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Duale Varietiten von Fahnenvarietiten

FriEDRICH KNoP* und GISELA MENZEL

§0. Einleitung

Fiir eine glatte irreduzible Untervarietit X eines projektiven Raumes PV
definiert man die duale Varietit X als die Menge der Hyperebenen H, die
tangential zu X liegen oder dquivalent, dal der Hyperebenenschnitt H N X nicht
glatt ist. Fiir dim X =1 und N =2 erhélt man dann als Spezialfall die klassische
duale Kurve. Ein einfaches Argument zeigt, daB X irreduzibel und dim X <
N — 1 ist, wobei Gleichheit die Regel ist.

Ziel dieser Arbeit ist es nun, dim X zu berechnen, wenn X isomorph zu einer
verallgemeinerten Fahnenvarietdt ist, d.h. X=G/P mit einer halbeinfachen
algebraischen Gruppe G und einer parabolischen Untergruppe P von G.

Nun gibt es Formeln von Holme, Hefez und Kleiman ([H], [H-K]), die es im
Prinzip erlauben, aus der Kenntnis von ¥:=Op~(1)|x und des Chowringes von X
die Dimension von X und sogar den Grad auszurechnen. Jedoch erweisen sich
diese Formeln auf Fahnenvarietdten angewandt als so kompliziert, da} sich diese
Methode zur Bestimmung von dim X nicht eignet. Doch immerhin zeigen diese
Formeln, daB es nur auf ¥ und nicht auf die spezielle Einbettung X < PV
ankommt, d.h. wir konnen und werden ohne Einschrinkung der Aligemeinheit
annehmen, daf die Einbettung vollstindig ist. Falls nun G einfach
zusammenhidngend ist, was wir auch immer annehmen kdnnen, dann 148t sich die
Wirkung von G auf X fortsetzen zu einer Wirkung auf ¥ und damit auf den P".
Besitzt der Grundkorper die Charakteristik Null, so operiert G irreduzibel auf
H°(X, )" (Borel-Weil) und X ist die Bahn eines Hochstgewichtsvektors in
P(H°(X, 2)“). Man erhilt also eine Korrespondenz zwischen irreduziblen
Darstellungen und vollstindigen Einbettungen von Fahnenvarietiten. Wenn nun
dim X = N —1 gilt, so ist X Nullstellenmenge eines G-invarianten homogenen
Polynoms auf PV, der Diskriminante. Diese Bemerkung liefert fiir einfache
Gruppen im Prinzip schon alle Ausnahmen der Regel “dim X = N — 1,” némlich
Darstellungen, die keine nichtkonstanten invarianten Polynome besitzen. Dies ist
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Duale Varietiten von Fahnenvarietiten 39

der Fall fiir den PV selbst (G = Sly,; oder Spn.;, X =), den Raum der
schiefsymmetrischen n X n-Matrizen (n ungerade, G = S/,,, X = Gr(1, n — 1)) und
den Raum der zehndimensionalen Spinoren (G = Spin,,, X = {reine Spinoren}).
Die Ausnahme bildet die Operation der Spin, auf dem Raum der zehndimen-
sionalen Spinoren (N = 15), hier existiert eine Invariante, jedoch ist dim X = 10.

Der Nachweis, daB3 fiir die anderen Einbettungen der einfachen Gruppen
dmX=N-1 gilt, ist erheblich schwieriger. Wir benutzen das Kriterium von
Katz ([K]), daB dies in Charakteristik Null genau dann eintritt, wenn es eine
Hyperebene H gibt, so daB XNH eine nicht ausgeartete quadratische
Singularitdt besitzt. Fiir jede Einbettung weisen wir induktiv nach dim G die
Existenz einer solchen Hyperebene nach. Die meisten Félle werden dabei vom
Hauptlemma 3.10 erfaBt. Die restlichen Darstellungen werden dann gesondert
behandelt, wobei vor allem der Fall G = S/, besonders miihsam ist.

Das Problem fiir halbeinfache Gruppen G 148t sich auf einfache
zuriickfithren, was Inhalt von Satz 2.3 ist. Dieser Satz zeigt auch, daf die
Eigenschaft “dim X <N —1” nicht von der Dimension des Invariantenringes
abhingt. Diese kann beliebig groB sein.

Spezialfille unseres Hauptsatzes waren schon vorher bekannt, wie etwa fiir
die Pliickereinbettungen der GraBmannvarietiten G(m, n) (m =1: Landman,
allgemein: Helmstetter, beides unveroffentlicht).

SchlieBlich mochten wir J. Helmstetter und D. Luna danken, die uns zu dieser
Arbeit angeregt haben.

§ 1. Aligemeine Bemerkungen
1.1 Alle Varietéten seien iliber einem algebraisch abgeschlossenen Korper k der
Charakteristik Null definiert. Wir betrachten einen endlichdimensionalen Vek-
torraum V und seinen Dualraum V. Zu einer glatten irreduziblen echten
Untervarietit Z c P(V) ist die duale Varietit Z definiert durch

Z:={H c P(V)| H ist eine zu Z tangentiale Hyperebene}.
Die duale Paarung V X V — k identifiziert die Punkte in P(V') mit den Hyperebe-
nen in P(V); zu veP(V) sei H, die entsprechende Ebene. Das Bild des
Konormalenbiindels

P(Nz):={(z,v) e ZX P(V) | T.(Z) = H,}

unter der Projektion pr: Z X P(V)— P(V) ist dann genau die zu Z duale
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Varietit, insbesondere gilt
dim Z <dim P(N;) =dim P(V) — 1.
Die Menge

Upsr, = {(z, v) e P(N2) | Z N H, besitzt eine nicht ausgeartete
quadratische Singularitét in z}

besteht genau aus den Punkten, in denen die Projektion pr: P(9t;)— Z
unverzweigt ist; sie ist also insbesondere offen ([K], Prop. 3.2). Setzen wir

Us:={v e Z|Z N H, besitzt genau eine Singularitit, und diese

ist quadratisch und nicht ausgeartet},
so ist Uy offen in Z ([K], Prop. 3.2), und es gilt:

1.2 SATZ ([K], Prop. 3.5):
Ist die Projektion pr: P(N;)— Z generisch unverzeigt, so ist sie birational. In
diesem Fall besteht Uy genau aus den glatten Punkten von Z und ist identisch mit

der groBten offenen Menge U von Z, fiir die die Projektion einen Isomorphismus
pr ' (U) 3 U induziert.

