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Problèmes d&apos;intersections et de points fixes en géométrie
hamiltonienne

Jean-Claude Sikorav

Introduction

Soit V une variété (compacte ou non) munie d&apos;une forme symplectique co.

Toute fonction H sur V définit un champ hamiltonien XH tel que i(XH)co — dH.
Une isotopie (q&gt;t, 0 ^ t ^ 1) de V est dite hamiltonienne si elle s&apos;obtient en

intégrant un champ hamiltonien Xt dépendant du temps. Nous nous intéressons

aux deux problèmes suivants.

PROBLEME 1. Si L est une sous-variété lagrangienne fermée de V, minorer
le nombre de points de (f\(L) n L.

PROBLEME 2. Si V est fermée, minorer le nombre de points fixes de çpx.

Ces problèmes sont liés à un ensemble de conjectures énoncées par V. I.
Arnold dans les années 60 (cf. [Al], [A2], [A3], [W2] Lecture 7, [Chl et [W4]).

Notons que la diagonale Av est une sous-variété lagrangienne de {V x
V, (o®(—a))) et que les points fixes de cpx sont en bijection avec les points de

{id x &lt;pj)(Av) H Av). Comme (id x q&gt;t) est une isotopie hamiltonienne, le

problème 2 est un cas particulier du problème 1.

On ne sait pas grand-chose sur le problème 1 sans hypothèse supplémentaire;
contentons-nous de remarquer que l&apos;intersection peut être rendue vide, par
exemple si V est le plan, L une courbe et (&lt;pr) une translation. Nous allons nous
limiter au problème local, c&apos;est-à-dire le cas où (q?,(L)) reste dans un voisinage
assez petit de L. D&apos;après [Wl], ce voisinage est symplectiquement isomorphe à

un voisinage de la section nulle LaT*L, où le fibre cotangent est muni de la
forme symplectique canonique coL. Changeons de notation et posons M L,
(V, co) (T*M, (oM). Si (q)t) est (^-petite, alors cpi(M) est la graphe de la
différentielle d&apos;une fonction sur M; donc #((px(M)C\M) est minoré par c(M),
nombre minimal de points critiques d&apos;une fonction sur M; si l&apos;intersection est

transversale, le minorant est cg(M), nombre minimal de points critiques d&apos;une

fonction de Morse. La conjecture d&apos;Arnold ([Al], [A2]) pour le problème 2 dit
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que le minorant est c(V), et cg(V) si les points fixes sont non dégénérés (cf. [Al],
[A2]).

Notons c{M) (resp. cg(M)) le nombre minimal de points critiques d&apos;une

fonction (resp. de Morse) définie sur un fibre vectoriel de base M et coïncidant
hors d&apos;un compact avec une forme quadratique non dégénérée.

THEOREME 1. Soient M une variété fermée et (q&gt;t) une isotopie hamil-
ionienne de (T*M, coM). Alors #(q)1(M) C\M) est minoré par c(M), et par cg(M)
si Vintersection est transversale.

Ce résultat est prouvé dans [LS] par la méthode des &quot;géodésiques brisées&quot; de

M. Chaperon ([Ch2], [Ch3]); nous allons en donner une nouvelle démonstration

qui le fait apparaître comme corollaire d&apos;un résultat sur les fonctions génératrices
d&apos;immersions lagrangiennes (proposition 1.2). Ce dernier résultat a été annoncé
dans [S2] comme corollaire du théorème 1; la preuve directe que nous en
donnons ici revient à ne considérer qu&apos;une discontinuité à la fois.

