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Localization of group rings and applications to 2-complexes

MicHAEL N. DyYER*

In this paper we use recent results of S. Rosset [R] on the localization of
group rings to give applications to the theory of 2-dimensional CW-complexes
and related fields. If G is a group, we let ZG denote the integral group ring of G.
If A is a non-trivial normal abelian torsion-free subgroup of G (In this case we say
that G is a Rosset group or just an R-group, for short), we let S denote the
multiplicatively closed subset ZA-0 and localize ZG — ZGs so as to invert the
elements of S.

The first application is concerned with extending the Kaplansky rank xP (see
[DV)) for finitely generated projective ZG-modules P to projective ZGgs-modules.
This extension has a number of interesting applications because many ZG-
modules (such as the second homotopy module of a 2-complex) become
projective upon localization.

The second application generalizes a theorem of Hillman [H]. If X is a
connected 2-complex with fundamental group isomorphic to G (in this case X is
called a [G, 2]-complex) and L is a subgroup of G, let X; denote the covering of
X corresponding to L. We say that X is L-Cockcroft if the Hurewicz map
m,X— H,X; is trivial. Let H,L denote the ith-homology group of L with
coefficients in the trivial ZG-module Z. If L is a normal subgroup of a group G,
the weight of L in G (denoted by witsL) is the minimal number of elements
whose normal closure in G is L.

THEOREM 1. Suppose L > G -»» H is an exact sequence of groups with H a
Rosset group, G finitely presented, H, L finitely generated as an abelian group and
wtgL finite. Let X be any [G, 2]-complex. Then the Euler characteristic xX =0,
with xX =0 iff X is L-Cockcroft and H,L = 0.

COROLLARY 2. In addition to the above hypotheses, if either
(a) H,L is torsion-free and L has no perfect subgroups

* Support from the National Science Foundation is gratefully acknowledged.

1



2 MICHAEL N. DYER

or
(b) L is locally indicable,
then the [G, 2]-complex X is aspherical iff xX =0 and H,L =0.

Let G be a finitely presented group with H = H,G infinite and L = G’, the
derived group of G. Furthermore, assume that H,G’ is finitely generated as an
abelian group. By theorem 1, G always has deficiency =1. If, in addition, G has
no perfect subgroups (e.g., if G is residually nilpotent) and H, G’ is torsion-free,
then it follows from corollary 2 that G has deficiency 1 iff it has geometric
dimension 2 and H,L = 0.

The outline of the paper is as follows. In section 1 we describe the localization
results of S. Rosset and in section 2 we give the extension of Kaplansky’s
invariant to projectives over localized rings. In section 3 we apply the earlier
results to shed new light on the aspherical question of J. H. C. Whitehead: is
every connected subcomplex of an aspherical 2-complex aspherical? Section 4
contains the proof of theorem 1 while in section 5 we derive an algebraic analog
of theorem 1.

1. Localization of certain group rings

In this section we describe recent results of S. Rosset [R]. Let G be a group
and let A be a non-trivial torsion-free abelian normal subgroup of G. If a group G
has such a normal subgroup, we will say that G is an R-group. Then the set
S =7ZA — 0 is a multiplicatively closed subset of the integral group ring ZG and
satisfies the Ore conditions [P, page 146]. Thus there exists a left ring of fractions

7Gs={B 'a|xeZG, BeS}

and a canonical injection i: ZG — ZGj; given by carrying a — 17 'a.

This localization has the following properties:

(L1) The right ZG-module ZGsg is flat.

(L2) If'M is any left ZG-module, then the localization Mg of M is given by
Mg =7Gs® ;6 M. If the underlying abelian group M° of M is finitely generated
or consists only of elements of finite order, then Mg = 0.

(L3) The ring ZG;s has rank invariance for finitely generated free modules;
i.e., if ZG§ =ZGY§, then m =n.

The property (L3) is proved via the stronger Kaplansky property:

(L4) Let @ :ZG7— ZG7 be any surjection from a free ZGg-module of rank m
to itself. Then @ is an isomorphism, as well (see [R], theorem F).
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Using properties L1-L3 S. Rosset [R] gives the following remarkable
generalization of a theorem of D. Gottlieb ([G], [S]):

THEOREM 1.0. If X is a finite aspherical complex whose fundamental group
7m,X an R-group, then the Euler characteristic x(X) = 0.