1.3 Wir identifizieren P(V) mit den Geraden durch den Ursprung in V. Fiir
f € V\{0} sei F die Gerade durch f. Operiert eine reduktive zusammenhingende
Gruppe G linear auf V, und ist Z = P(V) eine homogene G-Varietit, so existiert

ein feV mit GF=Z. Der Stabilisator P=G, von F in G ist dann eine
parabolische Untergruppe von G.

DEFINITION:
Ist Kodimpyy (GF) =1, so heiit (V, f) nicht ausgeartet.

Nach Satz 1.2 ist (V, f) genau dann nicht ausgeartet, wenn Upy,y nicht leer ist.
Da Z = GF homogen ist, ist dies genau dann der Fall, wenn ein v € V existiert mit
f(v)=0, gfcH, und GfNH, in f eine nicht ausgeartete quadratische
Singularitét besitzt. Hierbei ist g:=Lie G die Liealgebra von G. Ist P~ eine P
gegeniiberliegende parabolische Untergruppe von G und R, (P~) ihr unipotentes
Radikal mit Liealgebra n~, so liegt R,(P~) - P dicht in G. Daher 14Bt sich mit der
Exponentialabbildung n™ 3 R,(P~), X+—exp X, die Gleichung von Gf N H,, in f
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lokal beschreiben:

R.(P7)-fNH, ={uf |ueR,(P"), uf(v) =0}
={Xen”[f((expX)-v)=0}.

Wegen f(v) =0 und gf < H, ist f((exp X) - v) = }f(X?v) + if(X°v) + - - - Wiihlen
wir also eine Basis X;, ..., X, von n™, so ist die Singularitdt genau dann nicht
ausgeartet, wenn die Matrix

H(f, v):= (f(X.X;v))1<; j<» maximalen Rang besitzt.

1.4 Bemerkungen:
1) Sei N:=gqf = {ve V| Xf(v) =0 fiir alle X € g}, dann ist N stabil unter P und
folgende Aussagen sind dquivalent:
a) (V, f) ist nicht ausgeartet.
b) Kodim, (GN) = 1.
c) EsexistierteinveNmitnv+N= kf.
d) Der kanonische Morphismus N, =G x °N— GN ist eine Auflosung der
Singularititen (Satz 1.2).
2) Ist V reduzibel, so existiert ein eindeutig bestimmter irreduzibler Untermodul
V, mit f € V;, und (V, f) ist genau dann nicht ausgeartet, wenn (V;, f) dies ist.
3) Die Frage ‘“‘ausgeartet oder nicht?” héngt nur von den nilpotenten Elementen
der Liealgebra ab. Daher geniigt es, einfach zusammenhédngende halbeinfache
Gruppen zu betrachten.

§ 2. Formulierung der Ergebnisse

2.1 Von nun an sei G halbeinfach und einfach zusammenhédngend, und V ein
irreduzibler G-Modul. Sei f € V mit GF = GF.

Fiir v e V sei H(v):=H(f, v) = (f(X.Xjv)),<; <, die Hessesche von v.

Mit Rang V :=max {Rang H(v) | v € gf} sei der Rang,

mit ord V :=dim R,(Gf) = dim GF sei die Ordnung,

und mit defV :=ordV — Rang V = Kodimp, (GF) — 1

sei der Defekt von V bezeichnet.
2.2 SATZ:

Die ausgearteten irreduziblen Darstellungen einfach zusammenhdngender ein-
facher Gruppen sind, bis auf duBere Automorphismen von G, genau die aus
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folgender Tabelle:

G Vv RangV ordV defV
1. S, k" 0 n—1 n—1
2. Slypiq Nk 4n-1) 22n-1) 2
3. Spa2. K 0 2n—1 2n—1
4. Spin, k' 6 10 4
5. Spiny, k' 6 10 4

2.3 SATZ:

Ist G halbeinfach, einfach zusammenhdngend, und V eine ausgeartete irreduzible
Darstellung von G, so gibt es eine Zerlegung G=G, X G,, V=V, QV, mit
(G, V1) aus der Tabelle von Satz 2.2, G, halbeinfach, und V, ein irreduzibler
G,-Modul mit def V, > ord V,. In diesem Fall ist def V = def V|, — ord V.

2.4 Bemerkung:

Falls die Charakteristik von k positiv ist, lassen sich jede Fahnenvarietit G/P und
jedes Geradenbiindel ¥ auf G/P zu einem Korper der Charakteristik Null
anheben. Weil sich dabei der Chowring von G /P nicht dndert, zeigen die in der
Einleitung erwdhnten Formeln, daB die Einbettung G/P < H’({)" genau dann
ausgeartet ist, wenn dies in Charakteristik Null gilt.

Der Rest dieser Arbeit ist den Beweisen der beiden Sitze gewidmet.
Zunichst berechnen wir im Abschnitt 3.2 den Defekt von V fiir die Darstellungen
der Tabelle aus Satz 2.2. Mit Lemma 3.3 und Satz 2.2 ergibt sich der Beweis zu
Satz 2.3. Die Hauptschwierigkeit ist es zu zeigen, daf} die iibrigen Darstellungen
nicht ausgeartet sind. Dies ist leider nur durch Unterscheidung der Gruppen nach
ihren Wurzelsystemen moglich. Ist dieses vom Typ G,, so ist der Beweis relativ
unkompliziert und findet sich im Abschnitt 3.6. Die anderen Fille lassen sich
groBtenteils mit dem Hauptlemma 3.10 induktiv erledigen. Dies geschieht in § 4.
Jedoch bleiben besonders im Fall A, Spezialfille iibrig, die explizit nachgerechnet
werden miissen.

§ 3. Einige Hilfssiitze und der Beweis im Fall G,

3.1 Um dem Leser die Ubersicht zu erleichtern, tragen wir an dieser Stelle alle
Bezeichnungen, auch die bereits verwendeten, zusammen.

