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Sur une hypothèse de transversalité d&apos;Arnold

Y. Colin de Verdière

Dans [AD], V. Arnold introduit certaines hypothèses de transversalité
relatives aux valeurs propres d&apos;une famille d&apos;opérateurs autoadjoints.

Après avoir donné une définition précise d&apos;une hypothèse forte (SAH
&quot;strong Arnold&apos;s hypothesis&quot;) et d&apos;une hypothèse faible (WAH &quot;weak

Arnold&apos;s hypothesis&quot;), nous prouvons les résultats suivants:

- L&apos;hypothèse SAH est vérifiée pour toutes les valeurs propres positives du

laplacien de S2 pour la métrique canonique.
-L&apos;hypothèse SAH est vérifiée pour toute valeur propre d&apos;un tore plat de

multiplicité ^6 et non pour les autres. Cela fournit un contrexemple à

l&apos;hypothèse d&apos;Arnold.

- Nous traitons ensuite le cas des laplaciens discrets sur certains graphes finis.
Tous ces résultats sont utilisables dans la construction de métriques rieman-

niennes ou de domaines euclidiens de Rn dont une partie finie du spectre est

prescrit ([C-C], [CV3]). L&apos;ensemble de ces résultats est annoncé dans [CV2].
Je tiens à remercier Michel Brion pour m&apos;avoir aidé à traiter le cas de S2.

1. L&apos;hypothèse d&apos;Arnold

Rappelons d&apos;abord quelques éléments de la théorie des perturbations des

valeurs propres multiples:
soit H HR©C le complexifié d&apos;un espace de Hilbert réel et (Ha)aeT une

famille d&apos;opérateurs autoadjoints réels sur H (i.e. définis sur HR) de même
domaine DcH, dépendant continûment de a variant dans l&apos;espace topologique T
au sens que a •-» (Ha + i)~l de T dans i?(H, D) est continue pour la norme. Soit
alors Ào une valeur propre isolée de multiplicité finie n0 de Ho(0 e T), c&apos;est à dire
telle que Âo $ sp.ess (Ho). Soit e &gt; 0 tel que le disque D de centre Ao et de rayon e

ne rencontre le spectre de Ho qu&apos;en Ào.

Il existe alors un voisinage U de 0 dans T tel que, si a e U, Ha admet dans D
un nombre fini de valeurs propres dont la somme des multiplicités est n0. De
plus, le projecteur orthogonal Po de H sur la somme Ea de ces espaces propres
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dépend continûment de a:

Pa Z7-f (k-Hayldk avec y bD.
LlTt Jy

Lorsque a—»0, Ea—*E0 et on définit la forme quadratique qa sur E() par
&lt;la(f) — (HaUaf | Uaf) où Ua est l&apos;isométrie naturelle de E() sur Ea définie par:

l/fl \-l/2

avec S8jc jc + S8jc et Ea graphe (fi), fi e i?(£o, £d)-
II est clair que le spectre de qa sur EQ est (spectre (Ha)) D D.
Supposons maintenant que T est une variété Ck (k &gt; 0) et que qa est définie

sur un voisinage de 0 homéomorphe à une boule K d&apos;un espace modèle. On
désigne par

&lt;P:K-+ â(£0) {formes quadratiques réelles sur E{)}

l&apos;application a *-*qa et on pose les:

DÉFINITIONS. On dira que la valeur propre Âo de Ho vérifie l&apos;hypothèse

d&apos;Arnold forte (SAH) (resp. l&apos;hypothèse d&apos;Arnold faible (WAH)) relativement à

la famille (Ha)aeT si 0 est une submersion en a =0 (resp. &lt;P est essentielle sur

Soit K un espace topologique, E un espace de Banach, yoeEf &lt;P:K^&gt;E

continue, on dira que 0 est essentielle sur (E, y0) s&apos;il existe e&gt;0 tel que,
VW:K-*E, continue, avec \\W- &lt;P\\L~{K)^e, onay0e W(K).

L&apos;ensemble de ces applications est un ouvert de C(K, E). Lorsque K est une
boule d&apos;un espace vectoriel et 4&gt; de classe C1, si ^(jco) yo et d&lt;P{xQ) est

surjective, &lt;P est essentielle sur (£, ^0).

