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Durch Hilbertfunktionen definierte Unterschemata des
Hilbertschemas

GERD (GOTZMANN

1. Einleitung

(1.1) Sei k ein Korper, S =k[X,, ..., X,] der graduierte Polynomring und
X =Proj S.
Nach einem Satz von F. S. Macaulay ist das Hilbertschema Hilb% genau dann

+
nicht leer, wenn (T , r) — P(T) ein Polynom
T—ay+r T—a,+r—s
D=(T e (T
on=(""" . &)

mit ganzen Zahlen 0 <go=<---=a,, 0=<s=<r—1, ist. Das Schema Hilby = H,,

ist projektiv iiber k und parametrisiert die Ideale $ < Oy mit Hilbertpolynom Q.
Wenn K/k eine Korpererweiterung und $ < Oyg,x €in Ideal mit Hil-

bertpolynom Q ist, dann wird die Hilbertfunktion 4 (#) definiert durch

h($)(n) =dimgy HY(X®,K, $(n)), neN.

Jedes x € H, bestimmt eindeutig ein Ideal ¥ e Hy(Speck(x)), und die Hil-
bertfunktion # auf H, wird definiert durch

A(x) = h($).

£ ist also eine Abbildung von Hj, in die Menge der numerischen Funktionen
N— N. Wenn auf dieser Menge eine Ordnung definiert wird durch f =g, falls
f(n)<g(n) fiir alle n e N, dann folgt aus dem Halbstetigkeitssatz, daB fiir jede
numerische Funktion f

H-;={x € Hy | £(x) = f}

eine abgeschlossene Teilmenge von H, ist. Das Ziel der Arbeit ist der Beweis
von folgendem

114
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SATZ. Wenn k ein Korper der Charakteristik 0 ist, dann ist H.;
zusammenhdngend.

(1.2) Die Gliederung des Beweises ist ungefihr wie folgt:

1° Man laBt die Gruppe B(r + 1, k) der oberen Dreicksmatrizen auf S, d.h.
auf Hy, operieren. Da sie auflosbar ist, kann man jeden Punkt aus H,, durch eine
Folge von Bahnen der Form G - x, wobei G gleich G, oder G,, ist, mit einem
Punkt des Fixpunktschemas verbinden. (Dies ist auch die Ausgangsidee von
Hartshorne in seinem Beweis fiir den Zusammenhang von Hy.) Lings dieser
Bahnen wird die Hilbertfunktion nicht kleiner.

2° Hg bezeichnet das Fixpunktschema unter der unipotenten Gruppe U =
U(r + 1, k). In H werden bestimmte abgeschlossene Teilmengen A(¥) betrach-
tet, die Kegel genannt werden. Hierbei ist £ eine Idealgarbe auf Y = P;~'. Fiir
diese Kegel wird gezeigt, daB man jeden Punkt darin durch eine Folge von
sogenannten numerisch starren und numerisch wachsenden Deformationen mit
einem Punkt im Kegel verbinden kann, dessen Hilbertfunktion eine spezielle
Form hat (das zugehorige Ideal wird numerisch relativ maximal genannt).
Hierbei nimmt die Hilbertfunktion nicht ab.

Ein Kegel ist iibrigens nichts anderes als die Faser iiber £ des sogenannten
Horrocks—Morphismus (vgl. [Ho])

HY—>HY, Q(T)=0(T)-Q(T-1), U =U(, k).

Es ist bekannt, da3 diese sogar einfach-zusammenhéngend ist. Man kann also von
vornherein hoffen, dafl die Kegel besondere topologische Eigenschaften haben,
und daB dies wirklich der Fall ist, zeigt Satz 4.12.

3° Man hat zwei Kegel in Hyp miteinander zu verbinden. Dies geschieht in
einem InduktionsschluB nach r (Satz 5.4). Die Schwierigkeit besteht darin, daB
man nicht jede Bahn in H{ mittels des Horrocks—Morphismus nach Hg liften
kann. Deshalb wird eine Klasse von Bahnen mit dieser Eigenschaft konstruiert,
sogenannte Standarddeformationen.

Bei dem Beweis ist es notig, stindig die Regularitit der betrachteten Ideale
im Auge zu behalten (vgl. 2.1 bzgl. der Definition). Aus dem Halbstetigkeitssatz
folgt sofort, daB die Ideale mit einer Regularitdt groBer oder gleich einer
gegebenen Zahl eine abgeschlossene Teilmenge des Hilbertschemas bilden. Als
Korollar des Beweises ergibt sich, daB} diese ebenfalls zusammenhéngend ist.

(1.3) Es stellt sich natiirlich die Frage nach der Voraussetzung char (k) =0. Der
Beweis von Hartshorne fiir den Zusammenhang von Hy ist zwar in jeder
Charakteristik giiltig, ich sehe aber nicht, wie sich bei den dort verwendeten
Deformationen die Hilbertfunktion verhilt. Da bei den hier verwendeten
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Argumenten oft char (k) =0 ausgenutzt werden muBl, scheint es mir sehr
zweifelhaft, ob und wie man auf diese Voraussetzung verzichten kann. (Zumin-
dest ist es aber moglich, aus den Ergebnissen in Charakteristik 0 den Zusammen-
hang des absoluten Hilbertschemas, d.h. von Hilb! in der Terminologie von [Gr],
herzuleiten.) Da einige Teilergebnisse jedoch unabhingig davon sind, wird hier
eine Ubersicht angegeben, an welcher Stelle man sie wirklich benotigt:
Abschnitt 2: k ein beliebiger Korper;

Abschnitt 3: k ein algebraisch abgeschlossener Koérper, nur in Lemma 3.4.3 muf
auch char (k) = 0 sein;

Abschnitt 4 und 5: k algebraisch abgeschlossen und char (k) = 0.

Abschnitt 6: Hier ist der Grundring irgendein noetherscher Ring, der Q enthilt.
Obwohl in diesem Abschnitt die Betrachtung unter dem Gesichtspunkt der
Darstellbarkeit von Funktoren erfolgt, beruht das Hauptergebnis (Satz 6.2)
wesentlich auf Satz 5.4.

2. Ergebnisse iiber Hilbertpolynome und graduierte Ideale

(2.1) $ <Oy ist d-reguldr, wenn H'(X, $(d —i)) = (0) fiir alle i =1. Die Zahl
reg ($) =min {d e N | $ ist d-regulir} wird Regularitit von $ genannt. Wenn .$
das Hilbertpolynom @ hat, ist h"(#(n))=dim H'(X, #(n))=Q(n) und
S H(#(n)) = H'($(n + 1)) fiir alle n =reg (F) (vgl. [M], Lecture 14).

Die Zahl a, in (1) wird mit n(Q) bezeichnet; es ist reg ($)=n(Q) fiir alle
Ideale mit Hilbertpolynom Q.

