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Gaps and bands of one dimensional periodic Schrodinger
operators, II

JoHN GARNETT and EUGeENE TRuBOwiITZ

§1. Introduction

Let q(x)e Lg[0,1], the Hilbert space of square integrable real valued
functions on the unit interval. Extend g(x) to the whole line R by g(x +1) =
q(x). The spectrum of the Schrédinger operator —d?*/dx*+ q(x), acting on
L*(R), is the set of A such that

—y"+q(x)y =Ay (1.1)

has a nontrivial solution bounded on R. The spectrum is contained in R and it is
the union of a sequence of closed intervals [A,,_,, A,,_,], where A, =1,(q),
n =0, satisfies

A<M =A,<Az=A,<---.

These intervals are called bands and the intervening, possibly void, open intervals
are called gaps. The possible arrangements of gaps and bands were investigated in
[1]. This paper continues that study and includes some applications and
simplifications.

Let y.(q) = A2.(q) — A2,-1(q) be the n-th gap length. It is well known that
v.(q) € (I*)*, the space of nonnegative sequences with ¥ y2 <. Two of the three
main results of [1] are:

(a) Whenever vy, € (I1>)*, there exists qe L%([0, 1]) such that v,(q)= V.,
n=1,2,.... Moreover, q can be chosen from the even subspace E of
q € L%[0, 1] such that

q(1—x)=¢q(x)

(b) the spectrum is determined, up to a translation, by the gap lengths v,(q).
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Gaps and bands 19

Let u,(q), n =1, be the Dirichlet spectrum of g, that is, the spectrum of (1.1)
for the boundary condition

y(0)=y(1)=0,

and let v,(q), n =0, be it’s Neumann spectrum, i.e. the spectrum of (1.1) with
boundary condition

y'(0)=y'(1)=0.
Then g € E if and only if {u,(q), v.(q)} = {A2.-1(q), A2.(q)}, so that for q even,

¥a(q) = |1.(q) — v.(q)\.

As functions on L[0, 1], u.(q) and v,(q) are real analytic (while A,, is not
analytic at a g for which 4,,(q) =4,,_,(q)) and hence the signed gap length
0.(q) =u.(q)—v.(q), n=1, is real analytic in g. Furthermore, the map
o:L%[0, 1]— /? defined by o(q) = (0,(q)), n =1, is a real analytic mapping from
the Hilbert space L%[0, 1] to the Hilbert space /2. The third main result of [1] is:

(c) Let E, be the space of even potentials in Lg[0, 1] satisfying [§q(x) dx =0.
Then the map

Eysq—0(q) =(0:(q), 02(q), . . .)

is a real analytic isomorphism between E, and /*, that is, o is one-to-one and onto
and both ¢ and o~ are real analytic maps of Hilbert space.

Of course, since v,(q) = |0,(q)|, q € E,, result (c) included result (a).

The proof of (a), (b) and (c) in [1] applied harmonic measure arguments to
the identification, due to Marfenko and Ostrovskii [3], of band configurations

with certain slit quarter planes. In Section 2 we give a direct proof, using analysis
in Hilbert space, that the Jacobian

d,0:Ey—/?

is invertible. From this it follows easily that o is one-to-one, and that, if o is onto,
than by the Inverse Function Theorem, o~! is real analytic. Consequently, result
(¢) can be proved without the intricate Section 6 of [1]. We cannot prove o is
onto /? using only the method of Section 2 without a still unknown estimate of
lgll in terms of ||o(q)|,.. However, in Sobolev space such an estimate is
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available and thus we show in Section 2 that ¢ is an isomorphism from
EoNH*={q e Ey,:q has k derivatives periodic and in L*([0, 1])} onto /%=
{(02): X n* o, <o}

In Sectlon 3 result (c) is used to prove Marfenko’s theorem [2] that the finite
band potentials (those g with y,(q) =0 for large n) are norm dense in L? and
that ¢ has primitive period 1/k if and only if y,(g) =0 when k does not divide n.

