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Problémes d’intersections et de points fixes en géomeétrie
hamiltonienne

JEAN-CLAUDE SIKORAV

Introduction

Soit V une variété (compacte ou non) munie d’'une forme symplectique .
Toute fonction H sur V définit un champ hamiltonien Xy tel que i(Xy,)w = —dH.
Une isotopie (@, 0=t=1) de V est dite hamiltonienne si elle s’obtient en
intégrant un champ hamiltonien X, dépendant du temps. Nous nous intéressons
aux deux problémes suivants.

PROBLEME 1. Si L est une sous-variété lagrangienne fermée de V, minorer
le nombre de points de ¢,(L) N L.

PROBLEME 2. Si V est fermée, minorer le nombre de points fixes de ;.
Ces problémes sont liés a un ensemble de conjectures énoncées par V. 1.
Arnold dans les années 60 (cf. [Al], [A2], [A3], [W2] Lecture 7, [Chl et [W4]).

Notons que la diagonale A, est une sous-variété lagrangienne de (V X
V, o @ (—w)) et que les points fixes de @, sont en bijection avec les points de
([d X @))(Ay)NAy). Comme (id X ¢,) est une isotopie hamiltonienne, le
probléme 2 est un cas particulier du probleéme.1.

On ne sait pas grand-chose sur le probleme 1 sans hypothése supplémentaire;
contentons-nous de remarquer que lintersection peut étre rendue vide, par
exemple si V est le plan, L une courbe et (¢,) une translation. Nous allons nous
limiter au probléme local, c’est—a-dire le cas ou (¢,(L)) reste dans un voisinage
assez petit de L. D’apreés [W1], ce voisinage est symplectiquement isomorphe a
un voisinage de la section nulle L < T*L, ou le fibré cotangent est muni de la
forme symplectique canonique w,;. Changeons de notation et posons M =L,
(V, w)=(T*M, wy,). Si (¢, est C'-petite, alors @,(M) est la graphe de la
différentielle d’une fonction sur M; donc #(¢,(M) N M) est minoré par c(M),
nombre minimal de points critiques d’une fonction sur M; si l'intersection est
transversale, le minorant est c,(M), nombre minimal de points critiques d’une
fonction de Morse. La conjecture d’Arnold ([Al], [A2]) pour le probléme 2 dit
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que le minorant est c¢(V), et c,(V) si les points fixes sont non dégénérés (cf. [Al],
[A2]).

Notons ¢(M) (resp. ¢,(M)) le nombre minimal de points critiques d’une
fonction (resp. de Morse) définie sur un fibré vectoriel de base M et coincidant
hors d’un compact avec une forme quadratique non dégénérée.

THEOREME 1. Soient M une variété fermée et (@,) une isotopie hamil-
tonienne de (T*M, wy,). Alors #(@,(M) N M) est minoré par ¢(M), et par ¢,(M)
si Uintersection est transversale.

Ce résultat est prouvé dans [LS] par la méthode des “géodésiques brisées” de
M. Chaperon ([Ch2], [Ch3]); nous allons en donner une nouvelle démonstration
qui le fait apparaitre comme corollaire d’un résultat sur les fonctions génératrices
d’immersions lagrangiennes (proposition 1.2). Ce dernier résultat a ét€ annoncé
dans [S2] comme corollaire du théoréme 1; la preuve directe que nous en
donnons ici revient a ne considérer qu’une discontinuité a la fois.

COMMENTAIRE. On a ¢(M)=CL(M)+ 1, ou CL(M) est la longueur de
produit (cup-length) de I'anneau de cohomologie de M, et ¢,(M)=SB(M),
somme des nombres de Betti de M (cf. [ChZ], p. 90-94). Les minorations de
#(p(M)N M) par CL(M) + 1 ou SB(M) avaient été prouvées antérieurement a
[LS] par H. Hofer [H]. Notons que si M est une surface fermée, alors
c(M)=CL(M) +1 et c,(M)=SB(M).

Pour le probléme 2, nous allons nous limiter a une classe spéciale de vari€tés
symplectiques, que nous appellerons symétriques a courbure négative ou nulle,
caractérisées par les proprié€tés suivantes:

(S1) Il existe sur V une métrique riemannienne de courbure négative ou nulle
et une structure presque complexe J telles que

(*) (X, Y)=(JX,Y), si XeT,VetYeT,V.

