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Localization of group rings and applications to 2-complexes

MlCHAEL N. DYER*

In this paper we use récent results of S. Rosset [R] on the localization of

group rings to give applications to the theory of 2-dimensional CW-complexes
and related fields. If G is a group, we let 1G dénote the intégral group ring of G.

If A is a non-trivial normal abelian torsion-free subgroup of G (In this case we say
that G is a Rosset group or just an R -group, for short), we let 5 dénote the

multiplicatively closed subset ZA-0 and localize ZG—»ZG5 so as to invert the
éléments of S.

The first application is concerned with extending the Kaplansky rank kP (see

[DV]) for finitely generated projective ZG-modules P to projective ZG^-modules.
This extension has a number of interesting applications because many ZG-
modules (such as the second homotopy module of a 2-complex) become

projective upon localization.
The second application generalizes a theorem of Hillman [H]. If X is a

connected 2-complex with fundamental group isomorphic to G (in this case X is

called a [G, 2]-complex) and L is a subgroup of G, let XL dénote the covering of
X corresponding to L. We say that X is L-Cockcroft if the Hurewicz map
KiX-&gt;H2XL is trivial. Let HtL dénote the /th-homology group of L with
coefficients in the trivial ZG-module Z. If L is a normal subgroup of a group G,
the weight of L in G (denoted by wtGL) is the minimal number of éléments
whose normal closure in G is L.

THEOREM 1. Suppose L&gt;-*G-*&gt;H is an exact séquence of groups with H a

Rosset groupy G finitely présentée, HXL finitely generated as an abelian group and
wtGL finite. Let X be any [G, 2]-complex. Then the Euler characteristic xX ^ 0,

with xX 0iffX is L-Cockcroft and H2L 0.

COROLLARY 2. In addition to the above hypothèses, ifeither
(a) HXL is torsion-free and L has no perfect subgroups

* Support from the National Science Foundation is gratefully acknowledged.
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2 MICHAEL N DYER

or
(b) L is locally indicabley

then the [G, 2]-complex X is aspherical iffxX 0 and H2L 0.

Let G be a finitely presented group with H HXG infinité and L Gf, the
derived group of G. Furthermore, assume that HXG&apos; is finitely generated as an
abelian group. By theorem 1, G always has deficiency &lt;1. If, in addition, G has

no perfect subgroups (e.g., if G is residually nilpotent) and H^&apos; is torsion-free,
then it follows from corollary 2 that G has deficiency 1 iff it has géométrie
dimension 2 and H2L 0.

The outline of the paper is as follows. In section 1 we describe the localization
results of S. Rosset and in section 2 we give the extension of Kaplansky&apos;s

invariant to projectives over localized rings. In section 3 we apply the earlier
results to shed new light on the aspherical question of J. H. C. Whitehead: is

every connected subcomplex of an aspherical 2-complex aspherical? Section 4

contains the proof of theorem 1 while in section 5 we dérive an algebraic analog
of theorem 1.

1. Localization of certain group rings

In this section we describe récent results of S. Rosset [R]. Let G be a group
and let A be a non-trivial torsion-free abelian normal subgroup of G. If a group G
has such a normal subgroup, we will say that G is an /?-group. Then the set
S ZA — 0 is a multiplicatively closed subset of the intégral group ring ZG and

satisfies the Ore conditions [P, page 146]. Thus there exists a left ring of fractions

and a canonical injection i :ZG-&gt; ZG5 given by carrying oc-* \~lcc.

This localization has the following properties:
(Ll) The right ZG-module ZG5 is flat.
(L2) IfM is any left ZG-module, then the localization Ms of M is given by

Ms ZGS ®ZG M. If the underlying abelian group M0 of M is finitely generated

or consists only of éléments of finite order, then Ms 0.

(L3) The ring ZG5 has rank invariance for finitely generated free modules;
Le., if ZG?« ZGS, then m h.

The property (L3) is proved via the stronger Kaplansky property:
(L4) Let &lt;p : ZGJ*-* ZGf be any surjection from a free ZG5-module of rank m

to itself. Then &lt;p is an isomorphism, as well (see [R], theorem F).
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Using properties L1-L3 S. Rosset [R] gives the following remarkable

generalization of a theorem of D. Gottlieb ([G], [S]):

THEOREM 1.0. If X is a finite aspherical complex whose fundamental group
nxX an R-groupy then the Euler characteristic x(X) 0.

In another paper [Dx] we show the following generalization of Rosset&apos;s theorem.
This has also been discovered independently by L. Fornera in her Ph.D. thesis at
ETH.

