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Reduction of isolated singularities

ERNST DIETERICH

Let f(X)=f(X,, ..., X;) be a polynomial in C[X,, ..., X,], such that the
hypersurface H = A?*!(C) given by f(X) has an isolated singularity at 0, and let
A=0yo=C[[Xo, ..., X4]}/(f(X)) be the complete local ring of H at 0. It is
known that (H, 0) is a simple singularity (i.e. there exist only finitely many
isomorphism classes of singularities in the semiuniversal deformation of (H, 0)) if
and only if A is of finite type (i.e. there exist only finitely many isomorphism
classes of indecomposable  Cohen—Macaulay @ A-modules) [Kn85],
[Bu/Gr/Schr 86]. Moreover, if A is of finite type then all indecomposable
Cohen—Macaulay A-modules are classified [Gr/Kn 85], [He 78], [Kn85], the
Auslander—Reiten quiver of A is determined and is known to be closely related to
the Dynkin diagram which corresponds to the simple singularity (H, 0)
[Di/Wi 86], [Au 86], [Kn 85].

Motivated by this recent development I have begun to study the category of
Cohen—-Macaulay A-modules in case A is of infinite type. In this respect the
present article contains the following two main results.

THEOREM 1. Let A=C[[X,, ..., Xu])J/(f(X)) be the complete local ring of
a nonsimple isolated hypersurface singularity. Let s{(A) be the Auslander—Reiten

quiver of A, and denote by € the connected component of {(A) which contains
[A]). Then

A(A)\€ EQZM/W“’),

where 1 is an index set, and n(i) € {1, 2} for all i € I. Moreover, if d is even then
n(i)=1foralliel

THEOREM 1I. Let A=C[[X,, ..., X ))/(f(X)) be the complete local ring of
a nonsimple isolated hypersurface singularity. Then there exists an arithmetic
sequence of natural numbers r, 2r, 3r, . .. such that for each mr (m e N) there
exists an infinite sequence (M,, ,.).en Of indecomposable pairwise nonisomorphic
Cohen—Macaulay A-modules all of which have rank mr.

654
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The general idea underlying the proof of Theorems I and 1I is to make use of
techniques which have been developed in representation theory of artin algebras.
This strategy, while it cannot be carried out in a straightforward way, turns out to
work in case there exists an ideal # in A such that A/# is artinian and the functor
Al S ® ,, with the category of Cohen—Macaulay A-modules as domain, reflects
isomorphisms, preserves indecomposability and separates isomorphism classes.
We call such an ideal $ a reduction ideal of A. This leads to the question of
existence of a reduction ideal. Generalizing an approach (known as Maranda’s
Theorem) which gives a positive answer to the analogous question for lattices
over orders, we obtain a criterion for the existence of a reduction ideal in the
following situation. Let R be a commutative noetherian complete local Cohen-
Macaulay ring, with unique maximal ideal », and let A be an R-algebra (not
assumed to be commutative) which is finitely generated as R-module. Denote by
mod A the category of all finitely generated left A-modules, and by modg A the
category of all finitely generated left A-modules which are projective as
R-modules. Call the annihilator ideal of the functor Ext)( , ):modg A X
mod A— mod R the Ext-annihilating ideal of A in R. Then the following criterion
holds.

THEOREM 111. If the Ext-annihilating ideal of A in R is m-primary, then there
exists a reduction ideal of A.

This raises the question of estimating the Ext-annihilating ideal of an
R-algebra A, a problem which also seems to be of independent interest. There
are two classes of algebras for which we can prove that the Ext-annihilating ideal
is m-primary, namely a) for isolated singularities of finite type (not assumed to be
commutative), and b) for the complete local rings of isolated Cohen—Macaulay
singularities on an affine algebraic variety over an algebraically closed field. This
leads to the following results which are related to Theorems I and II.

THEOREM 1V. Let R be a commutative noetherian complete regular local
ring, and let A be an R-algebra which is finitely generated free as R-module.
Assume that A is of finite type. Then each connected component € of the stable
Auslander—Reiten quiver of A is of the form € =ZA/G, where A is a Dynkin
diagram and G is a group of automorphisms of Z A.