In another paper [D,] we show the following generalization of Rosset’s theorem.
This has also been discovered independently by L. Fornera in her Ph.D. thesis at
ETH.

THEOREM 1.1. Let X be a finite aspherical complex with n,X=G. Let
L > G > H be an exact sequence of groups with H,L finitely generated as an
abelian group and H an R-group. Then x(X)=0.

DEFINITION 1.1. Let m be an integer =2. A [G, m]-complex is a connected
CW-complex whose dimension is =m, whose fundamental group =X is
isomorphic to G, and whose universal cover X is (m — 1)-connected. For
example, any connected 2-complex is a [, X, 2]-complex.

Combining the results of [R] and [H], we have the following.

THEOREM 1.2 (Hillman—Rosset). Let X be a finite [G, m]-complex whose
fundamental group is an R-group. Then the Euler characteristic x(X)=0. The
Euler characteristic of X is zero iff X is aspherical.

Before giving the proof, we give the following:

LEMMA 1.3. Let M be a submodule of a free ZG-module F. Then Mg =0 iff
M=0.

Proof. The exact sequence M >»—F > (Q =F/M localizes to the exact se-
quence Mg —> Fg-» Qg. The inclusion F— Fs induces an inclusion M — M. The
result follows. W

Proof of the theorem. Let C,X »Z denote the augmented cellular chain
complex of the universal cover X, considered as a sequence of finitely generated
free ZG-modules. Let K =ker[d,,: C,,— C,,—,] be the mth-homotopy group of
X. Localize the exact sequence K— C,X »Z to obtain the exact sequence of
stably-free projectives Ks— C,Xs—0. Thus the rank of K as a stably-free
ZGs-module is x(X), which must necessarily be =0. If y(X)=0, then rank
K =0. It follows from L4 that K; =0 and from the lemma that K=0. W
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This theorem has two very lovely corollaries, the first of which was noted in
[H]. We say that a finitely presented group G has (finite) geometric dimension <2
if G admits a (finite) aspherical [G, 2]-complex.

COROLLARY 1.4. If G is a finitely presented R-group, then the deficiency of
G is <1. The deficiency of G is equal to 1 iff G has finite geometric dimension
2. 1

COROLLARY 1.5. If H is any finitely presented group, then the deficiency of
the cartesian product Z X H is <1. The deficiency of Z X H =1 iff H is free.

Proof. By the previous corollary, we need only show that the geometric
dimension Z X H <2 iff H is free. First, if H is finitely generated and free, then
the obvious presentation of Z X H of deficiency 1 may be realized as an aspherical
[Z x H, 2]-complex. In order to see the converse, we apply the Lyndon-
Hochschield-Serre spectral sequence to the split exact sequence Z»—>Z X H » H.
If M is any ZH-module, then we obtain the split exact sequence

H*(H; M) — H*(Z x H; M) » H*(H; M).

Thus H*(Z x H, M) =0 implies that H*(H; M)=0. This says that H has
cohomological dimension =1. That H has cohomological dimension 1 follows

because H is torsion free. Now H is free by the famous result of J. Stallings [S,,
p-58]. W

2. Extending the Kaplansky invariant

In this section we show how to use the results of [D,] to extend the invariant
of 1. Kaplansky (see [DV]) to localized group rings. We assume that the group G
has a non-trivial normal abelian torsion-free subgroup A (we call such an A an
NATF-subgroup). Let S =7ZA —0 and localize ZG — ZG;. References for this
section include [S], [D,], [DV], and [P].

For any ring R, a trace function on R is a linear map 7 :R — B, where B is an
abelian group such that, for each r, s e R, T(rs) = T(sr). If we define the set
[R, R] to be the subgroup generated by the Lie brackets [r, s] = rs — sr, then the
universal trace function is given by 7,,: R— 7R = R/[R, R]. Any trace function T
on R may be extended in the usual way to any n X n-matrix M = [m;] over R
via the formula T(M)= Y T(m,;). Any trace function T has the properties
(@) TIM+N)=T(M)+T(N) and (b) T(PQ)=T(QP), where M, N are
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n X n-matrices, P is an m X n-matrix, and Q is an n X m-matrix over R. Also,
.T(1,)=n- T(1), provided R has a multiplicative identity 1, and 1, is the identity
n X n-matrix over R.

If G is a group and ZG is the integral group ring, then the universal trace
group tZG is easy to describe. Let CG denote the set of conjugacy classes of G.
Then the group tZG is equal to the free abelian group ZCG generated by the set
CG. For an element x € G, let (x) €e CG denote the conjugacy class of the
element x.