THEOREM 1.1. Let X be a finite aspherical complex with nxX=G. Let
L&gt;-*G^&gt;H be an exact séquence of groups with H*L finitely gênerated as an
abelian group and H an R-group. Then x(X) 0.

DEFINITION 1.1. Let m be an integer ^2. A [G, m]-complex is a connected

CW-complex whose dimension is &lt;m, whose fundamental group kxX is

isomorphic to G, and whose universal cover X is (m - l)-connected. For
example, any connected 2-complex is a \nxX, 2]-complex.

Combining the results of [R] and [H], we hâve the following.

THEOREM 1.2 (Hillman-Rosset). Let X be a finite [G, m]-complex whose

fundamental group is an R-group. Then the Euler characteristic x(X) ^ 0. The

Euler characteristic of X is zéro iff X is aspherical.

Before giving the proof, we give the following:

LEMMA 1.3. Let M be a submodule ofafree ZG-module F. Then Ms 0iff
M 0.

Proof. The exact séquence M &gt;-+F^&gt;Q F/M localizes to the exact

séquence Ms &gt;-* Fs -» Qs. The inclusion F^FS induces an inclusion Af-»MS. The
resuit follows. ¦

Proof of the theorem. Let C*X-*&gt;Z dénote the augmented cellular chain

complex of the universal cover X, considered as a séquence of finitely generated
free ZG-modules. Let K keT[dm:Cm-+Cm-x] be the mth-homotopy group of
X. Localize the exact séquence K-*C*X-*&gt;Z to obtain the exact séquence of
stably-free projectives Ks-*C*Xs-+0. Thus the rank of KS as a stably-free
ZG5-module is x(X)&gt; which must necessarily be ^0. If #(Z) 0, then rank
Ks 0. It follows from L4 that Ks 0 and from the lemma that K 0. ¦
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This theorem has two very lovely corollaries, the first of which was noted in
[H]. We say that a finitely présentée group G has (finite) géométrie dimension &lt;2

if G admits a (finite) aspherical [G, 2]-complex.

COROLLARY 1.4. If G is a finitely présentée R-group, then the deficiency of
G is ^1. The deficiency of G is equal to 1 iff G has finite géométrie dimension
2. ¦

COROLLARY 1.5. If H is any finitely presented group, then the deficiency of
the cartesian product Zxifi$&lt;l. The deficiency of Z x H 1 iff H is free.

Proof By the previous corollary, we need only show that the géométrie
dimension Z x // &lt; 2 iff /J is free. First, if H is finitely generated and free, then
the obvious présentation of Z x H of deficiency 1 may be realized as an aspherical
[Z x Hy 2]-complex. In order to see the converse, we apply the Lyndon-
Hochschield-Serre spectral séquence to the split exact séquence Z^Zx/f-^/f.
If M is any Z/f-module, then we obtain the split exact séquence

H\H\ M) &gt;-? H\Z xH;M)^&gt; H2(H; M).

Thus H3(Z x H, M) 0 implies that H2(//; M 0. This says that H has

cohomological dimension ^1. That H has cohomological dimension 1 follows
because H is torsion free. Now H is free by the famous resuit of J. Stallings [S2,

p. 58]. ¦

2. Extending the Kaplansky invariant

In this section we show how to use the results of [D2] to extend the invariant
of I. Kaplansky (see [DV]) to localized group rings. We assume that the group G
has a non-trivial normal abelian torsion-free subgroup A (we call such an A an
NATF-subgroup) Let S ZA-0 and localize ZG-&gt;ZG5. Références for this
section include [S], [D2], [DV], and [P].

For any ring R, a trace function on R is a linear map T:R-*B, where B is an
abelian group sueh that, for each r,seR, T(rs) T(sr). If we define the set

[R, R] to be the subgroup generated by the Lie brackets [r, s] rs - sr, then the
universal trace fonction is givén by Tu :/?-* xR R/[R, R]. Any trace function T
on R may be extended in the usual way to any n x n-matrix M [ml7] over R
via the formula T(M) E T{mu). Any trace function T has the properties
(a) T(M + N) T(M)+T(N) and (b) T(PQ) T(QP), where M, N are
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n x n-matrices, P is an m x n-matrix, and Q is an n x m-matrix over R. Also,
T(ln) n • T(l), provided /? has a multiplicative identity 1, and ln is the identity
n x n-matrix over /?.

If G is a group and ZG is the intégral group ring, then the universal trace

group rZG is easy to describe. Let CG dénote the set of conjugacy classes of G.
Then the group tZG is equal to the free abelian group ZCG generated by the set
CG. For an élément x e G, let (x) e CG dénote the conjugacy class of the
élément x.

