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Properties of the scattering map II

Thomas Kappeler and Eugène Trubowitz

1. Introduction

This paper continues the investigation of the scattering map as it was started
in [3].

Again we consider the Schrôdinger équation

(1.1)

on the whole line where q is a real valued potential in the weighted Sobolev
space HNN (JV&gt;3). The aim of this paper is to extend the study of the

map SD, associating to a potential q its scattering data for the case where q
has bound states. To be more précise let us dénote by /,(*, k) :=/*,(jc, k, q) and
/2(x, k): f2(x,ky q) the Jost functions of (1.1) and by W(k) := W{k, q) and

S(k):=S(k,q) the Wronskians W(k) := W[f2(x, *),/,(*, *)] (Im*&gt;0) and

S(k) := W\fx{x, -*), f2(x9 k)] (Im k 0).
Let us dénote by ô/v,«(R) the set of ail real valued potentials q in HN N such

that W(k, q)¥:0 for lmk 0 and such that W(k, q) has exactly n zeroes in
lmk&gt;0. Due to the fact that q is real valued ail zeroes of W(k, q) are situated
on the imaginary axis. Let us dénote them by /*:,(&lt;?), ixn(q) where

Kj Kj(q)&gt;0 and kx&lt;- - &lt;Kn. Cleariy for k itc, the Jost functions

/t(jc, k) and f2(x, k) are linearly dépendent. So there exist real numbers

dx{q), dn(q) such that f2(x, iic,) d,{q)fx(xy iK;) (x in R) where d} d,(q) * 0

(l&lt;/&lt;n). Define rjJ(q):=\ogdJ(q)2 and the norming constants Cj c;(q):
(J-«/i(jc, i^rfr)&quot;1. Then 5(-, 9), ic,(&lt;?), icw(g), iî,(ç), ?jn(9) is called

the scattering data of q. We define the following map

SD : Ga,.»() ^,rt +

?»-&gt;(5(-, 9), Jf,(qr), tcn(q), r\x{q),

where El := {(je,, xn) e Un :0&lt;x, &lt; • • • &lt;xn} and SfNtn:= {oeH%-x N:

a(-k) a(k)*f (-l)rtcr(0)&gt;0}. H*-\tN dénotes a weighted Sobolev space as
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introduced in [3] and * dénotes as usual complex conjugation. For con-
venience we dénote by • the derivative with respect to k.

Pointing out that QNtn(U) is open in HNiN(M, M) as will be proved in section 2

we state the following

THEOREM. // TV =&gt; 3 then

(1) SD : QNtn(W)-»SfNtn xEn+xRn isa real analytic isomorphism.
(2) In particular at every q in G/v,n(IR) the Jacobian

dqSD dqSx(x dqfc\ x X

is boundedly invertible.
(3) The Jacobians dqS, dqKr dqr\j (l&lt;/&lt;n) are intégral operators given by

(veHNtN(n,

dqS[v](k) \ fx(x, -/c, q)f2(x9 k, q)v(x) dx
J — oc

c fx
dqK\v\ ~ 2^ J fî(x, iKj)v(x) dx

iK,)v(x) ^

(4) The inverse (dqSD)~l of dqSD is also an intégral operator given by

{dqSDY\o, au an, 0,, fin)(x)

where a e H%&apos;LltN9 (al9 an) e El and (/?,, pn) e R&quot;.

From Theorem 4.4 in [3] and a well-known resuit in [2] it follows that SD is 1-1

and onto. Only the fact that for q in QNtn(M) one has (-l)&quot;5(0)&gt;0 needs a

remark. Let us recall that 5(0) -W(0) and that W(ïk) is a real valued function
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for k&gt;0 with exactly n zeroes in ie&gt;0, ail of them simple. But asymptotically
W(ïk) ~ -2k (k-* +oo), thus (-1)&quot;W(O) &lt;0. From [3] we already know that 5 is

real analytic on QN,n(^)- In section 2 we will show that Kf(q) and r}}(q) are real

analytic (1 &lt;/ &lt; N). Then (1) follows from the inverse function theorem provided
one can show that dqSD is boundedly invertible. This will be shown in section 3.

