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Sur une hypothése de transversalité d’Arnold

Y. CoLIN DE VERDIERE

Dans [AD], V. Arnold introduit certaines hypothéses de transversalité
relatives aux valeurs propres d’une famille d’opérateurs autoadjoints.

Apres avoir donné une définition précise d’une hypothese forte (SAH =
“strong Arnold’s hypothesis’’) et d’'une hypothése faible (WAH = ‘“weak
Arnold’s hypothesis’’), nous prouvons les résultats suivants:

— L’hypothése SAH est vérifiée pour toutes les valeurs propres positives du
laplacien de S? pour la métrique canonique.

— L’hypothése SAH est vérifiée pour toute valeur propre d’un tore plat de
multiplicité =6 et non pour les autres. Cela fournit un contrexemple a
I’hypothése d’Arnold.

— Nous traitons ensuite le cas des laplaciens discrets sur certains graphes finis.

Tous ces résultats sont utilisables dans la construction de métriques rieman-
niennes ou de domaines euclidiens de R” dont une partie finie du spectre est
prescrit ([C-C], [CV3]). L’ensemble de ces résultats est annoncé dans [CV2].

Je tiens a remercier Michel Brion pour m’avoir aidé a traiter le cas de S°.

1. L’hypothése d’Arnold

Rappelons d’abord quelques éléments de la théorie des perturbations des
valeurs propres multiples:

soit H=Hg @ C le complexifi€é d’'un espace de Hilbert réel et (H,),.r une
famille d’opérateurs autoadjoints réels sur H (i.e. définis sur Hg) de méme
domaine D < H, dépendant continument de a variant dans I’espace topologique T
au sens que a— (H, + i)' de T dans #(H, D) est continue pour la norme. Soit
alors A une valeur propre isolée de multiplicité finie n, de Hy(0 € T), c’est a dire
telle que A, ¢ sp.ess (Hp). Soit € > 0 tel que le disque D de centre A, et de rayon ¢
ne rencontre le spectre de Hy qu’en A,,.

Il existe alors un voisinage U de 0 dans T tel que, si a € U, H, admet dans D
un nombre fini de valeurs propres dont la somme des multiplicités est n,. De
plus, le projecteur orthogonal F, de H sur la somme E, de ces espaces propres
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dépend continument de a:
P———l——J’(A H,)"'dA =bD
a P § a avec y = .

Lorsque a—0, E,— E, et on définit la forme quadratique q, sur E, par
q.(f) = (HU,f | U,f) ot U, est 'isométrie naturelle de E, sur E, définie par:

U, = B(B*B) ™"

avec Bx =x + Px et E, = graphe (B), B e ¥(E,, Ey).

Il est clair que le spectre de q, sur E, est (spectre (H,)) N D.

Supposons maintenant que 7T est une variété C* (k =0) et que g, est définie
sur un voisinage de 0 homéomorphe a une boule K d’'un espace modele. On
désigne par

&: K — 9(E,) = {formes quadratiques réelles sur E}
'application a +— g, et on pose les:

DEFINITIONS. On dira que la valeur propre A, de H, vérifie I'hypothése
d’Arnold forte (SAH) (resp. I’hypotheése d’Arnold faible (WAH)) relativement a
la famille (H,),.r si @ est une submersion en a =0 (resp. P est essentielle sur

(2(Eo), Ao(- |-)).)

Soit K un espace topologique, £ un espace de Banach, y,e £, ®: K—E
continue, on dira que @ est essentielle sur (E,y,) s’il existe €¢>0 tel que,
V¥:K— E, continue, avec ||¥ — ®|| .~ = ¢, on a y, € ¥(K).

L’ensemble de ces applications est un ouvert de C(K, E). Lorsque K est une
boule d’un espace vectoriel et @ de classe C', si @P(x,) =y, et dP(x,) est
surjective, @ est essentielle sur (E, y,).

On introduit de méme les propriétés SAH et WAH pour une famille
A <A, < -+ <Ay de valeurs propres isolées de multiplicités n; <o de H, dans la
famille (H,) en considérant I’application

P:K—2E)D - D 2Ey), somme des applications précédentes.
Une condition nécessaire pour SAH et WAH est évidemment que:

Noni(n+1
dimension (T) = D, &@2————)
i=1
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On peut également traiter le cas non réel de maniere similaire: c’est le cas qui
intervient pour la théorie de I'opérateur de Schrddinger en présence d’'un champ
magnétique.