In Section 4 we give some inequalities that band lengths must satisfy and we
show that for real analytic potentials the band lengths determine the spectrum up
to a translation. Here the harmonic measure methods of [1] reappear.

§2. Signed gap lengths
We need a general interpolation lemma.

LEMMA 2.1. Suppose ¢(A) is an entire function satisfying
sin VA
o) /27| =00

A= (n + 1/2)271'2

as n— ». Then

o) =S $(E) [ =22

n=1 m=15Sm gn
m#*n

for any sequence §,, n=1, of distinct complex numbers satisfying &, = n’n*+

o(1).

Proof. If &,, m =1, is a distinct sequence with &,, = m?7x% + o(1), then

n; -SW( %)

n

unifomly on the circles I, ={|z| =(n+1/2)°2%*}. Hence the meromorphic
function

fo)= 28 1 2

m=215Sm

satisfies supp, |f(z)| =o0(n"?), n—»; and the sum of its residues inside I has
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limit 0 as n— . But f(z) has simple poles of A and at &,, n=1, and f(z) is
regular elsewhere. Summing the residues, we obtain

m*n® & n’n? m?m?
2@ .

m¥n om

0=¢) [1

m=15m l n=

which is the assertion of the lemma. O
We turn to the main result of this section.

THEOREM 2.2. For all q € E,, the Jacobian d,o: Ey—/* is an isomorphism
onto /*.

Proof. See Chapter 2 of [6] for the facts used in this proof.
The components of d,o are

g0, = dopt, — dgv, = g» — hy,
where

g2(t) =2sin®* nmt + O(%)
and

h2(t) =2 cos® nmt + 0(1)
n

are the respective squares of the n-th Dirichlet and Neumann eigenfunctions.
Hence the operator d,o is the sum of the isomorphic Fourier series operator

Eysf— (—2(cos2nat, f), n=1)

and the compact operator

o= ((o2).).v=1).

and d,0: Ey— ¢ is a Fredholm operator.
When q is even the vectors g2, — 1, m = 1, form a basis for E, with dual basis
—2a,,(x), where

(%) = y1(X, pm)Ya(X, )
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and where y,(x, u.,.), y2(x, 4,,) are the fundamental solutions of (1.1) for A = p,,
with

»©0) »0))_(1 0
(y;(O) ys(O))“(o 1)‘
That is, if f, g € E,, then

(f, —2a.,) € /?
(gh—1,8)el?
and
[far=3 (7, ~2an)(gh-1.8),

Therefore it is sufficient to prove that the matrix
An.m = (83 - h%v _20,',,>

is invertible in B(/?, /%).
We have (g2, —2a,,) = J, ,., and because a,,(0) =a,,(1) =0,

(~h2, —2a3) =2 2al, dx = —4[ hipyi(x, s )yatoc, ) dx
= f)'lhn[hn’ .YZ] +y2hn[hm yl] dx
where [f, g] =fg’' —f'g. But by (1.1), .
d
a [hm yj] = (Vn - ,-"'m)hnyi'

So if v, # u,,, then

1

('_hfn —2a,',,) = ([hm yl][hm )’2])|(1)

n m

_ 1 2 ' ’ _ (_1)m 2 '
=S A = B2y, )

m Vn = Um



Gaps and bands ‘ 23

since h.(0)=h,(1) =0, since y;i(0) =0 and since, when q is even, y3(1, u,,) =
(=1)™. Also

Y v) (=1
”yl(') Vn)”% Yi(l, Vn)

ha(1) =

where y =3y/0A, because y(1, v,)=(—1)" when q is even and because
Iy:iC, vll3=—yi(1, v.)y:(1, v,,). From the product formulas

yi(l, pm) = (vo— Nm)n k2 2

k=1

s —Vo— V. Ve — Vn
yl(l’vn)=_—(_%‘—) I—[ :

n*m? 1<k#n k*m?

we conclude that

(—h2%, —2a},) = (=1y+m [] H—Em @.1)

o=k#n Yk — Vn

when v, #u,. If v,=u, then n=m and [h,, y;]=|yl|lz'6;. because the

Wronskian [y;, y,] = 1. Consequently {—h2, —2a,,) =1 and (2.1) also holds when
V, = WU,,. Thus our matrix is

Anm = 6n,m + (_1)n+m H u ’

0<k#n Yk — Vn

and (a,,,,) is Fredholm because d,o is a Fredholm operator.