On introduit de même les propriétés SAH et WAH pour une famille
^i &lt; A2 &lt; • • • &lt; AN de valeurs propres isolées de multiplicités nl &lt; &lt;*&gt; de Ho dans la
famille (Ha) en considérant l&apos;application

&lt;P:K-^&gt; &amp;(Ei)(B - • • ©â(£/v), somme des applications précédentes.

Une condition nécessaire pour SAH et WAH est évidemment que:

dimension (r) a f &quot;l(&quot;&apos;+ ^
•

1=1 2
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On peut également traiter le cas non réel de manière similaire: c&apos;est le cas qui
intervient pour la théorie de l&apos;opérateur de Schrôdinger en présence d&apos;un champ
magnétique.

La vérification de SAH se ramène à celle de la surjectivité de la différentielle
de &lt;P : a &gt;~* qa en a 0 et on a le:

CRITÈRE. Pour que Ao vérifie SAH, il faut et il suffit que la différentielle de
&lt;P:a *-» (Ha. |. e â(£0) soit surjective en a 0.

Preuve. On a

qai(x,y) (Hat(x + Btx) \y + Bty) + O(t2),

et donc

y) + (H()Bx\y) + (H,x | By)

et comme B e J£(E0, £&quot;d), on a q{)(x, y) {H()x \y).
Lorsque H et (ou) D dépendent de a, on peut souvent modifier les Ha par des

transformations unitaires explicites pour se ramener à la théorie précédente.
Traitons par exemple le cas où (X, g{)) est une variété riemannienne compacte de

dimension 2 et la famille Ha celle des laplaciens Aa associés aux métriques
e2ûg() g(a e CX(X, R) T), on a alors la:

PROPOSITION. Ao( # 0) vérifie SAH si

\

est surjective de CX{X) dans

Preuve. t;g e2aug0 et Â=e~aAae~ay où Â est le transporté de Aa sur
L2(X, vg0) par l&apos;isométrie Uf e~J de L2(X, vg{) sur L2(X, vg). Le résultat est
alors immédiat.

2. Cas de la sphère

THÉORÈME. Soit(Sz,g{)) la sphère munie de la métrique usuelle et
Âo /(/ + (/&gt;1 entier) une valeur propre du laplacien. Alors A() vérifie SAH
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relativement à la famille des laplaciens des métriques conformes à g0 II en est de

même en ne considérant que les déformations invariantes par antipodie

Preuve On désigne par &amp;v l&apos;espace des polynômes homogènes de degré 2/

sur R3 et par $f/ l&apos;espace des harmoniques sphénques de degré / D&apos;après le §1, il
suffit de montrer la surjectivité de l&apos;application

F, 0&gt;2/-*â(^) définie par F, P^(q((f)=t P&lt;p2)

La transposée de F/ est l&apos;application de $f,° 3iÇ—&gt; 3P2l définie par q) &lt;&gt; y *-&gt; q&gt;tp

Comme dim (3(3*5)) dim (9») (/+ 1)(2/+ 1)), il suffit de montrer la

surjectivité de &apos;F,, c&apos;est à dire que tout polynôme homogène de degré 2/ est
combinaison linéaire de produits d&apos;harmoniques sphénques de degré /

Comme tout sous-espace de $P2l contient une fonction zonale (invariante par
rotation autour de Oz)&gt; il suffit visiblement de le montrer pour les éléments

zonaux de 3P2i Pour cela, on utilise des arguments classiques de la théorie des

représentations linéaires qui m&apos;ont été expliqués par Michel Bnon On note

a=jt + *y, b z, c=x — iy et on a une base de &amp;2l formée des aubvcw avec

u + v + w 2/ L&apos;espace zonal est engendré par les monômes tels que u w,
l&apos;algèbre de Lie de SO(3) par les vecteurs

dz dyx=y — -z—, Ly= etL2

On pose W± Ly± iLx et on a

W+(a) 26, W+(b) -c, W+(c) 0 Wl(«), WL(ft) -a, W-(c) 2b

De plus cette algèbre de Lie opère sur ^2l par dérivation

W+(aubvcw) 2uau~lbv+lcw - vaubl~lcw+l

W.(aubvcw) -va^bv-&apos;c™ + 2waubv+lcw&apos;1

Dans le plan des (m, w), on a donc

W+(eu w) aeu w+l 4- Peu^l w

W_(eu w) a&apos;eu w_x + j3&apos;ea+1 w,
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où a&gt; j8, or&apos; et pf ne sont nuls que s&apos;ils sont coefficients d&apos;un eu&gt;tW. avec
(iï,v&apos;)tT, où

Par applications successives de W+ et W_ à partir de eu (jc2 4- y2)1 albl qui est

produit de deux harmoniques sphériques, on obtient visiblement tous les

monômes zonaux ekk (0&lt;/c&lt;/): le vecteur alcl est donc un vecteur cyclique de
$Plh ce qui prouve le résulat.