La vérification de SAH se rameéne a celle de la surjectivité de la différentielle
de ®:a—>q,ena=0etonale:

CRITERE. Pour que A, vérifie SAH, il faut et il suffit que la différentielle de
@:a— (H,.|.) € 2(E,) soit surjective en a = 0.

Preuve. On a

qo(x, y) = (H,(x + Bx) |y + By) + O(),
et donc

Golx, y) = <an ’)’> + (H()Bx ’)’> + (Hyx | By}
et comme B € L(E,, E{), on a go(x, y) = (Hyx ly)-

Lorsque H et (ou) D dépendent de a, on peut souvent modifier les H, par des
transformations unitaires explicites pour se ramener a la théorie précédente.
Traitons par exemple le cas ou (X, g,) est une variété riemannienne compacte de

dimension 2 et la famille H, celle des laplaciens A, associés aux métriques
e*gy=g(a e C*(X, R)=T), on a alors la:

PROPOSITION. A,(#0) vérifie SAH si

h (9. )~ | hov)

est surjective de C*(X) dans 2(E,).

a

Preuve. v, =e*v,, et A=e“A,e™, ou A est le transporté de A, sur
L*(X, v,,) par lisométrie Uf =e “f de L*(X, v,,) sur L*(X, v,). Le résultat est
alors immédiat.

2. Cas de la sphere

THEOREME. Soit -(5% go) la sphére munie de la métrique usuelle et
Ao=1I(l+1) (I=1 entier) une valeur propre du laplacien. Alors A, vérifie SAH
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relativement a la famille des laplaciens des métriques conformes a g,. Il en est de
méme en ne considérant que les déformations invariantes par antipodie.

Preuve. On désigne par % I'espace des polyndmes homogeénes de degré 2/
sur R’ et par ¥ 'espace des harmoniques sphériques de degré [. D’aprés le §1, il
suffit de montrer la surjectivité de ’application

F:P,— 2(%) définie par F;:P+— (q(<p) =J Pq)z) :
kY

La transposée de F; est 'application de - ¥, — P, définie par @y — @y.
Comme dim (2(%)) =dim (%) (=({+ 12/ +1)), il suffit de montrer la
surjectivité de ‘F;, c’est a dire que tout polyndme homogéne de degré 2/ est
combinaison linéaire de produits d’harmoniques sphériques de degré /.

Comme tout sous-espace de %,, contient une fonction zonale (invariante par
rotation autour de Oz), il suffit visiblement de le montrer pour les éléments
zonaux de %,,. Pour cela, on utilise des arguments classiques de la théorie des
représentations linéaires qui m’ont été expliqués par Michel Brion. On note
a=x+1iy, b=z, c=x—1iy et on a une base de %, formée des a“b*c" avec
u+v+w=2l L’espace zonal est engendré par les mondmes tels que u =w,
I’algébre de Lie de SO(3) par les vecteurs

8 o
Li=y——z—
=Ya T ey b

=...etL,=....
On pose W, =L, xiL, et on a:
W,.(a)=2b, W.(b)=—c, W, (c)=0=W_(a), W_(b) = —a, W_(c) =2b.

De plus cette algébre de Lie opére sur %, par dérivation:

W+(aubvcw) — Zuau—lbv+lcw _ Uaubn——lcw+l

W_(aubUCW) - _Uau+lbv—lcw + zwaubv+1CW*l.

Dans le plan des (u, w), on a donc

W+(eu,w) = aeu,w-i»l + ﬁeu—l,w

W‘(eu,w) = a/'eu,w—l + B'eu+l,w’
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ol a, f, a' et B’ ne sont nuls que s’ils sont coefficients d’un e, ,  avec
(u',v')e¢T, ou

T={(u,w)eN|u+ws=2l}.
Par applications successives de W, et W_ a partir de ¢,; = (x* + y*)' = a'b’ qui est
produit de deux harmoniques sphériques, on obtient visiblement tous les

mondmes zonaux e, (0 <k <1/): le vecteur a'c’ est donc un vecteur cyclique de
Py, ce qui prouve le résulat.