By the Fredholm alternative, d,o is an isomorphism of E, onto /% if the

transpose (a,,,) is one-to-one. Now suppose 7 = (,,, n = 1) € /* lies in the kernel
of (a,,,). Then

0= (1)n M+Z(l)m T H V"“n.

Vo — m=1 Yo~ Vm i=kerm Yk — Vm

Consider the function

o= 3 -1y ] ot

m=1 “ Vmiskzm Yk — Vm
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We will show in a moment that ¢(4) is a entire function of A satisfying

o) /22 V2] < 011 2.2)

uniformly on the circles [A|(n + 1/2)°x? as n— ». But since

B = (1", B = (1

n 0~ Vn

¢(E,) =0 at some point &, in the n-th gap. Consequently ¢ =0 by Lemma 2.1
and 17, =0, n=1. That means the transpose (a,,,) is one-to-one and d,o is an
isomorphism.

It remains to prove (2.2). Since v, — n’n* e /?,

[ 22h ([ ot (1+o(2))

1=k#m Yk — Vm 1=k#m m- n

m?m? k?* \ sin VA log n)
T miat-A (lsrklmkz—mz) Va (1 + 0( n )

2.2 :
o qyme1 M sin VA ( (log n))

on |A| = (n — 1/2)*n% Hence for such A,

Sln VA' Tm
[ ) / | Const. 3, -tz =o(l). O
It will be convenient to replace E, by

& ={q € E:As(q) =0}.

Since even potentials are determined by their Dirichlet spectra and since
ta(q +c¢)=p.(q) +c¢, and v,(q +c)=v,(q)+c, the map g—q —|[q], where
[q] = J6 q(x) dx, is an isomorphism from &, to E, preserving signed gap lengths.
Let

€' ={qe€:Yu(q)=0,(q)=0,m>n}.

Because, by Theorem 2.2, o is local analytic isomorphism on &, &" is a real
analytic submanifold of &, of dimension n.
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COROLLARY 2.3. For each n=1, the signed gap length map is a real
analytic isomorphism of €" onto R".

Proof. The image o(%") is an open subset R” because o:%,—¢* is a local

homeomorphism and %" =0"'(R")N¢g,. We next show o(&") is closed. The
identity from [7],

q(t) =4+ Z {A2m + A1 — 20,.(T.q)},

m=1

where T,q(x) = q(x +t), yields

lg(®)| = §=Zl Ym(@), q€¥ (2.3)

Hence the preimage in " of any compact subset of R" is bounded in L2 It is also
weakly closed because the functions o,,(q9) = u,.(q) — v..(q) are weakly con-
tinuous. Thus the preimage of a compact subset of R” is a weakly compact subset
of &", and it follows that the map o:%"—R" is proper and that o(%") is a
nonempty, closed subset of R"”. Therefore o0 maps €” onto R”".

Now let M be the set of points in R” having more than one preimage. Then M
is open because o is a local homeomorphism. But M is also closed. Indeed, if
there are distinct points g; and p; in &” such that o(p;) = o(q;)—> o0 € R", then
because the map is proper there are subsequences such that p;—p € € and
qgi—q € €". If p =q then p; = g, for j large because the map o is homeomorphic
on a neighborhood of p. So p#¢q and M is closed. But 0¢ M by (2.3). Thus
M # J and the mapping is one-to-one.

The map o:&"— R”" is real analytic because u,, and v,, are real analytic on
L%[0, 1]. The inverse map is real analytic because d,o is invertible. O

It is now easy to show that the map o is one-to-one on &, (and hence on E).
COROLLARY 2.4. The signed gap length map in one-to-one on ¥,.