(3) and (4) are proved in section 2 and 3 respectively.
In section 4 we will discuss the set of potentials with résonance, i.e. where the

Wronskian W(k) does vanish at k 0. We then indicate how ail the sets QNtn(U)
lie in HNtN(U, M). The notation is the same as used in [3].

2. Investigation of the fonctions K,(q) and r\}(q)

Let us first look at the functions K}(q) (1 &lt;/ &lt; n) and recall that iK}{q) are the

zeroes of W(k, q). From Lemma 2.7 in [3] we know that

HN&gt;N^Cl(M, L2(R+)), q^d&gt;xBx{xyy, q)

is holomorphic for 0 &lt;y &lt; N + 1 where Bx{x, y, q) is given by fx{x&gt; k) elkx(l +
Jo Bi(jc, y)ellky dy). We conclude that

{lmk&gt;0} X HN,N^Cl(M)H Ll(U), (k, q)^ d&apos;J^, k, q)

is holomorphic in q and k for O^/^W+l. Similar results hold for f2(x, k, q).
Thus we hâve proved

LEMMA 2.1. // N &gt; 3 then W : {Im k &gt; 0} x //^^^ C is holomorphic.

Let # be in QNfW(R) with N &gt; 3 and fix 1 &lt;/ &lt; n. As ail the zeroes W(&amp;, q) are

simple we conclude that (d/dk)W(iKJf #)=£(). By the implicit function theorem
there exists an open neighborhood V; of q in HN&lt;N(M, M) and a real analytic
function £; defined on V} such that W{ik}{p)y p) 0 (p in V^). For e &gt;0,

c :=inf {|W(/ic, q)\ :k&gt;0&gt; \k — K}{q)\ &gt; e, l&lt;;&lt;n}&gt;0. So there exists an open
neighborhood l/f cRpi V; in HNtN(U, M) such that inf {|W(ÎJC,p)|:ic&gt;0, |jc —

Kj(q)\&gt;e, l&lt;;&lt;n}&gt;c/2 for ail p in {/f. For sufficiently small e&gt;0

(d/dk)W(k,p)¥^0 for p e Ue and A: with |A: — //cy(^)| &lt;c ^e (l&lt;;&lt;«) and thus
)- To summarize we hâve got

PROPOSITION 2.2. LetN&gt;3 and n in N. Then

(1) Cyv.n(R) &amp; tf« ^P^ ^wfeer ofHN&lt;N(M, R).
(2) /c; : G^W(R)-* R + w ^û&apos; analytic.
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Now let us turn to r]j(q). Recall from [3] that for a &lt; b

{Im k &gt; 0} x HN&gt;N-* C, (*, q)*-*l fi(x, k) dx and

{Imk &gt;0} x HNN-*C, (k, q)»-» /t(jc, A:)/2(jc, A:) djc

are holomorphic.
Using the chain rule one then concludes that

[f\{x9iK,{q),q)dx and f(f1f2)(x9iKi(q)9q)dx
Jq Ja.

are real analytic on Q^,rt(R). Further let us recall that f2(x, iKj(q))
d,(q)fi(x9 iKj{q)) and thus

is locally bounded on QN&gt;n(U). This implies that $Zxdxfî(x, iKj{q)) and

$Zxdx(fif2)x, iKj(q)) are real analytic on Q^^R) where we used the fact that the
limit of a séquence of real analytic functions converging locally uniformly is again
real analytic. So we hâve proved

PROPOSITION 2.3. //W&gt;3 then r\, is a real analytic function on QN&gt;n(U)

with values in U (1 &lt;y &lt; n).

Let us now dérive the formulae for the derivatives of K}{q) and r)j(q) as stated
in the theorem of section 1. We need the following

LEMMA 2.4. IfN&gt;3,q in QN,n(U) and v in HN&lt;N(Uy U) then

dqfi[v)(x9 iK}) ^ | dtv(t)Mt, iK})
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Remark. Similarly on can show that

d l

Proof (of Lemma 2.4). As in [3] one checks that for k¥=iKa (l&lt;a&lt;n),
/&lt;n and v inHNiN(R,R)

k — iKj

where we used that f2(x, iKj)f\{ty iK;) =/i(x, iKj)f2(t, i«:y). Clearly dqf\v]{x,
\\mk_+lKi dqfi[v](x, k). By [2] one sees that

k-iK^ 1 c;

Recall from [3] that m,(jc, k):=e~lkxfx{xy k) and m2(jc, k):= elkxf2(x, k). Taking

into account that 2 —r^—— is bounded in LX(R) uniformly for

Im A: &gt; jrt &gt; 0 (k =é /icy) as will be shown in the next lemma one can apply
Lebesgue&apos;s convergence theorem to get the claimed resuit.

