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Durch Hilbertfunktionen definierte Unterschemata des
Hilbertschemas

Gerd Gotzmann

1. Einleitung

(1.1) Sei k ein Kôrper, 5 k[X0, Xr] der graduierte Polynomring und

PjS
Nach einem Satz von F. S. Macaulay ist das Hilbertschema Hilb£ genau dann

nicht leer, wenn - P(T) ein Polynom

mit ganzen Zahlen 0&lt;ao^ • • • ^as, 0&lt;s&lt;r — 1, ist. Das Schéma

ist projektiv iiber k und parametrisiert die Idéale S c €x mit Hilbertpolynom Q.
Wenn K/k eine Kôrpererweiterung und S c Ox®kK &amp;n Weal mit

Hilbertpolynom Q ist, dann wird die Hilbertfunktion h{#) definiert durch

K, f(n)), neN.

Jedes xeHq bestimmt eindeutig ein Idéal J&gt; e HQ($peck(x)), und die
Hilbertfunktion A auf HQ wird definiert durch

â ist also eine Abbildung von HQ in die Menge der numerischen Funktionen
N—*N. Wenn auf dieser Menge eine Ordnung definiert wird durch /^g, falls

/(n)&lt;g(n) fur aile neN, dann folgt aus dem Halbstetigkeitssatz, daB fur jede
numerische Funktion /

eine abgeschlossene Teilmenge von HQ ist. Das Ziel der Arbeit ist der Beweis

von folgendem
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Unterschemata des Hilbertschemas 115

SATZ. Wenn k ein Kôrper der Charakteristik 0 ist, dann ist H&gt;f

zusammenhàngend.

(1.2) Die Gliederung des Beweises ist ungefàhr wie folgt:
1° Man lâBt die Gruppe B(r +1, k) der oberen Dreicksmatrizen auf 5, d.h.

auf HQ operieren. Da sie auflôsbar ist, kann man jeden Punkt aus HQ durch eine

Folge von Bahnen der Form G • x, wobei G gleich Gfl oder Gm ist, mit einem
Punkt des Fixpunktschemas verbinden. (Dies ist auch die Ausgangsidee von
Hartshorne in seinem Beweis fur den Zusammenhang von HQ.) Làngs dieser
Bahnen wird die Hilbertfunktion nicht kleiner.

2° Hq bezeichnet das Fixpunktschema unter der unipotenten Gruppe U

U(r + 1, k). In Hq werden bestimmte abgeschlossene Teilmengen A{££) betrach-

tet, die Kegel genannt werden. Hierbei ist «S? eine Idealgarbe auf Y — Prk~l. Fur
dièse Kegel wird gezeigt, daB man jeden Punkt darin durch eine Folge von
sogenannten numerisch starren und numerisch wachsenden Deformationen mit
einem Punkt im Kegel verbinden kann, dessen Hilbertfunktion eine spezielle
Form hat (das zugehôrige Idéal wird numerisch relativ maximal genannt).
Hierbei nimmt die Hilbertfunktion nicht ab.

Ein Kegel ist ûbrigens nichts anderes als die Faser uber i£ des sogenannten
Horrocks-Morphismus (vgl. [Ho])

HuQ^H%,y Q&apos;(T) Q(T) - Q(T - 1), (/&apos; U(r, k).

Es ist bekannt, daB dièse sogar einfach-zusammenhàngend ist. Man kann also von
vornherein hofifen, daB die Kegel besondere topologische Eigenschaften haben,
und daB dies wirklich der Fall ist, zeigt Satz 4.12.

3° Man hat zwei Kegel in HQ miteinander zu verbinden. Dies geschieht in
einem InduktionsschluB nach r (Satz 5.4). Die Schwierigkeit besteht darin, daB

man nicht jede Bahn in Hq mittels des Horrocks-Morphismus nach Hq liften
kann. Deshalb wird eine Klasse von Bahnen mit dieser Eigenschaft konstruiert,
sogenannte Standarddeformationen.

Bei dem Beweis ist es nôtig, stàndig die Regularitàt der betrachteten Idéale
im Auge zu behalten (vgl. 2.1 bzgl. der Définition). Aus dem Halbstetigkeitssatz
folgt sofort, daB die Idéale mit einer Regularitàt grôBer oder gleich einer

gegebenen Zahl eine abgeschlossene Teilmenge des Hilbertschemas bilden. Als
Korollar des Beweises ergibt sich, daB dièse ebenfalls zusammenhàngend ist.

(1.3) Es stellt sich naturlich die Frage nach der Voraussetzung char (k) 0. Der
Beweis von Hartshorne fur den Zusammenhang von HQ ist zwar in jeder
Charakteristik giiltig, ich sehe aber nicht, wie sich bei den dort verwendeten

Deformationen die Hilbertfunktion verhâlt. Da bei den hier verwendeten
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Argumenten oft char (k) 0 ausgenutzt werden muB, scheint es mir sehr
zweifelhaft, ob und wie man auf dièse Voraussetzung verzichten kann. (Zumin-
dest ist es aber môglich, aus den Ergebnissen in Charakteristik 0 den Zusammen-
hang des absoluten Hilbertschemas, d.h. von Hilbf in der Terminologie von [Gr],
herzuleiten.) Da einige Teilergebnisse jedoch unabhàngig davon sind, wird hier
eine Ûbersicht angegeben, an welcher Stelle man sie wirklich benôtigt:
Abschnitt 2: k ein beliebiger Kôrper;
Abschnitt 3: k ein algebraisch abgeschlossener Kôrper, nur in Lemma 3.4.3 muB

auch char (k) - 0 sein;
Abschnitt 4 und 5: k algebraisch abgeschlossen und char (k) 0.

Abschnitt 6: Hier ist der Grundring irgendein noetherscher Ring, der Q enthàlt.
Obwohl in diesem Abschnitt die Betrachtung unter dem Gesichtspunkt der

Darstellbarkeit von Funktoren erfolgt, beruht das Hauptergebnis (Satz 6.2)
wesentlich auf Satz 5.4.

2. Ergebnisse ûber Hilbertpolynome und graduierte Idéale

(2.1) J&gt;a6x ist d-regulàr, wenn H\Xy 3(d - i» (0) fur aile i&gt;1. Die Zahl

reg (3) — min {d e N \ 3 ist d-regulâr} wird Regularitât von 3 genannt. Wenn 3
das Hilbertpolynom Q hat, ist h\3(n)) dim H\X, J&gt;(n)) Q(n) und

S.tfXSin)) H{)(J&gt;(n + 1)) fur aile n &gt; reg (J&gt;) (vgl. [M], Lecture 14).
Die Zahl as in (1) wird mit n(Q) bezeichnet; es ist reg(^)&lt;n((2) fur aile

Idéale mit Hilbertpolynom Q.

(2.2) Wenn A noethersche &amp;-Algebra, 3 e HQ(A) und &amp;=OX/J&gt; ist, dann gilt
fur aile n &gt;n(Q):

(i) H{){X®Ay J&gt;{n)) ist &lt;2(n)-Unterbùndel von Sn®A (d.h. lokal freier
direkter Summand vom Rang Q(n)) und £,//%¥(g) A, 3&gt;(n)) H°(X&lt;g)

(ii) H°(X®A, &amp;{n))ï&gt;Snkl{y {))\
(iii) die Bildung der Kohomologiegruppen von ${n) und 3P(n) ist mit

Basiswechsel vertauschbar (die hôheren Kohomologiegruppen sind natiirlich
Null).

(2.3) Sei A eine noethersche /c-Algebra. Es bestehen naturliche Bijektionen,
funktoriell in A, zwischen folgenden Mengen, wobei d&gt;n{Q) irgendeine feste

ganze Zahl ist:

(i) HQ(SptcA) {3 c 6x&lt;g&gt;A Idéal | 0x&lt;s&gt;A/3 flach ùber A mit Hilbertpolynom
P in jeder Faser}
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(ii) {IczS&lt;8)kA graduiertes Idéal, erzeugt von der homogenen Komponente
ld von /, so daB /„ c Sn ®kA 0(n)-Unterbûndel ist fiir aile n^d}

(iii) {IczS®kA graduiertes Idéal, erzeugt von Id, so daB Sn®AUn flach
ûber A vom Rang P(n) ist fur n d und n d 4-1}

(iv) {(F, L)\FaSd&lt;8)A, LczSd+l®A Unterbundel vom Rang Q(d) bzw.

Q(d 4 1) mit 5,FcL}.
Die Zuordnungen sind wie folgt definiert:

(ii)—»(iii) und (iii)-^(iv) sind die natiirlichen Zuordnungen.
(iv)—&gt; (i): (F, L) &gt;-» (F)~, wobei (F) das von F in S ® A erzeugte Idéal ist und

~ die assoziierte Garbe bedeutet.
Dièse Ergebnisse bleiben richtig, wenn man k durch irgendeinen noe-

therschen Ring ersetzt (zum Beweis siehe [M] und [Gl]).

3. Aktionen der additiven und multiplikativen Gruppe auf dem Hilbertschema
und ihre Bahnen

3.1. Bezeichnungen
Die Gruppe GL(r 4-1, k) operiert als Gruppe von (r + 1) x (r 4- 1)-Matrizen auf
dem graduierten Polynomring S k[Xx, Xry Xo], Insbesondere operiert die
zu Ga isomorphe Untergruppe G&apos;j mit / &lt;j auf S durch

(PyW&apos;.Xjf+^+X,, Xt*-&gt;X, fur l¥=j,Xek.

(VerabredungsgemàB soll Xo die letzte Variable sein.) Die zu Gm isomorphe
Gruppe Gsm operiert auf S durch

cps(k):Xs^?iXs, Xî++Xt fur i*s,Xekx.

Mit U U(r 4-1, k) wird die unitriangulàre Gruppe der oberen Dreiecks-
matrizen, mit D D(r + 1, k) die Gruppe der Diagonalmatrizen aus GL(r +
1, k) bezeichnet. Wenn p (pïf pr, p{)) eZr+l mit px 4- • • •+po=:0 ist,
dann ist T(p) die Untergruppe von D, die aus den (Àt,. Âr, Ào) e (A:x)r+1 mit
Af1. Ag°= 1 besteht. Im folgenden wird immer ggT(p0, pr) 1 voraus-
gesetzt; dann ist T(p)~ (Gw)r als algebraische Gruppe. AuBerdem soll
VerabredungsgemàB immer po^0 sein; wegen T(p) T(—p) ist das keine
Einschrânkung. B bezeichnet die Borelgruppe U • D und B(p) die Untergruppe

Aile genannten Gruppen operieren auf natiirliche Weise auf dem
Hilbertschema HQ. Da sie (mit Ausnahme von GL(r 4 1, k)) auflôsbar sind, folgt



118 GERD GOTZMANN

aus dem Borelschen Fixpunktsatz, daB die Fixpunktschemata //§, Hq usw.
abgeschlossene, nicht-leere Unterschemata von HQ sind.

