
inf v / 0 ou encore Ao(iV) 0.

BczN Vol (B)

Réciproquement, si À0(iV) 0, en vertu du théorème 7, on a Ao(©) 0, donc

il existe une suite de coefficients de type positif de la représentation régulière a)

de Fdans L\F) qui converge vers 1, en d&apos;autres termes, lr adhère à a&gt; dans la

topologie de Fell, ce qui est équivalent à la moyennabilité de F.

Voici enfin l&apos;application à la bicontinuité de l&apos;induite:

THÉORÈME 8. Soit F un sous-groupe discret cocompact de G SO{ny 1) ou
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SU(n, 1) et {jtk}k=zU une suite de représentations irréductibles de F de noyaux
d&apos;indice fini dans F.

Si lG adhère à la suite {Ind£ nk], alors nk tend vers lr dans la topologie de Fell
de F

Démonstration. Il existe en vertu du lemme 2, section 1, une suite de

représentations irréductibles (ok&lt;^lnàf nk avec \imka&gt;k \G&apos;, on peut donc

supposer (ok Rs(k), s(k)eQ. Donc s(k)-* p pour &amp;—?&lt;*&gt;; par ailleurs, on a
aussi (lemme 1, section 1) que p2 — s2(k) est dans Sp{nt) où on envisage ji\
comme représentation de Fk\F, Fk Kerjtk. Soit Vk Fk\X, alors, en vertu du
corollaire 1 du théorème 6, on a p2 - s\k)^ X{)(jït)^c(F\X) • A0(jt£, ®k).
Donc, puisque Â0(tf*, ©*)-&gt;0 si A:-»», on en conclut, comme au lemme 3

section 1, que nt~* lr, et donc jt*—&gt; lr.

4. Bornes inférieures de la première valeur propre du Laplacien d&apos;une surface
de Riemann

Cette section est consacrée à la démonstration du théorème C.
Nous utiliserons un résultat de Peter Buser ([BU]]) qui montre que Ton peut

trianguler convenablement une surface de Riemann S. Nous estimerons ensuite

À!(5) par la première valeur propre du graphe associé à cette triangulation.
Enfin, des bornes inférieures de la première valeur propre du graphe donneront
le résultat annoncé.

Nous décrivons d&apos;abord la triangulation de S d&apos;après ([But]:
Soient yl9 ym les géodésiques fermées simples de S de longueurs

/, ^ 2 In 2. Zt {x e S | d(x, y,) d,} le cylindre autour de y, où d,

Arc sh (cosech IJ2).
On munit alors Z, du système de coordonnées (jc, y) où 0^x&lt;/, et

-dl ^y ^ d, et on distingue quatre points

A, (0, -d, + In 2/2), B, (|, -d, + îy),
/ In2\ „,

On joint An Bt par les deux géodésiques de longueur minimale on on de même

Al, Bl par al et à/. On obtient alors deux trigones W, et W/ dont les côtés sont
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respectivement an ô,f y, et a,&apos;, d,\ y,&apos;. La longueur des géodésiques on ôn à,&apos;, a,&apos;

est comprise entre In 2 et \ In 2, enfin leur volume est compris entre jt/3 et 2jt/3.
Sois S&apos; le complémentaire dans 5 de l&apos;intérieur de U^i W U W,&apos;)- Alors il

existe une triangulation de 5&apos; par des triangles géodésiques T dont la longueur
des côtés est comprise entre In 2 et 2 In 2 et le volume entre n — 6 Ar sin V2/3 et
jt/2.

Notons 3) l&apos;ensemble des triangles et trigones. Le graphe (S que nous
considérons a pour sommets les éléments de 3) et deux sommets sont reliés par
une arête si les triangles ou trigones correspondants ont un côté en commun.

LEMME 1. Soit t e3) et Bt l&apos;union de t et des triangles ou trigones adjacents
à t.