The trace function Tx : ZG -* Z is given in either of two (équivalent) ways. First,
for any v e ZG, let Tx(v) be the coefficient of 1 in v. Secondly it can be described
as the coefficient of (1) in Tu(v).

Following [S] we extend the trace T to any endomorphism f;Rn-*Rn by
choosing a basis for Rn and defining T(f) to be the trace of the matrix M of/with
respect to this basis. This is independent of the choice of basis. Further, if P is

any finitely generated projective R -module, choose an integer n &gt; 0 and an

idempotent endomorphism e:Rn^&gt;Rn whose image is isomorphic to P. Define
the rank of P with respect to T to be T(e). See [S] for the proof that this is well
defined. We dénote this rank by pTP. UR= ZG and T TU we dénote this rank
as kP. This is the Kaplansky rank (it is called iP in [DV]). The rank
(Hattori-Stallings) for the universal trace function Tu:ZG-^rZG is usually
denoted by rGP.

The Kaplansky rank is known to hâve the following properties (see [DV]).
K(a) kP is an integer ^0.
K(b) If P and Q are finitely generated projective ZG-modules, then

k(P ®Q) kP + kQ.
K(c) If n(P) is the minimum number of generators of P as a ZG-module,

then kP^h(P).
K(d) *P 0iffP 0.

K(q) kP n(P) iff P « ZGn[p\
Now let 5 ZA — 0 and localize ZG to ZG5 via the inclusion map i. Let H be

the quotient G/A and n : G —* H be the natural surjection. For any élément h e H
and a e A, let h *a dénote the action induced by conjugation by any preimage of
h under n (that is, if jrg /ï, then h *a =g • a -g&quot;1). This makes A into a
Z//-module. In this case, we will give a complète description of a direct summand
^A of tZG5. The proofs for this description are given in [DF].

First, let 3F dénote the quotient field of ZA. It is easy to see that, by choosing
a set E of right coset generators for H in G (let 1 e £), the ring ZG5 is an
^-module and that it is ^-isomorphic to the vector space &amp;&gt;{E) with natural basis
E. Consider the projection T:ZGS~* &amp; • 1 9 of the ring onto the coordinate
corresponding to 1 € E. Note that ZG5 and L [ZG5, ZGS] are Q-vector spaces,
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where Q is the rational numbers. Factoring out by the image of L under T defines
the vector space 5^A. (It is shown in [DF] that T(L) is precisely the Q-subspace
H • 9, where H is the augmentation idéal in QH. Then ^A is 9/H • 9
Q ®qH9; it is also shown there that ^A is a direct summand (over Q) of rZG5).

Thus we may define a new trace function t:ZGs-+ 9* via T followed by the
natural projection 9-+ 9*. Let \f] dénote the image of fe 9 in ^A. We will
show that this trace function t &quot;extends&quot; the function Tt given above, in certain
cases.

Let (A) dénote the conjugation classes in G determined by the éléments of
A; for each aeA, (a) is the conjugation class in G defined by a. Let
tA:ZG-+Z(A) be the trace map determined by restricting to those conjugation
classes in (A).

Let ar:Z(A}-&gt;^A be the map defined by sending (a)*-* [a]. If we let

y:Z(A)-*TZG be the natural split injection into rZG, / be the localization
ZG-»ZG5 and r:r(ZG5)-»^A be the projection induced by the projection T
above, then one sees easily that a — r ° t(/) ° y.

LEMMA 2.0. // P is any finitely generated projective ZG-module, then

Proof. This follows from the définition because, if e is the defining idem-

potent for Py then es is the defining idempotent for Ps. ¦
DEFINITION. We say that the Hattori-Stallings rank rGP is carried by

conjugacy classes of finite order if, for each finitely generated projective
ZG-module P, the coordinate rGP{(x)) of rGP on the conjugacy class (x) is

trivial except for éléments x e G of finite order.

LEMMA 2.1. // the Hattori-Stallings rank is carried by conjugacy classes of
finite order, then the rank pt is really given by the Kaplansky rank k, i.e.y if
P :Z-&gt; ^A is given by 1 *-&gt; [1], then P(kP) pt{Ps).

Proof. By lemma 2.0, ptiPs) — ^{PiaP)- But each conjugacy class (a) =£ (1)
in Z(A) consists of éléments of infinité order, so ptAP kP • (1). ¦

A resuit of B. Eckmann [E] shows that the Hattori-Stallings rank (over QG,
and hence over ZG) is carried by éléments of finite order if G is one of the

following types of groups:
(a) solvable groups G
(b) linear groups G c GLr(F) where F is a field of characteristic 0.
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(c) groups of cohomology dimension cdQG ^ 2.

provided G has finite homology dimension over Q.

