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Maximal hermitian forms over ZG

JORGE F. MORALES

0. Introduction

Let G be a finite group and let V denote a representation of G over the field
of rational numbers. 1t is a standard fact that V admits a symmetric nondegener-
ate bilinear form B:V X V — Q invariant under G. Let B be such a form on V
and let L be a full ZG-lattice in V. We denote by L} the dual lattice of L with
respect to B, that is

Li={xeV:B(x, L)cZ}

A full ZG-lattice L is said to be integral with respect to B if the form B takes
integral values on L, or equivalently, if L is contained in L};. We define the
minimal discriminant of (V, B) to be the positive integer

dg(V) = mlin [L%: L]

where L runs over all full ZG-lattices of V integral with respect to B.
We define the absolute minimal discriminant of V to be the integer

d(V) = min da(V)

where B runs over all symmetric nondegenerate G-invariant bilinear forms on V.
Clearly d(V') depends only on the representation V and is a measure of the extent
to which V fails to admit a self-dual ZG-lattice. If V is a permutation
representation, obviously d(V) = 1. If V is an absolutely simple representation of
G, it follows from a theorem of W. Feit (see [F] Thm. 3.2) that the prime divisors
of d(V) divide |G].

In Section 1 we show that for a given form B, the set of lattices of V realizing
the minimal discriminant dgz(V') has a natural structure of a connected graph. In
the case where V is absolutely simple, this graph is finite.

209



210 JORGE F. MORALES

In Section 2 we consider the case where G is a p-group and V is a simple
representation of G over ). We show that in this case the absolute minimal
discriminant d(V') is equal to p. We give a lower bound for the number of distinct
(i.e. non equivariantly isometric) lattices realizing the minimal discriminant in
terms of class numbers of cyclotomic fields. Under slightly more restrictive
hypothesis, we show that the lattices with minimal discriminant are (non
canonically) in 1-1 correspondance with an ideal class group. We show that all
the maximal lattices in V belong to the same genus if and only if the
cohomological condition H'(G, L)=F, is verified by some maximal lattice L.
Finally, to illustrate this result, we define G to be the semidirect product of C, by
C, X C, and V to be the unique simple nonabelian representation of this group
over Q. In this example V contains only one genus of maximal lattices for p =3
and at least (p + 1) genera for p = 5.

1. The graph of lattices with minimal discriminant

In this section G will denote a finite group, V a representation of G over Q
and B:V x V— Q a symmetric nondegenerate G-form on V.

DEFINITION. A full ZG-lattice L in V, integral with respect to B, is
maximal if it is not properly contained in any full ZG-lattice integral with respect
to B.

(1.1) LEMMA. The following properties are equivalent

a) [Lz:L]=dp(V)

b) L is maximal

c) The associated torsion form (L3/L, B) is anisotropic (i.e. does not admit
any non zero totally isotropic subgroup preserved by G).

Proof. Clearly a) > b)=>c). To see that c) = a) we recall that the weak Witt
class of (L}/L, B) as a torsion G-form is independent of the choice of L and has
a unique anisotropic representative (see for instance [Sch] Chapter 5 and Chapter
7 Section 5). Let M be an integral ZG-lattice with [Mz: M]=dg(V). The torsion
form (Mz/M, B) is also anisotropic and lies in the same weak Witt class as
(L%/L, B). By uniqueness of the anisotropic representative, they are actually
isometric. In particular,. the underlying finite ZG-modules both have the same
order. [



Maximal hermitian forms over ZG 211

(1.2) LEMMA. Let L be a maximal integral ZG-lattice. Then L3/L is a
semi-simple ZG-module.