(2.2) Wenn A noethersche k-Algebra, $ € Hy(A) und & = 0,/.$ ist, dann gilt
fiir alle n = n(Q):

(i) H'(X ® A, #(n)) ist Q(n)-Unterbiindel von S, ® A (d.h. lokal freier
direkter Summand vom Rang Q(n)) und S H'(X®A, $(n))=H'(X®
A, F(n+1));

(i) H(X® A, #(n))3S5,9,A/H' (X ® A, #(n));

(i) die Bildung der Kohomologiegruppen von $(n) und %(n) ist mit
Basiswechsel vertauschbar (die hoheren Kohomologiegruppen sind natiirlich
Null).

(2.3) Sei A eine noethersche k-Algebra. Es bestehen natiirliche Bijektionen,
funktoriell in A, zwischen folgenden Mengen, wobei d = n(Q) irgendeine feste
ganze Zahl ist: '

(i) Hy(Spec A) = {# c Oxg 4 Ideal | Oxg4/F flach iiber A mit Hilbertpolynom
P in jeder Faser}
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(ii)) {/ =S @, A graduiertes Ideal, erzeugt von der homogenen Komponente
I;vonl, sodaB I,cS,®,A Q(n)-Unterbiindel ist fiir alle n =d}

(iii) {I=S®, A graduiertes Ideal, erzeugt von I,, so daBl S, ® A/l, flach
iiber A vom Rang P(n) ist firn=dund n=d + 1}

(iv) {(F,L)|FcS,®A, LcS,;,,®A Unterbiindel vom Rang Q(d) bzw.
Qd+1) mit SFcL}.

Die Zuordnungen sind wie folgt definiert:

()= (ii): I D,-s H(XQ A, $(n))

(i) — (ii1) und (iii) — (iv) sind die natiirlichen Zuordnungen.

(iv)— (i): (F, L)~ (F)~, wobei (F) das von Fin § ® A erzeugte Ideal ist und
~ die assoziierte Garbe bedeutet.

Diese Ergebnisse bleiben richtig, wenn man k durch irgendeinen noe-
therschen Ring ersetzt (zum Beweis siehe [M] und [G1]).

3. Aktionen der additiven und multiplikativen Gruppe auf dem Hilbertschema
und ihre Bahnen

3.1. Bezeichnungen
Die Gruppe GL(r + 1, k) operiert als Gruppe von (r + 1) X (r + 1)-Matrizen auf

dem graduierten Polynomring S = k[X,, ..., X,, X,]. Insbesondere operiert die
zu G, isomorphe Untergruppe G? mit i <j auf S durch

@;(A): X~ AX, + X, X,—X, fir [#j Aek.

(VerabredungsgemidB soll X, die letzte Variable sein.) Die zu G,, isomorphe
Gruppe G;, operiert auf S durch

@*(A): X, — AX,, Xi—X; fir i#s,Aek”™.

Mit U=U(r+1, k) wird die unitriangulire Gruppe der oberen Dreiecks-
matrizen, mit D = D(r + 1, k) die Gruppe der Diagonalmatrizen aus GL(r +
1, k) bezeichnet. Wenn p=(p;,..., P, Po)€Z ™" mit p,+ - +py=0 ist,
dann ist T(p) die Untergruppe von D, die aus den (A, ..., A,, Ag) € (k™)' mit
A, .. A8°=1 besteht. Im folgenden wird immer ggT(py, ..., p,) =1 voraus-
gesetzt; dann ist T(p)=(G,)" als algebraische Gruppe. AuBerdem soll
verabredungsgemdf3 immer p,=0 sein; wegen T(p)=T(—p) ist das keine
Einschriankung. B bezeichnet die Borelgruppe U - D und B(p) die Untergruppe
U-T(p).

Alle genannten Gruppen operieren auf natiirliche Weise auf dem Hil-
bertschema Hy,. Da sie (mit Ausnahme von GL(r + 1, k)) aufigsbar sind, folgt
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aus dem Borelschen Fixpunktsatz, daB die Fixpunktschemata Hg, H{ usw.
abgeschlossene, nicht-leere Unterschemata von H,, sind.

(3.2) Konstruktion von Bahnkurven im Hilbertschema

Wenn A =k[A], T =SpecA, dann ist A, =k[A, A7'], und fiir € Hy(k) ist
@*(A)# ein Element von Hp(G,,), wobei A als Unbestimmte aufgefaBt wird. Es
gibt ein # € Hy(Spec A) mit $ | X X, G,, = ¢°(A)$. Wir bezeichnen ¥ ® , k(0)
mit $,=1lim,_, ¢°(1)#. Entsprechend wird fiir A =k[A"'] die Garbe 4. =
lim,_,.. °(A)# erklirt. $, und ¥4, sind Elemente von Hy(k), die fest unter G;,
sind. Die geometrische Bedeutung ist wie folgt. Wenn # dem abgeschlossenen
Punkt z € H,, entspricht und Y irgendein lokal-noethersches Schema iiber k ist,
dann sei z, das induzierte Element $ ®, 0y € Hyp(Y). Indem man ¢ € G},(Y) auf
@(zy) € Hp(Y) abbildet, wird ein Morphismus f:G,,— Hy definiert. Da Hj
projektiv iiber k ist, gibt es eine eindeutig bestimmte Fortsetzung f : Py — H, und
zo=f(0) bzw. z.. = f(x) entsprechen gerade den Idealen %, bzw. #.. Im (f) bzw.
Im (f) mit der reduzierten Unterschema-Struktur werden Bahn bzw. abgeschlos-
sene Bahn von z unter G,, genannt. Wir sagen, wir haben z durch eine
(abgeschlossene) Bahn mit der Spezialisierung z, und z. von z unter G,
verbunden. Eine analoge Konstruktion ist mit G? méglich, und da B eine
Kompositionsreihe mit zu G,, oder G, isomorphen Quotienten hat, kann man
jeden abgeschlossenen Punkt z € Hy, durch eine Folge von abgeschlossenen
Bahnen mit einem Fixpunkt von Hy unter B verbinden.

(3.3) Beschreibung der Spezialisierung unter einer multiplikativen Gruppe
Diese beruht auf folgender bekannten Tatsache:

BEMERKUNG 1. Sei R der Polynomring iiber k in einer Variablen und E
ein freier R-Modul vom Rang n. Wenn f € R\{0} und F c E; ein (lokal-) freier
direkter Summand vom Rang m ist, dann gibt es genau einen direkten
Summanden F* von E mit F; = F, der Fortsetzung von F auf A genannt wird.

An spiterer Stelle werden wir noch benétigen:

BEMERKUNG 2. Wenn FcS,;®,R; und LcS,;,;®,R, zwei lokal-freie
direkte Summanden mit S,F c L sind, dann gilt auch fiir die Fortsetzungen
S F* < L*.