Furthermore, if G is a residually finite group, then P. Linnell has shown that
the Hattori-Stallings rank (over ZG) is concentrated on (1) [L].

Some properties of the rank p, are given in the following

PROPOSITION 2.2. Let P and Q be finitely generated projective ZGS-
modules. Then

Ks(zY ptPis amemberof&amp;A.

Ks(b): pt(P®Q) PtP + PtQ.

If [1] ^0 in &amp;A, and P is a stably-free ZGs-module, then

Ks(c): ptP k&apos;[l] with keZ and 0&lt;fc&lt;n(P), where n(P) is the minimal
number of generators of P as a ZGs-module and keZis the stable-free
rank.

Ks{d): p,P 0&lt;=&gt;P 0.

Ks(e): ptP n{P) • [1] O P * ZGfp\

Proof. Statements (a) and (b) are clear. Statement (c) follows from (b) and
the fact that p,ZG [1]. We will show statement (d). Statement (e) then follows
from (d). Because P is stably-free we see that the following séquence is exact for
some positive integer n :

with Q stably-free. Then ptP 0 yields that ptQ n • [1] (hère is where we use
that fact that [1] =£0, because then [1] has infinité order in rZGs); we may assume

that, in fact, Q is free of rank n (perhaps by replacing n by n + k). Then the

Kaplansky property L4 implies that P 0. ¦
Question. Do Ks(c), (d) and (e) hold without the assumption that P is

stably-free?

DEFINITION 2.3. We say that the finitely generated ZG-module M is

pre-projective (respectively, pre-stably free) if the localization Ms is a projective
(respectively, stably-free) ZG5-module. For example, if X is a [G, m]-complex,
then the mth homotopy group nmX is a pre-projective ZG-module. We define
the Kaplansky rank kaM of a pre-projective module M to be KAM -ptMs. Of
course, if Ms is stably-free, then kaM is an integer multiple of [1]. It is not known
to me whether or not the Kaplansky rank is independent of the choice of A.
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COROLLARY 2.4. Let M be a pre-stably-free ZG-module. Then kM 0 iff
the localization Ms 0. // M is a submodule of a free ZG-module, then M 0.

Proof. The first statement is just a spécial case of (d) above. The second
follows from lemma 1.3.

3. Application to aspherical complexes

We say that a [G, 2]-complex X has the Whitehead condition (WC) if either X
is aspherical or, if X is not aspherical, then whenever X is the subcomplex of an

[H, 2]-complex Y, Y is not aspherical (see [BD] and [BDS] for référence). A
group G is WC if every [G, 2]-complex satisfies WC. For any group G, let PtG
dénote the maximal perfect subgroup of G. The following theorem is an

improvement over several theorems in [BD] and [BDS].

THEOREM 3.1. Let G be a finitely presented R-group which has a normal
abelian torsion-free subgroup not contained in PXG. Then G has WC.

Proof. The deficiency of G is ^1. If X is a [G, 2]-complex, then the Euler
characteristic %X S 0, with X aspherical iff x% — 0- Suppose %X &gt; 0 and X is a

subcomplex of an [H, 2]-complex Y. We will show that Y is not aspherical.
Suppose that Y were aspherical. Then it follows from [BD] that there is a

non-trivial perfect subgroup P in G such that the cohomological dimension

cd(G/P)^2. Furthermore, G/P has type FL with x(G/P) xX&gt;0. Now the

hypothesis implies that G/P is an R-group, which is impossible (because G/P is

an R -group and FL implies that x(G/P) 0; see the proof of theorem 1.2). ¦
We can now improve corollary 3.7 of [BDS] to read: if G is the finitely

presented fundamental group of a non-aspherical subcomplex X&lt;Y of an
aspherical 2-dimensional complexy then G has a non-trivial, superperfect, normal
C-subgroup {see [BD] for a définition of C-subgroup) P with respect to C*X-&gt; Z.

Moreover, cdG/P ë 2 and the center of G is contained in P. See also Corollary 4.7
of [BD].

We also note the following peculiar corollary: For any finitely presented group
G the cartesian product Z x G has WC.

Jonathan Hillman (private communication) has pointed out that 3.1 improves
another corollary of [BDS], namely Corollary 5.2.