COMMENTAIRE. On a c(M)&gt; CL(M) + 1, où CL(M) est la longueur de

produit (cup-length) de l&apos;anneau de cohomologie de M, et cg(M)&gt;SB(M),
somme des nombres de Betti de M (cf. [ChZ], p. 90-94). Les minorations de

#(q&gt;(M) DM) par CL{M) + 1 ou SB(M) avaient été prouvées antérieurement à

[LS] par H. Hofer [H]. Notons que si M est une surface fermée, alors

c(M) CL(M) + 1 et cg(M) SB(M).
Pour le problème 2, nous allons nous limiter à une classe spéciale de variétés

symplectiques, que nous appellerons symétriques à courbure négative ou nulle,
caractérisées par les propriétés suivantes:

(SI) II existe sur V une métrique riemannienne de courbure négative ou nulle
et une structure presque complexe J telles que

(*) (o(X, Y)=(JX, Y), si XeTqVttYeTqV.
Si V est le revêtement universel et q e V&gt; l&apos;application exp^ est alors un

difféomorphisme de Tq(V) sur V.

(S2) Pour tout q e V, la symétrie par rapport à q&gt; définie par

sq:V^&gt;V, sq(expq (X)) exp, (-*),
est un difféomorphisme symplectique pour la structure relevée.

EXEMPLES, a) Les surfaces de genre &gt;1: en effet, (SI) est vérifiée avec une
courbure constante, et les sq sont des isométries, donc conservent l&apos;aire.
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b) Plus généralement, les variétés kahlériennes compactes dont le revêtement
universel est un espace symétrique hermitien de type non compact.

THEOREME 2. Soit (V, oo) une variété symplectique symétrique à courbure
négative ou nulle, et soit (q&gt;t) une isotopie hamiltonienne. Alors le nombre des

points fixes de q&gt;x est minoré par c(V), et par cg(V) si ces points sont non
dégénérés.

COROLLAIRE. La conjecture d&apos;Arnold est vraie pour les surfaces de genre

Une preuve géométrique de ce corollaire a été proposée en 1978 par I. M.
Eliachberg [E]. En 1983, le célèbre théorème de C. C. Conley et E. Zehnder
[CoZ] prouve la conjecture d&apos;Arnold pour le tore T2n muni de sa structure
standard, en résolvant le problème variationnel associé. Leur méthode a été
étendue par A. Floer ([F]) et l&apos;auteur ([SI]) à certaines variétés de courbure
négative ou nulle, incluant les surfaces de genre &gt;1, et par A. Weinstein [W2] au

cas où V est quelconque mais (q&gt;t) est C°-petite; le minorant est CL(V) + 1, et

SB(V) génériquement. La même méthode est utilisée dans [H]. Enfin, signalons

que M. Gromov [Gr2] obtient des résultats sur les problèmes 1 et 2 par une
méthode totalement différente: par exemple, si dans le problème 1 on a

[cw] | n2(V, L) 0, alors (p}(L)(lL n&apos;est pas vide, pourvu que V satisfasse à

certaines conditions très souvent vérifiées dans la pratique.
Nous déduisons le théorème 2 du théorème 1 en prouvant que le revêtement

de V x V associé à la diagonale est symplectiquement isomorphe à T*V
(proposition 2.1); je remercie Michèle Audin pour avoir attiré mon attention sur
la théorie des feulletages lagrangiens, qui permet d&apos;en donner une preuve très
simple.

Je remercie aussi le rapporteur de [S2] pour avoir suggéré l&apos;existence d&apos;une

preuve directe de la proposition 1.2, et François Laudenbach pour les simplifications

qu&apos;il y a apportées.

ADDENDUM. Informations données par le rapporteur:
1) K. Sekigawa et L. Vanhecke (prépublication) ont prouvé que toute variété

presque hermitienne où les symétries géodésiques locales préservent la forme de

Kâhler est nécessairement une variété kàhlérienne localement symétrique. Donc les
variétés satisfaisant aux hypothèses du théorème 2 sont celles de l&apos;exemple b).