Proof. Let X c L}/L be the intersection of all maximal sub ZG-modules of
L3/L (i.e. the radical of Lz/L). Let X* be the orthogonal complement of X.
Since L}/L is anisotropic, we have X N X* = {0} and therefore X + X* = L}/L.
By Nakayama’s lemma we have X* = L}/L and therefore X = {0}. O

(1.3) PROPOSITION. Let L, and L, be maximal integral 7ZG-lattices in
(V, B). Then we have

¢(Ly/LiNLy)=¢(Ly/L,NLy)

where €(X) is the length of X as a ZG-module, that is the length of a composition
series for X (see [C-R] §3).

Proof. Let LINL,=8&%8$% -+ &35, =L, be a composition series. Dualiz-
ing this series using the form B we obtain

LY+L;=S;28T2 28, =L{

and intersecting with L, we obtain
L2=S(TanDSTmLzD b DS:HL2=LTHL2
By the maximality of L, we have LY N L,=L,NL,. On the other hand, the
quotient (S} N L,)/(S}.,NL,) is naturally embedded in the simple module
SF/Sf.. Thus (87N L,)/(S} 1N L,) is either 0 or a simple module. Hence,
n=¢(L\/LiNLy)= €(Ly/L, N Ly).
By symmetry we conclude

€(L1/L| N Lz) = g(Lz/Ll N Lz) U

DEFINITION. Let L, and L, be maximal ZG-lattices in (V, B). We define
the distance between L, and L, by

6(Ll, Lz) = €(L1/L1 N Lz).
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Observe that § is a symmetric function by Proposition 1.3. The lattices L, and L,
are said to be adjacent (or neighbors) if 6(L;, L,) =1. The notion of neighbors
(benachbarte Formen) was introduced by M. Kneser (see [K]) for quadratic
forms without a group action, and has proved to be a powerful tool for explicit
constructions.

The set Iz(V) of all integral maximal ZG-lattices in V has a natural graph
structure. The vertices are the elements of Iz(V) and two vertices are joined by
an edge if they represent adjacent lattices in the sense previously defined.

(1.4) THEOREM. The graph I'3(V) is connected.

Proof. Let L, and L, be two distinct maximal lattices. By induction, it is
enough to show there exists a maximal lattice L such that

6(L, Ll) =1 and (S(L, L2) < 6(L1, L2)

The lattices L, and L, being distinct, the intersection L, N L, is contained in a
proper sublattice M of L;, where L;/M is a simple ZG-module.
We define

L:=M*NL,+M

where M*=Mj. Clearly L is integral. Let us now compute the index
[L:M*N L,]. We have

[L:M*NL]=[M:MNM*NL,)=[M:MN L,]
On the other hand

[Ly:M*NL)=[M+L>:Li]=[M:L;NM]=[M:L,NM]
(the last equality uses L, N M = L3 N M which is a consequence of the maximality
of L,).

Thus we have [L:M*NL,|=[L,:M*NL,]. Consequently [L*:L]=
[L3:L,]=dg(V). According to Lemma 1.1 the lattice L is maximal.

Now

LﬂL1=M*ﬂLzﬂL1+M=L20L1+M=M

thus

S(L, L,)=¢(L,/L,NL)= ¢(L,/M)=1.
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It is left to show that 6(L, L,) <é(L,, L,). We have
LﬂL2=(M*ﬂL2+M)ﬂL2=M*ﬂL2

Hence
O(L, Ly) = €(Ly/L NV Ly) = €(Lo/M* O\ Ly) 2 €((M + L3)/Ly)
=eM/L3OM) 2 eM/L,N M)

where (1) uses the fact that a finite module and its character module have the
same length and (2) uses the maximality of L,.
On the other hand we have

leL2CMnL2CM%L‘.

Hence,
8(Ly, L) =€¢(L,/LiN L) > €M/MNLy)=6(L, L) O

(1.5) THEOREM. If V is an absolutely simple representation of G, then the
graph I'z(V) is finite and connected.