Beweis. X;F*+ L*/L* ist als Untermodul von S,,, ®, R/L* frei, folglich
X;F*+ L* ein freier direkter Summand. Fiir die Lokalisierung erhilt man
(X;F*+ L*); = X;F + L = L, nach Bemerkung 1 muB dann X;F* c L* sein.
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Wir beschreiben nun fiir $ € Hyp(k) die Konstruktion von $, = lim,_,, ¢°(1).$
und £, = lim,_,. ¢’ (1) 4.

Sei d=n(Q) eine feste Zahl, sei m=Q(d) und F=H"(X, $(d)); So
bezeichnet die universelle Idealgarbe auf H,. Zur Vereinfachung der Schreib-
weise fithren wir die Rechnung fiir s =0 durch, wobei R =k[X,, ..., X,] sein
soll.

1° F hat eine Basis F,=X&f?+ X&*'fl+ ..., 1=si=m, so daB f}eR
homogen vom Gradd —(d;+v), f{#0, und d,<d,<---=<d, ist. Wenn
d,=d, fiir ein Paar von Zahlen 1=a<b =m ist, kann man durch lineares
Kombinieren der F;, a <i <b, erreichen, daB die f{, a <i <b, linear unabhiingig
sind. Wir setzen f=X;%F. Fir AeGl(k) ist dann @°(A)F=
@°(AH(X, $(d)) = H(X, #,(d)), wobei %, = °(A)F xf*($o) B¢, k(A). Also
hat H°(X, %,(d)) die Basis

" (A)(EF) = A4(XEFO + AXEFL + 22X+ 2 4 . ),

Dem Morphismus f entspricht das k[A, A~']-Biindel @°(A)F, A als Unbestimmte
aufgefaBt. Da die X{f? linear unabhiingig sind, folgt, daB die Fortsetzung von
@°(A)F auf k[A] gerade das Unterbiindel mit der Basis ist:

XGfO+AXGH i+, 1=i=m.

Das Ideal in Oy

Fo=1*(Fo) ® i k(0) = ({Xdf? | 1 =i =m)) =:lim ¢°2) @

entspricht dem Grenzwertpunkt f(0) € Hy (k).
2° Entsprechend hat F eine Basis X§g! + X§ 'g/ + X{ %gf+ -+ mit e, <
- <e,, und linear unabhiingigen Formen g?, 1<i=<m. Dann wird ¢°(A)F
erzeugt von

A“(XGg + AT XG g + ATXG I+ ),

und daher ist die Fortsetzung des k[A, A~']-Biindels ¢°(A)F auf k[A~'] gerade das
Unterbiindel mit der Basis

Xigl + AT XGTgi +ATXG g+, I=i=m.
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Das Ideal in Oy
I =f*(Fo) ®py k() = ({Xig! | 1=i=m}) =:lim ¢°(1)F 3)
A—x
entspricht dem Grenzwertpunkt f(x).

(3.4) Die Gruppe U =U(r+1, k)
Ihre Bedeutung beruht auf folgender.

BEMERKUNG. Wenn ¥ € H,(k) U(k)-invariant und I = ©,,.., H(X, $(n))
ist, dann ist X, kein Nullteiler des Ringes S//und $#' = % + X,0,(—1)/X,0x(—1) €
Hy (k) invariant unter U(r, k), wobei Q'(T) = Q(T) — Q(T —1).

Beweis. Wenn U =( )} Q, eine reduzierte Primirzerlegung ist mit graduierten
Idealen Q,, primir zu graduierten Primidealen P, dann ist {_ P, die Menge der
Nullteiler von S/1. Da I fest unter U(k) ist, sind es auch die P, so daB aus X,,e P,
folgen wiirde S, < P,, Widerspruch.

LEMMA 1. Sei z ein abgeschlossener Punkt des Fixpunktschemas H{), der
dem Ideal $ = Oy entspricht. Liings der abgeschlossenen Bahn von z unter G, ist

(1) h°(F(n)) = h’($,(n)) fiir alle A € Pj-{*} und n e N;

(ii) A°(F(n)) =< h"(F.(n)) fiir alle n e N.
Mit anderen Worten, die Hilbertfunktion h ist auf der abgeschlossenen Bahn mit
Ausnahme des unendlich-fernen Fixpunktes konstant, dort wird sie eventuell
groBer.

Beweis. Da fiir n=d =n(Q) in (i) und (ii) Gleichheit gilt, sei 0<n <d. Wir
verwenden die Bezeichnungen von (3.3). Wegen obiger Bemerkung ist
H'(So(n))={x €S, | X{™" - x € H'(Sy(d)} = (%)
H($(n))={x €S, | X{™" - x e H'($(d)} > (%B,),
wobei
BY = (X4~ | d;=d —n},
B, ={Xe~“™™-f|d;=d—n}

nach Konstruktion der Basis (F;) in (3.3) linear unabhidngige Mengen sind. Es
folgt h'(Fy(n)) < h’(F(n)), und h'(F(n)) =h"(F(n)) gilt wegen des Halbstetig-
keitssatzes, der auch (ii) impliziert.
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LEMMA 2. Sei $e€Hy(k) invariant unter U(r+1,k) und $,=
lim,_o @°(A)$. Wenn dann S H’($(n))=H"(F(n+1)) ist, dann ist auch
SlHO(fo(")) = H(Jy(n +1)).

Beweis. Fir n=d folgt dies aus (2.2). Sei daher n <d. Der Beweis von
Lemma 1 hat gezeigt H($(n)) = (B,), H'($y(n)) = (AB%) und Entsprechendes
fir n+1 statt n. Wir haben zu zeigen X& “=""D.f0¢c S H($y(n)), wenn

d;=(d —n —1) ist. Fiir d,>d —n -1 ist dies klar, so daB man annehmen kann
d;=d —n — 1. Nach Voraussetzung hat man dann

fi= 2 (a;Xo+1)- ). I

wobei die Summation iiber die j mit d,=d — n erfolgt und /; € §; Linearformen
ohne X, sind. Es folgt

f?+X0f,~l +-e= Z (ano'*'lj)Xg’_(d_n) ) (f;)‘i”X()f;l +0)

Sortieren nach Potenzen von X|, gibt

fi=21f] € S H($y(n)),
da hier die Summation iiber die j mit d, = d — n erfolgt.

LEMMA 3. Sei I = S ein graduiertes ldeal, erzeugt von 1,, und B(r + 1, k)-
invariant. Dann ist $ =1 d-regulir und H°($(n))x1, fiir alle n=d. (Vgl.
[B —S], prop. 2.9 bzgl. einer dhnlichen Aussage.)