The trace function 7;:ZG — Z is given in either of two (equivalent) ways. First,
for any v € ZG, let Ty(v) be the coefficient of 1 in v. Secondly it can be described
as the coefficient of (1) in T,(v).

Following [S] we extend the trace T to any endomorphism f:R"— R" by
choosing a basis for R" and defining T'(f) to be the trace of the matrix M of f with
respect to this basis. This is independent of the choice of basis. Further, if P is
any finitely generated projective R-module, choose an integer n =0 and an
idempotent endomorphism e:R"— R” whose image is isomorphic to P. Define
the rank of P with respect to T to be T(e). See [S] for the proof that this is well
defined. We denote this rank by prP. If R =7G and T = T;, we denote this rank
as kP. This is the Kaplansky rank (it is called iP in [DV]). The rank
(Hattori—Stallings) for the universal trace function 7T,:ZG— tZG is usually
denoted by rsP.

The Kaplansky rank is known to have the following properties (see [DV]).

K(a) kP is an integer =0.

K() If P and Q are finitely generated projective ZG-modules, then
k(P ® Q) = kP + kQ.

K(c) If n(P) is the minimum number of generators of P as a ZG-module,
then kP = n(P).

K(d) kP =0iff P=0.

K(e) kP =n(P) iff P ~7G""\,

Now let S = ZA — 0 and localize ZG to ZG; via the inclusion map i. Let H be
the quotient G/A and & : G— H be the natural surjection. For any element h € H
and a € A, let h *a denote the action induced by conjugation by any preimage of
h under & (that is, if mg=~h, then h*a=g-a-g'). This makes A into a
ZH-module. In this case, we will give a complete description of a direct summand
F" of tZGs. The proofs for this description are given in [DF].

First, let ¥ denote the quotient field of ZA. It is easy to see that, by choosing
a set E of right coset generators for H in G (let 1€ E), the ring ZGs is an
F-module and that it is F-isomorphic to the vector space F(E) with natural basis
E. Consider the projection T:ZGs— % - 1= % of the ring onto the coordinate
corresponding to 1€ E. Note that ZGs and L = [ZGs, ZGj;] are Q-vector spaces,
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where Q is the rational numbers. Factoring out by the image of L under T defines
the vector space &". (It is shown in [DF] that T(L) is precisely the Q-subspace
H-%, where H is the augmentation ideal in QH. Then %" is #/H - % =
Q ®qu F; it is also shown there that " is a direct summand (over Q) of TZGy).

Thus we may define a new trace function t:ZGs— %" via T followed by the
natural projection F— F". Let [f] denote the image of fe ¥ in F". We will
show that this trace function ¢ “extends” the function 7; given above, in certain
cases.

Let (A) denote the conjugation classes in G determined by the elements of
A; for each ae A, (a) is the conjugation class in G defined by a. Let
tA:ZG—Z(A) be the trace map determined by restricting to those conjugation
classes in (A).

Let a:Z(A)— %" be the map defined by sending (a)+—[a]. If we let
y:Z(A)— tZG be the natural split injection into tZG, | be the localization
2G — ZGg and r:1(ZGs)— " be the projection induced by the projection T
above, then one sees easily that a =ro 7(l) o y.

LEMMA 2.0. If P is any finitely generated projective ZG-module, then
a(pa(P)) = p(Ps).

Proof. This follows from the definition because, if e is the defining idem-
potent for P, then ey is the defining idempotent for ;. B

DEFINITION. We say that the Hattori—Stallings rank rgP is carried by
conjugacy classes of finite order if, for each finitely generated projective
ZG-module P, the coordinate rgP({x)) of r;P on the conjugacy class {(x) is
trivial except for elements x € G of finite order.

LEMMA 2.1. If the Hattori—Stallings rank is carried by conjugacy classes of
finite order, then the rank p, is really given by the Kaplansky rank k, i.e., if
B:Z— F" is given by 1—[1], then B(xP) = p,(Ps).

Proof. By lemma 2.0, p,(Ps) = a(p.4 P). But each conjugacy class (a) # (1)
in Z(A) consists of elements of infinite order, so p,P=kP-(1). N

A result of B. Eckmann [E] shows that the Hattori-Stallings rank (over QG,
and hence over ZG) is carried by elements of finite order if G is one of the
following types of groups:

(a) solvable groups G

(b) linear groups G = GL,(F) where F is a field of characteristic 0.
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(c) groups of cohomology dimension cdgG = 2.
provided G has finite homology dimension over Q.