Si V est le revétement universel et g eV, I’application exp, est alors un
difféomorphisme de T, (V) sur V.

(S2) Pour tout g € V, la symétrie par rapport a q, définie par
$5: V>V, s,(exp, (X)) =exp, (—X),

est un difféomorphisme symplectique pour la structure relevée.

EXEMPLES. a) Les surfaces de genre =1: en effet, (S1) est vérifiée avec une
courbure constante, et les s, sont des isométries, donc conservent I’aire.
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b) Plus généralement, les variétés kahlériennes compactes dont le revétement
universel est un espace symétrique hermitien de type non compact.

THEOREME 2. Soit (V, w) une variété symplectique symétrique a courbure
négative ou nulle, et soit (¢p,) une isotopie hamiltonienne. Alors le nombre des
points fixes de @, est minoré par c(V), et par ¢, (V) si ces points sont non
dégénérés.

COROLLAIRE. La conjecture d’Arnold est vraie pour les surfaces de genre

=1.

Une preuve géométrique de ce corollaire a été proposée en 1978 par 1. M.
Eliachberg [E]. En 1983, le célebre théoreme de C. C. Conley et E. Zehnder
[CoZ] prouve la conjecture d’Arnold pour le tore T?* muni de sa structure
standard, en résolvant le probléme variationnel associé. Leur méthode a été
étendue par A. Floer ([F]) et I'auteur ([S1]) a certaines variétés de courbure
negative ou nulle, incluant les surfaces de genre =1, et par A. Weinstein [W2] au
cas ou V est quelconque mais (¢,) est C’-petite; le minorant est CL(V) + 1, et
SB(V) génériquement. La méme méthode est utilisée dans [H]. Enfin, signalons
que M. Gromov [Gr2] obtient des résultats sur les probléemes 1 et 2 par une
méthode totalement différente: par exemple, si dans le probléme 1 on a
[w]|mx(V, L)=0, alors @,(L)NL n’est pas vide, pourvu que V satisfasse 2
certaines conditions treés souvent vérifiées dans la pratique.

Nous déduisons le théoréme 2 du théoréme 1 en prouvant que le revétement
de V XV associé a la diagonale est symplectiquement isomorphe a T*V
(proposition 2.1); je remercie Michéle Audin pour avoir attiré mon attention sur
la théorie des feulletages lagrangiens, qui permet d’en donner une preuve trés
simple.

Je remercie aussi le rapporteur de [S2] pour avoir suggéré I’existence d’une
preuve directe de la proposition 1.2, et Frangois Laudenbach pour les simplifica-
tions qu’il y a apportées.

ADDENDUM. Informations données par le rapporteur:

1) K. Sekigawa et L. Vanhecke (prépublication) ont prouvé que toute variété
presque hermitienne ou les symétries géodésiques locales préservent la forme de
Kiihler est nécessairement une variété kihlérienne localement symétrique. Donc les
variétés satisfaisant aux hypotheses du théoréme 2 sont celles de I’exemple b).

2) L’idée de la proposition 2.1 semble remonter 3 Weinstein: en tous cas, sa
version locale est un cas particulier de la description du voisinage d’une variété
lagrangienne quelconque, (cf. [W1]), et J. P. Jacob (|[Geom. Dedic. 10 (1981),
223-259]) lui attribue I'idée d’utiliser le milieu de deux points pour le prouver
quand les symétries géodésiques sont symplectiques.
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1.1. Préliminaires. Définitions et notations

Dans cette partie on considére le fibré cotangent 7*M d’une variété fermée;
un point de T*M est noté (q, p), g €M, pe T;M. 1l est muni de la forme de
Liouville A5, = p - dq et de la forme symplectique w,, = —dA,,. On choisit sur M
une métrique riemannienne auxiliaire u, ce qui définit des connexions sur TM et
T*M.

A) Pour R >0, on note Gg le groupe des difféomorphismes {¢ = @,, ot (¢,)
est une isotopie hamiltonienne de T*M définie par (H,) a support dans

{llpll =R}}.

ACTION. Soit ¢ = @; un élément de Gg, on définit de fagon classique une
fonction A sur T*M, a support dans {||p|| =R}:

1
A(g, p) = f (P, - dq. — H, di),

'intégrale étant prise le long de la trajectoire (q,, p,) = @,(q, p). Sa différentielle
est donnée par

dA=@*A—A=p,-dq,—p-dq, (g1, p1)=¢:(q, p). (1.1.1)

Donc A ne dépend que de @, et la dépendance est continue pour les topologies
C.