LEMMA 2.5. For k¥^kf with \mky Im k1 &gt; k&gt; 0 we /wwe

^t(*&gt; ^) ~ *niv&gt;k&apos;)\\ ^\m/»\ n _ 1 -»\

Remark. As

m^Xy^-m^x^k)hm — /— ^ m, (x, /:)
^.^A; k — k
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pointwise for x in IR it follows from Lemma 2.5 that ||m/(-, ac)||l*(IR)&lt; M(ie)

Proof (of Lemma 2.5). It suffices to prove the statement for i 1. For
convenience we write m(x, k) for mx(xy k). For ki^k&apos; the différence m(x} k) -
m(x, k&apos;) can be written as

—
&apos;

^k -k^&apos; k) [ °k{t - X)^ ^k
-

f&apos;
k ]

q{t) dt

(t,k&apos;)dt (2.1)

where Dk(y) %ellkz dz. Without loss of any generality assume that
Im (ac&apos; — k) ^ 0. Then

t-x e2i{k&apos;-k)z _ ^Dk{t-x)-Dk(t-x) _ dze
k-k&apos; i k&apos; -k

for a suitably chosen K(k)&gt;0 and ail k with Im k&gt;tc. From [1] we learn that
\m(t&gt; k)\ &lt; c{k) for ail fin IR and for Im k &gt; ic and c sufficiently big. (2.1) is an

intégral équation of Volterra type and thus we get for Im k, Im k&apos; &gt; k &gt; 0, ki^k&apos;

m(x, k) — m(x, k&apos;) i| \q{x)\dx\c{K)K{K)
k-k&apos;

and Lemma 2.5 follows.

Let us point out two corollaries of Lemma 2.6 which will be needed later.

COROLLARY 2.6. If N^3 and q in QN,n(U) then the limit h;:
lim^.oc/^jt, iKj)eKjX exists for 1 &lt;y &lt; n.

Remark. A similar resuit holds for f2: For l&lt;/&lt;n the limit g;:
lim^+oc/^jc, iKj)e~K&apos;x exists.

COROLLARY 2.7. If N ^3 and q in QN,n(U) then

f /?(*,/*,)&lt;fc î£ (l&lt;y&lt;n).
./—oc U.
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Remark 1. A similar resuit holds for/2:

J_ /!(*, *,) dx id,g, (1 &lt;/ &lt; n).

Remark 2. It follows from Corollary 2.7 that h} g; (1 &lt;y

Proof(of Corollary 2.7). We hâve

r•/•—oc

so it is

a

a*

Kj)ax

to show that

W(k)
2ik

1 d
1

d} dk
W{k)
2ik

Now

a W(k)
3k 2ik

1

in R).

As this last equality is true for ail x in R it remains true also in the limit as

jc—»-o°. Using Corollary 2.6 and deducing from Lemma 2.12 the fact that
lim^.ocm&apos;i{xy itck) 0 the claimed resuit follows.

PROPOSITION 2.8. // N&gt;3, q in QN,n(R) and l&lt;/&lt;« then (v in
HNiN(R,R))

*j[v] -~ J /i(x, /k;)2u(

Proo/. Clearly W(ijcy(ç), q) 0 and thus by the chain rule

0 dqW[v]{iKp q) + Hr(/r,, q)idqK,[v].
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From [3] recall that dqW[v](k, q) -J-*(/zfi)(^, k)v(x)dx. From [2] we know
that

WUk a)-2iKC f(xiK)f(xiK)dx-2iK^W \lKjy q) — LlKj Jl\X, lKj)j2\x&gt; lKj) ax ~~ ^lKj
J—X Cj

So we get

dqKj[v] -Z^d( fi(x,k)v(x)dx.