Beweis. -Zunichst zeigen wir, dal3

Xy

0— S, /1,— Spsillyr— 8,1/l — 0 (*)

exakt ist fiir alle n=d, wobei §'=5/X,S(—1) und I' =1+ X,S(—1)/X,S(-1)
sein soll. Fiir X,,- x € I,,, haben wir zu zeigen x € I,. Da man x als Summe von
Monomen schreiben kann und /,,, als Vektorraum von Monomen ezeugt wird,
kann man ohne Einschrankung annehmen, x ist Monom. Dann ist X,-x =X, - y
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mit y €, Monom. Da I, invariant unter B und char (k) =0 ist, folgt x =
X, - Xg'-yel, (vgl. hierzu auch 4.2.3).

Offenbar erfiillt I’ dieselben Voraussetzungen wie I, so da man nach
Induktionsvoraussetzung $’'=1I' ist d-regulir und I,=H%$'(n)), n=d,
annehmen kann. Aus der exakten Sequenz

0->F(-1)—»F—>5"—>0

folgt dann mit dem SchluB von (M, p. 102), daB H'($(n —i)) =0 fiir alle n =d,
i =2. Aus () folgt, daB auch die obere Zeile des kommutativen Diagramms

0—‘) In—l - In - 1,,, ——)0

lkan. lk lz

0— H($(n—1))— H($(n)) — H(F'(n))— H'($(n~1))— H'(F(n))—0

exakt ist fiir alle n=d, wobei I,_,={x €S, | X,-x €1} sein soll. Daher ist
H°($(n))— H’($'(n)) surjektiv und H'(F(n — 1)) = H'($(n)) fiir alle n =d. Es
folgt H'($(n—1))=0, n=d. Da I,=H’$(n)) fiir n>0, folgt aus dem
Diagramm durch absteigende Induktion I, = H($#(n)), n =d.

(3.5) Numerisch wachsende und starre Deformationen monomialer Ideale

LEMMA 1. Sei F = S, ein T(p)-invarianter Unterraum. F hat eine Basis der
Form M;p,(X*), wobei M; paarweise verschiedene Monome und p; Polynome in
einer Variablen mit konstantem Term 1 sind.

Beweis. Zunichst schreibt man jedes Basiselement als Summe von Monomen,
etwa in der lexikographischen Ordnung. Dann erhédlt man durch lineares
Kombinieren eine Basis der Form f, =m, +g;, m; ein Monom, g; Summe von
Monomen, derart da3 m; vor allen Monomen in g; in der lexikographischen
Anordnung steht und m; # m,; ist fiir alle i #j. Durch lineares Kombinieren kann
man erreichen, dal auBerdem m; in keinem g, mehr vorkommt. Wenn nun
@ € T(p) und f € {f;} ist, kommen in @(f) dieselben Monome wie in f vor. Aus
@(f) e F folgt daher @(f)=c(@)-f, ¢ ein Charakter von T(p). Wenn f =
Y a;X*? ist, dann muB a(i) — a(j) € Z - p sein, falls a;# 0 und a; #0 sind. Man
kann daher jedes f in die Form M;p,(X*) bringen und dann durch lineares
Kombinieren M; # M; erreichen.

LEMMA 2. Sei $ € Hy(k) invariant unter B(p). Wenn p; irgendeine positive
Komponente von p ist, sind $,=lim,_,@*(A)F und $.=lim,; . ¢°(1)F
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unabhingig von der Wahl von p,. Wenn p,=0 ist, hat man h°(Fy(n))=
h%(#.(n)) = h°(F(n)) fiir alle n e N.

Beweis. Wir wihlen fiir F = H°($(d)) eine Basis wie in Lemma 1. Dann ist
lim,_o ¢°(F)=(M;) (vgl. 3.3), und dies ist offenbar unabhingig von s. Da
lim,_,. @°(A)F =lim,_,, ¢'(A)F fiir p, <0, zeigt dieser Schluf} die entsprechende
Aussage auch fiir £.. Im Fall p, =0 kann man p durch —p ersetzen und braucht
nur %, zu betrachten, wo die Aussage wie in (3.4.1) folgt mit

RS ={Xo“ ™M, | grady, M;=d — n},
B, ={X5“ M, p,(X") | grady M;=d — n}.

DEFINITION. Die abgeschlossenen Punkte x;, und x, von Hj sollen in-
variant unter B sein. Der Punkt x, kann durch eine (h-monotone) Deformation
mit x, verbunden werden, wenn es ein x € Hy(k) gibt, das invariant unter einer
Gruppe B(p) ist, derart daB x; =lim,_,, @*(A)x und x, = lim,_,.. @°(A)x ist, wobei
ps irgendeine positive Komponente von p ist. Wenn p,=0 ist, heiBt die
Deformation (numerisch) starr, weil sie die Hilbertfunktion /4 nicht dndert. Wenn
Po>0 ist, heiBt die Deformation (numerisch) wachsend. Nach Lemma 2 ist
namlich A(x;) =<h(x,), und dem Beweis von Lemma 2 und (3.3) kann man
entnehmen, daf} tatsdchlich A(x;) < h(x,) ist.

4. Deformationen innerhalb eines Kegels

(4.1) Bezeichnungen

R=k[X,,...,X,], Y=ProjR, ¥c<c0, Ideal mit Hilbertpolynom #,
invariant unter U(r, k), S=k[X,,..., X, Xo), L=®,-0L, mit L,=
Do Xo'H(ZL(i)), das von @ ., H’(£L(n)) in S erzeugte graduierte Ideal. Da
X, ein Nichtnullteiler auf S/L ist, hat man fiir £* =L

n

H(%*(n)) = D X2 'H(Y, £(i)).

i=0

Z* ist invariant unter U(r + 1, k) - Gy, sein Hilbertpolynom nennen wir H.

Im folgenden ist C eine feste natiirliche Zahl; wir betrachten Hilbertpolynome
Q, fiir die H — Q = ¢ eine natiirliche Zahl ¢ < C ist, und setzen d = n(H) + C.
Dann ist n(Q) <d. Die Menge A(Z) aller Ideale $  #*, deren Hilbertpolynom
Q die gerade genannten Bedingungen erfiillt, wird Kegel iiber ¥ gennant. Wenn
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G < GL(r + 1, k) eine Gruppe ist, die £* invariant 1d8t, bezeichnet A(Z; G) die
Teilmenge der Elemente von A(Z), die fest unter G sind.

BEMERKUNG. Fiir $ € A(YZ; U(r + 1, k)) ist
$'=95+ X()Ox("l)/XnOx(_l) =X
und reg (¥) <reg ($).

Die erste Aussage ist klar und die zweite folgt hieraus, indem man zu der
exakten Sequenz

0— F(e—i—1)—% $(e —i)—> Lle — i) —> 0
die lange exakte Kohomologiesequenz bildet, e = reg (.%).