Proof. Recall that absolutely simple means End. (V)= Q. The lattices in
I(V) all have the same discriminant. It follows from this fact and Theorem 1.1 in
[M] that Iz(V) has finitely many orbits under the action of the automorphism
group of the G-form (V, B). It remains to show that each orbit is finite. In fact
each orbit consists of precisely one lattice: since Endg;(V)=Q, the only
G-endomorphisms of V which additionally preserve the form B are 1 and —1, and
clearly they preserve any lattice. O

2. The case where G is a p-group

In this section G will be a p-group, where p is an odd prime number, and V
will be a faithful simple QG-module. The endomorphism field End;(V') will be
denoted by E.

(2.1) LEMMA. The endomorphism field E is equal to a cyclotomic field Q(§),
where C is a primitive p™-th root of 1.
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Proof. From representation theory (see for instance [H] 14.7b) we know that
the center Z(E) of E is equal to the field Q(yx), where yx is an absolutely
irreducible factor of the character of V. Indeed Q(y) is contained in the
cyclotomic field Q({,.), where p” is the exponent of G. Since E =Z(E) by
Schilling’s Theorem (see [R] Theorem 41.9), E is contained in Q(£,.).

On the other hand, since G is a p-group, its center Z(G) is nontrivial and
since V is faithful, it maps non trivially into the multiplicative group of E,
generating a cyclotomic subfield Q(,s) of E, where p® is the exponent of Z(G).
The relative Galois group Gal (Q(&,.)/Q(&,»)) is cyclic of order p~°. Thus all the
intermediate subfields between Q({,.) and Q({,») are cyclotomic. So is, in
particular, the field E. O

The QG-module V can be regarded as a vector space over its endomorphism
ring E. Furthermore, V can be regarded as an absolutely simple EG-module.

(2.2) LEMMA. Let L cV be a full ZG-lattice and let O be the maximul order
of E. Then for every prime q ¥ p we have

EndG (L)q = (OE)q

Proof. For q #p, the ring Z,G is a maximal order (see [R] Theorem 41.1).
Hence Endg (L,) is a maximal order as well (see [R] Chap. 21, Exercise 1).
Therefore, using the canonical identification Endg (L,) = Endg (L),, we get the
equality (Og), =Endg (L),. O

Let B:V X V—Q be a G-invariant symmetric form. It is easy to see that the
adjoint involution on E =Endg (V) is actually complex conjugatation. Let
h:V X V— E be the unique hermitian form on V such that the following triangle

commutes
ad(B)

vV %2 Homgy(V, Q)
ad(m /T"Iu
Hom,(V, E)

Clearly A is also G-invariant. Now let L be a full ZG-lattice in V on which B
takes integral values. Suppose in addition that Endg (L) is equal to the maximal
order Og. Then the hermitian form h restricted to L takes values in the
co-different Dz of E/Q. It is well known that Dy, is an odd power of the prime
ideal p lying above p. The prime ideal p is generated by a=¢— ¢! and
therefore Dg,q = (a”), where v is an odd power. Let f denote the scaled form
a’h, which is indeed skew-hermitian and takes integral values on L.
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(2.3) LEMMA. Let L be a full OzG-lattice in V. Then we have
a) Lf=Lp

b) L is integral maximal with respect to B if and only if it is integral maximal
with respect to f

Proof. The proof of Lemma 2.3 is straightforward from the definition of
f. G

(2.4) PROPOSITION. Let L <V be a ZG-lattice maximal with respect to B.
Then ord, [Lp:L]=1.

Proof. Since, by Lemma 1.1, all maximal lattices L have the same index
[Lp:L], it will be enough, using Lemma 2.3, to prove Proposition 2.4 for a
OrG-lattice L in V maximal with respect to f.

Since V is absolutely simple as an EG-module, its dimension over E divides
|G| (see for instance [H] Theorem 12.6). It is in particular an odd number (we
assumed p odd), consequently

det (f) = det (f*) =det (—f) = —det (f).