PROPOSITION 2.9// 7V&gt;3, q in QNtn(R) and l&lt;/&lt;n then (v in

Proof. Let us introduce for m ^ 1 the functions

— m

cm
f2Ax iK

J J\KX, ik,
J—m

Then it follows as in Proposition 2.3 that rjjm(q) is real analytic on
Using well-known properties of fx and f2 one obtains

rm cm

f\dqh[v\{x, i^) dx J fidqfx[v](xy iK}) dx

dqri,m[v] 2 —— 22

fiMx, ik,) dx f\(x,iK,) dx

d}

where cm := \mm fxf2(x, iic,) dx,

cm
I dx(fxfi -/2/i)(x, iKj)idqKj[v]

J—m
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and

cm
II dx{fx(x, iK,)dqf2[v](x, iKj) -f2(x, iK^d^v^x, i*,)}.

J—m

Using Lemma 2.4 one car» write // as a sum /// + IV where

ic fm f00 /1 1 \
2Kldl)-m J_» \dj d,

IV t^j f dx \ dtv(t)f2(t, iK,)fx(x, ix,)
ZKjUj J — m J — ac

X {/2(*, iK})f[(ty iK}) -fi(t, iK})fx(x, iK,)}.

Using Proposition 2.8 one sees that l +111 0. So in ail we get

2r le Çm fx
dqr},m[v] -piV ^c,\ dxfl(x, iK,) dt v(t)(f2fi -fi

Uj KjUj J — m J-x

It is easy to see that r)}{q) limm_^3C r)jm(q) (l&lt;y&lt;n) locally uniformly on
G/v,n(R)- As î]j and rjjm are real analytic on QNtn(U) we conclude that
limm^xdqr}jm[v] dqrjj[v]. But elearly limm_occ/ \mmdxfx{xy iic}) 1 and the
claimed resuit follows.

To finish this section we présent two results which will be needed later.

PROPOSITION 2.10. If N&gt;?&gt; and q in QN,n(U) then (d/dx)fî{x, iic,) is in

//N)N(R,R)(l&lt;;&lt;n).

Proof. Recall that fx(x, iK}) e&apos;K&gt;xmx(xy iK,) e~K&gt;x{\ 4- fà Bfa, y)e-lK&gt;y dy).
From the considérations before Lemma 2.1 we know that d&quot;{mx(x, iK;)~ 1)

Jo daxBl{xfy)e~2K&gt;ydy is in C(|(R) for 0&lt; ar&lt;N+1 and 1&lt;;&lt;/i. So it follows
that Jcm3?/Kx, ÎK^eL^R) (0&lt;ûr&lt;iV + l, m&gt;0). Similarly one proves that
*m3?/l(jt, «*}) € L-(K) (0 2S &lt;* &lt; AT + 1, m &gt; 0). Because /2(jc, îjc;) &lt;//,(*, ix&gt;) the

proposition follows.

PROPOSITION 2.11. If N^3 and q in QN,n(U) then (d/dx)(f&apos;xf2-

fifi)(x, iKj) is in HNtN(M, M) (1 *j*n).
Proof. It suffices to show that dxflf2(xy iK}) is in HNtN(R, R).
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As /2(x, iKj) djfx{x, iKj) we conclude that

3xf{fi= -2Kjdje-2K&gt;x(m{(x, iK})mx(x, iKj) + (ix)mï(x, ne,))

+ dJe&quot;2KtXdx(m[(x9 iK,)mx{x, iK}) + (ix)m\{x, iic,)).

It is not hard to see that dx(mx(x, jjc,) — 1) and dxmx&apos;(x, iK}) are in C+(R) for
0 &lt; oc &lt; N + 1 and it follows that Jcm3^+1/172(jc, îjk&gt;) e L^(R) (0 &lt; m, ût &lt; TV).

It remains to show that xmdx*+xflf2(x, iK}) e Li(R). Using fx(x,iK,)
(l/d,)f2(x, iKj) we get

iK})=—\ix-f22{x, iKj)

+ m2(x, iK,)mi&apos;(x, iKj).