(3.2) Konstruktion von Bahnkurven im Hilbertschema
Wenn A k[k], T SpecA dann ist Ax k[k, A&quot;1], und fur $&gt; e HQ(k) ist

(ps{k)$ ein Elément von HQ(Gm), wobei A als Unbestimmte aufgefaBt wird. Es

gibt ein #eHQ($pecA) mit $ \ XxkGm (ps{k)J&gt;. Wir bezeichnen #®Ak(0)
mit 3&gt;Q \\mk-+o(ps{k)$. Entsprechend wird fur A k[k~l] die Garbe J&gt;x

liiiU-,*, (ps{k)$&gt; erklârt. % und 3^ sind Elemente von HQ(k), die fest unter Gsm

sind. Die geometrische Bedeutung ist wie folgt. Wenn S dem abgeschlossenen
Punkt z € HQ entspricht und Y irgendein lokal-noethersches Schéma uber k ist,
dann sei zY das induzierte Elément $&lt;8&gt;k6Ye HQ(Y). Indem man q&gt; e Gsm(Y) auf
q)(zY)eHQ(Y) abbildet, wird ein Morphismus f:Gm-*HQ definiert. Da HQ
projektiv uber k ist, gibt es eine eindeutig bestimmte Fortsetzung / : P*—» HQ und
zo=/(0) bzw. Zoc=/(°°) entsprechen gerade den Idealen $Q bzw. Jx. Im(f) bzw.
Im (f) mit der reduzierten Unterschema-Struktur werden Bahn bzw. abgeschlossene

Bahn von z unter Gm genannt. Wir sagen, wir haben z durch eine

(abgeschlossene) Bahn mit der Spezialisierung z0 und zx von z unter G^,

verbunden. Eine analoge Konstruktion ist mit G&apos;i môglich, und da B eine

Kompositionsreihe mit zu Gm oder Gfl isomorphen Quotienten hat, kann man
jeden abgeschlossenen Punkt z eHQ durch eine Folge von abgeschlossenen
Bahnen mit einem Fixpunkt von HQ unter B verbinden.

(3.3) Beschreibung der Spezialisierung unter einer multiplikativen Gruppe
Dièse beruht auf folgender bekannten Tatsache:

BEMERKUNG 1. Sei R der Polynomring uber k in einer Variablen und E
ein freier /Î-Modul vom Rang n. Wenn / e R\{0} und F aEf ein (lokal-) freier
direkter Summand vom Rang m ist, dann gibt es genau einen direkten
Summanden F* von E mit F* — F, der Fortsetzung von F auf A genannt wird.

An spàterer Stelle werden wir noch benôtigen:

BEMERKUNG 2. Wenn FczSd®kRf und LcSd+1&lt;8&gt;kRf zwei lokal-freie
direkte Summanden mit StFczL sind, dann gilt auch fur die Fortsetzungen

Beweis. XtF* + L*/L* ist als Untermodul von Sd+l&lt;8)kR/L* frei, folglich
XtF* + L* ein freier direkter Summand. Fur die Lokalisierung erhàlt man
(XtF* + L*)f XtF + L L, nach Bemerkung 1 muB dann X,F* c L* sein.
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Wir beschreiben nun fur S e HQ{k) die Konstruktion von ^0 limA_^() cps(X)$
und ^oc limA_oc (ps(X)$.

Sei d&gt;n(Q) eine feste Zahl, sei m Q(d) und F H°(X, J&gt;(d)); $Q
bezeichnet die universelle Idealgarbe auf HQ. Taxi Vereinfachung der Schreib-
weise fûhren wir die Rechnung fur s 0 durch, wobei R — k[Xu Xr] sein
soll.

1° F hat eine Basis Ft Xffi + X$+{fî + • • -, l&lt;=i&lt;m, so daB fJeR
homogen vom Grad d — (dt 4- v), /^ =£ 0, und dj &lt; d2 — * * * — dm ist. Wenn
da db fur ein Paar von Zahlen l&lt;a&lt;6&lt;m ist, kann man durch lineares
Kombinieren der Fn a ^ i &lt; 6, erreichen, daB die /?, a-^i^b, linear unabhàngig
sind. Wir setzen ft XôdlFt. Fur ÂeG^fc) ist dann ç?()(A)F

&lt;p°(X)H°(X9 *{d)) /^(X, ^À(rf)), wobei A V°(A)^ ^/*C?&lt;?) ®gm *(A). Also
hat //0(Z, ^A(d)) die Basis

Dem Morphismus / entspricht das k[k, A~1]-Bùndel ç?°(A)F, A als Unbestimmte
aufgefaBt. Da die Xffi linear unabhàngig sind, folgt, daB die Fortsetzung von
q)°(k)F auf k[k] gerade das Unterbiindel mit der Basis ist:

Das Idéal in €x

^ =Î*Uq) ® Pi *(0) {{Xifg | 1 &lt; î &lt; m}) =: lim &lt;p\k)S (2)

entspricht dem Grenzwertpunkt /(0) e HQ(k).
2° Entsprechend hat F eine Basis Xfig? + X%~lgî + X&amp;~2g2+ • • • mit e,&lt;

• • • &lt; em und linear unabhàngigen Formen g?, 1 &lt; i &lt; m. Dann wird &lt;p°

erzeugt von

und daher ist die Fortsetzung des k[X&gt; A&apos;^-Bundels q&gt;°(X)F auf A:[A-1] gerade das

Unterbundel mit der Basis

^ î =s m.
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Das Idéal in €x

** =Î*&lt;Jq) ®pï *(°°) ({Xtâ | 1 ^ / ^ m}) =: lim cp()(k)J&gt; (3)

entspricht dem Grenzwertpunkt /(°°).

(3.4) Die Gruppe U U(r+l,k)
Ihre Bedeutung beruht auf folgender.

BEMERKUNG. Wenn J&gt;eHQ{k) £/()t)-invariant und /= ®n^H\Xf J&gt;(n))

ist, dann ist Xo kein Nullteiler des Ringes S/I und 3&gt;&apos; 3&gt; + Xn0x(- 1)IX()CX{-1) e

HQ{k) invariant unter U(r, k)y wobei Q&apos;(T) Q(T) - Q(T - 1).

Beweis. Wenn V — PU Qi eine reduzierte Primàrzerlegung ist mit graduierten
Idealen Qi9 primàr zu graduierten Primidealen Pn dann ist \J P, die Menge der
Nullteiler von 5//. Da / fest unter U(k) ist, sind es auch die Pn so daB aus X{) e P,

folgen wiirde S+ a Pn Widerspruch.

LEMMA 1. Sei z ein abgeschlossener Punkt des Fixpunktschemas Hq, der
dem Idéal 3 cz €x entspricht. Lângs der abgeschlossenen Bahn von z unter &amp;m ist

(i) h\#{n)) h°(fk(n)) fur allé A e P&gt;i-{oo} und neN;
(ii) h°(J&gt;(n)) &lt; tiXfJji)) fur aile neN.

Mit anderen Worten, die Hilbertfunktion h ist auf der abgeschlossenen Bahn mit
Ausnahme des unendlich-fernen Fixpunktes konstant, dort wird sie eventuell
grôBer.

Beweis. Da fur n &gt; d n(Q) in (i) und (ii) Gleichheit gilt, sei 0 &lt; n &lt; d. Wir
verwenden die Bezeichnungen von (3.3). Wegen obiger Bemerkung ist

n)) {xeSn\ Xtn • x e

{xeSn\ Xtn • x e

wobei

nach Konstruktion der Basis (F,) in (3.3) linear unabhângige Mengen sind. Es

folgt fcVo(&quot;))^*V(&quot;))&gt; und h{)(Mn))^h°(J&gt;(n)) gilt wegen des Halbstetig-
keitssatzes, der auch (ii) impliziert.
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LEMMA 2. Sei J&gt;eHQ(k) invariant unter U(r + l,k) und #{)

Wenn dann SxH{)(J&gt;(n)) H{\J&gt;(n +1)) ist, dann ist auch

Beweis. Fur n&gt;d folgt dies aus (2.2). Sei daher n&lt;d. Der Beweis von
Lemma 1 hat gezeigt H\$(n))= {$&amp;„), H{)(J&gt;{)(n)) (9$) und Entsprechendes
fur n + 1 statt n. Wir haben zu zeigen xi&apos;&quot;(d&quot;n&quot;x) - f]eSxH()(#{in)), wenn
dt ^ (d — n — 1) ist. Fur d, &gt; d — n — 1 ist dies klar, so daB man annehmen kann
dt d — n — 1. Nach Voraussetzung hat man dann

wobei die Summation iiber die j mit d}&gt;d — n erfolgt und /; eS{ Linearformen
ohne Xo sind. Es folgt

Sortieren nach Potenzen von X() gibt

da hier die Summation ùber die j mit d} d — n erfolgt.

LEMMA 3. Sei I aS ein graduiertes Idéaly erzeugt von ld, und B(r + l,k)-
invariant. Dann ist J&gt;=ï d-regular und H(){$(n))2&gt;ln fur aile n&gt;d. (Vgl.
[B — S], prop. 2.9 bzgl. einer àhnlichen Aussage.)

Beweis. Zunàchst zeigen wir, daB

exakt ist fur aile n&gt;d, wobei Sf S/X{)S(-l) und /&apos; / + X{)S(-l)/X()S(-l)
sein soll. Fur X() • x e In+l haben wir zu zeigen x e /„. Da man x als Summe von
Monomen schreiben kann und In+X als Vektorraum von Monomen ezeugt wird,
kann man ohne Einschrânkung annehmen, x ist Monom. Dann ist X{) • x - Xs • y
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mit y € /„ Monom. Da /„ invariant unter B und char (k) 0 ist, folgt x
Xs -Xôl -yeln (vgl. hierzu auch 4.2.3).

Offenbar erfullt /&apos; dieselben Voraussetzungen wie /, so da8 man nach

Induktionsvoraussetzung ^&apos;=7&apos; ist d-regulàr und /i
annehmen kann. Aus der exakten Sequenz

folgt dann mit dem SchluB von (M, p. 102), daB H&apos;(J(n - i)) 0 fur aile n &gt; d,
i&gt;2. Aus (*) folgt, daB auch die obère Zeile des kommutativen Diagramms

Jkan

exakt ist fur aile w &gt; d, wobei Id^x {x eS^_! \X0-xeId} sein soll. Daher ist

H°{S{n))-^H\r{n)) surjektiv und H\J&gt;(n - l))=*Hl(S(n)) fur aile n &gt;d. Es

folgt //1(^(n-l)) 0, n&gt;d. Da In~H°(f(n)) fur ai»0, folgt aus dem

Diagramm durch absteigende Induktion /„ —/f°(^(n)), n &gt;d.