Furthermore, if G is a residually finite group, then P. Linnell has shown that
the Hattori—Stallings rank (over ZG) is concentrated on (1) [L].

Some properties of the rank p, are given in the following

PROPOSITION 2.2. Let P and Q be finitely generated projective ZGg-
modules. Then

Ks(a): p,P is a member of F".
Ks(b): p(P ®Q)=p,P+p,Q.
If [11#0 in &", and P is a stably-free ZGs-module, then
Ks(c): p,P =k -[1] with k e Z and 0 <k =n(P), where n(P) is the minimal
number of generators of P as a ZGs-module and k € Z is the stable-free
rank.

Ky(d): p,P=0&P=0.
Ks(e): p,P=n(P)-[1]oP=~72G",

Proof. Statements (a) and (b) are clear. Statement (c) follows from (b) and
the fact that p,ZG = [1]. We will show statement (d). Statement (e) then follows
from (d). Because P is stably-free we see that the following sequence is exact for
some positive integer n:

P—ZG%»Q

with Q stably-free. Then p,P =0 yields that p,Q =n - [1] (here is where we use
that fact that [1] # 0, because then [1] has infinite order in TZGj); we may assume
that, in fact, Q is free of rank n (perhaps by replacing n by n + k). Then the
Kaplansky property L4 implies that P=0. W

Question. Do K(c), (d) and (e) hold without the assumption that P is
stably-free?

DEFINITION 2.3. We say that the finitely generated ZG-module M is
pre-projective (respectively, pre-stably free) if the localization Mg is a projective
(respectively, stably-free) ZGs-module. For example, if X is a [G, m]-complex,
then the mth homotopy group x,,X is a pre-projective ZG-module. We define
the Kaplansky rank k,M of a pre-projective module M to be kx4, M = p,M;. Of
course, if My is stably-free, then k4 M is an integer multiple of [1]. It is not known
to me whether or not the Kaplansky rank is independent of the choice of A.
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COROLLARY 2.4. Let M be a pre-stably-free ZG-module. Then kM =0 iff
the localization Ms = 0. If M is a submodule of a free ZG-module, then M = (.

Proof. The first statement is just a special case of (d) above. The second
follows from lemma 1.3. 0O

3. Application to aspherical complexes

We say that a [G, 2]-complex X has the Whitehead condition (WC) if either X
is aspherical or, if X is not aspherical, then whenever X is the subcomplex of an
[H, 2)-complex Y, Y is not aspherical (see [BD] and [BDS] for reference). A
group G is WC if every [G, 2]-complex satisfies WC. For any group G, let PG
denote the maximal perfect subgroup of G. The following theorem is an
improvement over several theorems in [BD] and [BDS].

THEOREM 3.1. Let G be a finitely presented R-group which has a normal
abelian torsion-free subgroup not contained in P,G. Then G has WC.

Proof. The deficiency of G is =1. If X is a [G, 2]-complex, then the Euler
characteristic X =0, with X aspherical iff yX =0. Suppose yX >0 and X is a
subcomplex of an [H, 2]-complex Y. We will show that Y is not aspherical.
Suppose that Y were aspherical. Then it follows from [BD] that there is a
non-trivial perfect subgroup P in G such that the cohomological dimension
cd(G/P)=2. Furthermore, G/P has type FL with x(G/P)= xX >0. Now the
hypothesis implies that G/P is an R-group, which is impossible (because G/P is
an R-group and FL implies that y(G/P) = 0; see the proof of theorem 1.2). W

We can now improve corollary 3.7 of [BDS] to read: if G is the finitely
presented fundamental group of a non-aspherical subcomplex X <Y of an
aspherical 2-dimensional complex, then G has a non-trivial, superperfect, normal
C-subgroup (see [BD] for a definition of C-subgroup) P with respect to C, X — Z.
Moreover, cdG/P =2 and the center of G is contained in P. See also Corollary 4.7
of [BD].

We also note the following peculiar corollary: For any finitely presented group
G the cartesian product Z X G has WC.

Jonathan Hillman (private communication) has pointed out that 3.1 improves
another corollary of [BDS], namely Corollary 5.2.