Again it is not hard to see that dx{ixf\{xy iK;)) e HNtN(U, M). Taking Lemma 2.6

into account where it is proved that m&apos;x(x, iK;) is in L0C(IR) it suffices to show

(i) xmdax(mx{xyiK})-\)eLl{U) 0&lt;&lt;r&lt;N + l, 0&lt;m&lt;N

(ii) xma;+lmi(x9 iff;)€l

(ii) will be proved in the following lemma. Towards (i) recall that

dxmx{xy i^) - [ dte~2K&gt;{t~x) q{t)mx{t, iK}) and for 2 &lt; a &lt; A^ + 1

a&gt;,(x, i*&gt;) 2 (2jcy)&quot;aj?-2-Vi(*. «*,te(*))
(3=0

- (2/c,)&quot;-1 [ dte-2K&apos;l&apos;-x) q(t)m,(t, iKj).
Jx

As q(x) is in HNtN(U, U) and d^O, ijk)) e C(|(R) for 0 &lt; a &lt; N + 1 it suffices to

prove that J&quot;* dte~2lc&gt;(t~x) q(t)mx(t, ijc;) is in L^(R+). For 0&lt; or&lt;N it is easy to
see that

dte-2K&gt;(&apos;-x)q(t)mx(tf ijcy

e&quot;2if&apos;r) f
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LEMMA 2.12. //N&gt;3 and q in QN,n(U) then dxma{xy Ik,) is in HNtN(U9 R)
for a 1, 2 and 1 &lt;/ &lt; n.

Proof. Clearly it suffices to prove the statement for a 1. Recall that
dxm[{xy iK}) satisfies

dxm{(x, iK}) -2ieK&gt;xl - H

where

t — x)e Kjit x)q(t)fi(t, iKj) dt
Jx

and

//:= e &gt;{t x)q{t)m[{ty iKj) dt.

As concerns / it suffices to show that dxl is in L!!(R) for 0 &lt; or &lt; N. This follows
easily from the following expressions for the derivatives (1 &lt;/ &lt; n)

dxl *&gt; fdf(ï -JtJe-^&apos;-^^VKï, **&gt;)

and for 2 &lt; a &lt; N + 1

3aJ kA dte-&apos;fi-&apos;Xt - x)q{t)fl{t, îk,) - ajc&lt;*-&apos;&gt; f dte-«&gt;(&apos;-x)q{t)fx(t,
Jx Jx

/3=0

Towards II we hâve to show that dxll e L2N(—°°). For the derivatives of // we get
the following expressions

dxll —q{x)m{{x&gt; ÎKj) + 2k}\ e 2K)ir x)q{t)m[(ty iKj)dt
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and for 2 &lt; a &lt; N

daxll {2K,yfe-2*&apos;^q{t)m\{t, it:,) dt - % {2K,r-^dP(q(x)m\{x, i*r,)).
h /3=0

Thus it suffices to prove, due to Lemma 2.6

(i) d^m[{x, iK,)eL*{U) O^a^N-2

(ii) f e-2«&gt;(-*\{t) dt e L2N(-oo).
*x

(i) is proved by using an easy induction argument on the expressions for d&quot;L and
d&quot;II together with Lemma 2.5.

Towards (ii) let us split the intégral: First prove that J^/2 e~2lC)(t~x)q{t)dt is in
L%(U&quot;). Observe that for t &gt; jc/2 it follows that t - x &gt; \x\/2 for x &lt; 0. So we get

If e~2K&apos;{t-x)q{t) dt
I Jx/2

dt\q(t)\.

Clearly j^/2 dt \q(t)\ is in L*(R) and thus it follows that Jr/2 e&apos;2Kt(t-x)q(t)m[(tt iK,) dt
is in Lj^U &quot;). Further we observe that for 0 &lt; ût &lt; N, x &lt; 0

f dte-W-* \q{i)\ ^ [ d5e-2^5 |j -h jc|a

Thus it suffices to prove that for 0&lt;a&lt;N, Jg/2dse 2lCfS \s -x\a\q(s -x)\ is in
L2(IR+). We hâve by a change of the order of intégration (0 &lt; a &lt; N)

f rfx(f &amp;e&quot;2jc&apos;5|5-xri9(5-jc)|) &lt; f dte~2KA dx \t - x\a \q(t - x)\