Proof. Suppose not. Then some point 7 € /% has at least two preimages. Since
o is a local homeomorphism, the same is true for each point in some
neighborhood of 7, so it is also true at

™=(1r,,...,18,0,0,...)

for N sufficiently large. But that contradicts Corollary 2.3. O
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Write /2 for the space of sequences (a,) with Y n* |a,|* <. From the
asymptotics for y,(1, A, g) and y(1, A, q) we have

un(q) =n’n*+[q] — (cos2nnx, q) + /1
v,(q) = n*a*+[q] + (cos 2nax, q) +/3.

Hence for q € E,, 0,(q) €/% if and only if {cos2nax, q) +/3; i.e. if and only if g
is in the Sobolev space

H'={q € L%[0, 1]:q’ € L0, 1]}.

THEOREM 2.5. The signed gap length map from E,0\ H' to /% is one-to-one
and onto.

Proof. By Corollary 2.4 o is one-to-one. To prove it is onto fix T €/7 and let
t™=(1,, 7 ...,7x,0,0,...). By Corollary 2.3 there is g € £" such that
a(gy) =™, and by (2.3)

N N 12, = 172
avl= 2 [l =(2 n) (Sn)

n=1

so that ||gn|l.=Const. ||z||2. Let g € &, be a weak limit of the sequence {gn}.
Then

Un(q - [q]) =T,
for all n, and q — [q] € H' N E, since t€/;. O

Remark 2.6. We are unable to prove the full result that o maps E, onto /* by
this method. What is needed is an estimate of ||g||, in terms of y,(g) more
powerful than (2.3). Such an estimate should be useful for other problems.

Remark 2.7. It is possible, by refining the proof of Theorem 2.2, to show that
0:E,N H'—/3% is an analytic isomorphism. We omit the details.

Remark 2.8. 1t is known [3, p. 534] that y,(q) € /% if and only if g € H*, i.e. if
and only if ¢ has k derivatives which are periodic and lie in L§[0, 1]. Thus the
proof of Theorem 2.5 shows that

o:E,NHK— 72
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is one-to-one and onto. We have not verified the likely statement that this map is
bianalytic.

§3. Two applications

The potential g € L%[0, 1] is called a finite band potential if y,(q) =0 for all
but finitely many n. Marenko [2, p. 258] proved that the set of finite band
potentials is norm dense in Lg[0, 1]. Here we derive that Theorem from result
(c), stated in the introduction.

THEOREM 3.1 (Maréenko). The set of finite band potentials is norm dense in
Lg[o0, 1].

For q e E, Theorem 3.1 is immediate from results (c¢). To prove it for
arbitrary g we need two additional theorems. Define

K,(q) = log ((=1)"y2(1, pu, 9))-

In [6] it is proved that k,(gq)e/%, i.e. that Y n’k%(qg) <, and that the
correspondence

q— (u.(q) — [q], x.(q))

is a homeomorphism from Lg[0, 1] onto /% x /3. That is the first theorem.
The second theorem is the description of the isospectral manifold

L(q) = {p € LR[0,1]:A.(p) = A,(q), all n}

given in [4]. The parameters

Ba(p) € [Azn—1, Azn]

and

sign k,(p)

uniquely determine p € L(q). Although true generally, this theorem will only be
used for finite band potentials, and such potentials satisfy the smoothness
assumptions of [4].
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Proof of Theorem 3.1. Fix q € L%[0,1]. Since A,(q +c)=24,(q), we may
suppose A¢(q) = 0. By result (c) there exist, for N=1, 2, ..., ey € & such that

Y.(q) n=N

Ya(€o) = {O n>N

and

“n(eN) = }'Zn—-l(eN)’ n= 1’ 2’ ceee
Since u,(q) € [A2.-1(q), A2,(q)] there exists ¢, € [0, 1] such that
1n(q) = tihan(q) + (1 — t,)A2n-1(q),

and by the second theorem just cited there exists g5 € L(ey) such that for all n,

Bn(gn) = tidzn(en) + (1 — ) A2n—1(en)

and

Sigﬂ Kn(qN) = Sign Kn(q)'

By the first cited theorem ||gn — ¢q||,— 0 if

lu(gn) — #(@)ll~—0 (3.1)
and

"Kn(qN) - Kn(q)”/%-_) 0. (32)
By the second theorem there exists e € &, such that for all n,

An(€) =2,(q)
pn(e) = Azn-1(q).