2) L&apos;idée de la proposition 2.1 semble remonter à Weinstein: en tous cas, sa
version locale est un cas particulier de la description du voisinage d&apos;une variété
lagrangienne quelconque, (cf. [Wl]), et J. P. Jacob ([Geom. Dedic. 10 (1981),
223-259]) lui attribue l&apos;idée d&apos;utiliser le milieu de deux points pour le prouver
quand les symétries géodésiques sont symplectiques.
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1.1. Préliminaires. Définitions et notations

Dans cette partie on considère le fibre cotangent T*M d&apos;une variété fermée;
un point de T*M est noté (q, p), q eM, p e T*M. Il est muni de la forme de

Liouville KM =p • dq et de la forme symplectique cdm —dkM. On choisit sur M
une métrique riemannienne auxiliaire ju, ce qui définit des connexions sur TM et
T*M.

A) Pour R &gt; 0, on note GR le groupe des difféomorphismes {&lt;p q&gt;u où (&lt;p,)

est une isotopie hamiltonienne de T*M définie par (Ht) à support dans

ACTION. Soit (p &lt;f\ un élément de GRy on définit de façon classique une
fonction A sur T*M, à support dans

\ {pt-dqt-Htdt),

l&apos;intégrale étant prise le long de la trajectoire (qt, pt) &lt;pt(q, p). Sa différentielle
est donnée par

dA (p*k -k=pï-dq1-p -dq, (qu px) cp^q, p). (111)

Donc A ne dépend que de (px et la dépendance est continue pour les topologies
C\

B) Considérons ensuite un fibre vectoriel E sur M et une fonction 5 définie
sur un ouvert de E.

1) Un point e (q} v) de E est critique le long de la fibre si la différentielle dSe

est dans l&apos;image de jt* : TfM ^ T*E, où k est la projection de E sur M.
L&apos;ensemble de ces points est noté Is.

2) On dit que S est une phase (ou fonction) génératrice si dS est transverse à

jt*T*M: alors 2S est une sous-variété de dimension égale à celle de M, et l&apos;on

définit

D&apos;après [W2] p. 26, is est une immersion lagrangienne, que l&apos;on dit être
engendrée par S; cette définition s&apos;étend au cas d&apos;une immersion i is° t/;, où ip
est un difféomorphisme.

3) Si de plus S est définie sur E tout entier et coïncide hors d&apos;un compact avec
une forme quadratique non dégénérée, on dit que S est une phase quadratique.
Enfin, si de plus E est un fibre trivial M x R* et si la forme quadratique ne
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dépend que de la seconde composante, on dit que 5 est une phase quadratique
spéciale.

EXEMPLE. La section nulle M a T*M est engendrée par la phase
quadratique spéciale S 0 sur M.

AFFIRMATION. Si une immersion est engendrée par une phase quadratique,
elle l&apos;est aussi par une phase quadratique spéciale. La preuve de cette affirmation
est laissée en exercice au lecteur: elle découle aisément de l&apos;existence d&apos;un fibre
E&apos; tel que E © E&apos; soit trivial.

PROPRIETE. Les points critiques d&apos;une phase génératrice S sont en

bijection avec les points de Zs où ks rencontre la section nulle, les points de

Morse correspondant aux intersections transverses. Donc, si S est une phase

quadratique, on a:

#is\M) =&gt;c(M), #is\M)&gt;cH(M) si is est transverse à M. (1.1.2)

1.2. Enoncé du résultat clé

PROPOSITION. Soit (&lt;pf) une isotopie hamiltonienne de T*M. Si Vimmersion
lagrangienne i dans T*M est engendrée par une phase quadratique, alors &lt;p, °/ l&apos;est

aussi.

Cette proposition entraîne le théorème 1 car M &lt;= T*M est engendrée par une
phase quadratique: donc &lt;P\(M) aussi, et il suffit d&apos;appliquer (1.1.2).

La démonstration de la proposition repose sur le lemme 1.5, lui-même basé

sur la construction suivante, inspirée par [Ch2].

1.3. Action avec un saut horizontal

Considérons le fibre TM ®T*M; ses éléments seront notés (q,x,p), où
q € M, x e TqM et p e T*M. Il est muni d&apos;une forme quadratique non dégénérée
So(q,xtp)=p x.