G sei eine halbeinfache einfach zusammenhingende algebraische Gruppe mit
Liealgebra g, B eine Boreluntergruppe von G und T ein maximaler Torus in B
mit Liealgebra . Mit ¢ bezeichnen wir das Wurzelsystem von G beziiglich T,
und mit ¢ die beziiglich B positiven Wurzeln. X(T):=Hom (T, G,,) sei die
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Charaktergruppe von T und ( , ) ein unter der Weylgruppe invariantes Skalar-
produkt auf X(7)®,R. Fir «, Be X(T)®;R sei (a, B):=2(a, B)/(B, B).
@y, ..., a, seien die einfachen Wurzeln in ¢* und w,, ..., w, die Fundamen-
talgewichte von G ({(w;, a;) = 6;). Weiterhin wihlen wir eine Chevalley-Basis
X,, a € ¢; H,, 1 <i<n, von g wie in Bourbaki ([B], Ch. VIII, §2, n° 4), d.h. es
gilt

[H, X,]=a(H)X, fiiralleae¢, Heb;

0, falls o + B ¢ ¢ U {0}
(X, X5]=4 —H,, fallsa+ =0
Na,BXa+ﬁ’ falls o + ﬁ € (P

V sei ein irreduzibler G-Modul mit hochstem Gewicht A, h ein
Hochstgewichtsvektor in V und f ein Tiefstgewichtsvektor im Dualraum V, P der
Stabilisator der Geraden durch h. Der Stabilisator P~ der Geraden durch f ist
dann eine P gegeniiberliegende parabolische Untergruppe von G. Setzen wir
¢ (A):={aep*| (A, «)>0}, so erhalten wir fiir die Liealgebren der unipoten-
ten Radikale von P und P~

n:=LieR,(P)= © kX,, n:=LieR (P )= D kXx_,.
aedp*(A) aep*(A)

Weiterhin sei N:=gf = {v e V | Xf(v) =0 fiir alle X € g}. Fiir u € X(T) ®, R sei
N(u):={veN|H -v=(A—pu)(H) - v fir alle H € b}.
Die Hessesche eines v € V ist die Matrix H(v) := (f(X, X5V))a.peo* 1)

Rang V :=max {Rang H(v) | v € N}, ord V:=dim n = |¢*(1)|,
def V:=Rang V —ord V = Kodim, (GN) — 1.

A heilt ausgeartet, falls def V >0 ist.

3.2 Berechnung von def V fiir die Darstellungen aus Tabelle 2.2.
1., 3. In beiden Fillen ist V = Gh = Gh U {0}, also N = {0} und GN = {0}.

2. (G, V)=(Slyp1, N\NPK*HY):
Wir wihlen die Standardform: Sei e, . .., e,,,, eine Basis von k?**!, dann ist
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h=e ne, und N=Oscicj<ns1k(e;ne). Nun ist M:=PNP~ isogen zu
Sl, X Gl,,_,, Sl, operiert trivial auf N und N = A%%?**"! als Gl,,_,-Modul. Fiir
v=e3Aes+ -+, 1 Aey, ist Mv=N, also GN=Gv und dimGN =
dim Gv =dim V - 3.

4. Sping:

Sei ey, ..., e, die kanonische Basis von X(7), dann sind ti(e; te,tesxe,)
die Gewichte in Sping, A=3(e;+e,+es+e,). Alle Gewichtsriume sind
eindimensional,

4
N=@® Nu)+N(u) mit p=e +e,+es+e,, m=p—e.
i=1

Hier ist M=PN P =Gl,, und N =k* GB__Ig_als Gl4-Modul. Fiir v =v; + v, mit
v, € N(u)\{0}, v,e N(u)\{0} ist N=Mv, also GN=Gv und dimGN =
dimV - 5.

5. Spin,q:
Die Inklusion SOy < SO, liefert einen Isomorphismus ny = n,9, und die Raume
der Spinoren sind isomorph als n- und n™-Moduln.

3.3 LEMMA:

Ist G =G, X ---XG, das direkte Produkt halbeinfacher Gruppen und V =V, ®
-+ -+ @V, das Tensorprodukt irreduzibler G-Moduln V, mitord V,=ord V,=- - - =
ord V,, dann gilt

def V=max (0, def V; —ord (V, ® - - - @ V,)).
Der Beweis erfolgt durch Induktion nach r:

a) r=2:
Fir (G, V), i=1, 2, sei g;, ¢;, ¢, A, by, f;, 1y, ... wie in 3.1 definiert.

Dann ist g=g,D g,, ¢=(¢1X{0})U({0} X @;), A=A+ A, f=£1®f,, h=

hi®h,, n=0n,Dn,,...

1) Wir zeigen zunidchst die Richtung “<”: Zu a € ¢ () X {0}, B € {0} X ¢5(A)
und vorgegebenem pu, g € k definiere

1 1
Vap = hab (3 ) (Ao B)

(X_ohy ® X_ghy).
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Dann ist v, g€ N und fiir y, 6 € ¢* (1) gilt

0, falls {y, 8} #{a, B}

f(X, XsVap) = {ua,ﬁ, falls {y, 6} = {a, B}

Wihle nun v, € N; mit Rang H(v,) = Rang V; und setze

U:=U1®h2+ 2 va,ﬁ-
aep 1 (A)x{0)
Be{0}x93(4)

Dann hat H(v) die Form

H(v,) : M\ }ord V;
HQ) = (T2
@) M :0/}ordV,
mit M = (u,p). Nun ist fir p=q und eine vorgegebene symmetrische
p X p-Matrix A

A M _ Rang A +2q, gq<defA
_____ tee oo M }_—:{

max {Rang( ¥ O)l beliebig phg, g def
F 7;

2) Esgilt "=":IstveV, v=Y/_,vi®@v) mit vie V;, vy € V,, setze
r . r . .
wi= D vl und wyi= 2 A(ViYS
i=1 i=1

Dann hat H(v) die Form

_(Hm): B }ord V,
HO = (5 5i655)y ona v

mit geeignetem B. Nun ist
Rang H(v) < min (Rang H(w;) + 2 ord V,, ord V; + ord V,),
also def V = max (0, def V; — ord V).

b) InduktionsschluB:
1. Fall: def V;>ord (V,® - ®V,)
Dann ist ord V; > ord (V, ® - - - ® V,) und die Behauptung folgt mit a).
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2. Fall: def Vi<ord (V,®---®V,)

Dann ist nach a) def V =max (0, def (V,®---®V,_,) —ord V,) und mit Induk-
tion folgt

def V = max (0, max (0, def V; —ord (V, ® - - - ® V,_}))—ord V,) =0
3.4 Der Beweis von Satz 2.3 ergibt sich nun aus Lemma 3.3 und Satz 2.2.