It is easy to see that an element x € E with the property ¥ = —x has necessarily
odd order at the prime ideal p of E which lies above p. This applies in particular

to det (f).
Hence

ord, [L*: L] = ord, (Ngq (det (f)) = ord, (det (f)) = 1(2)

(where L* is the simplified notation for Ly or Lf).

On the other hand, L being maximal, the torsion G-form (L;/L,, B) is
anisotropic and the underlying ZG-module is semi-simple (see Lemma 1.2). Since
G is a p-group, it acts trivially on semi-simple Z,G-modules (see [C-R] Theorem
5.24). Therefore (L,/L,, B) is nothing but an anisotropic quadratic space over
F,. Therefore ord,[L;:L,]=dimg (L;/L,)=2. But we already know that
ord, [L;:L,)is odd. Thus ord, [L;:L,]=1. O

(2.5) COROLLARY. The discriminant of a full ZG-lattice in V, integral with
respect to B, is divisible by p.

Our next goal is to prove the existence of G-forms on V which admit a full
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ZG-lattice with discriminant exactly equal to p. This will prove that the number
d(V) defined in Section 1 is equal to p.

The main ingredient in the existence theorem is the following result of Galois
cohomology that was kindly communicated to me by P. Conner.

(2.6) PROPOSITION. Let S be the set containing all the infinite primes of E
and the unique finite ramified prime p. Let a be an S-ideal preserved by the

involution on E. Then there exists A€ F:= {x € E:x = x} totally positive and an
S-ideal b such that a = ANg,(b).

Proof. It is enough to prove the proposition for an inert prime ideal a, the
decomposed case being trivial.

Let & = Ng,r(IT), where Il is a generator of p. The prime element 7, being a
norm, is totally positive. There is an element A € F' such that the Hilbert symbol
(A, m),=—1for g=a or q= () and (A, &), =1 otherwise (see for instance [O]
Theorem 71.19). We claim that A4 has the required properties. By definition A is a
norm locally at all primes except a and (). It is in particular totally positive. The
prime a being inert, we have the isomorphism (see [S] Chap. V, Prop. 3)

ord,: H(Gal (E./F,), E;)— Z/2Z.

By construction, A is not a norm in E,, therefore ord, (A) =1(2). Hence A~ 'a
is locally a norm at all S-primes, i.e. A~'a = Ng/(b) for some S-ideal b. O

(2.7) THEOREM. Let R denote the ring Z[p~']. There exists a symmetric
G-form B:V XV — Q which admits a unimodular RG-lattice M. Furthermore, B
can be chosen to be positive definite and is the only (up to equivariant isometry)
positive definite G-form on V admitting a unimodular RG-lattice.

Proof. Let S be the set of all ramified primes of E. The ring Os of S-integers
of E is precisely the integral closure of R in E. The RG-lattices in V can be, by
lemma 2.2, regarded as OsG-lattices.

We observe first that any two RG-lattices M and N are ideal-equivalent, that
is, there exists an S-ideal a of E such that aM = N. Notice that if such an ideal
exists, it is uniquely determined by a=Homg; (M, N). Let us define a=
Hompggs (M, N) and show aM = N.

Since the order RG is maximal (see [C] Theorem 41.1), M is projective as an
RG-module, that is the functor Homgs (M, —) is exact. By applying it to the
exact sequence

0>aM—->N—->N/aM—-0
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we obtain
0— a—a— Homgs (M, N/aM)— 0

where the map a—a is the identity. Therefore Homgs; (M, N/aM)=0. The
projectivity of M implies immediately N/aM = 0.

Let C:V X V— Q be a positive definite G-form on V and N any RG-lattice in
V. Let a be the S-ideal Homg; (N, N¢). The ideal a is by construction preserved
by the involution in E. By Proposition 2.6 there exists A € F~ totally positive and
an S-ideal b such that a = A00.

