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Normal subgroups of classical groups over Banach algebras

Leonid N. Vaserstein

Introduction

Ail subgroups H of the gênerai linear group GLnA, n&gt;3, over a Banach

algebra A with 1, which are normalized by elementary matrices were described in

[2] (when n 2, [2] shows that the situation becomes more complicated and gives

partial results). In this paper, we obtain similar resuit for unitary groups. In the
next two paragraphs we give Wall&apos;s [4] définition of unitary groups which include
symplectic and orthogonal groups.

Let A be an associative ring with 1, *: A—&gt;A an anti-automorphism of A (i.e.
* is a bijection on A such that (x — y)* - x* -y* and (xy)* =y*x* for ail x and

y in A). We assume that x** exe* for some unit e e*~l of A and every x in A.
Set Fn e,t2 + «?2.i + • • • + ezn-um + «?2n,2ft-i e GL2nA, where eltJ are the

matrix units. Let U2n(A, *, e) or just U2nA for short dénote the group of ail g in
GL2nA such that g*Fng Fn (* is extended to anti-automorphisms of the matrix
rings in the usual way: (g% (g,,,)*). Since F* F~\ FneU2nA and U2nA is

invariant under *.
Hère are classical examples.

EXAMPLE 1. * is identical on A and e -1. Then A is commutative and
U2nA is the standard symplectic group Sp2nA.

EXAMPLE 2. * are as in Example 1, but e 1. If 2 is not a zéro divisor in A,
then U2nA is the orthogonal group O2nA of a quadratic form in 2n variables of
Witt index n.

EXAMPLE 3. A be the complex numbers,* the complex conjugation, e 1

or -1. Then U2nA is isomorphic to the standard unitary group.

EXAMPLE 4. A Dx Dop, where D is an associative ring with 1, Dop is the

opposite ring, and (d, d&apos;)* (d&apos;, d) for any (d, d&apos;) in A Then, for any e, U2nA is

isomorphic to GL2nD.
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104 LEONID N VASERSTEIN

The unitary group U2nA is a normal subgroup of the group GU2nA of unitary
similitudesy i.e. of ail matrices g in GL2nA such that g*FngF~x is a scalar matrix
over the center of A (the scalar matrix dépends on g, and it is l2n if and only if g
is in U2nA). For any idéal B B* of A, let GU2n(A, B) dénote the group of g in
GU2nA which reduce to scalar matrices over the center of A/B modulo B. This is

a normal subgroup of GU2nA.
Now we will define elementary unitary matrices. First, we define a bijection

&apos;

of the natural numbers by (2i)&apos; 2/ — 1 and (2i — 1)&apos; 2i for any integer i è 1.

For any « in -4 and any integers /, j such that l^i¥zjè2n we set El}(a)
hn + «*,., - e&apos;fl **&apos;*,&apos;.,&apos;, where c ((-1)&apos; - l)/2 and c&apos; (1 - (-1)0/2. It is easy
to check that ail thèse EltJ(a) belong to U2nA. In particular, E2k_U2k(a)

hn + (a - £*a*)e2k-it2k and £2*,2*-i(fl) l2n + (« - fl*e)e2*.2*-i.
For any idéal B B* of .4, let EU2nB dénote the subgroup of GU2nB

generated by ail EltJ(b) with b in Bf and let EU2n(A, B) dénote the normal

subgroup of EU2nA generated by EU2nB.

THEOREM. Suppose that A is a Banach algebra with 1 and n&gt;2. Then,

(1) EU^A, B) [EU2nA, EU2nB) [EU2nA, GU2n(A&gt; B)] [EU2n(A&gt; B),
GU2nA] for any idéal B B* of A.

So for every subgroup H of GU2n(A, B) containing EU2n(A, B) we hâve

[H, EU2nA] EU2n(A,B), hence H is normalized by EU2nA. Conversely, if n &gt; 3,

then

(2) for any subgroup H of GU2nA which is normalized by EU2nA there is an

idéal B B* such that EU2n(A&gt; B)aHa GU2n(A, B).

Remarks. 1. When n 1, (2) fails in the case of ordinary orthogonal groups,
because then the group EU2A is trivial. The conclusions (1) with n 1 and (2)
with n 2 hold under additional conditions on A&gt; *, s (for example, when A is

commutative and e ±1), but the situation in gênerai is unclear.
2. When * is the identity (so A is commutative) and e 1 or -1, our theorem

is contained in results of [3].
3. When A has no proper ideals B B* (for example, A is simple), our

theorem says that the group EU2nA modulo its center GU2n(A, 0) n EU2nA is

simple for n^3. Compare this with results of [1] about simplicity of unitary
groups over some factors A.