Alors il existe une constante c]&gt;0 telle que si ti\{Bt) est la première valeur

propre non nulle du problème de Neumann de Bn on a:
a) li\(Br) i= Cj, 5i t est un triangle.
b) jUj(Br) è Cj/,, si t est un trigone W, ou W&apos;,.

Démonstration, a) Si t est un triangle, Bt contient au plus un trigone. S&apos;il n&apos;en

contient pas, les informations sur la longueur des côtés et le volume des triangles

jointes à l&apos;inégalité de Cheeger montrent le lemme. S&apos;il contient un trigone W, ou
W&apos;t, on remarque simplement que la longueur d&apos;une courbe r] homotope à y, est

minorée par le volume du trigone compris entre r\ et y, (cf. [Bu2] lemme 1.13).

b) On procède exactement comme dans la preuve du théorème 1.1&apos;, du §5 de

[D.P.R.S.j. D

LEMME 2. Soient a(t) le volume de te 2) et

Vinfimum étant pris sur toutes les fonctions

telles que

0 et

Alors y il existe c2&gt;0, constante universelle telle que Â1(S)^c2 • r • A,(C^), r étant
le rayon dHnjectivité de S.
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Remarque. On notera que A^Ci) est la première valeur propre non nulle d&apos;un

Laplacien combinatoire sur un graphe dont les sommets sont pondérés.

Démonstration. Soient/ 6 CX(S), t e 3), a(Bt) le volume de Bt. On a, en vertu
du lemme 1:

f
Jb, b,

En sommant sur t e D, on obtient:

y-Z-j-d f(y)dy)\
t a\Bt) \JB, &apos; y

Divisions par 4 Ssf(y)2 dy et remarquons que:

f Ryf dy % If (y)2 dy^-±-( \ f(y) dy)
Js t h t a{t) \J, /

En posant F(t) $tf(y) dy, on obtient que le quotient de Rayleigh de la fonction

/ est minoré par:

où

t

MF(t)

|F(02
\a(t)

2 Ht

IV +
4(/H

«(0

M)F(r)]2]
h M)a(f) J

On applique l&apos;identité:

ai ^2 Û3 Û4 a^ + a2 + a^ + a$

-i( +a +a +ar&gt;yaa/^_V2
1*1

&apos;^ai
a.



250 MARC BURGER

où bx F(0, ax a{t)f b, F(t&apos;)&gt; a, a(f&apos;), 2 S i ë 4, f&apos; s f. Le numérateur de la
fraction ci-dessus vaut alors:

b{t)

où

la somme étant sur les couples z, y adjacents ou égaux à t. Il s&apos;ensuit que:

On obtient le lemme en remarquant que c3^a(t)^àc4, c3 et c4 étant des

constantes universelles.

LEMME 3. Si \®\ est le nombre de sommets de @, D(&amp;) le diamètre de @,

alors il existe c5 &gt; 0 telle que:

Démonstration. Soit F : 2) —» IR, fonction de norme 1 de moyenne 0 réalisant
le minimum de la forme quadratique du lemme 2.

Soient u, u&apos; e® et f() u, tu t2, tk uf, une suite de sommets tels que
t, fl+i pour O^-i^àk -l et k d(u, u&apos;), la distance de m à m&apos; dans ©. Alors:

(ï)/ &quot;^ &apos;
&apos; &apos;

Donc:
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Par ailleurs, la somme de gauche vaut:

2 2 a(u) g 2c3 |@|, d&apos;où le résultat. D
u

COROLLAIRE. Soient S une surface de Riemann compacte de genre g ^ 2, d
son diamètre, V son volume et r son rayon d&apos;injectwité.

Alors il existe une constante c &gt; 0 telle que:

v cmin(r, 1)
a) kl(S)&gt;

b) Â,(S)&gt;

d-V
c • min (r, 1)

Démonstration. Il est clair qu&apos;il existe une constante universelle c6 &gt; 0 telle
que

Par ailleurs: c3D(&amp;) et c31©| sont inférieures à V. Les lemmes 2 et 3 permettent
alors de conclure.
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