If R is an algebraically closed field, then we recover Riedtmann’s well-known
Theorem [Rie 80]. The stable Auslander-Reiten quivers of the simple isolated
hypersurface singularities, mentioned at the beginning, also fall under the
situation described in Theorem IV. But much more generally, Theorem IV states
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that Dynkin diagrams always appear in connection with isolated singularities of
finite type (commutative or noncommutative, in arbitrary dimensions), as soon as
the Auslander—Reiten quiver contains a stable point.

THEOREM V. Let IcC[[Xy,...,X,]] be an ideal, such that A=
C[[X1, - - -, X,])/1 is an isolated Cohen—Macaulay singularity. If A is of infinite
type, then there exists an infinite sequence (M;);cn of indecomposable Cohen—
Macaulay A-modules such that rank M; <rank M, ,, for all i e N.

Using different methods, Herzog and Sanders recently have obtained results
which are related to Theorem V [He/Sa 85].

THEOREM V1. Let A=C[[X,, ..., X,])/I be as in Theorem V. Let € be a
connected component of the stable Auslander—Reiten quiver of A such that €
contains a periodic point. Then € =ZA/G, where A is either a Dynkin diagram or
A, and G is a group of automorphisms of Z A.

Specializing Theorem VI to isolated hypersurface singularities we obtain
Theorem I, and combining Theorem I with the main result of [Bu/Gr/Schr 86] we
obtain Theorem II.

For definition and basic combinatorial structure of the Auslander-Reiten
quiver of an isolated singularity, as well as for terminology and notation related
to this concept, the reader is referred to [Di 86]. Auslander’s characterization of
isolated singularities via existence of Auslander—Reiten sequences [Au 84],
together with the combinatorial results of Happel, Preiser and Ringel
[Hap/Pr/Rin 79], [Hap/Pr/Rin 80] yields as an easy consequence the fundamental
structure theorem for connected components of the stable Auslander—Reiten
quiver which contain a periodic point [Di 86, Theorem 3].

Much of the present article is based on this structure theorem. In section 1 we
study consequences which may be drawn from it, in case the isolated singularity
contains a reduction ideal. In section 2 we turn to the problem of existence of a
reduction ideal and we prove for a rather general class of algebras (which
includes the class of isolated singularities) the sufficient existence criterion in
terms of the Ext-annihilating ideal mentioned above. Section 3 is devoted to
estimating the Ext-annililating ideal for two classes of isolated singularities. The
results exhibited above then follow as easy consequences. Theorems I,..., VI
appear in the text as Theorems 19, 20, 7, 9, 16, 17.

I am grateful to Claus Michael Ringel for clarifying remarks on stable valued
translation quivers, and I am grateful to Gert-Martin Greuel for discussing with
me the Ext-annihilators of isolated hypersurface singularities. I am particularly
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indebted to Maurice Auslander for numerous discussions on Ext-annihilators of
affine-algebraic isolated singularities. In fact, almost all of section 3.2 leading up
to Proposition 14, has been outlined to me by him. I also would like to thank the
Deutsche Forschungsgemeinschaft for financial support.

0. Preliminaries

Throughout this article, modules are understood to be left modules, and maps
are written on the left of the argument. For any ring A, we write Mod A for the
category of all left A-modules, mod A for the category of all finitely generated left
A-modules, and gldim A for the left global dimension of A. For any M e Mod A,
pd (M) denotes the projective dimension of M, and £2"(M) is the n-th syzygy
module of M. If V is a vector-space over a skewfield / then we write [V : /] for
the dimension of V over / For any object C in any category € we denote by [C]
the isomorphism class of C, and by [€] the set of all isomorphism classes of €.
The symbol = means inclusion or equality. We agree that N={1,2,3,...},
whereas No={0,1,2,3,...}.