(3.5) Numerisch wachsende und starre Deformationen monomialer Idéale

LEMMA 1. Sei F aSd ein T(p)-invarianter Unterraum. F hat eine Basis der
Form Mlpl{Xp), wobei M, paarweise verschiedene Monôme und p, Polynôme in
einer Variablen mit konstantem Term 1 sind.

Beweis. Zunâchst schreibt man jedes Basiselement als Summe von Monomen,
etwa in der lexikographischen Ordnung. Dann erhâlt man durch lineares
Kombinieren eine Basis der Form fl-mlJtgl, m, ein Monom, g, Summe von
Monomen, derart daB m, vor allen Monomen in g, in der lexikographischen
Anordnung steht und mt =£mj ist fin* aile / #/. Durch lineares Kombinieren kann
man erreichen, daB auBerdem m, in keinem g} mehr vorkommt. Wenn nun
(p € T(p) und / € {ft} ist, kommen in cp(f) dieselben Monôme wie in / vor. Aus
(p(f)eF folgt daher ç(f) c(cp) •/, c ein Charakter von T(p). Wenn /
E atXa{l) ist, dann muB a(i) - &lt;x(j) e Z • p sein, falls at ¥= 0 und a, ¥* 0 sind. Man
kann daher jedes f, in die Form Mtp,(Xp) bringen und dann durch lineares

Kombinieren M, =£ M} erreichen.

LEMMA 2. Sei 3 € HQ(k) invariant unter B(p). Wenn ps irgendeine positive
Komponente von p ist, sind ^{) \imk^0(ps(X)J&gt; und J&gt;x limk^(
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unabhàngig von der Wahl von ps. Wenn po 0 ist, hat man h°($0(n))
h°(Mn)) h\*(n)) fur aile neH.

Beweis. Wir wâhlen fur F H°(J&gt;(d)) eine Basis wie in Lemma 1. Dann ist

limk^oq)s(F)= (Mt) (vgl. 3.3), und dies ist offenbar unabhàngig von s. Da
limÀ_&gt;oc cp5(Â)F limA_&gt;0 w&apos;ifyF fur p, &lt;0, zeigt dieser SchluB die entsprechende
Aussage auch fur J&gt;x. Im Fall p0 0 kann man p durch —p ersetzen und braucht

nur $&gt;0 zu betrachten, wo die Aussage wie in (3.4.1) folgt mit

«2 {Xô(d-n)Mt | grad^ M, &gt; d - n},

(d) M,*d- n}.

DEFINITION. Die abgeschlossenen Punkte xx und x2 von HQ sollen
invariant unter B sein. Der Punkt xx kann durch eine (h-monotone) Déformation
mit x2 verbunden werden, wenn es ein x e HQ{k) gibt, das invariant unter einer

Gruppe B{p) ist, derart daB xx limA_^0 cps{X)x und x2 HmA^^ q)&quot;(k)x ist, wobei

ps irgendeine positive Komponente von p ist. Wenn po 0 ist, heiBt die
Déformation (numerisch) starr, weil sie die Hilbertfunktion h nicht àndert. Wenn
po&gt;0 ist, heiBt die Déformation (numerisch) wachsend. Nach Lemma 2 ist

nàmlich h(xl)^h(x2)y und dem Beweis von Lemma 2 und (3.3) kann man
entnehmen, daB tatsàchlich h(xl)&lt;h(x2) ist.

4. Deformationen innerhalb eines Kegels

(4.1) Bezeichnungen
R k[Xu Xr], Y Proj /?, &lt;£ c €Y Idéal mit Hilbertpolynom h,

invariant unter t/(r, A:), 5 k[Xlt Xri X()], L © n&gt;0 Ln mit Ln
©r=o^S&quot;&apos;/3r°(^(0), das von ®n^H\ï£{n)) in 5 erzeugte graduierte Idéal. Da

A&apos;o ein Nichtnullteiler auf S/L ist, hat man fur if* L

H°(&lt;e*(n)) © ^S
1=0

=5?* ist invariant unter U(r + 1, fc) • G2,, sein Hilbertpolynom nennen wir //.

Im folgenden ist C eine feste natiirliche Zahl; wir betrachten Hilbertpolynome
Q, fur die H - Q c eine natiirliche Zahl c&lt;C ist, und setzen d «(//) + C.
Dann ist n(Q) &lt; d. Die Menge 4(i?) aller Idéale S &lt;= if*, deren Hilbertpolynom
Q die gerade genannten Bedingungen erfiillt, wird Kegel uber ££ gennant. Wenn
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G cz GL(r + 1, k) eine Gruppe ist, die ££* invariant làBt, bezeichnet A{J£\ G) die

Teilmenge der Elemente von A(t£), die fest unter G sind.

BEMERKUNG. Fur S e A(2£\ U(r + 1, k)) ist

r 3 + X«€x{-\)IX{)Ûx{-\) X

und

Die erste Aussage ist klar und die zweite folgt hieraus, indem man zu der

exakten Sequenz

0 —* f(e - i - 1)^ S {e - i) —&gt; 2(e - i) —* 0

die lange exakte Kohomologiesequenz bildet, e reg (J&gt;).

(4.2) LEMMA. Dj&apos;e Menge der unter U(r + 1, k) • G(^ invarianten Idéale

ici?* m*Y Hilbertpolynom Q-H - c, woèe/ 0 &lt; c &lt; C, to bijektiv zur Menge
der Folgen (Vi)t Vj) mit folgenden Eigenschaften:

(i) Vn czH{\S£{n)) ist ein kn-codimensionaler U(r} k)-invarianter Unterraum,
n 0, 1, dy mit Y,kn cy kd 0;

(») Kj^cV^Oss/i^d-l.
(a) Fur 3 e A(ï£\ U(r + 1, &amp;) • G^; c) hat man eine Zerlegung
®dn={)XfrnVnf Vn c H{)(&lt;£(n)) U(r, A:)-invarianter Unterraum. Da

X{} Nichtnullteiler auf 5/ 0 n^}H\#{n)) ist, folgt hieraus

1=0

Die Bedingung SlHl&gt;(J&gt;(n))c:Hn(J&gt;(n +1)), 0&lt;n&lt;d-l, ist dann gleich-
bedeutend mit

Rxvn ®x{){vn + /?,k,_,) e^(vn_, + Rt vn_2) © • • • e
*S(v, + «, v;,) e as+ik, &lt;= vn+1 © *,,v; © • • ¦ © xrxv0

fur 0 s « &lt; d - 1, d.h. gleichbedeutend mit

Da J? d-regular ist, ist h\#(d)) £o dim Vn Q(d) //(d) - c Eo h\se(n)) - c,
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woraus £{(*„ c folgt. Wegen der d-Regularitàt von 3 ist H°(3(d))^&gt;

surjektiv und daher Vd H°(&lt;£(d)) (vgl. Bemerkung 4.1).
(b) Umgekehrt wird das Idéal la S definiert durch /„ © r=o*o~&apos;V;, 0 &lt; n

d und /„ Sn^dId, n&gt;d. Dann erhâlt man mit (ii) und der d-Regularitàt von
fur n &gt; 0:

5w/rf RnH°(2(d)) + X()Rn.xH\ï£(d)) © • • • 0^/
#i)) © X()H&quot;{ï£{d + n - 1)) © • • • 0 XZH°

Daher ist dim SJd H(d -f n) - c, n &gt; 0. J? / hat demnach das Hilbertpolynom
&lt;2, und da dann d eine Regularitàtsschranke fur 3 ist, hat man h()(${d))
H(d)-c. Es folgt H{\J&gt;(d))= ®UoXf}&apos;nVn. Die Bijektion wird also durch
J?-»(K(), K,) definiert.

Bezeichnungen und Bemerkungen
1. Wenn ^ die Voraussetzungen des Lemmas erfùllt, ist

Vn H°(2(n)) fur aile n &gt; reg

Dies folgt aus den exakten Sequenzen

0-&gt;H{)(J&gt;(n - l))-&gt;

2. Wenn die Folge V (VJ,, Vd) die Bedingungen (i) und (ii) des

Lemmas erfullt, wird das zugehôrige Idéal mit ${V) bezeichnet. Im Beweis hatte
sich ergeben

3. Wenn 56 zusàtzlich D{ry A:)-invariant ist, setzen wir

A*(&lt;£) Menge der unter B(r + 1, k) invarianten Idéale

3 c g* mit Hilbertpolynom H(T) - c, wobei c&lt;C.

Fur 3 e A*(3ï) hat jeder Vektorraum Vn eine eindeutig bestimmte Basis von
Monomen, die mit E(Vn) bezeichnet wird. Zur Vereinfachung identifizieren wir
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Vn mit E(Vn) und schreiben Vn statt E(Vn). Die Menge \J$ E(Vn) E(V) wird
Treppe von V (Vo,. Vd) genannt und zur Vereinfachung mit V bezeichnet.
Wir setzen An E(H°(&lt;£(n)) und A Uo A,. Der Ausdruck Treppe soll nur im
Zusammenhang mit D(r + 1, fc)-Invarianz verwendet werden.

Die Bedingung, daB jedes Vn invariant unter i/(r, k) ist, ist wegen char(A:) 0

âquivalent mit

XV- • -X?e Vn^XV- • -Jrr&apos;+I- • -X?&quot;1&quot; -X?&apos;eVn (*)

fur aile l&lt;r&lt;5^r mit ar5#O. Dies sieht man, indem man (kXt + X0)ai nach

dem Binomischen Satz entwickelt und char (k) 0 sowie das Nichtverschwinden
der Vandermonde-Determinante ausnutzt.

(4.3) LEMMA. 2 soll unter U(r, k) • D(r, k) invariant und 3&gt; e A(ï£) soll
U(r + 1, k) • T(p)-invariant sein. Dann ist reg (Jo) reg (^) (zur Définition von

^ vgl 3.5.2).

Beweis. Da reg(^0) — reg(^) aus dem Halbstetigkeits-Satz folgt, bleibt noch

reg (^o) — r^g (^) ^ nachzuweisen. Wir unterscheiden zwei Fàlle.

1. Fall po&gt;0. Da Sltf(^(n)) Hi\S(n + 1)) fur n&gt;e ist (vgl. 2.1), folgt
mit Lemma 3.4.2 SxH\3&gt;0(n)) H°(J&gt;0(n +1)), n&gt;e, und hieraus mit Lemma
3.4.3 reg (^o)^^.