3. Cas des tores plats

THÉORÈME. Soit X un tore de dimension 2, muni d&apos;une métrique plate, et

Ào une valeur propre non nulle du laplacien, de multiplicité N, alors Ao vérifie SAH
relativement à l&apos;ensemble de toutes les métriques riemanniennes sur X si et
seulement si N &lt; 6.

Cela fournit des contre-exemples à la conjecture d&apos;Arnold, car on sait que N
peut être supérieur à 6. Je ne sais pas ce qu&apos;il en est pour l&apos;hypothèse WAH.

Preuve. Soit X R2/Z2, toute métrique sur X s&apos;écrit (p*(g), où cp est un
difféomorphisme de X et

avec jx eh dx dy 0.
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On est donc amené à considérer, pour g() Ao dx2 + 2BQ dx dy 4- Co dy2, une
valeur propre Ao¥=0 du laplacien. Soit

alors l&apos;espace propre Eo est engendré par les exponentielles efX(x,y)
exp (2m(mx + ny)) où \i e P. Soit

d&lt;P:Co(X, C)@(Cdx2

la complexifiée de la différentielle de &lt;P en g0, où CJ(Jf, C) {/ e

&lt;r(*,c)|j*/ o}.
On a, d&apos;après le §1:

avec n, n&apos; eP, et

[d&lt;î&gt;(0 0 (or dx2 + 2/8 d* rfy +

Donc, si ju + ju&apos; #0, fd4&gt;(eM oeM.) C%+^ © si ju 4- ju&apos; =0,

eM o e_^) 0 © Ce(m2 © 2mn © n2) où |i (m, n).

Comme les jU + ju&apos; sont 2 à 2 distincts lorsque {m, /i&apos;} sont distincts, on voit que
Finjectivité *d&lt;P se réduit au fait que les vecteurs (m2, mn, n2) sont linéairement
indépendants pour les différentes valeurs de fi à symétrie près (ju&gt;-&gt; -ju). Ce qui
est le cas si et seulement s&apos;il y a moins de 3 telles paires, i.e. si N &lt; 6.

4. Cas des graphes

Donnons d&apos;abord quelques définitions: les graphes que nous allons considérer
sont des graphes finis, non orientés et connexes; 5 sera l&apos;ensemble des sommets et
A, l&apos;ensemble des arêtes, est un sous-ensemble de l&apos;ensemble des parties à 2

éléments de 5.
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On se donne une mesure \i E,es V, ô(i) (Vt &gt; 0), ju() E,es ô(i) sera appellée
la mesure canonique. Un laplacien combinatoire A sur F est défini par la donnée
de fx et d&apos;une forme quadratique

?(*») S Ca(daX)2 où dax x, - Xj si a {/, /} ;

est alors donné par:

(Ax)t=~

Un opérateur de Schrôdinger combinatoire est un opérateur de la forme
H — A + V, où V est diagonale.

Par la transformation unitaire (/(*,) V^*, de L2{S, fi) sur L2(S,ii{)), on
ramène un tel opérateur à un opérateur H de matrice symétrique (//) (altJ) avec

fli,,&lt;0 si {«,/&apos;} €.4, û,t7 0 si {/,/} ^^4 et /#/. Ainsi nous considérons soit des

laplaciens sur L2(5, //), soit des opérateurs de Schrôdinger sur L2(S, jU0).

Soit CN le graphe complet à /V sommets, i.e. tel que tout couple de sommets
distincts est l&apos;ensemble des extrémités d&apos;une arête; CN a donc N(N — l)/2 arêtes.