THEOREM 3.2. If G is a 2-ended group, then G has WC.
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Proof. If G is a 2-ended group which doesn&apos;t hâve WC, then by Corollary 5.2

of [BDS] we hâve the exact séquence P&gt;-»G-»Z, where P is a finite perfect

group and the deficiency of G is 1. But it is easy to see that, because P is finite, G
has an infinité cyclic central élément. Thus, by 1.4, G has WC. ¦
4. Application to deficiency

Throughout this section we assume that the NATF-subgroup A in G has been

chosen once and for ail and that 0 =£ [1] e ^A (this happens iff [1] e 3F* has infinité
order, see [DF] for détails and examples). For any [G, 2]-complex X, let XL
dénote the covering of X corresponding to the subgroup L. We say that G is

L-Cockcroft if there is a [G, 2]-complex X such that the Hurewicz map
jv2X^&gt;H2Xl is trivial. Such a space X is also called L-Cockcroft. If X is a finite
[G, 2]-complex, then we say that it is a [G, 2^-complex, If L is a normal
subgroup of G, the weight of L in G (denoted by wtGL) is the minimal number of
éléments which normally generate L (in G). In this section we show the

following.

THEOREM 4.1. Let 1—»L—»G—»//—»1 be an exact séquence of groups with

(a) G finitely presentedy

(b) H an R-group,
(c) the weight wtGL finite, and
(d) the ZH-module Hx L localizing to zéro.

Then the deficiency def G of G is &lt;1, and is equal to 1 iff G is L-Cockcroft and

Notice that the above hypothesis 4.1(d) is satisfied if HXL is finitely generated
as an abelian group or is a torsion group. Also, 4.1(c) and (d) are satisfied if L is

finitely generated. In particular, let L 1. The theorem then says that any
/?-group G has deficiency 1 iff G is 1-Cockcroft; i.e., G has géométrie dimension
^2. This is the Rosset-Hillman theorem. The proof of Theorem 4.1 will be given
at the end of the section.

For example, if G =gp{a, b: {arb~s)q} (r,s, q&gt;0), H gp{a, b:arb~s}, and
G -»/f is the map induced by the identity on the generators, then the kernel L is

normally generated by the élément l arb~s and W,L is a torsion group
generated by ail the conjugates of /. Notice that ar bs générâtes an infinité cyclic
central subgroup in H. Hence, defG l implies that G is L-Cockcroft and
H2L 0 (the latter also follows from a resuit of Fischer, Karrass, and Solitar
[FKS] that says that the normal subgroup L is a free product of cyclic groups.
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Moreover, E. Dyer and A. Vasquez [DV2] hâve an explicit construction of a

K(G, l)-space from which it is easy to see that G is L-Cockcroft).
We first prove the following

THEOREM 4.2. Let L&gt;-^&gt;G-*&gt;H be an exact séquence of groups and

homomorphisms, with G finitely presented, H an R-group with NATF-subgroup
A, and wtGL &lt; ». Further assume that, for S ZA - 0, the ZHs-modules (HtL)s
are ail projective for i 1, 2, 3, and that (H3L)S is finitely generated as a

lMs-module. Let Kt KAHtL. Then, for any [G, 2]f-complex X, we hâve

ka(Z &lt;8&gt;L n2X) jc3 - «2 + Ki + X* &apos; [1] e 3êa.

Proof. Let XL dénote the covering of X corresponding to the subgroup L. Let
{la | oc e si) be a set of éléments of L whose normal closure (in G) is equal to L.
Assume that |&lt;s#|&lt;o°. Use the éléments la to add 2-cells ea to X to obtain the

space Y containing X as a subcomplex. If let ZHM dénote the direct sum of \sd\

copies of ZH, then the following séquences of ZH-modules are exact:

H2Xl-*H2L~&gt;0, (4.3)

-* HtL-&gt;0. (4.4)

Séquence (4.3) is a restatement of two classical theorems of Hopf relating the
second and third homology groups of L to the homology of a 2-complex XL and

its universal cover X~XL. Notice that the complex XL can be identified as a

subcomplex of the universal cover Y of Y. The second séquence is a restatement
of the homology séquence of the pair (Y, XL).

Because \sé\ &lt;&lt;». we see that HXL is a finitely generated Z//-module. We also

see that K (H2XL)S is a finitely generated projective, because {n2Y)s is a

stably-free ZG5-module. By localizing (4.4) at 5, it is évident that kaH2Xl-
kaHxL %X • [1]. It then follows from (4.3) that Ws Z®L{n2X)s is projective
and that

KAH3L - KAH2L KAW~ kaH2Xl.