Let M = bN and B(x, y) = C(Ax, y). We have

My=A""M:t=A""(D)"'NE=A"'(D) "aN=0ON=M

Thus M is unimodular with respect to B. Since A has been chosen totally positive
and C positive definite, the form B(x, y) = C(Ax, y) is positive definite as well.

Let us now prove the uniqueness of B. Let B’ be another positive definite
G-form on V which also admits a unimodular RG-lattice. Since V is a simple
representation there exists u € F* such that B'(x, y) = B(ux, y). Clearly u is
totally positive and therefore it is a norm at all infinite primes. Let h:V X V> E
be the hermitian form canonically associated to B. The scaled form uh is indeed
the hermitian form corresponding to B’. Since h and uh both admit unimodular
OsG-lattices, det (h) and det (uh) = u!Y**ldet (h) are both S-units modulo the
norms. Since [V : E] is odd, this implies that u is a S-unit modulo the norms. We
can therefore assume that u is a S-unit.

We want now to show that u is a norm everywhere locally. If g is an inert
prime of F, the units of F, are all norms from E, (see [S] Proposition 3 and
Corollary), thus pu is a norm at . If q is a decomposed prime, everything is a
norm from E,. Thus p is a norm at all unramified primes and at the infinite
primes. By Hilbert’s Reciprocity Theorem, u is also a norm at the unique
ramified finite prime. We conclude by Hasse’s Norm Theorem that u is a global
norm, that is, there exists a € E’ such that u = a@. Indeed B'(x, y) = B(ux, y) =
B(ax, ay). O

DEFINITION. Let C:V XV —>Q be a G-form and B:V XV — Q a positive
definite G-form. We know that C(x, y) = B(Ax, y) for some A€ F'. We define the
G-signature sc(C) of C as the signature of A (that is, the collection of signs for the

various embeddings of F in R). Clearly this definition is independent of the choice
of B.
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(2.8) THEOREM. For a given signature s = (s,) there exists a unique (up to

equivariant isometry) G-form C with s;(C) = s which admits an integral ZG-lattice
of discriminant equal to p.

Proof. Note that the element A € F of Proposition 2.6 can be chosen with any
prescribed signature. It follows from this observation and from the proof of
Theorem 2.7 that there exists a unique (up to equivariant isometry) G-form C on
V with sg(C) =s which in addition admits a unimodular RG-lattice M. To
construct a ZG-lattice L of discriminant p from M, we take a maximal
Z,G-lattice N c V, and define L =: NN M. The lattice L constructed in this way
will have discriminant p in virtue of Proposition 2.4. [

Our next goal is to describe (up to equivariant isometry) the ZG-lattices in V
integral with discriminant p for a given form B on V.

Let I'(E) denote the group of ideals a of E satisfying ad@ = Og. Notice that
such an ideal does not contain any ramification. Let P'(E) denote the group of
principal ideals (a) with aa = 1.

(2.9) THEOREM. Let B:V XV —>Q be a G-form on V which admits a
ZG-lattice L < V with discriminant p. Then

a) The group I'(E)/P'(E) acts freely on the set of isomorphism classes of
lattices in the genus of L.

b) If in addition End;g (L) = O then the action of I'(E)/P'(E) on the set of
isomorphism classes of lattices in the genus of L is transitive.

Proof. a) Let L — V be a maximal integral ZG-lattice in V. As in the proof of
Theorem 2.7, we denote by Og the ring of S-integers of E, where § is the finite
set of ramified primes. We denote by L the tensor product L ® Z[p~'], which is,
by Lemma 2.2, an O;G-lattice. For aeI'(E) we define aL as the unique
ZG-lattice in V such that (aL)s=alLg and (aL),=L,. To show that alL has
discriminant p, it is enough to check that aLg is unimodular:

(aLs); = (8)""(Ls)p=(a)"'Ls = aLs

Since a does not contain any ramification, a is generated at a given prime g by

an elemernt a € E, satisfying aa = 1. Therefore L and alL belong to the same
genus. :

If L=aqalL, there exists a € E* such that a@ =1 and aL =alL. Thus aOs =
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@Os. On the other hand, neither « nor a contain any ramification, therefore
a= aOg. Hence I'(E)/P'(E) acts freely on the classes.

b) Assume now that End;; (L) = Op and let L’ be another lattice in the
genus of L.