3. Cas des tores plats

THEOREME. Soit X un tore de dimension 2, muni d’une métrique plate, et
Ao une valeur propre non nulle du laplacien, de multiplicité N, alors A, vérifie SAH
relativement a ’ensemble de toutes les métriques riemanniennes sur X si et

seulement si N < 6.

Cela fournit des contre-exemples a la conjecture d’Arnold, car on sait que N
peut étre supérieur a 6. Je ne sais pas ce qu’il en est pour 'hypothése WAH.

Preuve. Soit X = R*/Z*, toute métrique sur X s’écrit @*(g), ol @ est un
difféomorphisme de X et

g= e"(Audx2 + 2B dx dy + C dy?)

avec [ye"dxdy =0.
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On est donc amené a considérer, pour g, = A dx? + 2B, dx dy + C, dy?, une
valeur propre A¢# 0 du laplacien. Soit

P={u=(m,n)eZ?|gs(n)= A

alors l'espace propre E, est engendré par les exponentielles e,(x,y)=
exp (2mi(mx + ny)) ou u € P. Soit

dd: C5(X, C) D (C dx*® Cdx dy ® C dy?)— 2(E,) ® C

la complexifiée de la différentielle de @ en g, ou CH(X,C)={fe
C*(X, )| [xf =0}
On a, d’apres le §1:

[d(f B0, =C| fesen
avec u, u' € P, et

(AP0 D (adx*+2Bdxdy + ydy*)]...
Je, e, de, e, Je, ae;,) de, de,, ]
= + +y——"|dxd
CJ [ 3x Ax (ax dy Jdy ox Yay dy g
Donc, si u + u' #0, ‘dP(e,ce,)=C €,y @D ... sip+pu' =0,

‘dd(e,ce_,) =0 C*(m* ® 2mn @ n?) ot p = (m, n).

Comme les u + u’ sont 2 a 2 distincts lorsque {u, u'} sont distincts, on voit que
Pinjectivité ‘d® se réduit au fait que les vecteurs (m?, mn, n®) sont linéairement
indépendants pour les différentes valeurs de p a symétrie prés (u+— —pu). Ce qui
est le cas si et seulement s’il y a moins de 3 telles paires, i.e. si N <6.

4. Cas des graphes

Donnons d’abord quelques définitions: les graphes que nous allons considérer
sont des graphes finis, non orientés et connexes; S sera I’ensemble des sommets et

A, 'ensemble des arétes, est un sous-ensemble de I'ensemble des parties a 2
€léments de S.
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On se donne une mesure u = Y, V; (i) (V;>0), py= L,cs (i) sera appellée
la mesure canonique. Un laplacien combinatoire A sur I est défini par la donnée
de u et d’'une forme quadratique

q(x;)= Z c,,(d,,x)2 ou dx=x;—x; si a={ij};

acA
A est alors donné par:

1
(Ax), == > Cijy(xi — x;)
‘/i(i,j}eA

Un opérateur de Schriodinger combinatoire est un opérateur de la forme
H=A+YV, ou V est diagonale.

Par la transformation unitaire U(x;)=VV,x, de L¥(S, u) sur L*(S, u,), on
ramene un tel opérateur a un opérateur H de matrice symétrique (H) = (a;,) avec
a;;<0si {i,j} €A, a;;=0si {i,j} ¢ A et i #j. Ainsi nous considérons soit des
laplaciens sur L*(S, u), soit des opérateurs de Schrodinger sur L(S, pq).

Soit Cy le graphe complet a N sommets, i.e. tel que tout couple de sommets
distincts est I’ensemble des extrémités d’une aréte; Cy a donc N(N — 1)/2 arétes.

On désigne aussi par Ey le graphe en étoile a N branches (N + 1 sommets et N
arétes). On a les:

THEOREME 1. Si A, =0<A,=---<Ay et u=XN,V 8(i) sont donnés, il
existe un laplacien combinatoire sur (Cy, 1) ayant ce spectre avec multiplicités.