We write k[[ X}, ..., X,]] for the ring of formal power series in n variables
Xi,..., X, over a field k. Cohen—Macaulay modules over a commutative
noetherian local ring are always understood to be maximal Cohen—Macaulay
modules, i.e. the depth of the module equals the Krull dimension of the ring. For
any commutative ring S, we write Spec (§) for the spectrum of §, Max (§) for the
maximal spectrum of S, Reg (S) for the regular locus of S, and Sing (S) for the
singular locus of S. The dimension of § is understood to be the Krull dimension of
S, and is denoted by dim S.

Throughout, R denotes a commutative noetherian complete local ring, and A
denotes an R-algebra which is finitely generated as R-module. Let £ be the class
of all R-algebras which arise in this way. Usually we shall consider algebras from
subclasses of £ by assuming in addition, for example, that R is Cohen—Macaulay
or even regular, or else that A is finitely generated free as R-module or even a
commutative local Cohen—Macaulay ring. But, unless otherwise stated, A is not
assumed to be commutative. We write » for the unique maximal ideal of R, d for
the dimension of R, and, in case R is a domain, K for the field of fractions of R.
General elements in Spec (R) are denoted by small german letters such as 4, 4,
etc. In case A is commutative, elements in Spec (A) are denoted by capital
german letters such as 2, 2, etc. In case A is commutative local, we write # for
the unique maximal ideal of A. For any AeZ and M, NemodA we set
Hom, (M, N) = Hom, (M, N)/Hom, (M, N), where Hom}, (M, N) consists of all
homomorphisms in Hom, (M, N) which factor through a projective A-module.

Given an R-algebra A in £, we denote by mod; A (emphasizing the subscript



658 ERNST DIETERICH

R) the full subcategory of mod A consisting of all objects which are projective as
R-modules. The study of the category modi A will be our main objective. We
write ind A for the full subcategory of mod A consisting of all indecomposable
objects of mod A, and similarly we write indg A for the full subcategory of
modg A consisting of all indecomposable objects of modz A. (For any twosided
ideal # contained in the radical of A, A is complete with respect to the $-adic
topology and idempotents can be lifted from A/$ to A. Consequently every
object in ind A has local endomorphism ring, and therefore Krull-Schmidt’s
Theorem holds in mod A as well as in modg A.)

For any M e modz A we set p(M)=p,(M)=[M/mM:R/=], and we call
p(M) the R-rank of M. Usually p will be considered as a function on [indg A].
An R-algebra A in Z is said to be of finite type in case [indg A] is a finite set,
respectively of infinite type in case [indg A] is an infinite set. With any R-algebra
A in £ we associate two sets of natural numbers P.(A) c P(A) =N as follows.
Consider the rank function p,:[indg A]=N, and set P(A)=im(p,),
respectively P.(A) = {r e N | p;'(r) is infinite}. Now let & be a subclass of £. We
say that the first Brauer—Thrall conjecture is true for o in case for all Ae &, if A
is of infinite type then P(A) is infinite. We say that the second Brauer—Thrall
conjecture is true for & in case for all A e o, if A is of infinite type then P.(A) is
infinite.

Let A be an algebra in &£, with regular ground ring R, and such that A is
finitely generated free as R-module. Following Auslander [Au 84] we say that A
is nonsingular if gldim A=dim R, respectively isolated singular if gldim A +#
dim R and gldim A, =dim R, for all 4 € Spec (R)\{»}, respectively nonisolated
singular in all other cases.

A special but important subclass of £ frequently arises in the following way.
Suppose we are given a commutative noetherian complete local ring S. Then
there exists a commutative noetherian complete regular local subring R = § such
that S is finitely generated as R-module. R is called a Noether normalization of §.
In this situation, the category modg S coincides with the category of Cohen-
Macaulay S-modules, and S is finitely generated free as R-module if and only if S
is a Cohen-Macaulay ring. For commutative noetherian complete local Cohen—
Macaulay rings § with Noether normalization R c S, the notion of non-
singularity, isolated singularity and nonisolated singularity, as defined above,
coincide with the corresponding notions from commutative algebra.

1. Isolated singularities with reduction ideal

We assume that R is a commutative noetherian complete local ring, and that
A is an R-algebra which is finitely generated as R-module.



Reduction of isolated singularities 659

DEFINITION. A twosided ideal # of A is called a reduction ideal of A if it
has the following properties.