Observe first that L, =L,: leta € E, = E, such that aa =1 and aL, = L,. The
isometry a is necessarily a p-unit, and, since L, is preserved by Of,, we must
have alL,=L,.

On the other hand, from the proof of Theorem 2.7, we know that there exist
an S-ideal a such that aLg= Ls. But we also have L, =L, therefore aL = L'.
Thus I'(E) acts transitively on the genus of L. O

(2.10) COROLLARY. a) The number of classes in the genus of L is divisible
by the relative class number h(E)/h(F) of E/F.

b) If in addition End;g (L) = O, then the number of classes in the genus of L
is equal to the relative class number h(E)/h(F).

Proof. 1 owe the following observation to P. Conner: let C(E) and C(F)
denote the ideal class group of E and F respectively. Let Ng,r: C(E)— C(F) be
the norm map. We have an exact sequence

0— H°(Gal (E/F), C(E)) - I'(E)/PY(E) %> Ker Ng -
L HY(Gal(E/F), C(E))— 0

where ¢ is induced by the restriction of the canonical projection I(E)— C(E);
the homomorphism i is defined by i[a] = [a] and the homomorphism j is defined
by j[b]=[bb""], the brackets being interpreted as classes in the appropriate
group. The verification of exactness is routine. On the other hand, the Herbrand
quotient of a finite module is equal to 1 (see [S], Chap. VIII Proposition 8), this
applies in particular to C(E). Hence, by exactness, I'(E)/P'(E) and Ker Ng ¢
have the same order. It is well known that Ng,-: C(E)— C(F) is surjective (see
for instance [W] Theorem 10.1); therefore [I'(E): P'(E)] = h(E)/h(F). Corollary
2.10 follows immediately from Theorem 2.9 and this observation. [

Remark. The order of I'(E)/P'(E) was calculated with the help of the mass
formula in [M] Corollary 3.10. E. Bayer carried out similar calculations for more
general fields in [B1].

We want next to estimate the number of genera of maximal integral
ZG-lattices contained in V. In order to prove our main result in this direction
(Theorem 2.12), we need the following technical lemma:
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(2.11) LEMMA. Let © be a generator of C, and T a F,C,-module of
dimension 3 over [, such that C, preserves a nondegenerate quadratic form on T.
Then either T is C,-trivial or T is isomorphic to F,[t]/(t — 1)°, where the generator
T of C, acts by multiplication by t.

Proof. By the classification of the F,C,-modules, we may assume that 7 has
dimension at least 2 over [, (otherwise T would be indecomposable and therefore
isomorphic to F,[¢]/(t — 1)?). Since in this case T cannot be totally isotropic, we
choose an anisotropic vector x € T°. Thus we have an orthogonal decomposition

T=F,x L1 (F,x)"

On the other hand, p does not divide the order of the orthogonal group of a
quadratic form of rank2 over F, (see [C] 1.4). Therefore, the second factor
(F,x)* is also C,-trivial. O

(2.12) THEOREM. The following conditions are equivalent:

‘a) All the maximal ZG-lattices L < V satisfy H'(G, L) =F,
b) There exists a maximal ZG-lattice L < V such that H'(G, L) =F,
c) All the maximal ZG-lattices of V belong to the same equivariant genus

Proof. a)=Db) is obvious.

b)=>c). Let L — V be a maximal ZG-lattice satisfying condition b). Let L' be
another maximal ZG-lattice. We know (proof of Theorem 2.7) that L and L' are
ideal-equivalent over the S-integers Os, that is, there is an S-ideal a such that
aLg= Lg. It is easy to see that a must verify ad = Oy and to check that L, =L,
for all g #p. It is then enough to prove that L, is the only maximal Z,G-lattice in
V,.