B) Considérons ensuite un fibré vectoriel E sur M et une fonction S définie
sur un ouvert de E.

1) Un point e = (g, v) de E est critique le long de la fibre si la différentielle dS,
est dans I'image de #n;:T{M o T;E, ou & est la projection de E sur M.
L’ensemble de ces points est noté Zs.

2) On dit que S est une phase (ou fonction) génératrice si dS est transverse a

n*T*M: alors X est une sous-variété de dimension égale a celle de M, et ’'on
définit

is:Zs—>T*M, is(e) = m;~'(dF,).

D’aprés [W2] p. 26, is est une immersion lagrangienne, que P'on dit étre
engendrée par S; cette définition s’étend au cas d’'une immersion i = igey, ol Y
est un difféomorphisme. :

3) Si de plus S est définie sur E tout entier et coincide hors d’un compact avec
une forme quadratique non dégénérée, on dit que S est une phase quadratique.
Enfin, si de plus E est un fibré trivial M X R* et si la forme quadratique ne
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dépend que de la seconde composante, on dit que § est une phase quadratique
spéciale.

EXEMPLE. La section nulle M cT*M est engendrée par la phase qua-
dratique spéciale S =0 sur M.

AFFIRMATION. Si une immersion est engendrée par une phase quadratique,
elle I’est aussi par une phase quadratique spéciale. La preuve de cette affirmation
est laissée en exercice au lecteur: elle découle aisément de I’existence d’un fibre
E’ tel que E © E’ soit trivial.

PROPRIETE. Les points critiques d’une phase génératrice S sont en
bijection avec les points de X ou Ag rencontre la section nulle, les points de
Morse correspondant aux intersections transverses. Donc, si § est une phase
quadratique, on a:

#is'(M)=¢é(M), #i5'(M)=¢,(M) si ig est transverse a M. (1.1.2)
1.2. Enoncé du résultat clé

PROPOSITION. Soit (@,) une isotopie hamiltonienne de T*M. Si I'immersion
lagrangienne i dans T*M est engendrée par une phase quadratique, alors @,°i lest
aussi.

Cette proposition entraine le théoréme 1 car M « T*M est engendrée par une
phase quadratique: donc ¢,(M) aussi, et il suffit d’appliquer (1.1.2).

La démonstration de la proposition repose sur le lemme 1.5, lui-méme basé
sur la construction suivante, inspirée par [Ch2].

1.3. Action avec un saut horizontal

Considérons le fibré TM © T*M; ses éléments seront notés (q, x, p), ou
geM, xe T, M et peTiM. 1l est muni d’'une forme quadratique non dégénérée
So(q, x, p)=p - x.

Fixons R >0, et soit @ € Gg, d’action A.

Supposons d’abord que M est le tore T"=R"/Z", dou TM =M xXR",
T*M =M x (R")*. On définit alors A.(q, x, p)=A(q+x,p), dou, dapres
(1.1.1),

dA,=-p-dq—p-dx+p'-dq', (q',p')=@(q+x,p).
Posons F = §,+ A,. Comme dS,=p - dx + x - dp, il vient

dF =—-p-dq+x-dp+p'-dq’'.
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Dans le cas général, on cherche une formule analogue avec

A.(q, x,p)=Aq+,P+), qi=exp,(x),preT; p,
@, p)=9(G+ p+)

La connexion permet de donner un sens a Dx, Dp, et I'on a d(p -x)=
p - Dx + x - Dp; elle permet aussi d’écrire, en posant E(g, x) = exp, (x),

dq,=DE/3q -dq + 9E/dx - Dx,
d’ou
dA, =[(DE/3q)(p+)]-dq —['(3E/ox)(p.)] - Dx +p’' - dq'.

Soit r le rayon d’injectivité; alors si ||x|| <r, dE/dx est inversible. Si ’on
pose:

p.=((3E/3x))~\(p),
y ="(DE/3q)(p+) € TgM,

on obtient la formule cherchée pour F =5+ A.:
dF=—y-dq+x-Dp+p'-dq’, |x||<r (1.3.1)

PROPRIETES. a) Si ||p|| est assez grand, alors ¢’ = exp, (x).
b) Six =0, alors y =p.