4. The group EU2n(A, B) is contained in the identity component GU2n(A, B)°
of GU2n(A, B). On the other hand, this component is contained in the subgroup
GEU2n(A, B) of GU2n(A, B) generated by EU2n(A, B) and diagonal matrices.

Therefore, when n s&gt;2, EU2n(A, B) [(GU2nAf, GU2n(A&gt; #)°]-
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Proof of (1)

Evidently, EU2n(Af B) 3 [EU2nA, EU2nB). Let us prove the inverse inclusion,

i.e. that every elementary unitary matrix Elf{a) in EU2nB belongs to the

commutator subgroup [EU2nA, EU2nB]. When *#/&apos;, EtJ(a) is the image of an

elementary matrix under a monomorphism s : GLnA—&gt; U2nA such that s{EnA) a
EU2nA and s(EnB) a EU2nB. (For a monomial matrix fin GLnA, depending on i
and /, with a non-zero entry 1 or £ in each row and column, we hâve

and s(g)=ri{80 ^_})f for ail g in GLnA.

Since EnBcz[EnA, EnB] (see [2]), E^(a)es{[EnA, EnB])Œ[EU2nA, EU2nB].)
When «=yr, we pick an integer k in the interval 1 &lt; k &lt; 2n such that k ¥= i and

k + 1 is even. Then £,,,(«) £*,,(*)[£* .*.(-fl), £,,*(-1)] e [EU2nA, EU2nB],
where x := a - e*a*. (By our définition, [g, h] : ghg~lh~\ so [Ekk(—a),
£«.*(-!)] l2« -^*,f -xeitk&gt; +xeltl&gt;.)

The first equality in (1) is proved.
To prove the second one, pick an arbitrary g in GU2n(A, B). For any

elementary E, }{a) in EU2nA any rational number r, we set h(r) [g, EtJ(ra)]. We
want to prove that h(l) e EU2n(A, B). When r is close to 0, h(r) is close to
/i(0) \2ny hence it is the product of a diagonal matrix from U2nB and a matrix
from EU2nB. Let GEU2nB be the group of ail such products. Evidently, it is

normalized by EU2nA. So h(l)eGEU2nB. Hence q&gt;(h&apos;) [g, /i&apos;] e GEU2nB for
any /*&apos; in EU2nA. Note that /*&apos; —» cp(hf)EU2n(A, B) is a group homomorphism
from EU2nA to GEU2nB/EU2n(A, B). Since the first group hère is perfect (see

above) and the second group is commutative (because it is a factor group of the

group GEnB/En(A, B) which is commutative by the Whitehead lemma that
allows us to permute diagonal matrices modulo elementary matrices provided that
n&gt;2), we conclude that the homomorphism is trivial. That is, (p{h&apos;)e

EU2n(A, B) for ail h&apos; in EU2nA. In particular, when h&apos; EltJ(a), we obtain that
^(1) is in EU2n{A&gt; B). The second equality in (1) is proved.

Using this with B=A, we conclude that EU2nA EU2n(A, A) is a normal
subgroup of GU2nA GU2n(A, A). Since GU2n(A, B) is also a normal subgroup
of GU2nA, we conclude that EU2n(Ay B) [EU2nAy GU2n(A, B)] is normal in
GU2nA too. That is, we obtain the third equality in (1).

Proof of (2)

Let H be a subgroup of GU2nA, and let H be normalized by EU2nA. For any
integers i and j such that 1 &lt; i #/&apos; &lt; 2n, we set XtJ {a e A : EltJ(a) e H}. Clearly,
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they are additive subgroups of A. The identity of the form [£&quot;,,,(#), Ehk{b)\
Elk(ab), where i^j^i&apos;y k^j^k&apos;, and k^j±k&apos;y show that XltJ Xu^
whenever i#7&apos; and that Xx 3 =: B is an idéal of A. Since Xh? (J42)*, B B*.
Now it is easy to check that ^2,_li2,= (^2i,2/-i)* {^ € B:b* -eb) for
1 1,...,/!.