We have H'(G, L) = (V/L)® from the cohomology exact sequence associated
to 0— L—V—V/L—0. On the other hand, (V/L)¢ = (I;L*)*/L, where I is
the augmentation ideal of ZG. Thus L*/IzL* is canonically identified with the
character group of H'(G, L), which is by hypothesis isomorphic to F,. Therefore
I;L* has index p in L*.

By connectivity of the graph of lattices in V, (Theorem 1.4 is clearly also valid
locally), we may assume 6(L,, L,) =1. With this hypothesis we have I;L, = L,*.
Since IgL, is contained in L, and has index p in L*, we have IGL;=L,.
Therefore L, < L,*. By maximality of L,, we conclude L,cL, and by
maximality of L, we get the equality L, =L,

¢)=>b). Suppose that for all maximal ZG-lattices L we have |[H'(G, L)| =p?.
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Let L be a maximal OgG-lattice. Then there exists a OyG-lattice M with

IcL*cMc L and [M:L]=p. We will show that M*/M is a trivial ZG-module.
We have

IcM* clg(IgL*)* < L

Therefore the order of (M*/M)“ is at least p>. Let  be a generator of the image
of Z(G) in E, which is a nontrivial root of 1. We have

pM* = (L —1)°M* c EM* c I;L < M.

Therefore T: = M*/M is a [,G-module of dimension 3. It is well known from the
order of the finite classic groups (see for instance [C] 1.4) that the p-subgroup of
the orthogonal group of a quadratic form of rank 3 over [F, is cyclic of order p.
Hence the action of G on T factors through a cyclic quotient of order p of G.
According to Lemma 2.11, since dim,rp(T(")ZZ and T has a quadratic form
preserved by G, T must be G-trivial. A quadratic space of dim3 over [, has
(p + 1) isotropic sub-spaces of dimension 1, each one of them corresponding to a
maximal lattice N with M <« N <« M*. They belong indeed to different genera.
c)=a). The cohomology H*(G, L) depends only on the local component L,
of L. It is therefore in particular an invariant of the genus of L. On the other

hand, according to c)=>b), we know that H'(G, L)=F, for some maximal
ZG-lattice L. O

(2.13) COROLLARY. If G is cyclic, then V contains only one genus of
maximal 7 G-lattices.

Proof. In this case V has dimension 1 over E and a ZG-lattice L in V can be
identified with an ideal of E. Let { € E be the image in E of a generator of G.
Clearly ¢ is a root of 1 and generates E over Q. Then we have H'(G, L) =
L/(—-1)L=F,. We apply Theorem 2.12. O

(2.14) LEMMA. Let H be the group C, x C,, with generators x and y. Let G
be the semi-direct product G = C, x (C, X C,) which admits a presentation

G=(x,y t|x"=yr=t"=[x,y]=[x,1]=1, [y]=x)
Let E be the cyclotomic field Q((,) and U be the representation of H over Q

defined by U = E as a Q-vector space and xu = {,u and yu = u. Then the induced
representation V = Ind§; (U) is simple and is the only nonabelian simple repre-
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sentation of G (by nonabelian representation we mean a representation on which
the commutator subgroup [G, G| does not act trivially).

Proof. By definition V has a decomposition
V=UBWUD- ---dr'U.