Then ||y,.(en) = ¥a(€)||~— 0 and o,(ex) and o,(e) have the same sign, so that
llo(en) — on(e)||l -~ 0. | 3.3)
Hence by result (c), ||ex — e||,— 0 and by the first theorem

llua(en) — ua(e)||l2— 0. (3.4)
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But then by the choices of g, ey and e,

UA(Gn) = 1n(q) = —1(On(En) = On(€)) + Hnlen) — tale),

and (3.3) and (3.4) imply (3.1).
To prove (3.2) we use the identity

2 cosh kx,(q) = (—1)" A(u.(q), 9),

where A(A, q) is the discriminant function
AR, ) =n(1, 4, ) +y2(1, 4, q)

and the inequality
|x — y|* =2 |cosh x — cosh y|,

valid when x and y have the same sign. They give

n? |k, (gn) — Ka(@))* = n* | A(.(qn), gn) — A(1.(q), 9)|
= n2 IA(“n(QN)! eN) - A(“n(q)’ e)l

Since ||ley — e||,— 0, A(A, ex)— A(A, e) uniformly on compact sets. Thus by (3.1)

IA(un(qN)’ eN) - A(Mn(Q), e)|—->0

for each n. Moreover,

IA(IJ'n(QN): eN) - A(Mn(q)’ e)l
<|A(un(gn), en) = 2(=1)"| + [A(ua(q), €) — 2(-1)"|

since A(Az,—1, eN) A(Azs_1, €) =2(—1)". Because A(A)=3A/3A is an entire
function of order %, having one zero 4, in each gap [A,,_; =4 = A,,] and no other
zeros, the product representation

A, — A
A(A) =
A)= nI:[l e
shows that
Ak )l =c 222,

Az,,]ssz,,
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Hence by (3.5)

n* | A(1a(gn), en) — A(p.(q), €)| < cvi(q)

and by dominated convergence
lim ¥, n? |x.(qn) — k(@) =0. O
N—x

Our second application concerns the subspace Li < L%[0, 1] of all functions
whose periodic extensions have primitive period 1/k, k=1, 2, . ... First of all, if
qgeL?, v.(q) =0 whenever k + n. To see this, recall from [7] that u,(t)=
p.(T:q), where T,q(x)=q(x —t), then as ¢ runs from 0 to 1, u,(t) makes n
complete trips between A,,_,(q) and A,,(q), when y,(q) #0. By assumption,
un(t +1/k) = p,(t). Therefore, n is equal to k times the number of complete trips
in time 1/k, and so k divides n, k | n.

Now let E§=FE,NL: It follows from the observation above that the
restriction of o to E§ maps into /*(k) = {0 €/*: 0, = 0 whenever k + n}. Without
any change in the argument of [1] or that of Section 2, one can show that o is a
real analytic isomorphism between E§ and /*(k) or between E§ N H' and /{(k).

Suppose g € E and o(q) € /*(k). Then there is a p € E{ such that o(p) = o(q).
However, o is globally one-to-one on E, so that p =q —[gq]. In other words,
q € E, has primitive period 1/k if and only if y,(q) = 0 whenever k + n.

It is easy to extend this observation to all of L%[0, 1]. Let q € L%[0, 1] and
L(q) = {r € L0, 1] | A:(r) = Ai(q)i =0}, i.e., the isospectral set of g. It is not
hard to see that L(q) N E # ¢ and that all points in L(q) have the same primitive
period. See [4]. Thus we have proved

THEOREM 3.2. The potential q has primitive period 1/k if and only if
Yn(q) = 0 whenever k does not divide n.