3.5 LEMMA:

Erfiillen «, B € ¢ (1) eine der drei Bedingungen

1) ¢*Gz, a_ﬁ¢¢

2) o+ B ¢¢und A — a — f ist Gewicht von V

3) G, a+Bep, a—PBegpund (A, a)# (A, B) oder (A, @) = (4, B) #1
Dann existiert ein v, .5 € N(a + B) mit f(X, X5v,.5) # O fiir alle v, 6 € ¢p™ () mit
y+é=a+p.

Beweis:
Fir a, B € ¢*(A) definiere v:= (4, @)X_,X_gh + (A, B)X_gX_,h.
a) Esist ve N(a + pB).

Bew.: Ist die Summe a + B ¢ ¢, so ist X, .z =0. Sei deshalb a + 8 € ¢. Dann
gilt

Xorp v = =34 a)(4 B)(lel* Nasp—a+ IBII* Nasp,—p) = 0

([B] VIII, §2, n° 4, Lemma 4 (4)).
b) Ist « — B € ¢, so sei 0.E.  — B € ¢*. Eine kurze Rechnung zeigt:

f(XﬂXa ' U) = —'(A’: ﬁ)A

mit A=A a)A, a+B)— (B, a)A, &)= (A, BNy —gNoa—p.—a Sei
-B—-qa,...,—B,...,—B+pa die a-Leiter durch —-f, dann st
No _gNo_p_o=p(q+1) ([B] VI, §2, n° 4, Lemma 4 (3)), also

A=A a)A, a+pB)— (B, a)(A, @) — (4 B)p(q +1).

c) Wir zeigen nun, daB unter den angegebenen Voraussetzungen A # 0 ist:
1) Fira—-f¢¢ist p=0, also (B, a) <0 und A>0.
2) Ist «a+B¢¢p und A—a— B Gewicht, so ist g=0, p=(B, ) und
A=(A-8, a)(A, a+ p)>0.
3) Ist $¥G,, a+Bep und a—PBe¢*, so zeigt ein Blick auf die
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Wurzelsysteme vom Rang2, daB dann p=q =1, (B, a) =0 und ||a|| =
||l gilt. Damit erhalten wir

A= (4 a)@A, a+p)-24, B),

also fiirr (A, a) # (A, B):A=(A, a—B)>0, und fiir (A, a)=(4,B):A=
2(A, a)({A, @) —1)#0.
d) Erfiillen « und B die Voraussetzungen und sind v, d € ¢*(A) mit y+ 6 =
a + B, so erfiillen auch y und 6 eine der drei Bedingungen.
Bew.: Erfiillen a, B die Bedingung 2, so auch y, 8. Daher nehmen wir an,
daB «, B die Voraussetzung 1 oder 3 erfiillen, insbesondere also ¢ # G, ist,
und daBB y — 0 € ¢ ist.
1. Fall: a, B erfiillen 1. Dann ist « — 8 ¢ ¢ und {a, §) <0. Insbesondere ist
(A—a, B)=(A, B)>0und A — y — § ist Gewicht von V. Sei daher y + 0 € ¢.
In diesem Fall sind y und & kurz und (y, §)=0, wie man an den
Wurzelsystemen vom Rang 2 abliest. Wegen a — ¢ punda+B=y+ b€ ¢
ist dann aber (a, B) <0 und ||y|*+[|8]]*= |y + 8|* = ||la + B> < || o||* +
[IBII* sei daher 0.E. a lang. Dann ist ||a|| > ||y|| = {|6]| und [|B]| = ||| = |4,
also (A, y) + (4, 8) > (A, a) + (4, B) =2.
2. Fall: a, B erfiillen 3. Dann sind a, B kurz und («, f) =0. Nun ist aber
auch y+96, y—06€ ¢, somit sind auch y und 6 kurz und (y, 6) =0. Wir
erhalten

(A, yY+ (A, 6)=(A, a)+ (A, B)=3.

3.6 SATZ:
Ist das Wurzelsystem vom Typ G,, so ist keine irreduzible Darstellung von G
ausgeartet.

Beweis:
¢ habe Basis a;, a, mit (a,, a,) =—1, (a,, a;) =-3. Die Fundamental-
gewichte sind w; =2a,; + a,, W, =3a, + 2a,, sei also A =rw, +sw, mit r, s e N.
Wir erhalten

y

ay=a,+a, | a,=3a,+2a,

as=2a,+a, I aeg=3a,+ a;

a I «,

|
(A, @) | r I s | r+3s I r+2s l 2r+3s I r+s

1. Fall: r=0,s=1.
Hier ist ¢*(1)=¢"\{a,}. Die 2a;, i=3, 4,5 erfiillen die Bedingung 2 aus
Lemma 3.5, sei daher v,,, € N(2a;) wie in 3.5 definiert. Fiir v:=v,,, + Vg, + VUsa,
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hat H(v) die Gestalt

o
*
<o

o O
o O

H(v) = (f(Xaf,Xar,- ' v))Zsi,js6 =

oS O %
S *
*

o O O %

2. Fall: s =0, r=1.
Nun ist ¢ *(A) = ¢ " \{a,}, und 2a; erfiillt die Voraussetzung 2 aus Lemma 3.5.
Setzen wir v:=v,,, wie in 3.5, so hat H(v) den Rang 5.

3. Fall: r,s=1.
In diesem Fall ist ¢*(1) = ¢*, und v:=1v,,, + vy, liefert das Gewiinschte.

3.7 LEMMA (vgl. [K], Beweis zu Théoréme 2.5):
Enthilt das Diagramm von A keine Eins, so ist A nicht ausgeartet.

Beweis:

Sei ¢ #G,. Wir zerlegen ¢*(A) in die Mengen der kurzen und der langen
Wurzeln. Hat das Wurzelsystem nur Wurzeln gleicher Lidnge, so seien alle
Wurzeln lang.

$*(A)=KUL mit K:={we¢*(A)]|a ist kurz} und
L:={ae¢*(A)| a ist lang}.

Wegen (A, a) =2 fiir alle a« € ¢*(A) erfiillt 2« die Voraussetzung 2 aus Lemma
3.5. Sei v,, definiert wie in 3.5 und

Vi=Xx D, Uy + D, Uy, miteinem x€k.
aeK axel

Sind nun y, 6 € ¢*(A) mit y # 8 und y + & =24, so ist & kurz und v, 6 sind lang,
wie man aus den Rang 2 Wurzelsystemen #G, abliest. Also hat H(v) die Form

XDy 0 )} K

- VL

mit nicht ausgearteten Diagonalmatrizen Dy, D; und gewissem M. Wihle nun x
so, daB det H(v) #0.
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3.8 DEFINITION:
1) 7 (A)=A,UA,U---UA, sei Vereinigung von paarweise disjunkten Teil-
mengen. Die A; heiBen unvermischt, wenn fiir alle i und alle j # k gilt

(Ai+A)N(A+A)=0.