çx

^0

çx/2
X

/// + IV

where

f dte~lKA dse~2KA dx\qil-x)\\t-x\°\q{?-x)\\s-x\°h ht Jis
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and

f l dx\q(t-x)\\t-x\a\q(s-x)\\s-x\a.
ht

Now it is easy to see that

1/2 / rt-2s x 1/2

$dy \q(y)\2 \y\2a)j&apos; (J&quot;

%

dz \q(z)\2 |z|2&quot;

*) j dy \q{y)\2 \y\2«&lt;™

and

,2t i ç-t xl/2/rs-2r v

d5^-2^M rfyy2flf|?(y)|2) M dzz2a \q(z)\2)
1/2

This ends the proof of Lemma 2.12.

3. The Jacobian of the scattering data map and its inverse

In this section we will prove that the Jacobian of SD is boundedly invertible.
In order to do so we hâve to dérive certain orthogonality relations. We omit their
proofs because they can be shown in very similar way as the orthogonality
relation derived in Proposition 3.6 of [3] using Lemma 2.5, Corollary 2.6 and

Lemma 2.12. Recall that we hâve introduced h} - \\mx^^eK&gt;xf[{xi îk,) and that

we hâve proved that h} lim^+oc e~K)Xfi(x, iK}) (Corollary 2.7).

Lemma 3.1. If N&gt;3, q in QN,n(U) and 1&lt;;&lt;« then

(1) 0 f /,(*, -*)/2(jc, k)dx{fxf2 -fif2)(x, iK}) dx (k in R)

(2) 0 f /,(*, -k)f2{x, k)dJ2x{x, iK&gt;) dx (k in U).
J — oc
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LEMMA 3.2. IfN&gt;3,q in QN,n(U) and 1 &lt;/, /&apos; &lt; n then

(1) Q

(2) -iK^Ô,,. j J\{x, iK,)dx{f[f2 -fji)(x, îk,.)

where ôn=l if j =/&apos; and 0 otherwise.

LEMMA 3.3. IfN&gt;3,q in QNtK(R) and 1 &lt;y, /&apos; &lt; n then

(1) 0 f (/i/2 -/t/iXjr, iK,)dx(f\f2 -fJ2){x, iK,.) dx
J— oc

(2) /icy^ &lt;5;/ | (/ï/2 -/^(jc, iKjdtftx, iK,) dx.

Now we are in a position to prove the following

THEOREM 3.4. If N^3 and q in QN,n(R) then dqSD is boundedly
invertible.

Proof. We start proving that dqSD is onto. First observe that

dqS:HNtN(U, IR)-&gt;/fJîr_lt/v is onto for q in QN,n(U) convincing oneself that the

proof of Proposition 3.6 in [3] holds also for q in QNtn(M).
Let us dénote by C the map defined on H%&apos;iltN x El x R&quot;

C(o, al9...9aH9pl9...9 Pn) ^\ J
« 2/c

+ É fi,c,dxf\{x9 iK,).

Apply Proposition 3.4 of [3] and use Proposition 2.10 and 2.11 to conclude

that C(a, (*!,..., ocn) j8u j8n) is an élément in HNtN(M, M). Using Proposition

3.6 in [3] and Lemma 3.1, 3.2 and 3.3 we get that dqSD°C Id on
H%LltN xEn+xMn so it follows that dqSD is onto.
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To see that dqSD is 1-1 let us introduce the subspace V of HNJ
generated by the functions dxfj(xf iK}) and dx{f[f2 -/î/ïX*. iic}) (1 &lt;/&lt;«). From
Lemma 3.2 and 3.3 we conclude that V is of dimension 2n and that kx x • • • x
Knx rjlx - - - x r]n is 1-1 on V where Lemma 3.1 tells us that dqS \v 0 i.e.
V c Ker dqS. As in [3] we can use the fact that C is a right inverse of dqSD to
show that dqSD is 1 — 1 provided one can show that dqSD is 1-1 for every q in

Gat,«(R) with compact support. So let q be in QN&gt;n(U) with compact support.
Combining Lemma 3.6 with VcKerd^S and dimV 2n we conclude that
V Ker dqS. But then it follows that dqSD is 1-1.

Remark. Let us point out that it follows from the proof of Theorem 3.4 that C
is the inverse of dqSD as stated in the theorem of section 1.