Let us show now that the image of H modulo B belongs to the center of
GU2n(A/B). Otherwise, an élément g of H does not commute with an elementary
unitary matrix (note that the centralizer of EU2n(A/B) in GU2n(A/B) consists of
scalar matrices over the center of A/B). Then g does not commute with an

elementary unitary matrix £,,,(#) modulo GU2n(A, B) (otherwise we would
obtain a non-trivial homomorphism from the perfect group EU2nA to the
commutative group GU2n(A, B)/GU2nB). So h [g, EhJ(a/N)] e H and h is

outside of GU2n{Af B) for any natural number N. Taking a large TV, we obtain a

matrix h in H outside GU2n(A, B) which is arbitrarily close to the identity matrix
la,-

Now, after a permutation of the basis, we will think about U2nA as U2(MnA),
where MnA is the ring of n by n matrices over A. Since h is close to the identity,
we can write h E2i(c)diag(d, d*~l)Ex 2{b) where deGLnA, B -e*b* e

MnA, c -c*eeMnA. If c$MnB, we can replace h by b&gt;U2h(-bf)U2 with a

matrix b&apos; — e*b&apos;* in MnA (which results in replacing d by d + b&apos;c) to get a

non-diagonal entry of d outside B. Moreover the matrix b &apos; above can be taken to
be small, so the d-entry stays invertible. Similarly, if b $MnB, we can replace h

by (—c&apos;)2lhc&apos;21 with c&apos; ~-c&apos;*e in MnA to reach the same objective.
Thus, we can assume that H contains an élément of the form h

£2&gt;1(c)diag(d, d*~l)Eh2(b) with d eGLnA\Gn(A, B) (i.e. the image of d in

GLn(A/B) is not a scalar matrix over the center of A/B).
To complète our proof we need to show that H contains an elementary unitary

matrix outside GU2n(A, B).
Consider the set T of ail triples (c&apos;, d&apos;, b&apos;) e MnA x GLnA x MnA such that

f(c&apos;, d&apos;f 6&apos;)--=£2,i(c&apos;)diag(d&apos;,d&apos;*-1)£1)2(6&apos;)e/f. Note that if {c&apos;9d&apos;,b&apos;)9

(c&quot;, d!\ b&quot;) e T, then (c&apos; - c&quot;, drd&quot;~\ d&quot;(b&apos; - b&quot;)d&quot;*), (d&quot;-\c&apos; - c&quot;)d&quot;*-\

d&quot;~xd&apos;y d&apos; - d&quot;) e T. Indeed, E2tl(cTl(Kc&apos;, à\ b&apos;)t(c\ d\ b&quot;YlE2A{c&quot;)

t((c&apos; - c&quot;, d&apos;d&quot;-\ d&quot;(bf - b&quot;)d&quot;m) e H and £2il(c&quot;)(f(c&quot;, d\ b&quot;)&apos;lt{c&apos;9 d\
b&apos;))E2tl(c&quot;)&apos;l t(dr-\c&apos; - c&quot;)d&quot;*-\ d&quot;-ld&apos;, d&apos; - d&quot;) e H. Therefore, the projection

of TeMnA x GLnA x MnA on each of 3 factors is a subgroup there.
Since the set t(T) is normalized by ail éléments of the form diag(w, w~l),

where ueEnA, the group EnA acts on T. We use this action to define an

opération [,]&apos;:EHAxTr+T as follows: [u, (cf, d\ b1))&apos; (u*&quot;lc&apos;u&apos;1 - c&apos;f

[u, d% df(ub&apos;u* - b&apos;)dr*), where u e EnA and (c&apos;, d&apos;f bf) e T.

Note that the second projection H1 of T is a subgroup of GLnA and H&apos; is
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normahzed by EnA By [2], H&apos; contams an elementary matnx z1 2 \n + ze, -»

with z outside of B So we can assume that d z1 2 with z in ,4\# We will need

no conditions on A anymore
We hâve [1^ \ (c, d, b)]&apos; (cf, z&quot;12, •) je, e T with the matnx c&apos; c -

(-1)1 *c(—V l) in M^/4 having non-zero entnes only in the first column and row
Next we consider the triple x2 [(-l)2 &apos;

*,]&apos; (c&quot;, z^ •) in T Hère c&quot;

l12c&apos;(l2 l) -c&apos; can hâve non-zero entnes only at position (1, 1)

SetXi [l2\x2]&apos; (0,z2l9&apos;)eH Then

2) [diag (z2 \ (-z*)1 2), (ex -

Thus, // contains the elementary unitary matnx f(0, 1«, z^21 ~ £*

(ze2, - e*z*6i 2)! 2 (which îs E^4(z) in the original notation)
GU2n(A, B) Our proof îs completed

Hère are some entnes of the first 3 columns of the matrices h,

(namely, the positions (i, j) of the c- and d-parts with 1 &lt; i, j &lt; 3)

outside

t(x2),
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