Ensuite, on choisit p:R,— [0, 1] telle que p(t)=1sit=<1, p(t)=0si t=2,
et 'on pose

S(q, x,p)=p-x+p(@|x||/r)A. (g, x,p) si |x||=r/2,
=p-x si ||x|| >r/2.

Il est clair que S est lisse et coincide avec S, hors d’'un compact. De plus, si
l|x|| =r/4, alors S coincide avec F.

14. LEMME Si @ est assez C'-proche de lidentité de Gg, les propriétés
suivantes sont vérifiées.

a) Si ||x||=r/2, alors les variables (q, p, q') sont indépendantes, c’est-a-dire
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que légalité
a-dg+v-Dp+a’'-dq'=0, aeT;M, velTM, o' e€T;M,

entraine « =0, v=0et o' =0.
b) Si ||x|| =r/2, alors |d(q, q') — ||x]||| = r/32.
c) Si x #0, alors (q, x, p) n’est pas critique le long de la fibre pour S.

Démonstration. a) Si ¢ =id, on a q' =exp, (x) = E(q, x), donc a) est vérifiée
puisque JE/3x est inversible. Comme on a aussi ¢’ = exp, (x) si ||p|| >R, par
compacité la propriété a) est ouverte pour la topologie C' sur les applications q':
d’ou le résultat puisque la dépendance de q' envers @ est continue pour les
topologies C'.

b) C’est évident puisque g’ = ;o @(exp, (x), p.): C’-proche suffit.

¢) Si ¢ =id, on a § =S, donc c) est vérifi€e. Supposant a) vérifiée, on peut se
restreindre au compact {r/4=||x||=r/2, ||p]|=R}: d’ou le résultat puisque S
dépend continiment de @ pour les topologies C'.

Pour la suite, notons Ui un C'-voisinage de lidentité dans Ggr ou les
propriétés du lemme 1.4 sont vérifiées.

1.5. LEMME. Soit @ € Ug: si l'immersion lagrangienne i dans T*M est
engendrée par une phase quadratique, alors @i I’est aussi.

Démonstration. On peut supposer i =i;, ou s est une phase quadratique
spéciale, définie sur E = M x R* et vérifiant s(gq, v) = Q(v) hors d’un compact.

Nous allons montrer que @ '°oi, est engendrée par une phase s’ sur
TM @ T*M @ E coincidant avec —S, @ Q hors d’un compact.

Posons d’abord

G(g, x, p, v)=-S8(q, x, p) +s(q', v), ||x|| <r/4. (1.5.1)

Notons que le premier argument de s est le ¢’ défini en 1.3. De la formule (1.3.1)
on déduit ‘

dG=y-dq—x-Dp+ (alaq’)(s(é', v))—p')-dq’ + 3s/3v(q’, v) - dv.

Cherchons les points critiques le long des fibres: comme (g, p, ', v) sont des
variables indépendantes, un tel point est caractérisé par

x=0, p'=(3/3q"')s(q, v)), ds/av(q’, v) =0. (1.5.2)
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Or,six=0,ona(q’,p')=¢(q, p); donc ceci équivaut a

x=0, (q¢,v)eZ, (gp)=9¢ '°i(q’,v).
On en déduit aisément I'indépendance linéaire en un tel point des différentielles
Dx, D(p' — 3s/3q'), d(3s/3v): donc les équations (1.5.2) sont de rang maximal
et (q,0, p,v)—(q', v) définit un difféomorphisme ¢ de Z; sur . De plus,
comme y = p, on vérifie i = @ "'ei;oy: donc ¢~ 'ei est engendrée par G.
Ensuite, soient K et L assez grands pour que (||p||=K=>q' =exp, (x) et
S(q, x, p)=p - x), et (||v|| = L>s(q, v) = Q(v)). Choisissant p: R, — [0, 1] telle
que p(t)=1sit=1, p(t)=0sit=2, on pose

s'(g, x, p, v') = —S(q, x, p) + Q(v) + [p(16d(q, ¢")/r)p(||p||/K)

X (s(q’, v) - Q(v))] si |lxll=r/det|v||=L,
=-S(q, x, p) + Q(v) si |lx||>r/det|v||=L,
=-p-x+Q(v)+p(|v||/L)

X(@-x—8(q,x,p)) si ||lv|| > L.