(a) F cmA.

(b) A/# is artinian.

(c) The functor %; = A/$ ® ,:modg A— mod (A/F) preserves indecom-
posability and separates isomorphism classes.

If there exists a reduction ideal $, then we call %; its reduction functor. It
reduces the dimension of the ground ring from d to 0, it maps nonisomorphisms
to nonisomorphisms, and it induces an inclusion mapping between the sets of
isomorphism classes of indecomposable objects, %, :[indg A]< [ind (A/$)].
Since mod (A/.#) is an abelian category in which all objects have finite length, we
have much better knowledge about mod (A/.$) than about modz A. As we shall
see, some of this information can be transferred from mod (A/$) to modg A, by
way of the reduction functor %;.

We give some examples of reduction ideals, in case R is commutative
noetherian complete regular local and A is finitely generated free as R-module.

(1) If d =0, then (0) is a reduction ideal of A.

(2) If d=1 and K®zA is a separable K-algebra, then mcA is a reduction
ideal of A, where ¢ is the conductor in R of a maximal order A’ > A into A;
alternatively, m4A is a reduction ideal of A, where # is the Higman ideal of A.
(See [Cu/Re 81] or [Ro/Hu 70] as general references for the case d = 1.)

(3) If A is nonsingular, then »A is a reduction ideal of A because all objects
in modg A are projective.

The following statements (4) and (5) will be proved in sections 2 and 3 (see
Theorem 7, Proposition 8 and Corollary 15).

(4) If A is an isolated singularity of finite type, then A has a reduction ideal.

(5) If £ is an aigebraically closed field, I = C[[X}, . . ., X,]] an ideal such that
A=C[[Xy, ..., X,])/] is an isolated Cohen—Macaulay singularity, then A has a
reduction ideal.

More generally it would be interesting to characterize those isolated sing-
ularities which have a reduction ideal. On the other hand, for nonisolated
singularities we have only counterexamples so far: If A is a nonisolated

hypersurface singularity of type A. or D. (in the language of [Bu/Gr/Schr 86],
i.e.

A=C[[Xo, ..., XJJI/(X3+-- -+ X2)

or

A=C[[Xo, ..., X V(X X2+ X2+ - - + X2),
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then the classification of modiz A shows that A has no reduction ideal. Also
observe that any power of a reduction ideal is again a reduction ideal. Therefore
the set of all reduction ideals never contains a minimal element (unless A is
artinian). On the contrary it would be interesting to find the maximal elements of
this set, in case it is nonempty. ‘

Whereas in sections 2 and 3 we will be concerned with the question of
existence of a reduction ideal, in the remaining part of this section we will
investigate properties of isolated singularities which have a reduction ideal. In this
respect the following generalization of a Lemma of Harada and Sai [Har/Sa 70],
[Rin 79] is fundamental.

LEMMA 1. Let A be an R-algebra as above, given by a ring homomorphism
¢:R— A. Assume that A has a reduction ideal $. Set /= ¢ '(#) and /=
lengthg (R/0). If M;¥> M, .. o Mon is  a chain of 2%-1
nonisomorphisms in modg A, such that all modules M,, ..., My are indecom-
posable and of R-rank=/, then the image of the composed morphism
Yolé_y * + - Y, is contained in $M,u.

Proof. Applying the reduction functor, we obtain a chain

Fs (Y1) Fs(y2) Fe(ypoft_y)

Fs(My) Fs(M,) > Fg(Moi)

of 2%4-1 nonisomorphisms in mod(A/$), such that all modules
Fs(M,), ..., Fs(M,4s) are indecomposable. Because A/$ is artinian and
lengtha . (% (M) =/ for all i=1,...,2% we know from the Lemma of
Harada and Sai that the composed morphism Fs(y,4_,) - -+ F4(y,) is zero. But
this is equivalent to the fact that im (y,4_, - - - Y,) « M. q.e.d.