2) Eine Teilmenge A < ¢*(A) heiBt zulissig, falls ein ve @, pca N+ B)
existiert, fiir das die Matrix

Hy(v):=(f(X,X5 * V))a,pea reguldr ist.

3.9 LEMMA:
Ist A ein dominantes Gewicht und ¢*(A) die Vereinigung von paarweise
disjunkten, unvermischten und zuldssigen Teilmengen, so ist A nicht ausgeartet.

Beweis:
¢ (A)=A,U---UA,, wobei die A; die gewiinschten Eigenschaften besitzen.
Wihle wv; e @a,ﬁm, N(e+B) mit H,(v;) regulir und x;,...,x, mit

det H(x v, + - - - + x,0,) #0.

3.10 Fiir ein irreduzibles Wurzelsystem ¢ # G, wihlen wir & wie folgt:
Fall 1: 6 sei eine dominante Wurzel.

Fall 2:

6_{2(af1+---+af,,) falls ¢ =B,
2(0(1+ st +0(,,_2)+a’,,_1+ ,, falls ¢ED,,

Fiir « € ¢ ist (&, 6) ganz und
¢s:={ae¢|(a, d) ist gerade}
ist ein Unterwurzelsystem von ¢.

HAUPTLEMMA:

A sei ein dominates Gewicht mit

a) A/¢s ist nicht ausgeartet oder Null

b) (A, 8)=2in Fall 1 bzw. (A, 6) =1 in Fall 2.
Dann ist auch A nicht ausgeartet.

Beweis:
Setzen wir ¢;:=¢\¢ps={ae¢p|(a, ) ist ungerade}, so ist ¢*(A)=
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d3(A)U ¢F(A), ¢4(1) und ¢7(A) sind unvermischt, und ¢3(4) ist zuldssig nach
Voraussetzung a). Nach Lemma 3.9 haben wir also zu zeigen, daB ¢7(A) zuldssig
ist. Hierfiir zerlegen wir ¢ (A1) wie folgt:

My:={a e ¢p{(A) [ {4, 6 —a) =0}
M:={aepi(A)| (A, 6 — a) #0}

1) ae¢pf ©6—aep;. Fir ae ¢y ist (o, ) =1 und in Fall 2 ist (5, a) =2.

Beweis:
In Fall 1 ist (8, ) >0, hieraus folgt 6 —a € ¢. Nun sind « und 6 — o
gleichlang, wie man aus den Rang 2 Wurzelsystemen #G, abliest. Daher ist
(a, 6) =1, also (0 —a,8)=1und 6 —a € ¢7.
In Fall 2 liefert direktes Nachrechnen die Behauptung.
2) Fir aeM, ist (A, a)=2, denn (4, a)=(4,8), also (A, a)=
(4, 6)(6, a){a, 6)~", mit 1) und Vorraussetzung b) folgt die Behauptung.
3) Wegen 2) erfiillt 2a (o € M,)) die Voraussetzung 2 aus Lemma 3.5. Es existiert
somit ein vy e D, m, NQ2a) mit det Hy, (v,) #0 (vgl. Beweis zu 3.7).
4) Seien «, f € M, mit o + =0, so ist Lemma 3.5 anwenbar.

Beweis:

Fall 1: Hier ist & + = 6 eine Wurzel. Fiir & — f ¢ ¢ ist Voraussetzung 1 aus
Lemma 3.5 erfiillt, sei daher o — 8 € ¢. Wir zeigen, daB3 dann Vor. 3 gilt. An
den Rang 2 Wurzelsystemen #G, lesen wir (a, B) =0 ab, wegen a+ =29
folgt hieraus (6, @) =2. Sei nun (A, a)=(A,B)=(A, 6 —a). Da o und
0 — a die gleiche Liange haben folgt mit 1) und Voraussetzung b):

(A, @) =(4, 6)(a, @) ' =3(4, 6)(b, a)(e, 8) ' =(A,6)=2

Fall 2: Hier ist o + B = 8 keine Wurzel, zu zeigen ist Vorraussetzung 2 aus
3.5, d.h. A — & ist Gewicht von V. Fiir a # B ist (a, B) =0, also (A—«, §) =
(A, B) =1, somit ist A—(a+ ) Gewicht. Fir a«=p ist nach Vor. b)
(A, 8) = (A, 2a) =3(A, a) =1, somit ist (A, &) =2 und A — 2« ist Gewicht.
5) Setze v, e N(8) wie in 3.5, wegen aeM Sd—aeM, (vgl. 1)) ist
det Hy, (vy) # 0.
6) Fiir v:=v,+ v,, v, wie in 3), v, wie in 5) hat H(v) die Gestalt

H(v)= (HMu(v") _____ 0 ) _
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Beweis: zu zeigen ist

(i) fir o e My, B, y € ¢ () mit 2a = B + y folgt B, y € M,.

(ii) fir @, B € ¢7(A) mit a + B =6 folgt «, B € M,.

zui): Hierist 2(A4, )=2(4, 0)=A, B)+ (A, ¥y)> A, 6-B)+(A,6—y)=0
zuii): Sind «, B € M,, so ist (A, @) = (A, 6) = (4, B) #0, dies steht im Wider-
spruch zu « + f = é; und fiir @ € M, ist auch B =6 — a € M, nach 1).

§ 4. Der Beweis von Satz 2.2.

Die Voraussetzungen und Bezeichnungen seien wie im vorhergehenden Para-
graphen. Wegen Satz 3.6 sei ¢ * G,.

4.1 SATZ:

Ist A=Y"_i riw; mit r; € {0, 1}, und erscheint (G, V) nicht in Tabelle 2.2, so ist A
nicht ausgeartet.

Der Beweis des Satzes erfolgt durch Fallunterscheidung nach dem Wurzelsystem

¢ und nimmt die Abschnitte 4.2-4.9 in Anspruch. Satz 2.2 wird dann in 4.10
endgiiltig bewiesen.

42 ¢p=A e

Wir identifizieren X(7) ®, R mit der Hyperebene der Punkte in R"*!, deren
Koordinatensumme Null betrégt.