De plus la partie Sp* (A)=Sp(A)— {0} vérifie SAH relativement aux
déformations de A a u fixé.

On a le méme résultat, avec A\ <A, =---=Ay, pour les opérateurs de
Schrodinger H sur L*(Cy, u,) avec SAH pour le spectre entier.

THEOREME 2. Soit A, =0< A, <::-<An.,, il existe u et A sur (Ey, u)
ayant ce spectre et Sp* (A) vérifie SAH relativement aux déformations de A (u
variable).

Remarque. Soit A, sur (Ex, u,) associé a qo(x;))=XN, (xo—x,)* alors le
spectre de Ajest 0<1=1=---=1<(N +1) et la valeur propre 1 ne vérifie pas
WAH relativement aux déformations de u, et de A, si N=5.

Les applications de ces résultats élémentaires sont a la construction de
spectres prescrits, mais dussi a de curieux critéres de non-plongement de graphes
dans une surface (voir [CV2], [CV3] et [CV4]).
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Par exemple, si un graphe I' admet un opérateur de Schrédinger combinatoire
de spectre A, <A,=-:-=A,,,<... ol A, est de multiplicité k et vérifie WAH
relativement aux déformations de H, alors I' n’est planaire que si kK = 3.

Preuve du théoréme 1.

Hypothése SAH. Soit @:R% — 2(E,), ou

A= {arétes de Cv},  Eo={(x)eL*S, u)|((x)[1)=0},
définie par

D(ci) = 2 ij(xi = %) |,
L]

A cause des dimensions, il suffit de vérifier I'injectivité. Cela est laissé au lecteur.
Le cas de Schrodinger est analogue.

Existence: elle se montre par récurrence sur le nombre N et la notion de
suspension d’un graphe. Si I" est un graphe fini a N sommets {1, 2, ..., N}, muni
d’une mesure u = Y,)., V; 8(i) et d’une forme quadratique

> ca(dox)? (c,>0),

aesd

on construit pour tout V;,>0 et a >0 un graphe SI" de sommets {0, 1, 2, ..., N},
en joignant chaque sommet de I' au nouveau sommet 0 par une aréte. On
I'équipe de la mesure Su =V, 6(0) + u et de la forme quadratique

N
Sq(x(), xl, “ e ,xN)=a 2 ‘/i(X()“xi)z‘l’q(xl, oo ey XN).
i=1

Les valeurs propres non nulles de SI', muni de ce laplacien combinatoire sont les
Ai+a (j=1,2,...,N), A; valeurs propres de I' et la valeur propre A=
a(l + (I, V))/ Vo).

Soit a réaliser pour SI' le spectre

A]=O<A2$ s 8 'SAN-?-I'
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On choisit a tel que a(1 + (XL, V;)/V,) = A,. On doit alors avoir pour
2=<j=N, A=A 1 —a>0, (car Ay>a).

On raisonne alors par récurrence pour construire I ayant 0<A,=---=A,
comme spectre.

Preuve du théoreme 2. 1l est facile de vérifier que les valeurs propres non
nulles sont les solutions de

Z (A— (c/V)) =1

et donc

C C C
O<2<t <2< o< T<inn
Vi V, Vn

si les ¢;/V; sont 2 a 2 distincts et ordonnés.

On se donne la suite 0<A,<A;<:--<An,; et on choisit a; tels que
0<a, <A <a,<---<ay<Any;. Les A, sont alors les solutions de YN al(A—
a;))=1 et donc les (—c;) sont les résidus en A =ga; de R(A) =I5 (A = A,)/(A -
a;). 11 est facile de vérifier que les ¢; ainsi définis sont >0 et on pose V; =c;/a,.
L’application (V;, ¢;)*> (4,);=> est une submersion, car le procédé précédent
donne un relévement analytique local ou les c;/V; sont fixés, d’ou SAH.

Pour la deuxiéme partie, il suffit de compter les dimensions: a cause de
P'invariance par dilatation, on peut supposer V,=1 et on a

# paramétres = 2N, dim (2(Ey)) = N(N —1)/2
et donc, si
N=6, dim 2(E,) > # paramétres.

On ne peut avoir une application essentielle, donc WAH n’est pas vérifiée.
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