Recall that the R-algebra A is said to be connected if A= A; @ A, implies that
either A, =0 or A, =0, for every decomposition of A into a direct sum of
twosided ideals A; and A,. Denote the functor A/mwA ® ,:modg A—
modg,,, (A/mA) by %,. Then A is connected if and only if for any two
indecomposable projective A-modules P and P’ there exists a sequence P=
Py, Py, ..., P,=P’' of indecomposable projective A-modules such that, for all
i=0,...,n—1, either

¥.(Hom, (P, P41))#0 or %,(Hom, (P, P))#0.

PROPOSITION 2. Let A be an isolated singularity or nonsingular. Assume
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that A is connected and has a reduction ideal $. Let € = (%6,, €,) be a connected
component of the Auslander—Reiten quiver f(A) = (,, ), on which the rank
function p : €,— N is bounded. Then d(A) = €, and H(A) is finite.

In case d =0, this result is due to Auslander [Au74]. We closely follow his

proof, adapting it to our more general situation by way of the reduction functor
Fs.

Proof. Let A, $ and € be given as in the Proposition. Let 4 be an upper
bound for p on %, and set /=lengthg (R/), c=F NR. We claim that the
following statement is true.

(*) If M and N are indecomposable objects in modp A such that
Fs(Hom, (M, N)) #0, then [M] € 6, if and only if [N] € %,.

Proof of (*): Suppose M and N are indecomposable objects in modg A such
that %,(Hom, (M, N))+#0, and suppose that [M]e 6,, but [N]¢ 6. Choose
y € Hom, (M, N) such that im ¥ ¢ $N. Since every indecomposable object in
modz A has a source morphism, and in view of the connection between source
morphisms and irreducible morphisms (see statements (1) and (2) preceding
Proposition 2 in [Di 86]) we obtain that, for all c e N, ¥ can be factored as

where X; = domain (&§;) is an indecomposable object in 4,, and ; is a
composition of c irreducible morphisms in €;, for all i=1,..., n. On setting
¢ = 2% we deduce from Lemma 1 that im 9 < $N, which contradicts our choice of 1.
Arguing with sink maps instead of source maps one proves dually that [N] e 6,
implies [M] € €.

Now choose [M] € 6, arbitrary and let Py, »> M be a projective cover of M. Then
(*) implies that there exists a projective point in %,. Since A is connected, (*)
implies that all projective points of &, are in 6,. Let [N] € &/, arbitrary and let
Py N be a projective cover of N. Then (*) implies that [N] € 6,. This proves
A(A) = €.

On the other hand, the factorization property of Auslander—Reiten sequences
together with Lemma 1 shows that for every point [N] € &£, there exists a chain
[P]=[Ni]—=[N2]—= - - -—[N.] =[N] of arrows in &,, such that P is indecom-
posable projective and ¢ < 2%, Since H(A) is locally finite it follows that sf(A) is
finite. q.e.d.

As an immediate consequence of Proposition 2 we obtain the following
statements on isolated singularities with reduction ideal.
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COROLLARY 3. The first Brauer—Thrall conjecture is true for isolated
singularities with reduction ideal.

Proof. Let A be an isolated singularity with reduction ideal, and assume that
A is of infinite type. Then there exists a connected algebra-component A’ of A
which is of infinite type. By Proposition 2, the rank function is unbounded on
each connected component of #(A’). q.e.d.

COROLLARY 4. Let A be an isolated singularity with reduction ideal. Let
€ = (%6y, 6,) be a connected component of the stable Auslander—Reiten quiver
A, (A) and assume that €, contains a periodic point. Then the Cartan class of € is
either a Dynkin diagram or A..

Proof. Let € be the connected component of sf(A) which contains €. If
€ + €, then the rank function p: €,— N is not additive on %, so the Cartan class
of € is either a Dynkin diagram or A, by [Di 86, Theorem 3]. If € = ¢, then €
is a connected component of &f(A) which contains no projective point. Therefore
p is unbounded on %,, by Proposition 2, so the Cartan class of € is A., by [Di 86,
Theorem 3]. q.e.d.