Positive Wurzeln: ij:=e, —e;, I<i<jsn+1

Basis: o =€ —e, 1<isn

Fundamentalgewichte: w,=e;+:--+¢, 1<i<n
I. Die Fundamentaldarstellungen A = w,:

Hier ist p*(A) = {ijj| 1<i<p,p+1<j<n+1}.
Sei ¢:=n +1—p, dann hat nc s/, ., nach geeigneter Basiswahl die Gestalt

Wir bezeichnen daher w, mit (p, q).
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1) Fiir p =2 ist (p, p) nicht ausgeartet.

Beweis:

Sei Y:=(0 0
1, 0

B:n—n", B(X):=[[X, Y], Y]+ 2w,(X, Y])Y, gegeben durch

X=(g g)aﬁ(x)r_z((spurA(;ﬂp—A 8)

) € n~, dann ist die Abbildung

Sie ist somit bijektiv. Setzen wir v:=Y?h, so zeigt eine kurze Rechnung, daB
Xv = B(X)h gilt fiir alle X e n. Insbesondere ist Xven & fiir alle X en,
woraus v € N folgt.

01
Fiir X = (0 O”) ist f(X*v)=2p(p —1)#0, also ist auch v #0. Weil nun 8

bijektiv ist, folgt nv = n~h und damit nv + N = (kf).
2) Sind (p,q) und (p, q’') nicht ausgeartet, so ist auch (p,q+q’) nicht
ausgeartet.

Beweis:
Fiir A = (p, q + q') definieren wir A:={a € ¢* (1) | (w,+,, @) =0} und A":=
{aep*(A) | (wp4q, @) =1}. Dann ist *(A)=AUA’ und A, A’ sind nach
Konstruktion  unvermischt. Fir die  Unterwurzelsysteme ¢, =
(@1 e vs Opago1)y  P2=(ar, ..., Qpor, Gt o+ Wpig, Gpigats - Q)
von ¢ gilt A/p,=(p,q), A/$.=(p,q’), $7(1)=A und ¢3(A)=A". Nach
Voraussetzung sind also A und A’ nicht ausgeartet und die Behauptung folgt
mit 3.9. .

3) Mit (p, q) ist auch (q, p) nicht ausgeartet, denn die beiden Darstellungen sind
dual zueinander.

4) (p, 2), p gerade, ist nach 1) und 2) nicht ausgeartet.

5) Fiir p, ¢ =3 ist (p, q) nicht ausgeartet.
Bew.: Wegen 3) sei 0.E. p =¢q, der Beweis erfolgt durch Induktion nach der
lexikographischen Ordnung der (p, q). InduktionsschluB:
Sei p=6, dann sind (p —3, q) und (g, 3) nicht ausgeartet, also auch (p, q)
nach 2) und 3).
Zum Induktionsanfang bleiben die Fille:
a) (3,3), (4,4), (5,5): diese sind nach 1) nicht ausgeartet.
b) (5, 4): ist mit (4,2) und (4, 3) nicht ausgeartet (beachte 4) und c)).
¢) (4,3) und (5, 3):
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i) (4,3) ist nicht ausgeartet:

Bew.: Hier ist ¢*(1) = {z] [1<i<4,5<j<7}.
Sei I:= {(16, 25), (27,35), (37, 46), (17, 45)}, dann gilt fiir a, B € ¢*(A) mit
(o, B)el:a— B ¢ ¢, sie erfiillen also die Voraussetzung 1) aus Lemma
3.5. Definieren wir nun v, g wie in 3.5 und setzen v := ¥(, gyes Ua+p, SO ist
H(v) regulir.

ii) (5, 3) ist nicht ausgeartet:
Der Beweis ist analog zu dem fiir (4, 3) in i) mit

1:={(16,25), (27, 45), (27, 36), (36, 45), (47, 56), (17, 55)}.

II. Die anderen Darstellungen :

=> ro;, mit r,e{0,1}, > r=2.
i=1

i=1

Sei d:=e,—e€,,,=a;+--+a,, dann ist 6 dominante Wurzel mit (4, 6) =2,
und ¢s={ae¢d|{a, 6) ist gerade} ist das von ay,..., @,_;, & erzeugte

Unterwurzelsystem. Das Hauptlemma 148t sich also anwenden, auBer fiir die
Fille:

a) A=w, + w, 1._1__9__,.__9
b) A=w,+ w, 010 u
¢) A=w,+ 0w+ w, 1__1_(.)__.0,_1
d) n gerade, A = w, + w; 1010 9_(.)
e) n gerade, A = w3+ w, 0010 01

f) n gerade, A=w, + w; + w, 101001

Beweis, daB die Gewichte in a)—f) nicht ausgeartet sind:

a) A=w,+ w,:
Hier ist ¢*(4) = {1l|2<l<n+ 1} U {21l3<t<n+1}
Setze I:={(12,23), (13,13)} U {(1i,2i) | 4<i<n + 1}, dann erfiillen die a, B
mit (a, B) €I die Voraussetzung 1bzw. 2 aus Lemma 3.5. Wir definieren

daher v:=Y (4 gyer Va+p> Va+p Wie in 3.5, um ein Element zu erhalten, fiir das
H(v) maximalen Rang besitzt.

b) A=w,+ w,:
Nunist ¢*(A)={ij|1<i<2,3<jsn+1}U{in+1|3<i<n).
Setzen wir A':={a € ¢*(A) | (0, + w4, @) =1} und A*:={aePp*(A) | (w,+
w4, @) =0, 2}, so sind A' und A? unvermischt und ¢*(A) = A' U A%
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i) A'={13,14,23,24,3 n+1,4 n+1} ist zuliissig, denn mit I:={(13,24),
(13,4 n+1),(24,3 n+1)} und v:= Y(a.p)el Va+p ist H 41(v) regulir nach
Lemma 3.5.

ii) Sein=4.