The equality follows. ¦
COROLLARY 4.5. In addition, suppose that (HtL)s 0for i 1, 2, 3. Then

ka(ZÇ&amp;Ln2X) X% * [1]€ ^A &amp; a non-negative integer multiple of [1],
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Proof. The equality follows from theorem 4.4. In this case, (n2Y)s is

stably-free^ (H2XL)S stably free =&gt; (Z &lt;8&gt;L ^2^)5 ~ Ms stably free. Hence, kaM is

a non-negative integer multiple of [1]. ¦
Note that in this case there is an exact séquence Ms&gt;-^(jt2Y)s-^ZHf of

stably-free modules. Note also that if %X 0, than kaM 0, and hence Ms 0.

If H3L 0, then M is a submodule of a free JM-module (namely, C2Y) and

hence by lemma 1.3, M 0. This says that jï2X is a perfect ZL-moduIe
(Z ®zl x2X 0) and therefore also a perfect ZG-module. I do not know of a

non-trivial example of a [G, 2]-complex whose second homotopy group is a

perfect ZG-module.
We say that a [G, 2^-complex is minimal if it has the minimum Euler

characteristic among ail such complexes.

Example 4.6(?). Let L^+G-*&gt;H be an exact séquence of groups with
def G 1, H3L 0, cdG &gt; 2, H an R-group, and wtGL finite. If {HXL)S 0 and

X is a minimal [G, 2^-complex, then Z ®L K2X - 0, while n2X =£ 0. Does such an

example exist?

A [G, 2]-complex with a single zéro cell will be called a [G, 2]*-complex. Any
[G, 2]-complex has the homotopy type of a [G, 2]*-complex by simply factoring
out a maximal tree in the 1-skeleton.

If X is any [G, 2^-complex and C*X-* Z is the augmented cellular chain

complex of the universal cover X of X, considered as a complex of ZG-modules,
then Rx ker {C^X-* CqX) is called a relation module corresponding to X.

THEOREM 4.7. Suppose that L&gt;-^G^&gt;// is an exact séquence of groups
with G finitely présentée,, H an R-group having an NATF-subgroup A, and
wtGL&lt; 00. Let X be a minimal [G,2]*-complex. In addition, let (//iL)5 and
(H2L)S be projective ZHs-modules, Kt KAHtLy m (respectively n) be the rank
over ZG of CXX (respectively CiX), and N Z &lt;8&gt;L Rx-

(a) Then N is a finitely generated projective ZHs-module and

(b) IfNisa stably-free ZHs-module, then kaN k • [1] and

def G(= m -«)&lt; k.
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(c) Furthermore, if Xis L-Cockcroft y then N is free of rank n and in this case,

Proof. One sees easily that, if IG dénotes that augmentation idéal inside ZG,
then (Z®LIG)s~(HxL)s 8 ZHS. Thus, {HXL)S is projective O(Z®L/G)5 is

and both are finitely generated if G is. By tensoring the map ô2 : Cji ~ ZG&quot; -*
CtX^ZGm with Z®L-, we obtain the map d2. One then shows that (imd2)5©
(Z ®L IG)S « Z/fm and that Ns « (im d2)s © (H2L)S. The same argument as in
4.2 shows that (H2L)S is finitely generated. The calculation of kaN follows. If X
is L-Cockcroft then it follows that the boundary map / &lt;8&gt; ô2 : Z ®L C2X-* N is an

isomorphism; hence, KAN n • [1]. The computation for the deficiency of G is a

resuit of the formula def G 1 -
Note that the formula def G • [1] [1] + kx — k2 is analogous to the formula

def G^rankz /fxG-(minimum number of generators of H2G). One calls the

group efficient if the latter inequality is an equality. Equality in the former case

might be called L-efficient.

Proof of 4.1. If we assume that (HlL)s 0 (this is so if HXL is finitely
generated as an abelian group or is a torsion group), then we may prove a

theorem with no assumed conditions on H2L. The proof of theorem 4.7 above
shows the statement: G is L-Cockcroft and H2L 0^&gt; def G 1 (i.e., k1 k2 0

and use the stably-free rank). We will show the converse. Let U H2XL. Because

(HiL)s 0, the following séquence is split exact:

Then def G 1 implies that %X 0, so %Y stably-free rank of {n2Y)s k
wtGL. Hence, by the Kaplansky property L4, we hâve that Us 0. But U is a

submodule of the free Z//-module QY, hence U 0. Thus G is L-Cockcroft and

H2L 0. This proves theorem 4.1. ¦
Example 4.8. Let G&apos; dénote the commutator subgroup of the finitely

presented group G. Then if HtG G/G&apos; is infinité and (H1Gf)s 0f then (by
4.1) we hâve that def G ^ 1. The deficiency is equal to 1 iff G is G&apos;-Cockcroft and

Example 4.9. Let G be any finitely presented group with commutator
subgroup G&apos; finitely generated. Consider G&quot;, the second derived group of G. The
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group G/G&quot; H has HxGf as a normal abelian subgroup and wtGG&quot; is finite (G&apos;

is finitely generated implies that wtGG&quot; &lt;&lt;*&gt;. Thus wtGG&quot;&apos;&lt;&lt;»). We assume that
HxGf is torsion free, so that H is an R-group. Now if (HXG&quot;)S O, then the
conclusions of theorem 4.1 hold for the séquence G&quot;&gt;-*G-*&gt; G/G&quot;.