COMMENTAIRE. La formule naturelle pour rendre s’ quadratique hors
d’un compact utilise p(||x||/C) plutdét que p(d(q, q')/C); mais il se présente alors
des difficultés pour vérifier qu’il n’y a pas de points parasites dans X..

Il est clair que s’ coincide avec —S,@® Q hors d’'un compact. De plus en
utilisant (|d(q, q') — ||x||| =7/32), on vérifie que s’ est lisse et coincide avec G
sur B = {||x||=7/32, ||p||=K et ||v||=L}. Enfin, Z; est contenu dans B donc,
pour prouver le lemme, il suffit de voir que pour K et L assez grands 2’ est aussi
contenu dans B.

1) Si||x||=r/4 et ||v]| = L, alors, en dérivant a (g, q’, v) constant, on a

18s'/8p|| = ||x|| — sup, |p’(¢)] - sup (g, v) Is(g, v) — Q(v)|/K.

Donc, si K est assez grand, cela ne peut s’annuler que si ||x|| =r/32. Si ||p]| =K,
on est dans B; sinon on a

s'(q, x, p, v)=—p-x+ Q) +p(llp|l/K)(s(E(q, x), v) — Q(v")),
d’ot, en dérivant a (g, p, v) constant,
l|8s’/3x|| = ||p|| — l|3s/3ql| - |OE/ox||

=K — C(u) sup (g, v) [|(3/3q)(s(q, v))|,
donc 9s'/3x # 0 pour K assez grand.
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2) Si||x||>r/4 et ||v]| =L, alors a (g, v) constant on a
ds'/3(x, p) = —35/3(x, p) #0.
3) Si ||v||> L, alors a (g, x, p) constant on a

|8s'/8v|| = ||6Q/3v|| — sup, |p'(¢)| - supzma@r+m |S — Sol,

donc 3s'/dv #0 pour L assez grand: ceci acheéve la preuve de 2 < B, donc du
lemme 1.5.

1.6. Démonstration de la proposition 1.2.

Soit R assez grand pour que |, @,(i(L)) soit contenu dans {||p|| <R}: alors
on peut supposer que (¢,) est un chemin dans Gg. Fixons un entier N=1
et posons

Yr = (pk/No(p(_kl—l)/N; k=1,...,N.

Si N est assez grand, tous les ¥ ' seront dans Ug, donc le lemme 1.4 implique
que Yo - -oy;°i est engendrée par une phase quadratique pour k=1,..., N:
d’ou le résultat puisque Ypyo- - o yP; = @;.

1.7. Remarque. En introduisant un parametre ¢ € [0, 1] dans les constructions
précédentes, et en passant a un fibré trivial comme dans I'affirmation de 1.1, on
peut préciser la proposition 1.2 de la fagon suivante.

PROPOSITION. Soit (¢,) une isotopie hamiltonienne de T*M, et soit i une
immersion engendrée par la phase quadratique spéciale s définie sur M X R*. Alors
pour N assez grand, il existe un chemin (S,, 0=<t=<1) de fonctions définies sur
M x R* x R?M, avec les propriétés suivantes: -

* So(q, v, w)=s(q, v) + Q(w), ot Q est une forme quadratique sur R* de
signature (N, N);

* §, =S8 hors d’un compact;

* S, est une phase génératrice pour @,°i.

2. Dans cette partie, (V, ) est une variété symplectique symétrique 2
courbure négative ou nulle. On note V X V le revétrement de V X V associ€ a la
diagonale: il est aussi défini comme le quotient de V x V pour l'action diagonale
de &;V. On munit V X V de la métrique somme et de la forme symplectique
o @ (—w), d’ott sur V X V une métrique et une forme symplectique notée £2. On
note s:V—V XV le plongement relevé du plongement diagonal: il est claire-
ment lagrangien.
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2.1. PROPOSITION. Le plongement s se prolonge en un difféomorphisme
symplectique y de (T*V, wy) sur (V XV, Q).

Preuve du théoréme 2 modulo la proposition 2.1.

L’isotopie (id X ¢,) de V X V se releve de fagon unique en une isotopie (y,)
de V x V, d’oti I’'on déduit une isotopie hamiltonienne de T*V, (®,) = (x tey,eo
x). Il y a alors une bijection entre ®,(V)NV et ¥(s(V)) Ns(V), puis entre cet
ensemble et I’ensemble des points fixes g de ¢, tels que le lacet (¢,(g), 0=t=<1)
soit homotope a zéro; de plus, les intersections transverses correspondent aux
points fixes non dégénérés. On en déduit #Fix(p,)=(P(V)NV), et il suffit

alors d’appliquer le Théoréme 1.