Dann ist (A, a) =2 fiir alle « € A% Die 2@, a € A? erfiillen also Bed. 2
aus Lemma 3.5, fiir v:=Y 442 Vs, ist H2(v) regulir, d.h. A? ist zuléssig.
iii) Ist n =35, so betrachten wir das von a;, a, + a3 + a4, as, . . ., a, erzeugte
Unterwurzelsystem ¢,. Es gilt A>= ¢ (A/¢¢). Nun ist ¢, vom Typ A4, _,
und A/¢,= w, + w,_, ist nach Induktion nicht ausgeartet. Also ist auch
A? zulissig.
iv) Nach i)-iii) sind A' und A? zulissig, die Behauptung folgt somit mit
Lemma 3.9.
¢) A= w;+ 0w+ w,, und
d) n gerade, A = w, + w;3:

Fiir beide definiere A" :={a € ¢* (1) | (w;, ) =i}, i=0, 1. Dann ist ¢* (1) =

A°U A' und A% A! sind unvermischt. A ist zuléssig, denn bezeichnen wir mit

¢o das von a,,..., @, erzeugte Unterwurzelsystem, so ist A/¢, nicht

ausgeartet und A° = ¢ (A/¢,). Die «, B € ¢ mit (a, B) €1,

I:={(12,13)} U {(1i, 1i) | 4<i<n + 1} in Fall c) bzw.
:={(12,14), (13,15)} U {(1i, 1i) | 6 <i <n} fiir d)

erfiillen Voraussetzung 2 aus Lemma 3.5. Setzen wir v:= Y, g)e1 Va+p, WObEI
Vq+p Wie in 3.5 definiert ist, so ist H .1(v) regulir, d.h. A" ist zuldssig und die
Behauptung folgt mit Lemma 3.9.

e) n gerade, A = w; + w,, und

f) n gerade, A= w, + w3 + w,:
Diese beiden Fille lassen sich analog wie c¢) und d) beweisen mit A’:=
{xep™(A) | (w,, @) =i}, i=0,1 und

1:={(14,25), (16,27), ...,(1n,2 n+ 1)} fiir e),
I:={(12,1 n+1),(13,2 n+ 1)} U {(1i, 2i) | 4 <i <n) fiir f).

an-—l
43 ¢=D,,n=4 g
1
&,-2
&n

Wir identifizieren X(T) ®; R mit dem R".
Positive Wurzeln: e; +¢;, ¢, —¢;, 1<i<j=<n
Basis: Q; =€; —€;+1, lsisn- 1, o,=e,_te,
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Fundamentalgewichte: ®;=e,+---+¢, 1sisn-2, w,.;=3(e + - -+
€h—1— en)’ w, = %(el +---+ €, + en)-

I. Die Halbspindarstellungen A = w,,_,, w,, n #5:

Beide Darstellungen gehen durch einen &uBeren Automorphismus von G
ineinander iiber. Daher sei 0.E. A = w,,.

Dann ist p*(A)={e; +e¢; | 1 <i<j<n}.

a) Fiir gerades n ist die Halbspindarstellung nicht ausgeartet:

Beweis:
Wir identifizieren die Liealgebra mit

0 .1
6= (X € My, (k)| X'M = —MX}, Wobei ~ M:=( ).

Beziiglich geeigneter Basiswahl hat dann n die Form

=0 p)es

00
1 0 0 12
micri=(0 %), e (U0 S )2
1t - — J O R = i—l\ 0
0 {0 -1
| —
n
2

ist die Abbildung B:n—n", B(X):=[[X, Y], Y] +2w,([X, Y]), bijektiv.
Setze v := Y?h, dann ist Xv = B(X)h fiir alle X € n~, insbesondere ist v € N.

Fir X = (g g) ist f(X?v) =2n(n —1)+#0, also ist v#0 und nv=n"h (vgl.
4.1.1.1)).

b) n sei ungerade, n # 5, dann ist w, nicht ausgeartet.
Beweis:
Definieren wir A":={a € ¢*(1) | (w;, @) =i}, i=0, 1,2, dann ist $*(1) =
A°UA'UA% Fir die Unterwurzelsysteme ¢o:={ay,...,a,}, ¢,:=
{af], >, 63+ e,, —q4y ..., —a’,,-,} und ¢2:= {a,, a5, €3+ ey, 0’3} ist A/¢,',

i=0,1,2, nicht ausgeartet und A’ = ¢; (A/¢;). Somit sind die A’ zulissig.
Wihlen wir nun v; mit Rang H 4(v;) maximal und setzen v:=x,v,+ x,v, +
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X,V,, dann hat H(v) die Form

onAO(UQ) xlB E 0
LB xoHe@) i 0
O 0 : XIHAI(UI)

mit geeignetem B. Wihle x, #0 so, daB det H(v) #0.

I1. Die iibrigen Fille A = Y}, rw;, A# w,, 0,_;:
Fir 6=2e ist (A, 8)=n+---+r,_,+4r..1+r)=1, und ¢;={ac
¢ | (a, 8) ist gerade} ist das von a, . . ., a, erzeugte Unterwurzelsystem. Somit
ist A/¢s und damit nach dem Hauptlemma auch A nicht ausgeartet, auBer fiir
n=6, A=w,+ w,.

In diesem Fall sei 6 = ¢, + e, die dominante Wurzel. Dann ist (A, ) =2, und
¢ ist das von «, a3, ..., as, erzeugte Unterwurzelsystem. Nach I. a) und
Lemma 3.3 ist A/¢s nicht ausgeartet und das Hauptlemma ist anwendbar.

44 ¢p=B, n=2. > =

@, @, &p-1 &p

Wir identifizieren x(7) ®;R wieder mit dem R”".
Positive Wurzeln: e, te;, 1si<j<n, e, 1<isn
Basis: a;=e¢,—¢€;,, 1<isn-1, a,=¢,
Fundamentalgewichte: w;,=e,+---+e¢,1<i<n-1,

w,=3(e;+: - +e,).

I. Die Spindarstellungen A = w,,, n 2, 4:

Die Inklusion SO,, ., = SO,, ., induziert einen Isomorphismus n,, ,, = n,,.,, und
die Rdume der Spinoren sind isomorph als n- und n~-Moduln. Mit den
Halbspindarstellungen (4.3.1.) sind also auch die Spindarstellungen nicht
ausgeartet.

I1. Die iibrigen Fiille:

Mit 6 =2e, ldBt sich das Hauptlemma immer anwenden auBer fiir die Fille
A=w,+ w,, n=2,3,5. Hierfiir setze d =¢, +¢,. Dann ist § eine dominante
Waurzel mit (A, 6) =2. Mit 3.3 und 3.7 ist A/¢; nicht ausgeartet fiir n =2, 3. Fiir
n =35 ist A/¢, nicht ausgeartet wegen 3.3 und I. Nach dem Hauptlemma ist also
auch A nicht ausgeartet.
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45 ¢=C,, n=3: e—s—o o=

o, @ AXp—1 &y

Wiederum ist x(T) ®, R =R".