On désigne aussi par EN le graphe en étoile à N branches (N + 1 sommets et N
arêtes). On a les:

THÉORÈME 1. Si A, 0 &lt; A2 &lt; • • • &lt; kN et ,u EfLi K ô(i) ^onr Jonné^, //

wn laplacien combinatoire sur (CN, ja) ayant ce spectre avec multiplicités.
De plus la partie Sp* (A) Sp (A) - {0} vérifie SAH relativement aux

déformations de A à fi fixé.
On a le même résultat, avec A, &lt; k2— &apos; &apos;

&apos;

— Ayy, pour les opérateurs de

Schrôdinger H sur L2(CN, jà{)) avec SAH pour le spectre entier.

THÉORÈME 2. Soit A, =0&lt;A2&lt; • • • &lt;A,V+I, il existe fi et A sur (EN, fi)
ayant ce spectre et Sp* (A) vérifie SAH relativement aux déformations de A (fi
variable).

Remarque. Soit A{) sur (EN, fi()) associé à q^x,) Efli (*&lt;) — x,)2, alors le

spectre de A{) est 0 &lt; 1 1 • • • 1 &lt; (N + 1) et la valeur propre 1 ne vérifie pas
WAH relativement aux déformations de fi() et de A() si iV &gt; 5.

Les applications de ces résultats élémentaires sont à la construction de

spectres prescrits, mais aussi à de curieux critères de non-plongement de graphes
dans une surface (voir [CV2], [CV3] et [CV4]).
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Par exemple, si un graphe F admet un opérateur de Schrôdinger combinatoire
de spectre Xx &lt; Â2 • • • kk+2 &lt; où Â2 est de multiplicité k et vérifie WAH
relativement aux déformations de //, alors F n&apos;est planaire que si k &lt; 3.

Preuve du théorème 1.

Hypothèse SAH. Soit 4&gt;:R^-&gt;â(£()), où

A {arêtes de CN}, Eo {(*,) € L2(5, ji) | &lt;(*,) | 1) 0},

définie par

A cause des dimensions, il suffit de vérifier l&apos;injectivité. Cela est laissé au lecteur.
Le cas de Schrôdinger est analogue.

Existence: elle se montre par récurrence sur le nombre N et la notion de

suspension d&apos;un graphe. Si Test un graphe fini à N sommets {1, 2, N}, muni
d&apos;une mesure ju E^i K ô(i) et d&apos;une forme quadratique

(ca&gt;0),

on construit pour tout Vo &gt; 0 et a &gt; 0 un graphe SF de sommets {0, 1, 2, Af},
en joignant chaque sommet de F au nouveau sommet 0 par une arête. On
l&apos;équipe de la mesure Sfi Vo &lt;5(0) 4- jU et de la forme quadratique

Sq(x{),xu

Les valeurs propres non nulles de SF, muni de ce laplacien combinatoire sont les

k} + a (/ 1, 2, N), k} valeurs propres de F et la valeur propre A

Soit à réaliser pour SF le spectre
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On choisit a tel que a{\ + (Eïli Vt)/V0) A2. On doit alors avoir pour

2&lt;/&lt;N, A; A;+1 - a &gt;0, (carA2&gt;a).

On raisonne alors par récurrence pour construire F ayant 0 &lt; A2 ^ • • • ^ kN

comme spectre.

Preuve du théorème 2. Il est facile de vérifier que les valeurs propres non
nulles sont les solutions de

N

y Si i

et donc

si les cJVt sont 2 à 2 distincts et ordonnés.
On se donne la suite 0&lt; A2&lt;Â3&lt; • • • &lt;ÂN+i et on choisit a, tels que

0 &lt; ax &lt; A2 &lt;a2 &lt; • - • &lt; aN &lt; kN+ï. Les A, sont alors les solutions de EfLi cJ(X -
at) 1 et donc les (-c,) sont les résidus en A at de R(k) EftLV (A - A,)/(A -
a,). Il est facile de vérifier que les ct ainsi définis sont &gt;0 et on pose Vt cjar
L&apos;application (Vn c,) •-» (A,);&gt;2 est une submersion, car le procédé précédent
donne un relèvement analytique local où les cJVl sont fixés, d&apos;où SAH.

Pour la deuxième partie, il suffit de compter les dimensions: à cause de
l&apos;invariance par dilatation, on peut supposer Vo= 1 et on a

# paramètres 2N; dim (&lt;2(£0)) N(N - l)/2

et donc, si

N^6, dim &amp;(E0) &gt; # paramètres.

On ne peut avoir une application essentielle, donc WAH n&apos;est pas vérifiée.
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