Démonstration de la proposition 2.1. Comme deux points de V XV sont
joints par une geodemque unique, on peut définir leur milieu, ce qui donne une
application p de V x V sur V. Cette application passe au quotient et définit une
submersion p de V XV sur V. Soit g€V, et GeV un relevé; alors la fibre
F,;=p~'(q) est I'image de V par le plongement id X 55 €t le passage au quotient
induit un difféomorphisme de F; sur F, = p~'(q). De plus, la propriété (52) dit
que F; est lagrangienne, donc aussi F,. On peut donc appliquer au feuiletage
correspondant la théorie de J. Duistermaat [Du] (voir aussi [GuS], p. 352-355)
généralisant les variables action-angle; nous suivrons la version donnée par T.
Delzant [De] dans sa thése (p. 22-26).

Soit v dans T,V et soit e dans F,; alors p;(v) € T*(V X V) est orthogonal 2
T.F,, donc, comme F, est lagrangienne, le vecteur X € T.(V X V) défini par
zXQ p;(v) est tangent a F,. On définit ainsi un champ de vecteurs ¥ sur F,,
partout non nul puisque p est une submersion. Si v est la valeur en q d’une
1-forme o sur M, alors ¥ est la restriction d’un champ X, tangent aux fibres; si
« = df, il s’agit du champ hamiltonien de —f° p.

PROPRIETES. a) Si v et v, sont dans T}, alors 0, et #, commutent.

Démonstration. On peut trouver des fonctions fi, f; telles que v; = (df;),; donc
D, est la restriction d’un champ hamiltonien tangent aux fibres X;. Alors [X;, X]
est le champ hamiltonien associé a la fonction (X, X;), donc est nul puisque
ces fibres sont lagrangiennes, et a fortiori [0, 0,] =0.

b) Pour tout e dans F,, on a ||0(e)|| = (1/V2) ||v]|.

Démonstration. La propriété (*), jointe a I’antisymétrie de w et au fait que
J?= —id, entraine que J est une isométrie, donc

o)l = llpz @)l = llpesll - vl = llpaull - llv]l,
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et la convexité de la fonction distance sur V X V (cf. [Grl] p. 118) entraine que,
pour (X, Y) dans TV x V), on a
lea(X, V)l = @/2)(1X1 + 1Y) = A/ V21X + || Y||H)¥2

Donc le champ © est intégrable, et d’aprés a) on définit une action localement
libre de TV sur F, en posant
v-e=(exp D)(e), veT,V, ecF,

Comme de plus F, est diffomorphe a T,V, elle est clairement transitive et libre:
pour tout e dans F;, I'application v+~ v - e est une bijection de T,V sur F,.

Soit & une 1-forme sur M. D’aprés b), le champ X, est intégrable, donc définit
un flot (@, ,) tangent aux fibres; on note ¢, = ¢, ,.

PROPRIETE. On a Q= Q + p*da.
Démonstration. Par une méthode classique, on calcule

(d/dt)(@7.2) = @ro(Lx,2) = @; o d(¢* @),

et ceci vaut p* da puisque po @, , =p.
On définit alors I’application x de T*V dans (V X V):
x(v)=-v-s(q), veT,V.

Elle préserve les fibres et est un difféomorphisme sur chaque fibre, donc est
un difféomorphisme global. Il ne reste plus qu’a prouver x*Q2 = wy:

D’abord, si a est une 1-forme sur M, c’est-a-dire une section de T*M, la
définition de yx entraine yca = @, °s, d’ou

a*x*Q=—s*prQ=—s*(2+ p*da).

Comme s est lagrangienne, on a s*Q2 =0; de plus p°s =id, d’ou

a*y*Q=—da=a*wy.

La derniere égalité résulte de wy = —dAy et a*Ay = a, ou Ay est la 1-forme
de Liouville.

Ainsi la 2-forme x*$2— wy a une restriction nulle sur chaque sous-espace
horizontal de T,(T*V); comme dim V =2, ceci implique qu’elle est nulle, ce qui
acheve la preuve de la proposition 2.1 et donc du théoréme 2.
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