(4.2) LEMMA. Die Menge der unter U(r+1,k)-G), invariaﬁten ldeale
$ < £* mit Hilbertpolynom Q = H —c, wobei 0 <c < C, ist bijektiv zur Menge
der Folgen (V,, . . ., V,) mit folgenden Eigenschaften:

(i) V, c HY(Z(n)) ist ein k,-codimensionaler U(r, k)-invarianter Unterraum,
n=0,1,...,d mit Y k,=c, k,=0;
(ﬁ') R]Vnc ‘/,,+|, OSnSd_ 1.

Beweis. (a) Fir $e A(Z;U(r+1,k)-G,,;c) hat man eine Zerlegung
H'($(d)= ®4_ X5 "V,, V,c H'(¥(n)) U(r, k)-invarianter Unterraum. Da
X, Nichtnullteiler auf S/ @ ,., H'($(n)) ist, folgt hieraus

H($(n)) = GB Xa7V, 0=sn=d (*)

i=0

Die Bedingung S,H’(#(n))c H'($(n+1)), 0=sn=d-1, ist dann gleich-
bedeutend mit

Rlvn ®X()(Vn +R1Vn~l)®X(2)(Vn—l +R|V,,._2) EB o @
o(V; +R|%)®X8+1V0C Vo1 ® XV, D--- D A

fir0=n=d—1, d.h. gleichbedeutend mit
R]V,,CV,H,,, Osnsd—l.

Da # d-regulir ist, ist h°(#(d)) = Lo dim V,, = Q(d) = H(d) — ¢ = L¢ h(L(n)) — c,
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woraus L0 k,, = c folgt. Wegen der d-Regularitit von $ ist H($(d))— H(£(d))
surjektiv und daher V, = H(¥(d)) (vgl. Bemerkung 4.1).
(b) Umgekehrt wird das Ideal I c S definiert durch [, = ®7_, X3~ 'V, 0=n =<

dund I, =S, _41;, n =d. Dann erhilt man mit (ii) und der d-Regularitit von £
fiir n =0:

Sula = R,H(Z(d)) + XoR, - H(£(d)) ® - - - © XGH"(Z(d))
®X8+1Vd—l D--- @X{;“’V},
= H(%(d +n)) ® X,H(L(d +n—1))® - - - © X2H(L(d))
DXV, D - D XY,

Daher ist dim S,I, = H(d + n) — ¢, n =0. $ = I hat demnach das Hilbertpolynom
Q, und da dann d eine Regularititsschranke fiir # ist, hat man h°($(d)) =
H(d)—c. Es folgt H($(d))= ®%_, X3 "V,. Die Bijektion wird also durch
I— W, ..., V,) definiert.

Bezeichnungen und Bemerkungen
1. Wenn ¢ die Voraussetzungen des Lemmas erfiillt, ist

V,=H(¥(n)) fiir alle n=reg(¥).
Dies folgt aus den exakten Sequenzen
0— H($(n —1))—> H(F(n))— H'(L(n))— 0.
2. Wenn die Folge V =(V,,...,V,) die Bedingungen (i) und (ii) des

Lemmas erfiillt, wird das zugehorige Ideal mit #(V') bezeichnet. Im Beweis hatte
sich ergeben

H(#(V)(n)) = é Xo'V,, O=n=d

i=0
3. Wenn ¥ zusitzlich D(r, k)-invariant ist, setzen wir

A*(&) =Menge der unter B(r + 1, k) invarianten Ideale
S = £* mit Hilbertpolynom H(T) — ¢, wobei ¢ <C.

Fir # e A*(&¥) hat jeder Vektorraum V, eine eindeutig bestimmte Basis von
Monomen, die mit E(V,) bezeichnet wird. Zur Vereinfachung identifizieren wir
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V, mit E(V,) und schreiben V, statt E(V,). Die Menge \UJg E(V,) = E(V) wird
Treppe von V = (V,, ..., V,) genannt und zur Vereinfachung mit V bezeichnet.
Wir setzen A, = E(H°(£(n)) und A=Jj A,. Der Ausdruck Treppe soll nur im
Zusammenhang mit D(r + 1, k)-Invarianz verwendet werden.

Die Bedingung, daB3 jedes V, invariant unter U(r, k) ist, ist wegen char(k) =0
dquivalent mit

X0 . X¥eV,2X{-- .X;rr*l. s .X;xs-l. - X%eV, (*)
fiir alle 1<t<s=r mit a,#0. Dies siecht man, indem man (AX, + X,;)® nach

dem Binomischen Satz entwickelt und char (k) = 0 sowie das Nichtverschwinden
der Vandermonde-Determinante ausnutzt.

(4.3) LEMMA. £ soll unter U(r, k) - D(r, k) invariant und $ € A(¥) soll
U(r + 1, k) - T(p)-invariant sein. Dann ist reg ($,) = reg ($) (zur Definition von
$o vgl. 3.5.2).

Beweis. Da reg (¥$,) =reg (#) aus dem Halbstetigkeits-Satz folgt, bleibt noch
reg ($,) =reg ($) = e nachzuweisen. Wir unterscheiden zwei Fille.

1. Fall. py>0. Da S;H(#(n)) = H(F(n + 1)) fir n=e ist (vgl. 2.1), folgt
mit Lemma 3.4.2 S,H%(y(n)) = H($y(n + 1)), n=e, und hieraus mit Lemma
3.43reg(FH) <e.

2. Fall. p,=0. Man hat entsprechend Lemma 4.2 die Zerlegungen
H'($(n)) =@ X5V, V,, c HY(Z(n)) B(p)-invariant,

i=0
H(Sy(n)) = D X77VS, V%< H'(¥(n)) B-invariant.

i=0

Nach (4.2.1) ist
V,=H(%(n)), n=e (*)
Aus h%(Fy(n)) = h°(F(n)), n e N (Lemma 3.5.2), folgt

dim V=dimV,, neN, (% %)
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so daB3 aus (*) und (* *) folgt
Vy=H%(n)), n=e, (% % %)
und hieraus wegen reg () <e (vgl. 4.2.1)
S\H($y(n)) =H(Sy(n +1)), n=e.

Mit 3.4.3 folgt reg (¥) =<e.

(4.4) LEMMA. Sei ¥ B(r, k)-invariant, $ € A*(¥) ein Ideal mit Hil-
bertpolynom Q(T)=H(T)—c und E($)=V. Seien ueV,, und ve A, —V, zwei
Monome mit n=m, derart daB V —u=U und W =UUv zwei unter B(r, k)
invariante Treppen sind. Sei A=k[t], x=X§ ™ -u, y=X{"" v, z=x+1ty und
I(t) = S ®, A das von I(U) und z erzeugte ldeal. Dann gilt:

(i) I(t), c HY(L*(n)) @, A ist U(r + 1, k)-invarianter direkter Summand vom
Rang Q(n) fiir alle n = d.