THEOREM 3.2. If G is a 2-ended group, then G has WC.
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Proof. If G is a 2-ended group which doesn’t have WC, then by Corollary 5.2
of [BDS] we have the exact sequence P>—> G »Z, where P is a finite perfect
group and the deficiency of G is 1. But it is easy to see that, because P is finite, G
has an infinite cyclic central element. Thus, by 1.4, G has WC. B

4. Application to deficiency

Throughout this section we assume that the NATF-subgroup A in G has been
chosen once and for all and that 0 # [1] € #" (this happens iff [1] € #" has infinite
order, see [DF] for details and examples). For any [G, 2]-complex X, let X,
denote the covering of X corresponding to the subgroup L. We say that G is
L-Cockcroft if there is a [G, 2]-complex X such that the Hurewicz map
m,X— H,X, is trivial. Such a space X is also called L-Cockcroft. If X is a finite
[G, 2]-complex, then we say that it is a [G, 2],~complex, If L is a normal
subgroup of G, the weight of L in G (denoted by wt; L) is the minimal number of

elements which normally generate L (in G). In this section we show the
following.

THEOREM 4.1. Let 1— L— G— H— 1 be an exact sequence of groups with
(a) G finitely presented,

(b) H an R-group,

(c) the weight wtL finite, and

(d) the ZH-module H,L localizing to zero.

Then the deficiency def G of G is <1, and is equal to 1 iff G is L-Cockcroft and
H,L =0.

Notice that the above hypothesis 4.1(d) is satisfied if H,L is finitely generated
as an abelian group or is a torsion group. Also, 4.1(c) and (d) are satisfied if L is
finitely generated. In particular, let L =1. The theorem then says that any
R-group G has deficiency 1 iff G is 1-Cockcroft; i.e., G has geometric dimension
=2. This is the Rosset—Hillman theorem. The proof of Theorem 4.1 will be given
at the end of the section.

For example, if G =gp{a, b: (a’d7*)?} (r,s,q>0), H=gp{a, b:a’b™*}, and
G > H is the map induced by the identity on the generators, then the kernel L is
normally generated by the element /=a'b™ and H,L is a torsion group
generated by all the conjugates of /. Notice that a” = b® generates an infinite cyclic
central subgroup in H. Hence, def G =1 implies that G is L-Cockcroft and
H,L =0 (the latter also follows from a result of Fischer, Karrass, and Solitar
[FKS] that says that the normal subgroup L is a free product of cyclic groups.
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Moreover, E. Dyer and A. Vasquez [DV,] have an explicit construction of a
K(G, 1)-space from which it is easy to see that G is L-Cockcroft).
We first prove the following

THEOREM 4.2. Let LG -»H be an exact sequence of groups and
homomorphisms, with G finitely presented, H an R-group with NATF-subgroup
A, and wtgL <. Further assume that, for S =7A — 0, the ZHs-modules (H;L)s
are all projective for i=1,2,3, and that (H;L)s is finitely generated as a
ZHg-module. Let x; = k4H;L. Then, for any |G, 2);-complex X, we have

KA(Z®L.7T2X)=K3—K2+K1+XX‘[1]697/\.

Proof. Let X; denote the covering of X corresponding to the subgroup L. Let
{l,| a € £} be a set of elements of L whose normal closure (in G) is equal to L.
Assume that || <. Use the elements /, to add 2-cells e, to X to obtain the
space Y containing X as a subcomplex. If let ZH* denote the direct sum of ||
copies of ZH, then the following sequences of ZH-modules are exact:

0->H,L->7ZQ, n,X;,— H, X, — H,L—0, (4.3)
0— H,X;, > n,Y—>7ZH"— H,L—0. (4.4)

Sequence (4.3) is a restatement of two classical theorems of Hopf relating the
second and third homology groups of L to the homology of a 2-complex X; and
its universal cover X = X,. Notice that the complex X, can be identified as a
subcomplex of the universal cover Y of Y. The second sequence is a restatement
of the homology sequence of the pair (Y, X,).