Fixons R &gt;0, et soit q&gt; eGR, d&apos;action A.
Supposons d&apos;abord que M est le tore Tn HF/Z&quot;, d&apos;où TM M x IR&quot;,

T*M M x(Un)\ On définit alors A+(q, x, p) =A(q +*,/?), d&apos;où, d&apos;après

(1.1.1),

dA+ ~pdq~pdx+pf • dq&apos;t (q&apos;, p&apos;) çp{q + je, p).

Posons F So + A + Comme dS{) — p • dx + x • dp, il vient

df —p dq -f x • dp + p&apos; • dq&apos;.
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Dans le cas général, on cherche une formule analogue avec

A+(q, x, p) A(q+,p+), q+ exp^ (x), p+ e T*+M,

La connexion permet de donner un sens à Dx, Dp, et l&apos;on a d(p • x)
p - Dx +x - Dp; elle permet aussi d&apos;écrire, en posant E(q, x) exp^ (x),

dq+ DE/dq • dq + dE/dx • Dx,

d&apos;où

dA+ [&apos;(D£/a?)(p+)] • d^ - Y(dEldx)(p+)} • Djc +p&apos; • dq&apos;.

Soit r le rayon d&apos;injectivité; alors si ||jt||&lt;r, dE/dx est inversible. Si l&apos;on

pose:

y t(DE/9q)(p+)eT*M,

on obtient la formule cherchée pour F 50 + A+:

dF=-ydq+x-Dp +p&apos; • dq&apos;y ||jc|| &lt;r. (1.3.1)

PROPRIÉTÉS, a) Si ||p|| est assez grand, alors qf exp^ (jc).

b) Si jc 0, alors y =p.

Ensuite, on choisit p : R + -* [0, 1] telle que p(t) 1 si t &lt; 1, p{t) 0 si r &gt; 2,

et l&apos;on pose

C,/?)=p-JC + p(4P||/r)A+(^x,/7) si ||jc||&lt;r/2,

/?-jc si ||*|| &gt; #72.

Il est clair que 5 est lisse et coïncide avec So hors d&apos;un compact. De plus, si

j|jc|| &lt; r/4, alors 5 coïncide avec F.

1.4. LEMME Si q&gt; est assez Cl-proche de Videntité de GR, les propriétés
suivantes sont vérifiées.

a) Si ||jc|| &lt;r/2, alors les variables (qfpf q1) sont indépendantes, c&apos;est-à-dire
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que Végalité

adq + vDp + a&apos;dq&apos;^Q, ae T*M, v e TqM, a&apos; e T*M,

entraîne a 0, v 0 et a&apos; 0.

b) Si ||*|| ssr/2, alors \d{q,q&apos;)-\\x\\\*r/32.
c) Si x¥=0, alors (q, xy p) n&apos;est pas critique le long de la fibre pour S.

Démonstration, a) Si &lt;p id, on a q&apos; exp^ (x) E(q, x), donc a) est vérifiée
puisque dE/dx est inversible. Comme on a aussi q&apos; expq(x) si ||p||&gt;/?, par
compacité la propriété a) est ouverte pour la topologie C1 sur les applications q&apos;\

d&apos;où le résultat puisque la dépendance de q&apos; envers &lt;p est continue pour les

topologies C1.

b) C&apos;est évident puisque q&apos; n°q)(expq (x), p+): C°-proche suffit.
c) Si &lt;p id, on a 5 Sq donc c) est vérifiée. Supposant a) vérifiée, on peut se

restreindre au compact {r/4^ ||x|| ^r/2, ||p||^J?}: d&apos;où le résultat puisque 5

dépend continûment de q&gt; pour les topologies C1.

Pour la suite, notons UR un C^-voisinage de l&apos;identité dans GR où les

propriétés du lemme 1.4 sont vérifiées.