(ii) Definiert man o€ Z"*' durch X°=y/x und setzt p = 0/ggT (o), dann ist
I(t) invariant unter B(p).

Zunichst soll die Situation an einem Beispiel erldutert werden: Ay ist in Figur
1 dargestellt; dabei ist das Monom XiX3X3 eingezeichnet. Nach (3.4.3) ist
-1+2 —-15+1
H°(£(9)) = (Aq), und hieraus ergibt sich einerseits (n 5 ) + (n : )
als Hilbertpolynom von &£, andererseits # Ag=30; # A,=21;, # As=13;
# As=6; #A,=2; # A;=0. Daher ist

n—1+3 n—16+2 n—78+1
H(")=( 3 >+( 2 )+< 1 )
X3
5
4
3
2 ]
1
0 .

0123456789 X,

Fig. 1
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Fig. 2

das Hilbertpolynom von £*. Die Treppe V ist in Figur 2 dargestellt (v gehort
nicht zu V). Sie gibt

Q(n)=(n——31+3)+(n—;6+2)+(n—915+1>

als Hilbertpolynom von $(V). W entsteht durch Herausnehmen von u und
Hinzufiigen von v. Wihrend das Hilbertpolynom dabei gleich bleibt, wird die
Hilbertfunktion groBer. Nun zum formalen

Beweis. Da reg(#)<d, folgt mit (4.2.1) V,=A, fir n=d, d—1. Aus
Bemerkung 4.1 ergibt sich dann u ¢ V,, d.h. U, = A,. Man kann Lemma 4.2 auf
U anwenden und schlieBen:

XueV—-—u=U>Xxel(U), l=i=r;

%
XveW-—-v=U>Xyel(U), Il=i=<r. (*)

Fiir kein ¢ € K, K/k Korpererweiterung, kann X,z € I(U) sein, da sonst X{j "u €
I(U) oder X3~"v € I(U) und daher u € U oder v € U wire. Deshalb hat man

dim Im (Ig11(t) ® k() =S40 @ k(4)) = dim [(U)ysy + 1= Q(d + 1)

und daher dim (S, ® A/I(t),) ® k()= P(n) fiir n=d, d + 1 und alle s € Spec A,
woraus (i) folgt (vgl. [G1], 3.9]). Wenn @ € U(r + 1, k) die Variable X, fest 148t,
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dann folgt
@(z) —z=X{ "(@(u) —u) +1- Xg (@v) —v) e [(U)® A,

weil i eV,/U, und ©veW,/U, invariant unter U(r, k) sind. Wenn dagegen
@ € G ist (vgl. 3.1), dann bekommt man

w(Z) —Z= (X() + AX,')d_mu - X(d)—mu + t((X() + AX,-)d—"U - Xg—"v),
und wegen (*) ist das ein Element von I(¢). Die Aussage (ii) ist klar.

Folgerungen und Bezeichnungen

1. Sei x € H}*’(k) der Punkt, der zum Ideal /(1) des Lemmas gehort. Es
konnen 2 Fille eintreten:

1. Fall: n<m, dh. p,>0. Dann ist lim,_,¢"(A)x=#(V) und
lim;_,.. °(A)x = $(W), und die Hilbertfunktion von $(W) ist groBer als die von
F(V) (vgl. 4.2.2). Entsprechend der Definition 3.5 haben wir #(V) durch eine
numerisch wachsende Deformation innerhalb A(¥) mit $(W) verbunden, die wir
wachsende Modifikation nennen.

2. Fall: n=m, dh. py=0. Dann ist lim,_,@'(A)x=F(V) und
lim,_,. @*(A)x = $(W), wobei p, >0. Es handelt sich um eine numerisch starre
Deformation innerhalb A(¥), die wir starre Modifikation nennen. Wir bezeich-
nen die Modifikationen mit V+—V —u Uw.

2. DEFINITION. Eine (unter D(r, k) invariante) Treppe V hei3t numerisch
lokal maximal, wenn es keine wachsende Modifikation von V gibt.

3. Wenn $ € A*(¥) das Hilbertpolynom Q(7)=H(T)—-c mit 0<c hat,
dann gibt es ein # € A*(¥) mit Hilbertpolynom Q + 1 und $ = #. Dies folgt mit
Hilfe des Borelschen Fixpunktsatzes. Wegen 4.2 ist § = $(V), wobei V eine

Treppe der Form V U u mit einem Monom u € A vom Grad <d ist. Wir nennen V
Erweiterung von V.

DEFINITION. 6(V)=min {gradu |ue A—V Monom und VUu ist
Treppe}. Wenn u € A—V, V Uu Treppe und grad u = 8(V) ist, heiit V U u eine
minimale Erweiterungstreppe und wird mit V'* bezeichnet.
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(4.5) HILFSSATZ. V numerisch lokal maximal, V =V Uu Erweiterungs-

treppe mit u € A,,. Dann ist R\V,, =V, fiir alle n = m und daher R,V, =V, , fiir
alle n > m.

Beweis. Wenn fiir ein n=m R,V, & V,.1=V,,, wire, hitte man einen
B(r, k)-invarianten, 1-codimensionalen Unterraum E c V,,, mit R,V, < E. Dies
folgt aus der Auflosbarkeit von B(r, k). Es wire dann E @ kv =V, ., und indem
man v als Linearkombination von Monomen schreibt, sicht man, dal v als
Monom angenommen werden kann. Da V, = A, fiir n =d — 1, d ist (vgl. 4.2.1),

muB n+1=<d-1 sein. Dann wire aber V—V —vUu eine wachsende
Modifikation.

(4.6) LEMMA. Wenn V numerisch lokal maximal und V* eine minimale
Erweiterungstreppe ist, dann ist entweder V* numerisch lokal maximal, oder es
gibt eine starre Modifikation V' von V und eine minimale Erweiterungstreppe V'*
von V', derart daBB 6(V')<8(V) ist und fiir die Hilbertfunktionen h($(V*)) <
h(F(V'*)) gilt.

Beweis. Sei V*=V Uw, we A, e=06(V). Angenommen, es wire V*—
V* —vUu wachsende Modifikation. Wenn n=gradv>e, dann veV) =
R\V,_, (45), und V* —wv wire gar keine Treppe. Wenn n<e, dann m =
grad u <gradv <e, folglich RiucV,,,=V,,,, und V Uu wire Erweiterungs-
treppe, Widerspruch zur Definition von e. Also ist n = e. Nach Voraussetzung ist
V* — v eine Treppe. Es kann nicht v =w sein, da dann V* —vUu =V Uu eine
Erweiterungstreppe von V mit grad u < grad v = e wiére. Nach Voraussetzung ist
V—-—vUw=V*—v Treppe und daher nach Definition V, —v Uw und V, beides
U(r, k)-invariante Mengen von Monomen im Sinne von 4.2.3. Man sieht leicht
unter Benutzung der dort angegebenen Bedingung fiir U(r, k)-Invarianz, daf3
dann auch V, —v U(r, k)-invariant ist. Da nach Voraussetzung R,V,_,cV, —
vUwund w¢R,V,_,cV, ist, muBB R,V,_, =V, — v sein. Daher ist V — v eine
Treppe. Also ist V=V —vUw =V’ eine starre Modifikation und V' Uu =
V* —v Uu eine Erweiterungstreppe von V' mit grad u <e. Daher ist §(V') <
S(V)und h(F(V'*Nz=h(F(V'Uu))=h(F(V*—v Uu))>h(F(VY)).