2. Fa//. po 0. Man hat entsprechend Lemma 4.2 die Zerlegungen

n

H°(J(n)) © Xn0~lVn Vn cH°(&lt;£{n)) B(p)-invariant,
i=0

n

tfVo(«)) © XZ&quot;y°n, V°n c «°(i?(n)) B-invariant.
(=0

Nach (4.2.1) ist

Aus h\3&gt;&lt;&gt;{n)) /iV(&quot;))&gt; neN (Lemma 3.5.2), folgt
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so daG aus * und * * folgt

127

(***)
und hieraus wegen reg (i?) &lt; e (vgl 4 2 1)

Mit 3 4 3 folgt reg (J&gt;0) &lt; e

(4 4) LEMMA Sei % B(r, k)-invanant, $ e A*(2) ein Idéal mit Hil-
bertpolynom Q(T) H(T) — c und E{$) V Seien u e Vm und v e An — Vn zwei
Monôme mit n&lt;m, derart dali V - u — U und W U U v zwei unter B(r, k)
invariante Treppen sind Sei A k[t], x — Xi~m u, y Xq~&quot; v, z x + ty und
I(t) a S ®k A das von I(U) und z erzeugte Idéal Dann gdt

(î) I(t)n a H°(£*(n)) ®kA ist U(r + 1, k)-invananter direkter Summand vom
Rang Q(n) fur aile n^d

(n) Definiert man o eZr+1 durch X° -ylx und setzt p o/ggT(o), dann ist

I(t) invariant unter B(p)

Zunachst soll die Situation an einem Beispiel erlautert werden A9 ist in Figur
1 dargestellt, dabei ist das Monom X\X\X\ eingezeichnet Nach (3 4 3) ist

und hieraus ergibt sich einerseits [ )+ \
als Hilbertpolynom von 5£&gt; andererseits #A8 30, #A7 21, #A6=13,
#A5 6, #A4 2, #A3 0 Daherist

«w-crxn-16 +
2

n-78+l\
1

01 23456789
Fig 1
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Flg 2

das Hilbertpolynom von if* Die Treppe V ist in Figur 2 dargestellt (v gehort
mcht zu V) Sie gibt

als Hilbertpolynom von $(V) W entsteht durch Herausnehmen von u und

Hinzufugen von v Wahrend das Hilbertpolynom dabei gleich bleibt, wird die
Hilbertfunktion groBer Nun zum formalen

Beweis Da reg(^)&lt;d, folgt mit (4 2 1) Vn An fur n=d, d-\ Aus
Bemerkung 4 1 ergibt sich dann u $ V(l, d h Ud Ad Man kann Lemma 4 2 auf
U anwenden und schheBen

Xtu e V - u ,x 61(U), 1 &lt; / &lt; r,
1 &lt; / &lt; r

(*)

Fur kein t e K, K/k Korpererweiterung, kann X{)z e /((/) sein, da sonst X{\ mu e

/((/) oder ^Tq&quot;&quot;^ ^ ^(^) und daher «e(/ oder u e U ware Deshalb hat man

dim

und daher dim (Sn ®.4//(0n) ® fc(/) P(n) fur rc d, d + 1 und aile/ e SpecA,
woraus (î) folgt (vgl [Gl], 3 9]) Wenn cp e U(r + 1, &amp;) die Variable Zo fest laBt,
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dann folgt

&lt;p{z) - z Xtm(cp(u) -u) + t&gt; Xi~n{(p{v) - u) e

weil ûeVm/Um und veWn/Un invariant unter U(r,k) sind. Wenn dagegen

cp e G&apos;a ist (vgl. 3.1), dann bekommt man

&lt;p(z) - z (X{)

und wegen * ist das ein Elément von I(t). Die Aussage (ii) ist klar.

Folgerungen und Bezeichnungen

1. Sei xeHgip)(k) der Punkt, der zum Idéal 1(1) des Lemmas gehôrt. Es

kônnen 2 Fàlle eintreten:

1. Fall: n&lt;my d.h. po&gt;0. Dann ist limA_0 &lt;po(À)x J&gt;(V) und

linu^ (p°(A)jt ^(W), und die Hilbertfunktion von J&gt;(W) ist grôBer als die von
$(V) (vgl. 4.2.2). Entsprechend der Définition 3.5 haben wir $(V) durch eine
numerisch wachsende Déformation innerhalb A(J£) mit $(W) verbunden, die wir
wachsende Modifikation nennen.

2. Fall: n=m, d.h. p() 0. Dann ist \\mk^{)&lt;ps(k)x 3&gt;(V) und
lim^oc &lt;ps{K)x ^(W), wobei pv&gt;0. Es handelt sich um eine numerisch starre
Déformation innerhalb A(J£), die wir starre Modifikation nennen. Wir bezeich-

nen die Modifikationen mit V »-&gt; V - u U v.

2. DEFINITION. Eine (unter D(r, k) invariante) Treppe V heiBt numerisch
lokal maximal&apos;, wenn es keine wachsende Modifikation von V gibt.

3. Wenn S&gt;eA*(&lt;£) das Hilbertpolynom Q(T) H{T)-c mit 0&lt;c hat,
dann gibt es ein $ e A*(ï£) mit Hilbertpolynom Q + \ und 3 a$. Dies folgt mit
Hilfe des Borelschen Fixpunktsatzes. Wegen 4.2 ist ^ ^(V), wobei V eine
Treppe der Form V U u mit einem Monom u e A vom Grad &lt;d ist. Wir nennen V
Erweiterung von V.

DEFINITION. ô(V) min {gradw | we A- V Monom und VUu ist

Treppe}. Wenn u eA — V, VUu Treppe und grad u ô(V) ist, heiBt VUu eine

minimale Erweiterungstreppe und wird mit V* bezeichnet.
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(4.5) HILFSSATZ. V numerisch lokal maximal, V V Uu Erweiterungs-
treppe mit ueAm. Dann ist Rx Vn Vn+l fur aile n&gt;m und daher Rx Vn Vn+l fur
aile n&gt;m.

Beweis. Wenn fur ein n&gt;m RxVn £ Vn+l Vn+l wâre, hàtte man einen
B(ry A:)-invarianten, 1-codimensionalen Unterraum E a Vn+l mit RxVn aE. Dies
folgt aus der Auflôsbarkeit von B{r, k). Es wàre dann E © kv Vn+X, und indem
man v als Linearkombination von Monomen schreibt, sieht man, daB v als

Monom angenommen werden kann. Da Vn An fur n d - 1, d ist (vgl. 4.2.1),
muB « + 1 ^d — 1 sein. Dann wàre aber V&gt;-*V — vKJu eine wachsende
Modifikation.

(4.6) LEMMA. Wenn V numerisch lokal maximal und V* eine minimale
Erweiterungstreppe ist&gt; dann ist entweder V* numerisch lokal maximal, oder es

gibt eine starre Modifikation V von V und eine minimale Erweiterungstreppe V*
von V, derart daB ô{V&apos;)&lt;ô(V) ist und fur die Hilbertfunktionen h(/(V*))&lt;

*)) gilt.

Beweis. Sei V* VUn&gt;, weAe, e ô(V). Angenommen, es wâre V*&gt;-*

V* — vL)u wachsende Modifikation. Wenn n gradu&gt;e, dann v e V*
RiV*-i (4.5), und V* — v wâre gar keine Treppe. Wenn n&lt;e, dann m

gradu &lt;gradv &lt;ey folglich R\U czV^+l Vm+u und V Uu wàre Erweiterungstreppe,

Widerspruch zur Définition von e. Also ist n e. Nach Voraussetzung ist
V* — v eine Treppe. Es kann nicht v w sein, da dann V* -v Uu V Uu eine

Erweiterungstreppe von V mit grad u &lt; grad v e wàre. Nach Voraussetzung ist
V -vUw V* -v Treppe und daher nach Définition Ve-vUw und Ve beides

U(r, &amp;)-invariante Mengen von Monomen im Sinne von 4.2.3. Man sieht leicht
unter Benutzung der dort angegebenen Bedingung fur U(r, /c)-Invarianz, daB

dann auch Ve — v U(r, fc)-invariant ist. Da nach Voraussetzung RiVe-x &lt;^Ve —

vUw und w $RxVe^i c Ve ist, muB RxVe-\ cVe — v sein. Daher ist V - v eine

Treppe. Also ist V^V -vUw -V eine starre Modifikation und V &apos;

U u

V*-vUu eine Erweiterungstreppe von V mit gradw&lt;e. Daher ist Ô(V&apos;)&lt;

Ô(V) und h(J(V&apos;*)) &gt;h{3&gt;{V U u)) h($(V* -vUu))&gt;

(4.7) HILFSSATZ. Sei $ e A*{&lt;£) numerisch lokal maximal. Die Multiplika-
tion mit Xr induziert einen injektiven Homomorphismus von k-Vektorrâumen

Rn^IVn.x-&gt;RJVn fur aile l&lt;/i&lt;e-l,

wobei e : reg (S) &lt; d und E(#) (Vo, Vd) ist.
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Beweis: e&lt;d ist verabredungsgemâB erfullt (vgl. 4.1). Angenommen,
Xr • x € Vn mit x $ Vn-X und n &lt; e. Man kann ohne Einschrànkung x als Monom
annehmen. Aus der B(rf fc)-Invarianz folgt Rxx c Vn und daher

Ri E &lt;p{Vn-x + k-x)&lt;zVn.
q&gt;eB

Da B auflôsbar ist, gibt es einen B-invarianten Unterraum Vn-X &lt;= E c 2q&gt;(Vn-x +
kx) mit dim£ dimVrn_1 + l. Es folgt RxEaVn. Sei etwa E Vn-x+ky mit
einem Monom y (vgl. den Beweis von 4.5). Es ist RxVe-x^Ve, da aus

RxVe-x Ve folgen wùrde S^i^e - 1)) //%?(*)) und hieraus mit (2.1) und

(3.4.3) reg(^)&lt;e. Da B auflôsbar ist, gibt es einen Z?-invarianten, 1-

codimensionalen Unterraum FczVe mit /?1Vrc_1c=F. Sei wieder Ve F + kz, z

Monom. Dann wâre V &gt;-*V - z Uy wachsende Modifikation.

(4.8) HILFSSATZ: Sei J&gt;eA*(&lt;e) numerisch lokal maximal, reg(^) e und
#&lt;£&lt;£*. Dann ist (i) reg(^?)&lt;e und Ve_x czH°(g(e - 1)) 1-codimensional; (ii)
gradx e — 1, vven/t K 7Ujc irgendeine Erweiterungstreppe von V

fîewm: Sei B fl(r, &amp;) und L H°(2{e - 1)). Ve H\5£{e)) folgt aus der

e-Regularitât von $ (vgl. den Beweis von 4.2).