§4. Band lengths

Let a,(q9) = o, = A,,,_; — A, be the length of the n-th band. It is well known
that

a,(q)— (2n - )n*es? 4.1



Gaps and bands 31

and in [1] and [5] it was shown that
&,=Q2n—-1r*-a,=0, 4.2)
with equality holding for some # if and only if g is constant.

THEOREM 4.1. For all n and all q,

&, — &+, ,F-- ->0, (43)
and
ﬁn=dn— d’n-—]+&n—-2:‘:' - =0. (44)

Moreover, if B, =0 for some n, then q is constant and B, =0 for all k.

Note that by (4.1), (4.3) has content only for small n. By (4.4) B8, = a,, so
that by (4.1)

B.el%
and by (4.4) and (4.3),
0<B,<nn’ 4.5)

We shall show that (4.5) is sharp for every n and that, properly interpreted, the
Jacobian d,8,: E,—/? is invertible at ¢ =0. A simple characterization of band
lengths thus seems unlikely.

Proof. Recall from [1] that there exists k, = h,(q) =0, such that ¥ n’h’ <co,
and such that

é(i:_q_))

— el
(A, q) = cos ( >

is a conformal mapping from the half plane {Im A >0} onto the slit quarter plane

Q(h)={x>o,y>0}\Ql1;,

where

T,={nm+iy:0<y=h,}.
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Under 6(A, q) the n-th band is mapped onto the segment
B,=[(n—1)n—, na+] < 3Q2(h),
and if
u,(z, h) = w(z, B,, 2(h)) = u,(z)
is the harmonic measure of B, in €(h), then

@, = lim 2mx%u, (x + ix, h). (4.6)

xX—>xc

Let k =n and let z =x + ix with x > na. Then u,(2) is the probability that a
Brownian path starting at z makes its first exit from (k) through B,. Letting S,
be the set of such paths, we write

uk(z) = Pz(Sk)

Brownian paths can be assumed continuous. Thus every path in S, must cross the
half line J, = {x = kx, y >0} before it leaves Q(h). Let R, be those paths in S
which, before leaving Q2(h), last meet J, UJ,_, in J;, and let L, be those whose
last contact with J, UJ,_,, before departing from €(h), is in J,_,. Then R, and
L, are P, measurable, R, N L, = ¢ and

Pz(Sk) = Pz(Rk) + Pz(Lk)
But
P,(Li) = P,(R«-1)

by a reflection. Since L, = J, we conclude that
u,,(z) - un——l(z) t-.-= Pz(Rn) >0
which by (4.6) yields (4.3). To prove (4.4), let

Vn(z) = un(z’ O) - u,,(z, h)
Then

&, = lim 2ax?V,(x + ix).

X—>»C
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On 3Q(h),

V,(6)= 2 un(&, 0)15,(0), &7

and the argument above shows
5 ()" (8, 0)>0
on | 7. Hence for x large
k}n: (=) Vi(x +ix) =0
=t

and (4.4) holds. If equality holds in (4.4) then by (4.7), U T, has zero harmonic
measure in (k). That means all gap lengths are zero and q is constant. [J

To see that (4.5) is sharp, note that g— h,(q) maps onto /7 and that by (4.6),

lim ak=0, l1=k=n.

h,—x
For q € E, define

a,(q) = u.(q) — va—1(q), n=1

and
ba(q) = 2 (=1)"4((2n - 1)7* - a,(q)) = n* - Z (=1)"*a,(q).

Then forg e E

ba(q) = B(q) + Max (9,(q), 0),

and for each potential g € L? there is ¢* € E with u,(g*) <v,(q") and 4,(¢q*) =
A.(q), so that b,(q™) = B.(q).

THEOREM 4.2. At q =0 the Jacobian d (b,):E,—/* is an isomorphism
onto /*.
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Proof. At q=0, fekE,,

(d,a,, f) = (2sin® nat — 2 cos® (n — 1)at, f)
and

(dgb,, f)=—2(sin’ nat, f) = (cos 2nxt, f),

and (cos 2nnt),-, is a complete orthonormal system in E,. [

THEOREM 4.3. (a) If q and § are finite band potentials and if o,,(q) = o, (G)
for infinitely many n, then the periodic spectra of q and § agree up to a translation.