(4.7) HILFSSATZ. Sei $ € A*(¥) numerisch lokal maximal. Die Multiplika-
tion mit X, induziert einen injektiven Homomorphismus von k-Vektorrdumen

R,_,/V,._.i.—R,/V, firalle l=n=e-—1,

wobei e: = reg ($)<d und E($)= W, ..., Vy) ist.
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Beweis: e <d ist verabredungsgemifl erfiillt (vgl. 4.1). Angenommen,
X, -xeV, mit x¢V,_, und n <e. Man kann ohne Einschrankung x als Monom
annehmen. Aus der B(r, k)-Invarianz folgt R,x c V,, und daher

Rl E (p(Vn—l +k 'X) - Vn'

@eB

Da B auflosbar ist, gibt es einen B-invarianten Unterraum V,,_; c E < Zo(V,_, +
kx) mit dim E=dimV,_,+ 1. Es folgt RiEcV,. Sei etwa E=V,_; +ky mit
einem Monom y (vgl. den Beweis von 4.5). Es ist R;V._, ¢ V., da aus
R,V,_, =V, folgen wiirde S;H’(#(e — 1)) = H°(#(e)) und hieraus mit (2.1) und
(3.4.3) reg(#)<e. Da B auflosbar ist, gibt es einen B-invarianten, 1-
codimensionalen Unterraum FcV, mit R,V._,c F. Sei wieder V,=F +kz, z
Monom. Dann wire V — V — z Uy wachsende Modifikation.

(4.8) HILFSSATZ: Sei $ € A*(&) numerisch lokal maximal, reg(¥)=e und
$ < &*. Dann ist (i) reg(£)<e und V,_ 1< H%(%(e — 1)) 1-codimensional; (ii)
gradx =e — 1, wenn V =V Ux irgendeine Erweiterungstreppe von V = E($) ist.

Beweis: Sei B=B(r, k) und L =H"(%(e—1)). V,=H(¥(e)) folgt aus der
e-Regularitdt von $ (vgl. den Beweis von 4.2).

Fall1. R\LgV,.

1. Unterfall: V,_yc L. Dann ist R,V,_; ¢ RiL ¢ V,, wie man leicht mit der
Bedingung (*) in 4.2.3 sieht. Es gibt einen B-invarianten, 1-codimensionalen
Unterraum F c V, mit R,L c F. Daher ist F + kv =1V,, v ein Monom. Ebenso
gibt es einen B-invarianten Unterraum V,_;c E < L mit dim E/V,_, =1. Dann
ist E=V,_, + ku, u ein Monom und V — V — v U u wachsende Modifikation.

2. Unterfall: V,_;=L. Aus (4.7) folgt V, = H(¥(n)), 0=n=d und daher
g =F*,

Fall 2. R,L=YV,. Dareg(¥)=<eist (4.2.1), folgt mit (3.4.3) reg (¥) <e.

1. Unterfall: dim L/V,_,=2. Wihle einen B-invarianten Unterraum
VeeigEgL mit dmE/V,_;=1 und sei E=V,_,+ky, y ein Monom. Da
R\Ec R\L=V, ist, gibt es einen B-invarianten Unterraum R,Ec FcV, mit
dmV,/F=1. Sei V,=F+kx, x ein Monom. Dann ist V>V —xUy eine
wachsende Modifikation.

2. Unterfall: V,_,= L. Wie im 1. Fall ergibt sich ein Widerspruch.

3. Unterfall: V,_, c L 1-codimensional bleibt als einziger Fall iibrig.

Angenommen, V Ux wire eine Erweiterungstreppe mit m =degx <e — 1.
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Da Xx €V,,,,, ergibt sich mit (4.7), daB x e V,, wire, Widerspruch. m =e ist
auch nicht méglich, da V,, = H'(¥(n)) fiir n = e (Gleichung (*) in 4.3).

(4.9) LEMMA. Sei V <R, ein Vektorraum, U c V ein 1-codimensionaler,
unter G = U(r, k) - T(p) invarianter Unterraum. Dann ist R,U ¢ RV, wenn eine
der folgenden Bedingungen erfiillt ist:

(1) p, #0 und V ist B(r, k)-invariant;

(ii)) p, =0 und V ist G-invariant.

Beweis. (1) Wenn p, <0 ist, ersetzt man p durch —p und kann daher ohne
Einschriankung p, > 0 annehmen.

1° Sei dim V =n + 1. Nach (3.5.1) hat U eine Basis der Form M,p,(X*), M,
verschiedene Monome, p;(t)=1+a;t+ --- +a,t"™ Polynome. Durch lineares
Kombinieren kann man dariiber hinaus erreichen, daf3 jedes M, nicht mehr in
M;p;(X*) vorkommt fiir alle i#j. Da V von Monomen erzeugt wird, folgt
M;eV,aMXPeV, 1=j=n;, 1=i=n DadimV =n + 1 ist, konnen folgende
beiden Fille eintreten.

1. Fall: Alle a; =0.
Dann wird U von Monomen erzeugt, und wir schlieBen so:

MeV Monom=> X MeR V=R U>XM=XM,.

Wenn s =r, dann M =M, € U. Wenn s <r, dann M = X, X, 'M, € U (Bedingung
(*)ind4.23)mU=V.

2. Fall. Die Menge {MX'*|a,#0, 1<j=n,; 1<i<n) hat genau ein
Element, das wir mit M, ,, bezeichnen. Dann ist V=(M,,..., M,,,), und es
gibt eine Basis von U der Form f,=M, +aM, ., mit M, ., = X“*M, und d; >0,
falls a; #0. Dann miissen die d; paarweise verschieden sein, da die M, es sind.
Derjenige Index i, fiir den a; # 0 und d; minimal ist, wird jetzt n genannt, m.a.w.
es ist grady, M, > grady M;, falls a; #0. In f, ist dann a, #0 nach Konstruktion,
und Ersetzen von f; durch f, —a, 'a,f, = M; — a;'a;M,, falls a; #0, gibt eine Basis
von U der Form

fi=M,+aM, 1<i=n—-1,M,=MX*"" d, >0, falls a,#0;
fo=M,+a,M,,,, a,+0, M,,, =M, X", d,>0.