1.5. LEMME. Soit q&gt;eUR: si l&apos;immersion lagrangienne i dans T*M est

engendrée par une phase quadratique, alors qp~loi l&apos;est aussi.

Démonstration. On peut supposer i i,, où s est une phase quadratique
spéciale, définie sur E M x Rk et vérifiant s(q, v) Q(v) hors d&apos;un compact.

Nous allons montrer que q&gt;~l°is est engendrée par une phase s&apos; sur
TM © T*M © E coïncidant avec -So © Q hors d&apos;un compact.

Posons d&apos;abord

G(q, x, p, v) ~S(q, x, p) + s(q&apos;, v)y \\x\\ &lt; riA. (1.5.1)

Notons que le premier argument de s est le qf défini en 1.3. De la formule (1.3.1)
on déduit

dG~ydq-x-Dp + (d/dq&apos;)(s(qf, v)) -p1) • dq&apos; 4- ds/dv(q&apos;, v) • dv.

Cherchons les points critiques le long des fibres: comme (q, p, q1, v) sont des

variables indépendantes, un tel point est caractérisé par

x « 0, p&apos; « (d/dq&apos;)(s(q, v)), dsldv{q&apos;y v) 0. (1.5.2)
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Or, si x 0, on a (q&apos;,pf) (p(q, p); donc ceci équivaut à

jc O, (q&apos;,v)eZsf (q, p) &lt;P~lois(q&apos;&gt; v).

On en déduit aisément l&apos;indépendance linéaire en un tel point des différentielles
Dx, D{pf - ds/dq&apos;), d(ds/dv): donc les équations (1.5.2) sont de rang maximal
et (q, 0,p, v)*-*{q&apos;y v) définit un difféomorphisme ty de IG sur Ss. De plus,
comme y =p, on vérifie iG q&gt;~l°is° ip: donc &lt;p~l°is est engendrée par G.

Ensuite, soient K et L assez grands pour que (||p|| ^K^&gt;q&apos; exp^ (x) et

S(q,x,p)=p jc), et(\\v\\&gt;L3&gt;s(q, v) Q(v)). Choisissant p : R + -* [0, 1] telle

que p(t) 1 si t &lt; 1, p(0 0 si r &gt; 2, on pose

*&apos;(?, x, p, v&apos;) -S(q, xy p) + Q(v)

t/)-Q(t;))] si ||*||&lt;r/4et|M|^,
r,p) + e(v) si ||jc||&gt;r/4et||u||&lt;L,

-p.x + Q(v) + p(\\v\\/L)

x(px-S(q,xfp)) si ||v||&gt;L.

COMMENTAIRE. La formule naturelle pour rendre s&apos; quadratique hors
d&apos;un compact utilise p(||jc||/C) plutôt que p(d(q, q&apos;)IC)\ mais il se présente alors
des difficultés pour vérifier qu&apos;il n&apos;y a pas de points parasites dans Zs&gt;.

Il est clair que s&apos; coïncide avec -S0(BQ hors d&apos;un compact. De plus en
utilisant (\d(q, q&apos;) — \\x\\ \ ^r/32), on vérifie que s&apos; est lisse et coïncide avec G
sur B {||jc|| &lt;r/32, ||p|| &lt; K et \\v\\ &lt;L}. Enfin, IG est contenu dans B donc,

pour prouver le lemme, il suffit de voir que pour K et L assez grands 2S&apos; est aussi

contenu dans B.

1) Si ||jc|| &lt; r/4 et ||u|| &lt; L, alors, en dérivant à (q, q&apos;, v) constant, on a

\\ds&apos;/dp\\ ^ \\x\\ - sup, |p&apos;(0l • sup (q, v) \s(q, v) - Q(v)\/K.