Positive Wurzeln: e;te;, 1<i<j<n, 2¢;, 1<isn
Basis: a;=¢;,— €41, 1<i<n-—1, a,=2e,
Fundamentalgewichte: w;,=e;+---+e;, 1sis<n.

I

II.

III.

Fir A=Y rw; mit r,e{0,1}, " ,r=2, A#w,+w, liBt sich das
Hauptlemma mit der langen dominanten Wurzel 6 = 2e¢, anwenden.

Bei A=w,, w,,...,w,, w;+w, oder A=w;, n=3,4 wenden wir das
Hauptlemma mit der kurzen dominanten Wurzel é = e, + e, an.

Es bleibt der Fall A = w;, n=5:

Hierist p*(A) ={e;—¢j|1<i=<3,4<j<n}U{e+¢|1<i<3,i<j<n}.

Diese Menge teilen wir wie folgt ein:

Al:={aeop* (V) |4, o) =1, (w,, @) =0}
A2={aeop V)|, a)=1, (w,, @) =2}
Al={aedp* (V)| (4, @) =2, (w,, &) =2}

Nach Konstruktion ist ¢*(1)=A' UA?U A%, und die A’ sind unvermischt.
Fiir die Unterwurzelsysteme

dr:=(ay, az, ..., Uy_y),

¢2:= <Cl’1, @, e3+en: X1, Xp—25 -+ (14) und
¢3:=(a,, ay, 2e;) gilt A'= ¢ (A ;).

Ist nun n >3, so ist A/¢; nicht ausgeartet fiir i =1, 2, 3, somit sind die A
zuldssig und A ist nicht ausgeartet nach Lemma 3.9.

Fiir n = 5 ist A/¢; immer noch nicht ausgeartet, d.h. A> ist zulissig.

Sei I:={(e;—es,e3+e,), (e,—e4, e,+6€5), (e, —e4,e3+e,)}, dann st
a— B ¢ ¢ fiir alle o, f mit (a, B) € L

Definieren wir v, .z wie in Lemma 3.5 und setzen v:= X, gyer Va+p, SO ist
H 1, 42(v) regulir, also ist auch A' U A? zulissig und A ist nach Lemma 3.9
nicht ausgeartet.
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46 ¢p=F,: o—c>

@y @y 03 ¥y

Sei A=Y}, rw; mit r,e {0, 1}. Fiir die hochste kurze Wurzel 8 = a, + 2a, +
3a;+ 20, = w4 gilt (A, 6) =2n, +4r,+ 33+ 2r,=2, und ¢, ist vom Typ B;. Nun
hat A/ ¢s die Form:

r2+r3+r4 r r ; 3
A/(pa: * N 7
o, +2a3+2a, @, a; as

ist also nach 4.4 nicht ausgeartet und das Hauptlemma kann angewendet werden.

a3
47 ¢ =E,: ‘—‘—I‘—*—‘

o) @3 @y &s Qg

Hier ist x(T) ® ;R = {(xy, . . ., xg) € R®| x¢ = x7; = —x5).
Positive Wurzeln: e, +¢;, 1<i<j<3,

5 5
Heo—er—eot 2 (~1M%,) mit > B() gerade
= i=1

i=1

Basis: a;=1(e; +es) —2(e;+es+es+es+eq+ey),

a,=e;+ ey, Q; =€;-1~ €2, 3s<is<6

I Ist A#+w;, ws, W+ w,;, w;+ ws, 4Bt sich das Hauptlemma mit der
hochsten Wurzel 6 = ay + 2a, + 25 + 3o, + 205 + &y anwenden. Denn ist
A=Y rw; mit r,e{0,1}, soist (A, 8)=r+2r+2r,+3r,+2rs+rs=2,
und ¢ = {@e ¢ | (a, 6) ist gerade} ist das von «,, a3, ..., as, & erzeugte
Unterwurzelsystem und hat den Typ A5 X A;.

II. Die Gewichte w; und wg sind nicht ausgeartet.
Beweis: Beide Darstellungen sind dual zueinander, daher sei 0.E. A = w,.
Betrachte die Unterwurzelsysteme

¢02={0’€ ¢ l <w6’ a’) =O} und ¢1Z={Q'€ ¢ | <w1’ a) = <w6’ CV)}

Beide sind vom Typ Ds, ¢, wird erzeugt von a,,..., as und ¢, von
a+taztas+as+ap, az, a3, a4, as. Wegen 4.3 ist nun A/¢,, i=0,1,
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nicht ausgeartet, also sind die A := ¢; (A/¢;) zuldssig. Wie man leicht sieht
gilt A'={ae¢p*(A)]|{(ws, a) =i} fir i=0,1. Daher sind die A’ auch
unvermischt und die Behauptung folgt mit 3.9.

III. w,+ w, und w, + we sind nicht ausgeartet.
Beweis: Es geniigt zu zeigen, daB A = w, + w, nicht ausgeartet ist. Nun ist

1 2 .
P (A)={e;+e|1<i<jsS5}U {5 (ezg-e7~-eﬁ+g1 (—l)ﬂ(’)e,)}.

SeiAl:={aep* (1) | (A, a) =1}
={€,~+€jl1$i<]'$5}U{ﬂ1,ﬁz,.--,ﬂs}
mit ﬂ,-=%(eg—el—"'—e7)+e;, 1$l$5,

und A%:={ae¢p*(A) | (A, ) =2}.
Fiir die «, B mit («, B) € I, wobei

I = {(el + €y, €3 + 64)’ (ﬁl: €2 + 65), (ﬁ3’ €4 + 65)} CAI X Al’
gilt & — B ¢ ¢, und fiir « € A% ist A — 2a Gewicht von V.
Definieren wir v:= Y, g)e1Va+p + Laea? V2, Mit v, .5 wie in Lemma 3.5,

dann hat H(v) die Form

o413

mit einer reguldren Matrix M und einer regulidren Diagonalmatrix D.

a>
4.8 ¢=FE;: I

(24 O3 (s 9 s (4 73 (14]

Ist A= Y], rw; mit r,€ {0, 1} und 6 =2a, +2a, + 3as+4a,+3as+ 206+ a5 =
w; die héchste Wurzel, so gilt

(A, 8)=2r+2r,+3rs+4r,+ 3rs+ 2rg + 1.
Weiterhin ist ¢, ={we¢|(a, 6) ist gerade} das von a,, as,..., &y, &
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