U'=(M,,...,M,)=lim,_, @ (AU ist invariant unter B(r, k). (Begriindung:
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U € Z(k), Z = Fixpunktschema von Grass” V unter G. G}, operiert auf Z, da G,
die Gruppe G normalisiert. Da Z projektiv ist, ist U°=1lim ¢"(A)U € Z(k) und
auch invariant unter G;,, vgl. 3.3). Daher ist W =U N U’ invariant unter G.

Wegen U+ U’=V ist W c U’ 1-codimensional, daher W = (f;, ..., f,_;) und
folglich W’ =lim,_, " (W)W =(M,, ..., M,_,).
Durch Induktion nach dim V folgt: Es gibt eine Basis f,, ..., f, von U und

eine Zahl 1 <m = n mit folgenden Eigenschaften:

@) fi=M, 1=si=m-1;

(b) =M, +aM,,.,, a,#0, M;,, =M, X", mit geeigneten ganzen Zahlen

d>0 m=i=n,

(¢) Ui={(fy,...,f) ist G-invariant, 1 =i <n;,

(d) UV=lim_, @ (A)U;=(M,, ..., M,) ist B(r, k)-invariant, 1 <i <n.
Wir bemerken noch, daf} tatsdchlich m >1 ist, da jeder U(r, k)-invariante
Teilraum von R, das Monom X9 enthilt.

2° Zur Abkiirzung setzen wir (M,, ..., M, _,) = E und schreiben [ € R, in
der Form I' + ¢X,, ' Linearform ohne X,. Wir schlieBen indirekt:

RU=RV>XM,. eRU>

XM, =S (I +cX,)(M +aM,,) modR,E.

i=m

Da R,E von Monomen erzeugt wird, erhidlt man durch Sortieren nach Potenzen
von X,:
M A-cua,)X; M, €R\E

(D) a,luM, .+ (cu + @, )X, M, € R\E

D (i +al)dMi +(ci+ciyai_)X,M;eR\E firalle m+1=i=n-1

awv) (e +a )M, +c¢,, XM, € R E.

Es kann nicht sein, dall ¢; =0 fiir alle m =i =n ist, da dann aus (I) folgen
wiirde M, € E. Daher gibt es ein m =j =n mit ¢; =0 fiir i <j und ¢; #0. Wenn
m <j <n ist, wiirde aus (III) folgen

(l;+1 + a,[;)M]...] + CjX,M € RlE.

Da X,M; nicht in R, E liegt, mul X, M; = X, M, fiir ein X, mit 1 =s =r — 1 sein,
das in [/, +a;l] vorkommt. Wenn j=n wire, wiirde aus (II) folgen XM, =
XM, ., fiir ein X, mit 1<s=<r—1, das in a,l/, vorkommt. Wenn schlieBlich
J =m wire, wiirde aus (IV) folgen X, M,, = X;M,,,, fiir ein X, mit 1=s<r—1,
das in [, +a,l, vorkommt. Jedenfalls hat man M;,,=X;'X,M; fiir ein
m=<j<nund 1<s=<r— 1. Daherist X=X, 'X,.
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3° Wir schreiben f,, = M,, + a,,M,,,, in der Form
X¢ o X+ g, X¢ - X578 X 8= MX*XP + aMX*8XP*8,

wobei a = «a;, B=«a, und g =d,, >0 ist. Wir nehmen @ € U(r, k) mit ¢(X,) =
X, +AX,, o(X;)=X;, i<r. Dann ist @(f,)=MX*(X, + AX,)? + aMX> %X, +
AX,)P*¢ und man erhilt

B B+g +
Ofn) = fr=MX? 2, (B Juxxt =+ amxz ) (ﬁ E)axexprs,
v=1

v=1 v v

Da ¢(f,.) —f. € E ist (vgl. Bedingung (c) in 1°), folgt durch Sortieren nach
Potenzen von A

+
(5 )MX;’”X?“’ + a(ﬁ ) g)MX;'—g**vxf**g*v eE

und daher
MXxe—etvxPre—ve F I=sv=8+g

Fiir v = g erhélt man M,, € E, Widerspruch.

(i) Wir behandeln nun den Fall p, = 0 und zeigen zunéichst die Exaktheit der
Sequenz

0— R,/U=5 Ry, /R, U. (*)

Sei dazu f; = M;p,(X”) eine Basis von U wie am Anfang von (i). Sei X, -x e R, U.
Wir schreiben X, - x = ), M;p;(X*), wobei man ohne Einschrinkung annehmen
kann, /; ist Linearform ohne X,. Alle Terme, fiir die M; die Variable X, nicht
enthdlt, miissen sich gegenseitig aufheben, da die p;,(X”) kein X, enthalten.
Daher kann man ohne Einschrinkung annehmen, da8 X, in allen M; vorkommt.
Wir nehmen @ € U(r, k) wie in 3°. Wenn dann etwa f =N - X7p(X*)e U ist, N
Monom, a eine positive ganze Zahl und p ein Polynom, dann ist @(f) =
N - p(XP) Y (5A'X; X7V e U and folglich NX;X?"p(X?)e U, 0=v=a. Wenn
daher [ € R, die Variable X, nicht enthilt, hat man /X, 'f € U. Wendet man dies
an, dann folgt x € U. ‘

Ebenso folgt, daB (*) mit V anstelle von U exakt ist. Aus R,U =R,V folgt
also U=V.
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(4.10) LEMMA. $,c ¥, seien zwei numerisch lokal maximale Ideale aus
A*(&Z) mit H.P. Q bzw. Q + 1, derart daB3 $,# £* ist. Wenn $,— ¥. eine starre
Deformation innerhalb A(X) ist, dann induziert diese entweder eine starre
Deformation $,— $.c ¥. oder eine starre Modifikation $,— ¥, < ¥, und eine
starre Deformation $,— %, ¢..

Beweis. 1° Entsprechend zu (4.2) hat man Zerlegungen

H(Jy(n)) =D X37'V?, 0=n=d;
i=0

H($y(n)) =D X3-'W?, 0=n=d.
i=0

Wir setzen reg (%) = e und erhalten mit Gleichung ( * * *) aus (4.3) und (4.8):

VO=HY%(n)), e<n=d, V'_,c H(L(e - 1))

ist 1-codimensional und reg (¥)<e — 1.

Aus der exakten Sequenz 0— $y— $,— Fo/ F— 0, in der $,/¥, als Modul
mit konstantem Hilbertpolynom 0-regulir ist, folgt reg (%) <e. Aus h°(Fy(d)) =
hO(Fo(d)) + 1 und HO(Io(d)) = H(Fo(d)) folgt VO =W = H(L(n)), e<n=d,
und V9 = W fiir alle n < e bis auf einen Index, fiir den V%< W? 1-codimensional
ist. Ware V2_, = W?_,,<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>