(b) If q and g are real analytic, and if a,(q) = o, (§) for all large n, then q and
g have the same periodic spectrum up to a translation.

Proof. Let ¢(z, q) be the inverse of the mapping 6(A, g). If g is a finite band
potential then h,(¢)=0, n>N and ¢(z, q) reflects to be analytic in the
complement of the finite union of vertical slits {|x| =nzx, |y|=h,(q), l=n=N}.
For z large we have

o(z,q) =2+ o(%) .

By the hypothesis of (a),

¢(Z+ﬂ',(])—¢(2, q)=¢(z+‘n" q')-¢(z, q) (48)

holds for an infinite sequence of integers tending to «. Hence (4.8) holds for all z,
and ¢(z, q) and ¢(z, §) have the same singularities. Therefore h,(q) = h,(§) for
all n, which means the spectra of ¢ and § differ by at most a translation.

To prove (b), set f(z) = ¢(z, q) — ¢(z, §). By reflection f(z) is analytic in
Q*=C Ql (S,US_S_,)

where S, = {x =nnx, |[y|=Max (h,/(q), h.(§))}, and by the asymptotics for
A(A, q), f(z) is bounded on Q*. Since g and § are real analytic, we have by [7],

Max (h.(q), ha(§) = C Max (v.(q), vx(9))
S Ce'—ﬂn
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for constants a and C. Viewing S, as two-sided, we see that f(z) has continuous
boundary values on S, and that for n =1,

sup |f(z) ~ f(n+)| = ¥,(9) + (@) = Ce™™.

By hypothesis there is N so that

f((n+)m—) = f(nr+) = a,(q) — a,(§) =0

for n = N, and hence
sup If(z2)|=Ce ™, n=N. (4.9)

Set h* =sup,, {h,(q), h.(G)}. We shall prove
|f(x + Ch*)| < Ce™™*, x>x, (4.10)
First assume (4.10). Then because f(z) is bounded and analytic in {y > h*},

—a'x
= —00

loglf@=Ci+ G| —Sdv=

on |z —i(h* +1)| <3. Therefore f =0 and (b) is proved.

We turn to the proof of (4.10). Let A, be the disc {|z — nx| <2A4e~*"} with
A so large that dist (S,, 94,) = Ae " for all n =1. Then by (4.9) and the three
circles theorem,

SUp f(z) = Gee™™ (4.11)

Now let 2 =C\U;_,(A,UA_,) and for 6 >0 fixed and x large, set

E.=U{A,:|nm —x| < éx}.

LEMMA 4.4. There is C(h*, a) such that for x large,

w(x +ih*, E,, )= C(h*, a)



36 JOHN GARNETT AND EUGENE TRUBOWITZ

Note that by the subharmonicity of log |f|, this lemma and (4.11) imply (4.10)
and hence the theorem.

Proof of Lemma 4.9. Fix 6,, 0<6,<4, to be determined later, and let
N, ~26,x /7 be the number of n such that |nx — x| < d,x. Set

1 1
u(z) =N > log z —nn|

x |nw—x|<dix

Then u(z) is harmonic and bounded above in €2, and

sup u(z)=lo ——-——l-———+c-af
cenang, N T OB T8 x '

But if z € E, then

N2 1
— > log

1
=—log(Ae ™) + —.
u(z)=y-log (Ae™™) + 5 2, log L

= log—l— +c'(a) =B,
1 X

and by a similar calculation,
u(x +ih*)= B+ c(h*, a).

We choose &, so that § — a = ¢”" > 1. Then by the maximum principle,

u(z) — a

w(z, E, Q)= B—a

and

*
w(x +ih*, E,, 9)?_95%’1) O.

We thank L. Carleson and P. Jones for suggesting the proof of Lemma 4.4,
which actually shows that E, has logarithmic capacity comparable to its diameter.
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