FallX. RxL^Ve.
1. Unterfall: Ve-X^L. Dann ist Z^^^^/^jL^K, wie man leicht mit der

Bedingung (*) in 4.2.3 sieht. Es gibt einen B-invarianten, 1-codimensionalen
Unterraum FczVe mit RxLczF. Daher ist F + kv Ve, v ein Monom. Ebenso

gibt es einen B-invarianten Unterraum Ve-xczE aL mit dim/s/K-i 1. Dann
ist E Ve-\ + /:w, m ein Monom und V*-±V — v\Ju wachsende Modifikation.

2. Unterfall: Ve_x L. Aus (4.7) folgt Vn H{)(ï£(n)), 0&lt;n&lt;d und daher

Fa//2. RxL Ve. Da reg (if) &lt;e ist (4.2.1), folgt mit (3.4.3) reg (S) &lt;e.

1. Unterfall: dim LlVe-x ^2. Wàhle einen B-invarianten Unterraum

K-^E^L mit dim£/Vre_1 l und sei £ Vtf_1 + /:y, y ein Monom. Da

RxE&lt;^RxL Ve ist, gibt es einen B-invarianten Unterraum RXE cz FaVe mit
dim Ve/F 1. Sei Ve F + kx, x ein Monom. Dann ist V^V -xUy eine
wachsende Modifikation.

2. Unterfall: Ve_x L. Wie im 1. Fall ergibt sich ein Widerspruch.
3. Unterfall: Ve^xcz L 1-codimensional bleibt als einziger Fall iibrig.

Angenommen, VUx wâre eine Erweiterungstreppe mit m degjc&lt;e-l.
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Da XrX e Vm+i, ergibt sich mit (4.7), daB x eVm wàre, Widerspruch. m &gt;e ist
auch nicht môglich, da Vn H{){&lt;£(n)) fur n &gt;e (Gleichung (*) in 4.3).

(4.9) LEMMA. Sei VczRd ein Vektorraum, UczV ein \-codimensionaler,
unter G U(r, k) • T(p) invarianter Unterraum. Dann ist RXU &lt;^R\V&gt; wenn eine
der folgenden Bedingungen erfûllt ist:

(i) pr #0 und V ist B(r, k)-invariant\
(ii) pr 0 und V ist G-invariant.

Beweis. (i) Wenn pr&lt;0 ist, ersetzt man p durch —p und kann daher ohne

Einschrânkung pr &gt; 0 annehmen.

1° Sei dim V n -h 1. Nach (3.5.1) hat U eine Basis der Form
verschiedene Monôme, pt{t) — 1 H-a^/4- • • • +«,/&apos; Polynôme. Durch lineares
Kombinieren kann man darùber hinaus erreichen, daB jedes Af, nicht mehr in

MjPj{Xp) vorkommt fur aile i^j. Da V von Monomen erzeugt wird, folgt
M, e V, atJMtXJ peVy 1 &lt;y &lt; «,, 1 &lt; i &lt; ai. Da dim V ai + 1 ist, kônnen folgende
beiden Fàlle eintreten.

1. Fall: Allefl/y 0.

Dann wird U von Monomen erzeugt, und wir schlieBen so:

MeV Monom^&gt; XrM e /?, V RxU^XrM XM-

Wenn s r, dann M M, e U. Wenn s &lt; r, dann M XSX~XM, e U (Bedingung
(*)in4.2.3)=&gt;t/= V.

2. Fa//. Die Menge {M,XJ p | atJ ^0, l&lt;y&lt;Aif; 1&lt;/&lt;ai} hat genau ein
Elément, das wir mit Mn + i bezeichnen. Dann ist V (M,, Afw+1), und es

gibt eine Basis von U der Form f, M, + a,Mn+x mit A/w+1 A&apos;&apos;7&apos;

&apos;&apos;M, und d, &gt; 0,

falls a^O. Dann miissen die d, paarweise verschieden sein, da die M, es sind.

Derjenige Index i, fur den a, =£0 und d, minimal ist, wird jetzt n genannt, m.a.w.
es ist grad^r Mn &gt; grad^ Mn falls a, ^ 0. In fn ist dann an # 0 nach Konstruktion,
und Ersetzen von / durch / - a~lajn M, — a~la,Mn, falls at =£0, gibt eine Basis

von U der Form

&apos;\&lt;/l&gt;0, falls

(/)= (Mj, Mn) limk^()cpr(k)U ist invariant unter B(r, k). (Begrùndung:
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U e Z(k), Z Fixpunktschema von Grass&quot; V unter G. Grm operiert auf Z, da G^
die Gruppe G normalisiert. Da Z projektiv ist, ist f/° lim cpr(k)U eZ{k) und
auch invariant unter G^, vgl. 3.3). Daher ist W U H lf} invariant unter G.

Wegen U + if V ist Walf 1-codimensional, daher W (/,,...,/„_,) und

folglich W° limA^0(pr(A)W (Mu Mn^x).
Durch Induktion nach dim V folgt: Es gibt eine Basis /i, ,/„ von U und

eine Zahl 1 &lt;m &lt;« mit folgenden Eigenschaften:

(a)/ Af,, l&lt;i&lt;m-l;
(b) / M, + a,M,+1, a, #0, Ml+1 MtXdt p, mit geeigneten ganzen Zahlen

(c) £/, (/i, ...,/) ist G-invariant, l&lt;/&lt;n;

(d) Jl} limÀ_() (p&apos;CA)^, &lt;Af,, M,) ist B(r, fc)-invariant, 1 &lt; i &lt; n.
Wir bemerken noch, daB tatsàchlich m &gt; 1 ist, da jeder (/(r, /c)-invariante
Teilraum von Rd das Monom A&quot;f enthàlt.

2° Zur Abkùrzung setzen wir (Mu Afm_!) £ und schreiben l e Ri in
der Form /&apos; + cXrf V Linearform ohne Xr. Wir schlieBen indirekt:

XrMn+l s g (/; + clXr)(Ml + «fAfl+1) mod /?,£.

Da 7?!^ von Monomen erzeugt wird, erhâlt man durch Sortieren nach Potenzen

von Xr\
(I) {\-cnan)XrMn^eRxE

(II) aJ&apos;nMn+, + (cn + cn.xan-x)XrMn eR^E
(III) (/;+1 -h alït)Ml+l + (c, + c-^-OXAf, e /?,E fur aile m + 1 &lt; i &lt; n - 1

(IV) (C+1 + ûmC)Afm + ,+cmJrrAfm €/?,£.
Es kann nicht sein, daB c, 0 fur aile m &lt;/&lt;n ist, da dann aus (I) folgen

wiirde Mn+1 e £&quot;. Daher gibt es ein m^j ^n mit c, 0 fur i &lt;/ und cy ^ 0. Wenn
m &lt;/ &lt; n ist, wurde aus (III) folgen

(/;+1 4- fly/;)A#;+l + cy^rMy € /?,£.

Da XrMj nicht in /?t£ liegt, muB XrM} XvMy+1 fur ein Xs mit 1 &lt;5 ^ r — 1 sein,
das in /y+i + a;/;&apos; vorkommt. Wenn y=n wâre, wiirde aus (II) folgen XrMn
XsMn+x fiir ein Jf5 mit l&lt;s:&lt;r — 1, das in art/^ vorkommt. Wenn schlieBlich
y m wâre, wiirde aus (IV) folgen XrMm - XsMm+x fiir ein Xs mit 1 &lt;5 &lt; r - 1,

das in C+i + ^m&apos;m vorkommt. Jedenfalls hat man MJ+l=X~lXrMj fiir ein
m &lt;y &lt; n und 1 &lt; ^ &lt; r - 1. Daher ist *p X;lXr.
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3° Wir schreiben fm Mm + amMm+l in der Form

wobei a as, j3 ar und g dm &gt;0 ist. Wir nehmen q&gt; e U(r, k) mit &lt;p{Xr)

Xr + kXs&gt; &lt;p(Xl) Xt% i&lt;r. Dann ist f
kXsY+gy und man erhàlt

-fm MXf 2 (p)ivx;xç-v + aAfxr8 E
P+g /

Da q&gt;(fm)-fmeE ist (vgl. Bedingung (c) in 1°), folgt durch Sortieren nach
Potenzen von À

und daher

&lt; v &lt; j

Fur v g erhâlt man Mm e E, Widerspruch.

(ii) Wir behandeln nun den Fall pr 0 und zeigen zunàchst die Exaktheit der

Sequenz

O^RJU^R^JR.U. (*)

Sei dazu ft M,p,(^P) eine Basis von U wie am Anfang von (i). Sei Xr • x e Rx U.

Wir schreiben Xr • x E /,MI/?l(Arp), wobei man ohne Einschrànkung annehmen

kann, /, ist Linearform ohne Xr. Aile Terme, fur die M, die Variable Jfr nicht
enthâlt, miissen sich gegenseitig aufheben, da die pt(Xp) kein Xr enthalten.
Daher kann man ohne Einschrànkung annehmen, daB Xr in allen Mt vorkommt.
Wir nehmen &lt;p e U(r, k) wie in 3°. Wenn dann etwa f N- Xarp(Xp) e U ist, N
Monom, a eine positive ganze Zahl und p ein Polynom, dann ist (p(f)
N - p(Xp) E (°WXvsXar~v e U and folglich NXvsXar~vp{Xp) e(/, 0&lt;v&lt;a. Wenn
daher leRx die Variable Xr nicht enthâlt, hat man lX~lf e U. Wendet man dies

an, dann folgt x e U.

Ebenso folgt, daB (*) mit V anstelle von U exakt ist. Aus RXU-RXV folgt
also l/ V.
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(4.10) LEMMA. J&gt;0czJ&gt;0 seien zwei numerisch lokal maximale Idéale aus
A*{&lt;£) mit H.P. Q bzw. Q + 1, derart daB %*£* ist. Wenn %^A eine starre
Déformation innerhalb A(££) ist, dann induziert dièse entweder eine starre
Déformation J&gt;0*-^J&gt;xc:$&gt;x oder eine starre Modifikation J&gt;0»-»^ c% und eine

starre Déformation $x »-» $2 cz $¦*-

Beweis. 1° Entsprechend zu (4.2) hat man Zerlegungen

H°(Mn)) © Xï-W?, 0 &lt; n &lt; d.
/=()

Wir setzen reg (^0) e und erhalten mit Gleichung * * * aus (4.3) und (4.8):

V°n H°{2(n))9 e&lt;n&lt;d, VjL, c H°(£(e - 1))

ist 1-codimensional und reg {££) &lt; e — 1.