Donc, si K est assez grand, cela ne peut s&apos;annuler que si ||jc|| ^ r/32. Si ||p|| ^ K,
on est dans B; sinon on a

s&apos;{q, x,p,v) -p-x + Q(v) + p(|H| /K)(s(E(q, x), v) - Q(v&apos;)),

d&apos;où, en dérivant à (q, p, v) constant,

\\as&apos;/dx\\*\\p\\-\\ds/dq\\ ¦ \\dE/dx\\

*K- CGO sup (q, v) \\(d/dq)(s(q, v))\\,

donc ds&apos;/dx^O pour K assez grand.
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2) Si ||jc|| &gt; r/4 et ||u|| &lt; L, alors à (q, v) constant on a

3) Si ||u|| &gt; L, alors à (q, x, p) constant on a

\\ds&apos;ldv\\ ^ \\3Qidv\\ - supr |p&apos;(0l • suprM0r*M \S - So\,

donc ds&apos;/dv^O pour L assez grand: ceci achève la preuve de Zs&gt; c B, donc du
lemme 1.5.

1.6. Démonstration de la proposition 1.2.
Soit R assez grand pour que ^Jtcpt(i(L)) soit contenu dans {||p|| &lt;R}: alors

on peut supposer que (cpt) est un chemin dans GR. Fixons un entier N&gt;1

et posons

Si iV est assez grand, tous les %pïl seront dans URy donc le lemme 1.4 implique
que \pk°- • • °î^ioï est engendrée par une phase quadratique pour k 1, N:
d&apos;où le résultat puisque xpN° • • • ° ^t q&gt;x.

1.7. Remarque. En introduisant un paramètre f 6 [0, 1] dans les constructions

précédentes, et en passant à un fibre trivial comme dans l&apos;affirmation de 1.1, on
peut préciser la proposition 1.2 de la façon suivante.

PROPOSITION. Soit (&lt;pr) une isotopie hamiltonienne de T*M, et soit i une
immersion engendrée par la phase quadratique spéciale s définie sur M xUk. Alors
pour N assez grand, il existe un chemin (St, 0 &lt; t &lt; 1) de fonctions définies sur
M x Uk x U2N, avec les propriétés suivantes:

• %{q, vy w) s(q, v) + Q(w), où Q est une forme quadratique sur U2N de

signature (N, N);
• St So hors d&apos;un compact;
• St est une phase génératrice pour çpt ° /.

2. Dans cette partie, (V, co) est une variété symplectique symétrique à

courbure négative ou nulle. On note V x V le revêtrement de V x V associé à la

diagonale: il est aussi défini comme le quotient deFxF pour l&apos;action diagonale
de nxV. On munit V x V de la métrique somme et de la forme symplectique
m © (-co), d&apos;où sur V x V une métrique et une forme symplectique notée Q. On

note s:V-*V xV le plongement relevé du plongement diagonal: il est clairement

lagrangien.
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2.1. PROPOSITION. Le plongement s se prolonge en un difféomorphisme

symplectique % de (T*V, œv) sur (VxV, Q).

Preuve du théorème 2 modulo la proposition 2.1.

L&apos;isotopie (id x &lt;pt) de V x V se relève de façon unique en une isotopie (\pt)

de VxV, d&apos;où l&apos;on déduit une isotopie hamiltonienne de T*V, (&lt;Pt) {x~loipt°
X). Il y a alors une bijection entre &lt;Pi(V) n V et W^sÇV)) Hs(V)f puis entre cet

ensemble et l&apos;ensemble des points fixes q de cpx tels que le lacet (&lt;pt(q), 0 ^ t &lt; 1)

soit homotope à zéro; de plus, les intersections transverses correspondent aux

points fixes non dégénérés. On en déduit #Fix{(pl) &gt; (#i(F) H V), et il suffit

alors d&apos;appliquer le Théorème 1.