It is easy to check that ‘U and U are nonisomorphic simple QH-modules for
i #j. Thus, by Frobenius Reciprocity, we obtain

EndG (V) = HomH (U, V) =F

Therefore V is simple. By Wedderburn’s Theorem, the algebra QG** x M, (E)
splits off the group algebra QG. It is easy to check from the presentation of G
that G* = C, x C,. Thus both QG* x M,(E) and QG have dimension p* over Q
and therefore are equal. Hence V is the only nonabelian simple representation of
G. It can also be checked that V is faithful. O

(2.15) PROPOSITION. Let G and V as in Lemma 2.14 and let B:V XV — Q)
be a G-invariant form. Then V contains only one genus of maximal ZG -lattices for
p =3 and V contains at least (p + 1) distinct genera of maximal ZG-lattices for
p =5.

Proof. Let U be the QH-module defined in Lemma 2.14. Clearly the
decomposition V=U @ tU®D - - - @ ¢”~'U is orthogonal. Let L = U be a maximal
ZH-lattice and M o Ind§ (L) be a maximal ZG-lattice of V. By Theorem 2.12, it
will be enough to prove that H'(G, M) =F, for p=3 and H'(G, M) =F, ® [, for
p=5S.

Let N =1Ind§ (L) and consider the following cohomology diagram associated
to the chain Nc M c M* c N*

0 0
1 l
(N*/M)® == (N*/M)°

‘, l

0— (M/N)® — H'(G, N)— H\(G, M)—> H'(G, M/N)—> H*(G, N)

| N ‘, l |

0—> (N*/N)¢ — H'(G, N)—> H'(G, N*)—> H'(G, N*/N)— HXG, N)
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Note that by construction (N*/N), =1Ind§ (L*/L), = Indg; (F,) =F,G/H =F.C,.
Thus (M/N)$ = (N*/N)S =F,. On the other hand we have H'(G, N)y=H'(H, L)
(see [S] Chap. V Section 5). A straightforward computation shows H'(H, L) =
(¢, —1)7'L/L=F,. Similarly H'(G, N*)=H'(H, L*)=F,. Thus we have a
simplified diagram

0 0
[FP B {Fp

l \,

0— H'(G, M)—> H'(G, M/N)—> H¥G, N)

| |

0 > F, > H'(G, N*/N)—> HG, N).

We will show that S is surjective for p = 5. It will follow from the diagram that

« is also surjective. We consider the following inflation-restriction sequences (see
[S] Chap. VII Section 6)

0—> H'(G/H, M/N)-"> H'(G, M/N) > H'(H, M*/N)“"
ﬁl Yl
H'(G, N*/N)—=> H'(H, N*/N)“""

To show that f is surjective, it is enough to show that y is surjective. The
subgroup H acts trivially on both M,/N, and N;/N,, therefore

H'(H, M/N)°"" = Homgy, (H, M/N)
H'(H, N*/N)®* = Homg,, (H, N*/N).

Let T be a generator of C,=G/H. We have the following isomorphisms of
F,G/H-modules

H=F,[1]/(t - 1)?
M, /N, =F,[¢]/(t — 1)®~1"2
N3N, =F,[t)/(t - 1y,

where the generator t acts by multiplication by ¢.
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Thus the equality
HomG/H (H, M/N) = HomG/H (H, N*/N)

holds provided (p —1)/2=2. Hence B and « are surjective for p=35 and
H'(G,L)=F, ®F,.

The case p =3 requires a special consideration. We put IT={;—1 and
consider the exact sequence

0—- M5 M — M/TIM — 0

which induces a natural isomorphism (M/IIM)¢ — H'(G, M). We will com-
pute the group (M/IIM)C.

By construction N, = 031:,, where the coordinates are permuted cyclically by 7.
Indeed M, is the inverse image of (N,;/N,)¢ in N;. Therefore M, is generated
over Og, by the vectors

(1,1, 1); 0, I1, 0); (0,0, IT)

The matrix of ¢ in this basis is

1 0 11
T={0 0 -1
01 -1

It is elementary to check that the reduction modulo IT of (T — 1) has rank 2
over ;. Therefore

HY(G, M)=(M/IIM)° =Ker (T — 1) =F,. O
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