Because || <®. we see that H,L is a finitely generated ZH-module. We also
see that K= (H,X,)s is a finitely generated projective, because (w,Y)s is a
stably-free ZGs-module. By localizing (4.4) at S, it is evident that x,H,X; —
kK H,L = xX - [1]. It then follows from (4.3) that Wy = Z ®, (7,X)s is projective
and that

KAH:;L - KAHzL = KAW - KAHZXL'
The equality follows. W

COROLLARY 4.5. In addition, suppose that (H;L)s =0 fori=1, 2, 3. Then
KA(Z®, 7, X) = xX - [1] € F" is a non-negative integer multiple of [1].
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Proof. The equality follows from theorem 4.4. In this case, (7,Y)s is
stably-free > (H, X )s stably free > (Z @, w,X)s = My stably free. Hence, k4 M is
a non-negative integer multiple of [1]. W

Note that in this case there is an exact sequence Ms»> (m,Y)s»ZHE of
stably-free modules. Note also that if yX =0, than x,M =0, and hence M;=0.
If H,L =0, then M is a submodule of a free ZH-module (namely, C,Y) and
hence by lemma 1.3, M =0. This says that m,X is a perfect ZL-module
(Z ®z. m,X =0) and therefore also a perfect ZG-module. I do not know of a
non-trivial example of a [G, 2]-complex whose second homotopy group is a
perfect ZG-module.

We say that a [G, 2];-complex is minimal if it has the minimum Euler
characteristic among all such complexes.

Example 4.6(?). Let L>> G -»H be an exact sequence of groups with
defG=1, H;L =0, ¢dG >2, H an R-group, and wtsL finite. If (H;L)s =0 and
X is a minimal [G, 2];-complex, then Z ®, w,X =0, while 7,X # 0. Does such an
example exist?

A [G, 2]-complex with a single zero cell will be called a [G, 2]*-complex. Any
[G, 2]-complex has the homotopy type of a [G, 2]*-complex by simply factoring
out a maximal tree in the 1-skeleton.

If X is any [G, 2];-complex and C,X— Z is the augmented cellular chain
complex of the universal cover X of X, considered as a complex of ZG-modules,
then Ry = ker {C,X — C,X} is called a relation module corresponding to X.

THEOREM 4.7. Suppose that L > G > H is an exact sequence of groups
with G finitely presented, H an R-group having an NATF-subgroup A, and
wigL <. Let X be a minimal G, 2]f-complex. In addition, let (H,L)s and
(H,L)s be projective ZHs-modules, k; =k H;L, m (respectively n) be the rank
over ZG of C, X (respectively C,X), and N=7 ®, Ry.

(a) Then N is a finitely generated projective ZHg-module and

KaN=(m—1) [1]+ Kk, — k;.
(b) If N is a stably-free ZHs-module, then k,N =k - [1] and

defG(=m —n)=k.
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(c) Furthermore, if X is L-Cockcroft, then N is free of rank n and in this case,
defG . [1]=[1]+K1"'K2€-.6/:A.

Proof. One sees easily that, if /G denotes that augmentation ideal inside ZG,
then (Z®, IG)s = (H,L)s © ZH. Thus, (H,L)s is projective & (Z®, IG);s is
and both are finitely generated if G is. By tensoring the map 8,: X =7ZG"—
C,X =ZG™ with Z ®,-, we obtain the map d,. One then shows that (im d,)s D
(Z®, IG)s=ZH™ and that Ng=~ (imd,)s® (H,L)s. The same argument as in
4.2 shows that (H,L)s is finitely generated. The calculation of x4 N follows. If X
is L-Cockcroft then it follows that the boundary map i ® 6,:Z®; C,X— N is an
isomorphism; hence, k4N = n - [1]. The computation for the deficiency of G is a
result of the formuladefG=1-xyX. N

Note that the formula def G - [1] =[1] + k; — Kk, is analogous to the formula
def G =rank; H;G — (minimum number of generators of H,G). One calls the

group efficient if the latter inequality is an equality. Equality in the former case
might be called L-efficient.

Proof of 4.1. If we assume that (H,L)s=0 (this is so if H;L is finitely
generated as an abelian group or is a torsion group), then we may prove a
theorem with no assumed conditions on H,L. The proof of theorem 4.7 above
shows the statement: G is L-Cockcroft and H,L =0=>def G =1 (i.e., k; =k, =0
and use the stably-free rank). We will show the converse. Let U = H, X, . Because
(H,L)s =0, the following sequence is split exact:

0— Us— (7,Y)s— ZH%— 0.