Notice that it follows from séquence 4.4 that if H is an R -group with wtGL &lt; &lt;*&gt;

and H2XL 0, then the projective dimension of (HiL)s &lt; 1. This follows because,
in this case, the séquence 0-+(jt2X)s-+(ZHk)s-*(HxL)s-*0 is exact, with
(n2Y)s finitely generated and stably-free.

We say that a group G is an £-group (with respect to the resolution P*-»Z) if
HXG is torsion free and for some projective ZG-resolution P*—»Z of the trivial
module Z, the homomorphism Z®ZGd2\ Z®ZGP2—»Z®ZgPx is a monomorph-
ism. Such groups are studied in [St].

COROLLARIES 4.10. There are some interesting spécial cases of theorem
4.1.

First, assume that defG l and that HXL is torsion-free. In this case L
becomes an Z?-group [St] because H2XL 0. Let Px G dénote the maximal perfect
subgroup of G. Then one may apply the theory of Strebel&apos;s ZT-groups as in [BD],
Section 4, to observe that

(*) H2PlL 0, G/PXL has cohomological dimension &lt;2 and type FL, and
that the Euler characteristic %{GIPXL) 0.

Furthermore, if PXL 1, then G has géométrie dimension 2.

Secondly, a group U is said to be locally indicable if every nontrivial finitely
generated subgroup of U has infinité abelianization. We consider the nonempty
family ïfL consisting of ail normal subgroups V of a group L such that GIV is

locally indicable (G e 5^). If we order £fL by inclusion, then it is easy to see that
this family has a minimal élément, call it P^L (this is called the Adams&apos; subgroup
of L). Note that L is locally indicable iff PAL 1. Then a similar argument to
that given by Adams in [A] shows that (given the hypothèses of theorem 4.1 plus
HXL torsion free) (*) is true with PXL replaced by PAL, provided PAL is perfect.
See also proposition 3.1 of [HS].

Assume that L&gt;-*G-*&gt;H is an exact séquence of groups satisfying the
hypothèses of theorem 4.1. If, in addition, L is locally indicable, then G has

deficiency loG has géométrie dimension 2 and H2L 0. This follows because
def G l (and X is the [G, 2]-complex having xX 0)€&gt;H2XL 0. This latter
happens iff 1 ®La2:Z®LÇ2-^Z®LC1 is monic. Then apply the fact that local
indicibility of L yields that d2 is monic as well.
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For example, L could be a classical knot or link group, or a finitely generated
torsion-free 1-relator group. Thèse groups are known to be locally indicable [H].

Example 4.11. We give an application of theorem 4.1 to the Whitehead
problem. A normal subgroup L^G is small if wtGL&lt;&lt;*&gt; and HXL is finitely
generated as an abelian group.

THEOREM 4.12. Let Ky-*G-*&gt;Q be an exact séquence of groups with Q an

R-group, G finitely présentée, and K small. Furthermore, suppose that K contains
the maximal perfect subgroup PXG of G. Then either of the following two
hypothèses implies that G has WC.

(a) H2K 0 and def G &lt; 1, or
(b) H2K*0 and def G 1.

Proof If G does not hâve WC then there is a non-trivial perfect normal
subgroup P&lt;G so that G is P-Cockcroft. Because K contains P\G, than K
contains P. Thus G is #-Cockcroft. If in addition, H2K 0, then def G 1; if
H2K^0f then defG&lt;l, by theorem 4.1. Thèse contradict hypothèses (a) or
(b). ¦

For example, let G (a) be the arth term of the derived séries of G, where a is

any ordinal number. Suppose for some ordinal a, the abelian group G(a)/
G(a +1) is non-trivial and torsion-free and that G(a) is small. Then if
H2G(a) 0 and def G &lt; 1, it follows that G has WC.

The parity of a normal subgroup K in G is the truth value of the statement

PK : H2K 0 and G is #-Cockcroft.