Aus der exakten Sequenz 0-&gt;^0-&gt;&lt;^o&quot;*A/^o&quot;&lt;&gt;0&gt; in der /o/^o a^s Modul
mit konstantem Hilbertpolynom 0-regulâr ist, folgt reg (^O) &lt;e. Aus h{\%{d))
A%*o(&lt;*)) + 1 und H0(Md))^H°(Md)) folgt Von W°n H°(2(n)), e^n^d,
und VQn W°n fur aile n &lt; e bis auf einen Index, fur den V° c WQn 1-codimensional
ist. Wàre V°e^ W°e.u dann wûrde aus (4.7) folgen V°n W°n fur aile n &lt;e - 1

und daher J&gt;0 J&gt;0. Ebenso kann nicht VQn ^ WQn fur ein n &lt; e — 1 sein, da dann
VS.! lV2-i wàre. Man erhâlt: V°n W°n fur aile n^e-l, WS H°($(n)),
n&gt;e-\.

Da oben reg (^) &lt; e - 1 gefolgert wurde, ist #! W£ W°n+U n&gt;e-l, daher

51/^(/0(n)) //°(A(« + l)), n&gt;e-l, und mit Lemma 3.4.3 folgt re

e-1.
Angenommen, ^0 wâre e-2-regulâr. Dann folgt aus der exakten Sequenz

zunàchst einmal, daB H°(%(e - 2))-»/f°(i?(e - 2)) surjektiv wâre, d.h. W(J_2

H°(g(e - 2)). AuBerdem wurde die (e - 2)-Regularitàt von «S? folgen. Hieraus
erhâlt man aber V°n H°(£(n)), n&gt;e-2y Widerspruch. Man hat also
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Anwendung von (4.8) auf % gibt:

V«_2 wï-2 c H\5£{e - 2)) ist 1-codimensional, reg (i?) &lt; é&gt; - 2.

2° Nach Définition (vgl. 3.5) ist die starre Déformation gegeben durch ein

Ideai J&gt;eHQ+l(k), wobei G B(p) mit po 0 ist. Daher hat man nach (4.2)
eine Zerlegung

H*(J(n)) © X%-&apos;Wn W, c H\ï£{i)) G-invariant.
01=0

Sei ps eine positive Komponente. Wir schreiben çp(X) statt cp\X). Nach der

Voraussetzung ist ^{)-\\mk^()q){X)^y und aus 1° folgt mit (4.3) und (4.2.1), daB

//%S?(n)) W,,, e-l^n^d. Aus (3.5.2) folgt *%£(*)) *%&amp;(*)), und da-

raus mit 1°:

W,_2 c //%#(* - 2)) 1-codimensional.

Anwendung von (4.9) und die Auflôsbarkeit von G geben einen 1-codimensionalen,
G-invarianten Unterraum Rx We_2cz U c H()(££(e - 1)). Nach (4.2) wird ein
G-invariantes Idéal S &lt;= $ mit Hilbertpolynom Q definiert durch die Folge
V (Vo, • Vd) mit Vn Wn,n*e-\, Ve.x t/ und

H\S&gt;(n)) © JfS&quot;^, 0 &lt; « &lt; rf.
/=o

3° Sei ^(0) limA_0 y(K)$. Die in (3.2) und (3.3) angegebene Konstruktion soll
hier genauer ausgefiihrt werden. Sei A k[X\ und I die Fortsetzung der Garbe

auf X x Gm zu einer Garbe auf X® A. Dann ist

H°(l(d)) Fortsetzung des Gm-Bûndels (p(X)H°(J&gt;(d)) zu einem

v4-Biindel
d

© XtnVÏ, V* die Fortsetzung des Gm-Bùndels &lt;p(k)Vn
o

zu einem /l-Bundel.

Weiter ist

A k(0)) H&quot;(l(d)) ®A k{0),
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weil hier die Bildung der Kohomologie mit Basiswechsel vertauschbar ist (vgl.
2.2 iii). Esfolgt

d

H°(J&gt;(0)(d)) © XtnVn(Q) mit Vn(0) V* ®A k(0).

Nach Voraussetzung ist % limA^0 &lt;p(Â)/ und daher mit W* Fortsetzung des

Gm-Bùndels &lt;p(X)Wn:

e
n=0

Nun ist aber Vn Wn und daher V* W* fur n ¥=e - 1, so daB VK\ Vn(0) fur
n ^ e - 1 folgt.

1. Fall. Ve_,(0) V(;_,. Dann ist

2. Fall. Ve^(0) * V^{. Dann ist aus Dimensionsgrunden E V,_i(0) H V^,
c: W(J_j ein 2-codimensionaler, B(r, A:)-invarianter Unterraum. Man hat V&quot;.,

E © kuy Ve.x(0) - E © A:u, w und u Monôme, and V°«-&gt; Vl) -mUu eine numer-
isch starre Modifikation von ^() in

(4.11) DEFINITION. Ein Idéal 3 e A*(&lt;e) mit Hilbertpolynom Q(T)
H(T)-c wird definiert durch eine Treppe V (V[)y Vd) im Sinne von
(4.2.3). $ heiBt numerisch relativ maximal, wenn Vn H{)(J£(n)) fur aile n &lt; e - 1

und n &gt; e + c und Vn c H°(3?(n)) 1-codimensional ist fur aile e&lt;n&lt;e + c-l,
wobei e reg (if).

HILFSSATZ 1. Wenn S n.r.m. (numerisch relativ maximal) ist, dann ist $
n.l.m. (numerisch lokal maximal).

Beweis. Annahme E(J&gt;) V&gt;-&gt;V-xUy=W= E(#) wachsende Modifikation
&lt;m gradjc^&gt; Wn H{)(£(n))^&gt; Wm H\ï£(m))^&gt;x e Wm.

HILFSSATZ 2. Wenn 3 e A*(%) dieselbe Hilbertfunktion wie ein n.r.m. Idéal
hat, dann ist 3 n.r.m.
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Beweis. h(n) Er=o^°(^(0) ist die Hilbertfunktion von i?*, und nach

Voraussetzung ist

h\S&gt;{n)) \ h(n) - (n - e + 1);

die Hilbertfunktion von J?. Wenn E{S) V ist, ist K, cH°(£(n)), und die

Behauptung folgt aus

{ *%S?(/i))-l;

HILFSSATZ 3. Wenn J? 6 4*(iP) n.r.m. m/r Hilbertpolynom H(T)-c ist,
dann ist reg (^) e + c.

Beweis. Da /?! Ve+C_! ^ Ve+C ist (Lemma 4.9), ist SxH°($(e + c - 1)) £
0*( + c)), daher reg(^)&gt;e + c. Andererseits ist /î1V; Vll+1, n&gt;e + c,

daher SxH\S{n)) //%*(/! +1)), «&gt;e + c, so da6 mit Lemma (3.4.3)
reg (^) &lt; ^ + c folgt.

HILFSSATZ 4. Sefe/i $&lt;z$ zwei Idéale aus A*(S£) mit Hilbertpolynom Q
bzw. (2 + 1. Wenn S n.l.m. und $ n.r.m. ist, dann ist auch J&gt; n.r.m.

Beweis. Sei E($)= Vy E(J?) W. Im Beweis von Lemma (4.10) hatte sich

reg (j) reg (J&gt;) - 1 ergeben. Nach (4.8 ii) ist Vn Wn fur aile n*l, /:
reg(/) - 1 reg($) e + c - 1 und V, aH()(&lt;£(1)) 1-codimensional.

HILFSSATZ 5. $ e A*(ï£) soll n.r.m. sein und das Hilbertpolynom Q + \
haben. Wenn 3&gt;l e A*(££), / 1,2 in $ enthalten sind, das Hilbertpolynom Q

haben und beide n.r.m. sind, dann gibt es eine starre Modification von 3&gt;x in y&gt;2,

die in $ enthalten ist.

Beweis. Sei E(#) W, E(J&gt;1) V und Q(T) H{T) - c. Nach dem Beweis

von Hilfssatz 4 ist Vln Vl Wn fur aile n*/ e + c-l und VJcW,
1-codimensional. Wie im Beweis von (4.10.3°) konstruiert man dann eine starre
Modifikation Vl^V2.
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(4 12) SATZ Man kann jedes Idéal 3 e A*(J£) durch eine Folge von wach-

senden Modifikationen und starren Deformationen mit einem numerisch relativ
maximalen Idéal in A*(££) verbinden Je zwei numerisch relativ maximale Idéale

mit dem gleichen Hilbertpolynom konnen durch eine Folge starrer Deformationen
numerisch relativ maximaler Idéale miteinander verbunden werden

Beweis Sei Q(T) H(T) — c das Hilbertpolynom von 3 Wir beweisen den

Satz durch absteigende Induktion nach c, wobei der Induktionsanfang mit c 0

tnvialerweise erfullt ist Sei also c &gt; 0 und der Satz fur c — 1 nchtig

1° Wir wahlen zu jedem 3 e A*(ï£) ein Idéal 3a3*eA*(&lt;£) mit
Hilbertpolynom Q + l Das Paar (3, 3*) erfullt dann eine der folgenden Bedingun-

gen (a), (b) und (c)

(a) 3 ist nicht numerisch lokal maximal
Folgerung Es gibt eine wachsende Modifikation $ •-&gt; S

&apos;

(b) 3 ist numerisch lokal maximal, 3* ist nicht numerisch lokal maximal

Folgerung Es gibt eine starre Modifikation $^&gt;$x und eine numerisch wachsende

3X^3&apos;

Beweis der Folgerung Wegen (4 8) ist J&gt;* automatisch minimales Erweite-
rungsideal îm Smne von (4 4 3) Aus (4 6) ergibt sich die Existenz einer
starren Modifikation $^&gt;$x mit ô(Vx)&lt;ô(V) Nun ist reg(^) reg(J?,) nach

(4 3) Ware &amp;x numerisch lokal maximal, wurde wegen (4 8) folgen ô(Vx)-

(c) 3 und 3* sind numerisch lokal maximal

Folgerung Es gibt eine starre Transformation (das soll die Verknupfung von
starren Deformationen îm Kegel sein) t $ +^&gt;$&apos; mit 1(3&apos;*) &lt; 1(3*), wobei fur ein
Idéal $ e A*(££) mit Hilbertpolynom Q + 1 die Zahl /(/) die minimale Lange
einer Kette von starren Deformationen und wachsenden Modifikationen

mit numerisch relativ maximalem $n sein soll

Beweis der Folgerung Nach Induktionsvoraussetzung gibt es eine Kette
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(minimaler Lange) starrer Deformationen und wachsender Modifikationen

$**£*$x+-*$2+-* • • • •-¦»&lt;#, num. rel. maximal.