Démonstration de la proposition 2.1. Comme deux points de V x V sont

joints par une géodésique unique, on peut définir leur milieu, ce qui donne une
application p de V x V sur V. Cette application passe au quotient et définit une
submersion p de V x V sur V. Soit q eV, et q e V un relevé; alors la fibre
Fq p~\q) est l&apos;image de V par le plongement id x s4&gt; et le passage au quotient
induit un difféomorphisme de Fq sur Fq p~l(q). De plus, la propriété (52) dit
que F^ est lagrangienne, donc aussi F^. On peut donc appliquer au feuiletage
correspondant la théorie de J. Duistermaat [Du] (voir aussi [GuS], p. 352-355)
généralisant les variables action-angle; nous suivrons la version donnée par T.
Delzant [De] dans sa thèse (p. 22-26).

Soit v dans T*V et soit e dans Fq\ alors p*(v) e T*(V x V) est orthogonal à

TeFqy donc, comme Fq est lagrangienne, le vecteur XeTe(VxV) défini par
ixQ p*(v) est tangent à Fq. On définit ainsi un champ de vecteurs ô sur Fq,

partout non nul puisque p est une submersion. Si v est la valeur en q d&apos;une

1-forme a sur M, alors ô est la restriction d&apos;un champ Xa tangent aux fibres; si

oc df, il s&apos;agit du champ hamiltonien de -/°p.

PROPRIÉTÉS, a) Si vx et v2 sont dans Tqf alors tox et ô2 commutent.

Démonstration. On peut trouver des fonctions/!, f2 telles que vt (dft)q; donc
ôx est la restriction d&apos;un champ hamiltonien tangent aux fibres Xr Alors [Xlf X2]
est le champ hamiltonien associé à la fonction Q(X2, X^)y donc est nul puisque
ces fibres sont lagrangiennes, et a fortiori [vlf v2] 0.

b) Pour tout e dans Fq) on a ||ô(e)|| ^ (1/V2) ||v||.

Démonstration. La propriété (*), jointe à l&apos;antisymétrie de œ et au fait que
J2 — id, entraîne que / est une isométrie, donc
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et la convexité de la fonction distance sur V x V (cf. [Grl] p. 118) entraîne que,

pour (X, Y) dans Të(V x V), on a

Donc le champ 0 est intégrable, et d&apos;après a) on définit une action localement
libre de TqV sur Fq en posant

v - e (exp ô)(e), uer*V, eeF^.

Comme de plus Fq est difféomorphe à TqV, elle est clairement transitive et libre:
pour tout e dans Fq, l&apos;application v &gt;-*v - e est une bijection de T*V sur Fq.

Soit cr une 1-forme sur M. D&apos;après b), le champ Xa est intégrable, donc définit
un flot (q&gt;t,a) tangent aux fibres; on note cpa q&gt;ha.

PROPRIÉTÉ. On a y*aQ Q + p* dor.

Démonstration. Par une méthode classique, on calcule

{dldt){&lt;ptaQ) q&gt;ULxQ) &lt;ptad(&lt;p*a),

et ceci vaut p* d&lt;* puisque p ° &lt;p,&gt;a, p.
On définit alors l&apos;application x de T*V dans (F x V):

X(v)=-vs(q), veT*V.

Elle préserve les fibres et est un difféomorphisme sur chaque fibre, donc est

un difféomorphisme global. Il ne reste plus qu&apos;à prouver #*£? o)v:
D&apos;abord, si a est une 1-forme sur M, c&apos;est-à-dire une section de T*M, la

définition de x entraîne x ° &lt;* &lt;Pa °s, d&apos;où

ûr*#*fl -s*&lt;p*aQ -s*(Q + p* doc).

Comme s est lagrangienne, on a s*Q 0; de plus p°s id, d&apos;où

La dernière égalité résulte de cov -rfAv et ar*Âv a, où ÂK est la 1-forme
de Liouville.

Ainsi la 2-forme %*i2-cpv a une restriction nulle sur chaque sous-espace
horizontal de Ta(T*V); comme dim V ^2, ceci implique qu&apos;elle est nulle, ce qui
achève la preuve de la proposition 2.1 et donc du théorème 2.
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