LEMMA 3.6. If N&gt;3 and q in (^«(IR) w*th compact support then

dim Ker dqS &lt; 2n.

Proof. As in [3] let us dénote the natural extension of dqS to ail of Hhl(M, M)

by A. We will show that dimKer^&lt;2n. Take q in QNtn(U) with
[—by b] for a certain b in M. Introduce the subspace G of Hïx defined by

G := {g e iflpl(R, R) :| g(x)AU, -^7)/2^, ^y) ^ 0 and

/i(*, /^^(x, -ix&gt;) dx 0, 1£

Applying the proof of Lemma 3.10 in [3] one concludes that for a &gt; b dqS\Hx l(û)nc
is 1-1 where HÏA{a) is defined as in [3]. Clearly the codimension of G is at most
2n. Moreover one convinces oneself that every élément v in G can be

approximated by a séquence (vn)neN with vn eHlA{n) H G. Combining thèse

three results Lemma 3.6 follows.

4. The set of potentiels with résonance

Let us dénote by $lN the set of ail potentials q in HNtN(U, M) with

PROPOSITION 4.1.. Let N&gt;3 then 0lN is a real analytic submanifold of
codimension 1 in HNfN(M, M).
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Proof From Theorem 2 17 in [3] we conclude that W(0, q) îs a real analytic
function of q From Theorem 3 1 in [3] we know that dW(0, q)/dq(x)
-fi(x,0,q)f2(x,0,q) and so 3W(0, q)/dq(x)±O in x Thus Proposition 4 1

follows from the implicit function theorem Now let us mtroduce for n 0, 1,

®n n {qe0lN W(ik, q) has exactly n zeroes in 0 &lt; k &lt; &amp;}

Then ail the 2ftN n are pairwise disjoint and *3lN U«=o $%n n Let us remark that
Qwfi(R) 1S an °Pen connected and unbounded subset of HNN(U,U) (n
0,1,

It îs not difficult to see that between QNn(R) and &lt;2/v*+i(R) Slts the set $lN n

To prove it let us recall the well known fact that for q in HNN(U, M) ail the
zeroes of W(ik), k &gt; 0, are simple We will show in Lemma 4 3 below that if q îs

in HNN(U, U) with W(0, q) 0 then W (0, q) =£0 Thus ail zeroes of W(nc, 9)
on 0 &lt; k &lt; 00 are simple

Therefore there exists for q in $lNn an open neighborhood U of g in
HNN(U, U) such that for ail p in {/, W(ik, p) has exactly w or n + 1 roots in
0&lt; jc&lt;oo

Then let us define

Uo ={peU
Ut {peU (-l)&quot;W(0,p)&lt;0}

U2={peU (-

Clearly Uo îs a neighborhood of q m 3lN which îs contained completely in 3lN n

using the fact that W(0,p) -5(0, p) one follows that UicQNn(U) and

Ui^Qnh+iW where we used that W(ik) 2k as /c^+00 and that ail the
zeroes of W(ik) on 0 &lt; k &lt; oc are simple Observe that this shows also that for
n 0, 1, £%/v n is a real analytic submamfold of codimension 1 We summanze
our results m the following

PROPOSITION 4 2 Let N&gt;3 For n 0,1, 9lNn is a real analytic
submamfold of codimension 1 w/wc/i site m between QN n(U) and QN n+\

LEMMA 4 3 Let N^3 and q be in HNN(U) such that W(0) 0 Then
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Proof. Let k be in U \ {0} Then f2(x, k) can be wntten as

So for ail jc in R

Similarly one gets (k in R\{0})

/2(x&apos; k)

,k)-f2(x, -k) W(k) + S(-k)+S( kS(k) 27k

and

Mx, 0) hm/.Ot, k) (^P - ^^(Jc, 0)

Usmg the fact that /j(jt, 0) ^ 0 and /2(jt, 0) ^ 0 one gets combining the two results

4-S(0)2=-W(0)2

From the fact that W(k)* W(-k) and S(k)* S(-k) (k in U) we conclude that
W (0) and S (0) must be purely imaginary The above équation can thus be

wntten as

|W(0)|2 4 + |S(0)|2

and Lemma 4 3 follows.
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