Hier ist T notwendigerweise starre Déformation, und nach (4.10) induziert 7 ein
Diagramm

U U

Wenn man also von einem Paar (J&gt;, &lt;?*) ausgeht, gibt es ein Paar (^&apos;, ^&apos;*),

wobei $&apos; aus 3 durch starre Deformationen und/oder wachsende Modifikationen
hervorgeht und entwender h(3&gt;&apos;)&gt;h{3&gt;) oder l(J&gt;&apos;*)&lt;t(J&gt;*) ist. Auf ($\3&gt;&apos;*)

wendet man das Verfahren noch einmal an usw. Das Verfahren muB schlieBlich

zum Stillstand kommen, und zwar genau dann, wenn ${n)* ein numerisch relativ
maximales Idéal und $in) ein numerisch lokal maximales Idéal ist. Dann ist nach

(4.11.4) auch 3(n) numerisch relativ maximal.

2° Wir beweisen nun den zweiten Teil des Satzes. Seien # und 3&apos; zwei
numerisch relativ maximale Idéale mit Hilbertpolynom Q. Wir wâhlen zwei

n.r.m. Idéal $a$&gt; und ^&apos;a^&apos; in A*(££) mit Hilbertpolynom (2+1 und
verbinden nach Induktionsvoraussetzung $ und $&apos; durch eine Folge starrer
Deformationen und n.r.m. Idéale

Nach (4.10) erhàlt man ein Diagramm

U U t — starre Transformation (vgl. 1°)

Da sich bei t die Hilbertfunktion nicht àndert, ist nach (4.11.2) auch $x n.r.m.
Man kann so weiterschlieBen und erhâlt eine Folge starrer Deformationen und

n.r.m. Idéale

Nach (4.11.5) gibt es schlieBlich eine starre Modifikation 3n^-^3i&apos;, q.e.d.
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5. Standarddeformationen

(5.1) Bezeichnungen und Verabredungen.
Die Bezeichnungen und Voraussetzungen sollen wie in (4.1) sein. AuBerdem

soll jetzt 5£ invariant unter U(r, k) • T(p) sein, wobei die Komponente pr &gt; 0 sein
soll. Wenn ps&gt;0 irgendeine positive Komponente von p ist, sind i?0

limA^o (p\k)5£ und «SP3C limA_»ac&lt;p*(Â)iP unabhàngig von der Wahl von ps

(vgl. 3.5.2).
Wir betrachten folgende Bedingungen fur die Garbe S£\

Standardannahme 1. reg («2J&gt;) reg (i?).
Standardannahme 2. RxH\ï£{e - 1)) ^ Hl)(J£(e)), e reg (#).

Wir sagen, wir verbinden das Idéal 3 a 6Y mit dem Idéal $ a 6Y durch eine

Standarddeformation (Bezeichnung: 3^*^), wenn es ein 5£ gibt, das obige
Voraussetzungen und die Standardannahmen erfùllt, so daB J&gt; i?0 und $ «2^

ist.

(5.2) LEMMA. i? erfùllt die Standardannahmen, wenn eine der folgenden
Bedingungen erfùllt ist:

(i) pr&gt;0

(ii) pr 0, und es gibt ein unter B{r -\y k) invariantes Idéal M c OPrk 2, derart
daB !£ in einem geeigneten Kegel iïber M liegt (vgl. 4.1).

Beweis. (i) reg (if()) &gt; reg (££) folgt aus dem Halbstetigkeitssatz. Aus der
e-Regularitàt von &lt;£ folgt RxH(\ï£(n)) H()(£(n + 1)), n &gt; e, und hieraus nach
Lemma 3.4.2 /?,//%%(/!)) //()(^()(« +1)), n^e. Mit Lemma 3.4.3 folgt
reg («%)&lt;&lt;?.

Wenn RxH&quot;{&lt;£(e -1)) //C)(iP(e)) wâre, wùrde aus denselben Grûnden
R.H&apos;X^ie - 1)) //%%(*)) und daraus reg (iP) reg (^) &lt; e folgen.

(ii) Aus (4.3) folgt sofort reg(i?0) e. Wie im Beweis von (4.3) hat man fur

H°(£e(n)) © Jrr&apos;VJ, Vn a H\M(n)) 5(p)-invariant;

H°(%o(n)) © X?-&apos;V?, V()n c H\M(n)) B(r - 1, *)-invariant;
1=0

dim V° dim Vn, neM; V°n=Vn=H°(M(n)), n&gt;e.

Angenommen, es ware /?,//°(if(e - 1)) H°{ï£{e)). Es folgt
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Daraus folgt PxH%M(e - 1)) H°(M(e)) Ve und daraus mit Lemma 4.9

Da reg(M)&lt;*reg{&lt;£) (vgl. 4.1), hat man also V°n H°(M(n)) und PxH°(M(n))
H°(M(n + 1)), n &gt; e - 1. Daher ist RxH°(£0(n)) H°(^(n + 1)), n &gt; e - 1, und
daher wegen (3.4.3) reg (&lt;£0) &lt; e, Widerspruch.

(5.3) LEMMA. J£cz6Y soll die Standardannahmen erfûllen und e ve

sein. Es gibt eine Folge von B(p)-invarianten, 1-codimensionalen Unterràumen
Un cH°(£(n)), e&lt;n&lt;d, mitfolgenden Eigenschaften:

(a) RxH0{%{e-\))aUeundRxUnciUn+u e^n^d-1.
(b) Setzt man

{ Un,

dann wird durch

H°(S(n)) © Xn0~lVn 0 &lt; n &lt; d,

ein U(r +1, k)T(p)-invariantes Idéal $aûx mit Hilbertpolynom H(T) — c

definiert, derart daB

(i) J&gt;0 limA_&gt;0 (ps{X)S&gt; € A*(&amp;o) numerisch relativ maximal;
(ii) reg(J?) e + c;
(iii) ^ die Standardannahmen erfullt;
(iv) ^e
Beweis. (a) Wir konstruieren zunâchst die Un und unterscheiden 2 Fâlle.

1. Fall. Die Komponente pr&gt;0. Wir nehmen einen U(rf k)T(p) G-
invarianten, 1-codimensionalen Unterraum RxHQ{5£{e - l))c UaH°(J£(e)) und
ein / e H°(&lt;£(e)) mit [/0kf H°(&lt;£(e)). Dann ist / automatisch G-invariant,
d.h. ç?(/) -/ e U fur aile e U(r, k) und #(/) - c(x) -feU fur aile x e T(p),
c(x) ein Charakter.

Behauptung 1. (7e+1 : RXU + L •/ ist G-invariant und 1-codimensional in
+ 1)), wobei Z/= P, und P *[*!,..., Z^^ gesetzt wird.



Unterschemata des Hilbertschemas 143

Beweis der Behauptung. 1° Zur Abkûrzung sei fur ein cp e £/(r, k) bzw.

XeT(p) q&gt;(f)-f ueU bzw. x(f)~ c(x) • f v e U gesetzt. Dann ist fur
leL q&gt;{l&apos;f) q&gt;{l)-{f + u) &lt;p(l)-f + &lt;p{l)-ueRxU + L-f und *(/•/)
x(O(ç - f + v) x(0 &apos; c &apos; f + X(0 &apos; v eRiU + L &gt; f. Daraus folgt die G-Invarianz
von Ue+X.

2° Wir zeigen Ue+lç H°(^(e + 1)). Annahme Xrf eRxU + L f^&gt;l • f eRXU
mit / axXi + • • • + ar_xXr^x + Xr, a, geeignete Kôrperelemente. Wenn q? e

U(r,k) mit &lt;p(Xr) Xr + kXs, (p(Xl) Xl fur i&lt;r^xp(l) • cp(f)e
cp(l) &apos;(f + u)eRxU,ueU geeignet^&gt;((^(/) - /) •/ e

XsfeRxU, l&lt;5&lt;r.

Sei MtftiX9) eine Basis von U wie in (3.5.1). Wir schreiben /=/° + ^r/1 +
^r/2+ * * *, f&apos;eP k[Xlt ^-J homogen. Hier ist /°*=0, denn aus /

e H°(£(e)) folgt g € //%£(&lt;? - 1)) und daher f Xrge U. Aus * folgt

wobei /, ePx und c, e A: ist. Da pr&gt;0 ist, d.h. Xp die Variable Xr enthàlt, folgt
durch Sortieren nach Potenzen von Xr

wobei die Summation ùber die Monôme erfolgt, die kein Xr enthalten. Sei
U&apos; cz Pe der Unterraum, der von diesen Monomen erzeugt wird. Da der von allen
M, erzeugte Unterraum U° invariant unter B(r) ist (vgl. den Beweis von 4.9),
folgt, daB Uf invariant unter B(r - 1) ist. Aus der exakten Sequenz in (4.9ii) folgt
dann f° eU&apos;. Hieraus folgt, daB fur geeignete a, e k und g eRe_x

ist. Dann muB aber ge//°(^(e-l)), daher Xrg e U und damit feU sein,
Widerspruch. Da Ue+1 + (Xrf) =RXU + Rxf RxH°{^(e)) #%£(&lt;? + 1)), ist
Ue+x 1-codimensional.

Behauptung 2. Definiert man Ue U, Un= Rn^e-XUe+x fiir n &gt; e + 1, dann ist

t4 ein (/(r, A:) • r(p)-invarianter Unterraum und Un® (Xnr~e - f)
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Beweis der Behauptung. Die G-Invarianz ist klar und Un + {Xnr~e •/)
Rn.e.rL&apos;f+(Xre-f)=Rn-e-(U + k&apos;f) Rn.

l. Annahme

eine Form, die Xr hôchstens in n — e — l — ter Potenz enthâlt. Sei dann

cp e U{r, k) wie oben und

weil &lt;p(g) die &quot;Variable&quot; À hôchstens in n - e - 1-ter Potenz enthàlt. Es folgt

Xre&apos;feRn-eU, l&lt;5&lt;r. (**)

Ganz àhnlich wie im Beweis der 1. Behauptung folgt

Xre&apos;fePn-eU&apos;, l^s&lt;rf

und hieraus/°€ U&apos;t was nicht môglich ist, siehe oben.

2. Fall. Die Komponente pr 0. Wir definieren Ue wie im ersten Fall.
Angenommen, man hàtte schon Un fur ein n&gt;e. Aus RxH(){ï£(n)) Hi}(&lt;â(n + 1))
und (4.9) ergibt sich RxUn &lt;^H{)(J£(n +1)). Dann kann man wegen der
Auflôsbarkeit von G einen G-invarianten, 1-codimensionalen Unterraum RxUnc:
Un+l c //°(i?(n + 1)) finden.

Behauptung 3. Wenn Ue@k-f H°(2(e)), dann ist Un@ kXnr~e - f =-

2(n))9 n&gt;e.

Beweis der Behauptung. Sie sei fur ein n — 1 &gt; e schon bewiesen. Annahme

Widerspruch, da RxH{\&lt;£{n - 1)) H{\5e{n))y n - 1 &gt;e.