Suppose G is a finitely presented group which admits a surjection &lt;p\G-*&gt;Q

with Q an R-group and K ker &lt;p small. Then any other surjection of G onto an

R-group with small kernel K&apos; has the parity of K and K&apos; the same, depending
only on the deflciency of G.

5. Application to cohomological dimension

In this section we give an algebraic analog to theorem 4.1. The crucial step is

to define the séquence 4.4 without the use of complexes.
Let P:Ky-*P2-+P1-*P0-*&gt;Z be an exact séquence of J.G-modules, where

each Pt is a finitely generated projective. We assume that there is an exact
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séquence of groups L &gt;—» G -»// where H is an R-group with NATF-subgroup A.
The existence of the séquence P says that G is nearly finitely présentable. We

further assume that HXL is finitely generated as a Z//-module and that it localizes

to zéro. Let the integer k dénote the minimal number of generators of HXL as a

Uti-module and choose a surjection p :ZHk -*&gt;HXL.

By tensoring P with Z®L- and letting Cl kerl®dl we obtain the exact

séquence (^^Z®LP2-&gt; Cx-&gt; HXL. Hence there is a map g\ZHk-*Z®LPx
whose image is into Cx and is onto HXL. It is clear, then, that img + im 1 ® d2

Cx. Thus the séquence

is exact, where the map —&gt; is given by 1 &lt;8&gt; d2 + g. Hère, B ker {1 ® d2 + g}-
The following lemma is easily proved.

LEMMA 5.1. Let r:U-*V and u:W-*V be module homomorphisms and
h r + u:U®W-*V. Then, if K ker h, the following séquence is exact:

0-» ker r -» K -* W -&gt; im a /(im w H im r) -» 0.

C^W w r/ie projection U(BW-^&gt;W restricted to K and the map with
domain W is induced by u. ¦

If we let r l®d2:Z®LP2-^C1 and u:ZHk-*Cx. Then /^L^ker 1®dj
im r « (im r + im w)/im r « im w/(im w H im r) and we obtain the exact séquence
(generalizing 4.4):

One may also show that the analog of 4.3 is exact:

H3L &gt;-*Z &lt;8&gt;L iC-^ C2^H2L.
Now if (H!L)5 0, then the argument of theorem 4.1 yields an élément
KAB k-[\] + K2-Kx + KQe&amp;*, where Kt KA(Z®LPt)y and k^^KaB-
k • [1]. It doesn&apos;t seem that (in gênerai) jc^Q has anything to do with the Euler
character kP2 - kPx + kP0 (eZ) of P. To record the dependence of ^Q on L
and P let us dénote k2-kx + kq by Xg(P&gt; £)• We can now state the following.

THEOREM 5.2: (a) Let L be a normal subgroup of a group G such that
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G IL —H is an R-group. To each NATF-subgroup A and each partial finitely
generated resolution P we can associate the élément Xg(^&gt; L) k2 — kx + koe ^a-

(b) Now let HXL be finitely generated as a ZH-module, and (HiL)s 0. //
A, then (Cq)s Û &lt;* finitely generated projective ZGs-module and

(c) // the ZHs-module (Q)5 is stably-free then *G(P, L)^n • [1] and n &gt; 0.

(d) Finally, if P is stably-free and L is locally indicable (or L has no perfect
subgroups and HtL is torsion-free), then K 0 iff %G{^, L) 0; ¦

Note 5.3. One could remove the hypothesis &quot;stably-free&quot; in 5.2(d) if one
could show, for a finitely generated projective ZGs-module P, that kaP 0^&gt;

P 0 (see proposition 2.2).

Note 5.4. Notice that the hypothesis in 4.1 that wtGL &lt; °° has been replaced in
5.2 by the weaker hypothesis that HXL is finitely generated as a Z//-module.
However the conclusion of 5.2 is weaker, as well.

Note 5.5. If the partial resolution P:P2~&gt;^)i&quot;^^o—&gt;2 is free and finitely
generated, let jU2P r2- rx + r0, where r, rankZGP,. We let jU2G be the
minimum of the set of numbers ju2P, where P ranges over ail such free finitely
generated partial resolutions of length 2 [Sw]. Then we may recast 4.1 in the

following form:

THEOREM 5.6. // L&gt;-*G-*&gt;H is an exact séquence of groups with H an

R-group, (HXL)S 0, \i2G defined, and [1] # 0. Then \i2G &gt; 0. Also, \i2G 0o
there exists a partial free finitely generated ZG -resolution P such that Ç2 0. If L is

locally indicable (or if L has no perfect subgroups and HXL is torsion free), then

ju2G OOo/G 2s 2, G has type FL, and H2L 0 (compare with [D3]). ¦
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