Then def G =1 implies that yX =0, so xY = stably-free rank of (7,Y)s=k =
wicL. Hence, by the Kaplansky property L4, we have that Us=0. But U is a
submodule of the free ZH-module G, Y, hence U = 0. Thus G is L-Cockcroft and
H,L =0. This proves theorem 4.1. W

Example 4.8. Let G' denote the commutator subgroup of the finitely
presented group G. Then if H,G = G/G' is infinite and (H,G')s =0, then (by
4.1) we have that def G = 1. The deficiency is equal to 1 iff G is G'-Cockcroft and
H,G'=0. \

Example 4.9. Let G be any finitely presented group with commutator
subgroup G' finitely generated. Consider G”, the second derived group of G. The
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group G/G"=H has H,G' as a normal abelian subgroup and wtzG" is finite (G’
is finitely generated implies that wts. G” <. Thus wt;G" <=). We assume that
H,G' is torsion free, so that H is an R-group. Now if (H;G")s =0, then the
conclusions of theorem 4.1 hold for the sequence G”" > G » G/G".

Notice that it follows from sequence 4.4 that if H is an R-group with wtgL < oo
and H,X; =0, then the projective dimension of (H,; L) =< 1. This follows because,
in this case, the sequence 0— (7,X)s— (ZH*)s— (H,L)s—0 is exact, with
(7, Y)s finitely generated and stably-free.

We say that a group G is an E-group (with respect to the resolution P, — Z) if
H, G is torsion free and for some projective ZG-resolution P,— Z of the trivial
module Z, the homomorphism Z ®,; d,: Z Q45 P,— Z Q4 P, is a monomorph-
ism. Such groups are studied in [St].

COROLLARIES 4.10. There are some interesting special cases of theorem
4.1.

First, assume that def G =1 and that H,L is torsion-free. In this case L
becomes an E-group [St] because H,X; =0. Let P,G denote the maximal perfect
subgroup of G. Then one may apply the theory of Strebel’s E-groups as in [BD],
Section 4, to observe that

(*) HP,L=0, G/P,L has cohomological dimension <2 and type FL, and
that the Euler characteristic x(G/P,L) =0.

Furthermore, if P,L =1, then G has geometric dimension 2.

Secondly, a group U is said to be locally indicable if every nontrivial finitely
generated subgroup of U has infinite abelianization. We consider the nonempty
family &, consisting of all normal subgroups V of a group L such that G/V is
locally indicable (G € &,). If we order &, by inclusion, then it is easy to see that
this family has a minimal element, call it P, L (this is called the Adams’ subgroup
of L). Note that L is locally indicable iff P,L =1. Then a similar argument to
that given by Adams in [A] shows that (given the hypotheses of theorem 4.1 plus
H, L torsion free) (*) is true with P,L replaced by P, L, provided P,L is perfect.
See also proposition 3.1 of [HS].

Assume that LG -»H is an exact sequence of groups satisfying the
hypotheses of theorem 4.1. If, in addition, L is locally indicable, then G has
deficiency 14> G has geometric dimension 2 and H,L =0. This follows because
def G=1 (and X is the [G, 2]-complex having yX =0)<> H,X; =0. This latter
happens iff 1®,3,:Z®,; C,—>Z ®, C, is monic. Then apply the fact that local
indicibility of L yields that 3, is monic as well.
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For example, L could be a classical knot or link group, or a finitely generated
torsion-free 1-relator group. These groups are known to be locally indicable [H].

Example 4.11. We give an application of theorem 4.1 to the Whitehead
problem. A normal subgroup L=G is small if wigL <o and H,L is finitely
generated as an abelian group.

THEOREM 4.12. Let K > G > Q be an exact sequence of groups with Q an
R-group, G finitely presented, and K small. Furthermore, suppose that K contains
the maximal perfect subgroup P,G of G. Then either of the following two
hypotheses implies that G has WC.

(a) H,K=0and def G <1, or

(b) H,K #0 and def G = 1.

Proof. If G does not have WC then there is a non-trivial perfect normal
subgroup PG so that G is P-Cockcroft. Because K contains P,G, than K
contains P. Thus G is K-Cockcroft. If in addition, H,K =0, then def G =1; if
H,K #0, then def G <1, by theorem 4.1. These contradict hypotheses (a) or
(b). W

For example, let G(«) be the ath term of the derived series of G, where « is
any ordinal number. Suppose for some ordinal «, the abelian group G(a)/
G(a+1) is non-trivial and torsion-free and that G(a) is small. Then if
H,G(a) =0 and def G < 1, it follows that G has WC.

The parity of a normal subgroup K in G is the truth value of the statement

Pyx:H,K =0 and G is K-Cockcroft.