(b) Die Bezeichnungen sollen wie im Beweis von (4.10.3°) sein. Die
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Fortsetzungen V* der Gm-Bûndel (p{X)Vn erfùllen dann nach Konstruktion

Da aber H°(Jo(d)) H°(l(d))®Ak(0) ®iXi~nV()n mit V» V*n®k(0) und
h°(%{)(n)) h\ï£{n)) ist (vgl. Lemmata 3.4.1, 3.5.2), braucht man zum Nachweis
von (i) nur noch VJÎ c //°(«2},(n)) zu zeigen. Nun ist

V*d Fortsetzung des Gm-Bûndels cp(k)H{)(^(d))

H{\L(d))y

wobei L die Fortsetzung der Garbe q)(k)££ bezeichnet.
Nach (3.3.2) ist /J,Kn*cVw*+I, daher Rd.nV* c H°(L(d)) und deshalb V* c

H°(h(n)), 0&lt;n &lt;d. Weil schlieBlich die V^czRn®A direkte Summanden sind,
erhàlt man einen injektiven Homomorphismus

V: ®A k(0) &gt; H{\L(n)) ®A k(0) ^U H«(L(n) ®A k(0))

Beweis von (ii) und (iii). Aus reg (%) e und V()n H°(%(n)) fur n &gt; e + c

folgt /J,K2=l/2 + 1, daher SlH{\y{)(n)) H{)(J&gt;{)(n + l)), n&gt;e + c. Mit (3.4.3)
erhàlt man reg (^()) &lt; e + c, und der Halbstetigkeitssatz gibt reg (J&gt;) &lt; reg (J^()) &lt;

e H- c.

Angenommen, man hâtte reg (i)&lt;e + c. Dann wàre SlH{\J&gt;(e + c - 1))
(e + c)) und daher RxUe+t^x= H\ï£(e + c))y Widerspruch. Damit ist (ii)

nachgewiesen, und gleichzeitig zeigt dieser SchluB, da8 3 auch die Standardan-
nahmen erfùllt.

Beweis von (iv). Nach Définition ist J)y, \\mk^yz

wobei p, &lt; 0. Die Ùberlegungen zu (i) - diesmal mit den Fortsetzungen V* von
&lt;p&apos;(k)Vn auf k[k] - zeigen V* V* ® *(0) c //°(^(n)). Daher ist J^ cz ^3,, und
die Gleichheit ergibt sich daraus, daG i^ das Hilbertpolynom Q und daher $&apos;x

dasselbe Hilbertpolynom wie «S^ hat.

(5.4) SATZ. 7ede5&quot; Idéal 3 cz ûx mit Hilbertpolynom Qt das invariant unter
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U(r + 1, k) • D(r H-1, /c) w£, /cann dwrc/i eine Folge von Standarddeformationen
mit dem Idéal N(Q) verbunden werden, das von den Q(d) ersten Monomen vom
Gradd in der lexikographischen Ordnung erzeugt wird\ hierbei ist d irgendeine

ganze Zahl grôBer oder gleich n(Q).

Beweis. Wir schlieBen durch Induktion nach r, wobei der Induktionsanfang
r 1 sicher richtig ist, da es nur ein einziges Idéal mit festem Hilbert-
polynom gibt, das unter (7(2, k) • £&gt;(2, k) invariant ist. Dann gibt es zu $&gt;&apos;

3 + XQ6x(-l)/X06x(-l) eine Folge von Standarddeformationen in P*&quot;&quot;1:

r=&lt;e°Y~-- Y~&lt;£n N(Q&apos;)y Q&apos;(T) Q(T) - Q(T - 1).

Nach (5.3) kann man jede Standarddeformation ï£lY**!£lJtX zu einer Stan-
darddeformation J&gt;&apos;0^J&gt;L liften, wobei ^eA\^) und J&gt;lxe A*(gl+l) das

Hilbertpolynom Q haben und $l0 numerisch relativ maximal ist. Die Hil-
bertpolynome von J£l* haben nâmlich die Form Q(T) + cn mit co&gt;0 wegen
$ e 4*(&lt;2*}) und c,^c^x wegen h(ï£l)&lt;h{ï£l+l) (vgl. 3.5). Nach Satz 4.12 kann

man $lx mit dem numerisch relativ maximalen Idéal ^o+I € A*(3&quot;*1) verbinden
durch eine Folge wachsender Modifikationen und starrer Deformationen in
A*(J£l+l), welche nach (5.2) Standarddeformationen sind. Es ist nicht schwierig
einzusehen, daG Jf(Q) e A*(Jf(Q&apos;)) ist und die grôBte ùberhaupt môgliche
Hilbertfunktion hat (vgl. hierzu [G2], p. 292f). Mit (4.12) folgt dann, daB Jf(Q)
auch numerisch relativ maximal ist, und nochmalige Anwendung von (4.12) zeigt,
daB man $1 mit N(Q) verbinden kann.

6. LJnterschemata des Hilbertschemas

In diesem Abschnitt betrachten wir als Grundring einen noetherschen Ring R,
der Q enthàlt. Entsprechend setzen wir S R[X0, Xr], X Proj 5, HQR
HilbJ und zur Abkûrzung n(Q) d.

(6.1) DEFINITIONEN. Die Funktion f:N-+N soll die Bedingung /(«) &lt;

j, fur aile n eN, erfûllen. Die Menge der nicht verschwindenden Linear-

formen aus 5 mit rationalen Koeffizienten wird mit T bezeichnet. Fur t e T und

n &lt; d ist td~&quot;Sn ein freier direkter Summand von Sd und somit fur jede natùrliche

Zahl p &lt; j das spezielle Schubertschema op(td~&quot;Sn) definiert. Dièses ist ein

abgeschlossenes Unterschema des Grassmannschemas W Grass^(&apos;7) (5,/) und
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parametrisiert diejenigen direkten Summanden L vom Rang Q(d) von Sdy fur die

L H td~nSn einen Rang &gt;p hat (vgl. [K], p.285 bezùglich der Définition). Es folgt,
daB

V H {onn)(td-&quot;Sn) \teT,0&lt;n&lt;d}

ein abgeschlossenes Unterschema von W ist. Fur jede noethersche /?-Algebra A
sei

#*/.*04) {^ € HG.*(Speci4) | #V(&lt;0) e V(SpecM)}.

Dadurch wird ein Unterfunktor des Hilbertfunktors definiert. Nach einem

Ergebnis in (2.3) wird 3€&gt;ftR durch ein abgeschlossenes Unterschema H&gt;fR von
HQtR dargestellt.

LEMMA. Fur jeden Kôrper K iïber R ist

fr Hilbertpolynom Q,

so daB h\J&gt;(n)) ^f(n), neN}.

Beweis. Sei S ein Idéal aus der Menge auf der rechten Seite. Aus (Sd-n ®

°H°(f(d)) folgt td-flHo(J(n))czHo(J(d))9 teTy 0&lt;n&lt;d, daher
K H H°(J(d)) ^ h\J&gt;{n)) &gt;/(/i) und somit H{)(J&gt;(d)) e V(K).

Sei umgekehrt ^ e 5%&gt;ftR(K). Es gibt ein r e T, das kein Nullteiler auf
S®K/®n^QH°(J&gt;(n)) ist. Dann ist td~n(Sn ® /C) H H\${d)) H{){${n)) und

BEMERKUNG. Falls /? ein Kôrper ist, gilt: Wenn f(n) &lt; g(/i) fur aile n &gt; d
ist, ist die dem Schéma H^fR zugrundeliegende Punktmenge gleich der in der
Einleitung definierten Menge H&gt;f. Wenn f(n)&gt; Q(n) fur ein n &gt;d ist, ist H&gt;f

leer. (Dies folgt aus dem Lemma und h{\3{n)) Q{n), n &gt;d.)

Wir ùbertragen nun die Ergebnisse von Abschnitt 5 auf die hier betrachtete
Situation:

(6.2) SATZ. H&gt;fR ist zusammenhàngend, wenn Spec/? zusammenhângend
ist.

Beweis. 1. Fall. R ist ein algebraisch abgeschlossener Kôrper k.
Man kann jedes x e HQ(k) durch eine Folge von abgeschlossenen Bahnen mit
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einem Punkt y e Hg(k) verbinden, wobei die Hilbertfunktion nicht abnimmt (vgl.
(3.2)). Die Behauptung folgt dann aus (5.4), da bei einer Standarddeformation
die Hilbertfunktion ebenfalls nicht abnimmt.

2. Fall. R ist ein Kôrper k. Die Behauptung ergibt sich aus H^t

3. Fall. Spec/? ist zusammenhàngend. Sei Jt:H^R-+SpecR der kano-
nische Morphismus. Dann ist n projektiv, und die Fasern sind nach dem Ergebnis
im zweiten Fall zusammenhàngend. Da jede Faser das lexikographische Idéal

Jf(Q) enthâlt, ist n surjektiv. Man sieht leicht, daG eine disjunkte Zerlegung von
//&gt;/,/? in nicht-leere abgeschlossene Unterschemata eine entsprechende Zerlegung
von Speci? nach sich zieht.

(6.3) KOROLLAR. Das absolute Hilbertschema Hilbf=Hilb^ ist

zusammenhàngend.

Beweis. Sei F eine Zusammenhangskomponente von Hilbf. Es gibt dann eine
Primzahl p, derart da8 F^^ki=0 ist, wobei k der algebraische AbschluB von
Z/pZ sein soll. Die Gruppe D(r + 1, k) operiert auf Hilbf ® k und permutiert die
endlich vielen Zusammenhangskomponenten. Folglich ist F®#k stabil unter
D(r 4-1, k). Nach dem Borelschen Fixpunktsatz gibt es einen abgeschlossenen

Fixpunkt aus F®Iky der einem monomialen Idéal entspricht. Dièses definiert
dann automatisch einen Morphismus SpecZ—» Hilb&apos;*, dessen Bild mit F einen
nicht-leeren Durchschnitt hat; folglich faktorisiert der Morphismus ùber F. Dann
ist aber F®zQ^0. Wenn also Hilbf nicht zusammenhàngend wàre, mûGte dies
auch fur Hilbf &lt;8) Q gelten, was jedoch ein Widerspruch zu (6.2) wàre.

(6.4) Zum AbschluB betrachten wir noch einmal das Hilbertschema HQ ûber
einem algebraisch abgeschlossenen Kôrper der Charakteristik 0. Jeder Punkt

xeHQ bestimmt eindeutig ein Idéal 3 € HQ(Speck(x)), und eine Funktion reg
wird auf HQ definiert durch reg(x) reg(^). Nach dem Halbstetigkeitssatz ist

fur jedes meM

eine abgeschlossene Menge.

SATZ. H&gt;m ist zusammenhàngend.
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Der Beweis ist àhnlich wie der im ersten Fall von Satz 6.2, da bei

Spezialisierungen und Standarddeformationen reg nicht kleiner wird.
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