Suppose G is a finitely presented group which admits a surjection ¢ : G - Q
with Q an R-group and K = ker @ small. Then any other surjection of G onto an
R-group with small kernel K’ has the parity of K and K’ the same, depending
only on the deficiency of G.

S. Application to cohomological dimension

In this section we give an algebraic analog to theorem 4.1. The crucial step is
to define the sequence 4.4 without the use of complexes.

Let P: K> P,— P,— P,-»Z be an exact sequence of ZG-modules, where
each P, is a finitely generated projective. We assume that there is an exact
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sequence of groups L »> G -» H where H is an R-group with NATF-subgroup A.
The existence of the sequence P says that G is nearly finitely presentable. We
further assume that H, L is finitely generated as a ZH-module and that it localizes
to zero. Let the integer k denote the minimal number of generators of H,L as a
ZH-module and choose a surjection p :ZH* » H, L.

By tensoring P with Z®, - and letting C;=ker1 ® d; we obtain the exact
sequence C,—>Z®, P,— C,— H,L. Hence there is a map g:ZH*—>7Z®, P,
whose image is into C; and is onto H, L. It is clear, then, thatimg +im1®d, =
C,. Thus the sequence

0>B—>7ZQ,PLO7ZH"--7ZQ, P—>7ZQ, P,—7Z—0

is exact, where the map -— is given by 1 ®d, +g. Here, B=ker {1®d, +g}.
The following lemma is easily proved.

LEMMA 5.1. Let r:U—V and u:W —V be module homomorphisms and
h=r+u:U®W-—>V. Then, if K =Kker h, the following sequence is exact:

O—kerr->K—->W—imu/(imu Nimr)—0.

where K— W is the projection U D W — W restricted to K and the map with
domain W is induced by u. W

If welet r=1Q®d,:Z®, P,—C, and u:ZH*— C,. Then H{L~ker1Q®d,/
imr=(imr+imu)/imr=imu/(imu Nimr) and we obtain the exact sequence
(generalizing 4.4):

Cr>B—>7ZH* » H,|L.
One may also show that the analog of 4.3 is exact:

H,L—>7Z®, K— C,-»H,L.

Now if (H,L)s=0, then the argument of theorem 4.1 yields an element
KaB=k [1]+ Kk, —K;+ ko€ F", Where kK;=k4(Z®.P), and xk,C,=Kk4B —
k - [1]. It doesn’t seem that (in general) x,C, has anything to do with the Euler
character kP, — kP, + kP, (€ Z) of P. To record the dependence of xk,C, on L
and P let us denote k, — K, + ko by xg(P, L). We can now state the following.

THEOREM 5.2: (a) Let L be a normal subgroup of a group G such that
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G/L=H is an R-group. To each NATF-subgroup A and each partial finitely
generated resolution PP we can associate the element (P, L) =k, — k; + ko€ F".
(b) Now let H,L be finitely generated as a ZH-module, and (H,L)s=0. If
[1]#0e F*, then (C)s is a finitely generated projective ZGgs-module and
k4G =xc(P, L).
(c) If the ZHg-module (C,); is stably-free then (P, L)Zn - [1] and n = 0.
(d) Finally, if P is stably-free and L is locally indicable (or L has no perfect
subgroups and H, L is torsion-free), then K =0 iff xo(P, L)=0; W

Note 5.3. One could remove the hypothesis ‘“‘stably-free” in 5.2(d) if one
could show, for a finitely generated projective ZGs-module P, that x,P=0=>
P =0 (see proposition 2.2).

Note 5.4. Notice that the hypothesis in 4.1 that wt; L < has been replaced in
5.2 by the weaker hypothesis that H,L is finitely generated as a ZH-module.
However the conclusion of 5.2 is weaker, as well.

Note 5.5. If the partial resolution P:P,— P,— Py— 7 is free and finitely
generated, let uw,P=r,—r +r, where r,=rank;c P. We let u,G be the
minimum of the set of numbers u,P, where P ranges over all such free finitely
generated partial resolutions of length 2 [Sw]. Then we may recast 4.1 in the
following form:

THEOREM 5.6. If L>> G > H is an exact sequence of groups with H an
R-group, (H,L)s =0, u,G defined, and [1]#0. Then u,G =0. Also, u,G =0
there exists a partial free finitely generated ZG-resolution P such that C;=0. If L is
locally indicable (or if L has no perfect subgroups and H,L is torsion free), then
U, G =0¢dG <2, G has type FL, and H,L =0 (compare with [D;]). R
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