2. Construction of reduction ideals via annihilators of Ext

Throughout this section, let R be a commutative noetherian complete local
ring and let A be an R-algebra which is finitely generated as R-module. Within
this general setup we turn to the question of existence of a reduction ideal.
Generalizing an approach which goes back to Maranda [Ma 53] we shall prove
the following existence criterion: If R is Cohen—Macaulay and the annihilator of
the functor Ext} ( , ):modg A X mod A— mod R is m-primary, then there exists
a reduction ideal of A.

With any element r € » we associate the category modg,,z (A/rA) given by the
factoralgebra A/rA, and the factorcategory (modg A)/#, given by the system of
relations %, = {r Hom, (M, N) | M, N e modg A}. By definition, the objects of
(modg A)/ ¥, are the objects of modg A, and the morphism set in (modgz A)/ %,
from M to N.is given by Hom, (M, N)/r Hom, (M, N). Note the difference:
whereas morphisms in modg,r (A/rA) are A-linear maps between residue class
modules, morphisms in (modg A)/¥, are residue classes of A-linear maps
between modules. Given any full subcategory ¥ of modz A, we consider the
functor %,:¥-—>modg,g (A/rA) given by % =A/rA®,, and the canonical
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functor R,:¥— (modg A)/%#,. For S =modgz A, the following facts are easily
verified.

(i) The functor R, is a representation equivalence (i.e. %, is full, dense and
isomorphism-reflecting).

(ii) There exists a uniquely determined functor %, :(modg A)/%,—
modg,,g (A/rA) such that &, = ZR,.

(iii) If r is a nonzerodivisor of R, then %, is faithful.

LEMMA 5. Let & be a full subcategory of modg A. Let a be a nonunit and
nonzerodivisor of R such that a Exty (M, N)=0, for all M, N € ¥. Denote by a
the residue class of a in R/a’R. Then, for all M, N € ¥ and for each morphism
g € Homy,:4 (M/a*M, N/a*N) there exists a morphism f € Hom, (M, N) such
that F,(f) = Fa(8)-

Proof. Let M, N € ¥ and g € Homy,,24 (M/a*M, N/a*N) be given. Because
M is R-projective, there exists an R-linear map f: M — N which lifts g. Then
im (Af — fA) c @®N, for all A € A. Since a” is a nonzerodivisor of N, for all Ale A
there exists a unique R-linear map F,: M — N such that a’F, = Af — fA. It turns
our that F={F };ca:A— Homg (M, N) is a derivation. In view of the
isomorphisms

Extl (M, N)= H'(A, Homg (M, N))
= Der (A, Homg (M, N))/In Der (A, Homg (M, N)),

our assumption a Ext}, (M, N) =0 implies that aF is an inner derivation. Hence
there exists an R-linear map h:M— N such that aF, = Ah — hA, for all A€ A.
Then Af —fA =a’F, =a(Ah — hA) implies that f=f —agh:M— N is a A-linear
map, and Z,(f) = Fi(g). q.e.d.

PROPOSITION 6. Let & be a full subcategory of modg A. Let a be a nonunit
and nonzerodivisor of R such that a Ext}, (M, N)=0, for all M, N € ¥. Then the
functor F,.:¥— modg,2g (A/a*A) preserves indecomposability and separates
isomorphism classes.

Proof. Let M € ¥ be given and assume that %,2(M) decomposes properly.
Choose an idempotent g € End,,:4 (M/a*?M) which is different from 0 and
different from 1. By Lemma 5 there exists an endomorphism f € End, M such
that %,(f) = Fi(g). Since g is idempotent, F,(f) is also idempotent. Since
F(f)=%R,(f) and &, is faithful, R,(f) is an idempotent element in
(End, M)/a(End, M) which can be lifted to an idempotent element f in
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End, M. It is easily seen that f is different from 0 and different from 1, because
otherwise g would be equal to 0 or 1, contradicting our choice of g. Hence M
decomposes properly.

Let M,Ne¥ be given and assume that %:(M)=%.:(N). Choose an
isomorphism g € Homy,25 (M/a*M, N/a*N). By Lemma 5 there exists a mor-
phism f € Hom, (M, N) such that %,(f)= %,(g). Since g is an isomorphism,
Z.(f) is also an isomorphism. Since a is an element in », it follows that f is an
isomorphism. Hence M =N. q.e.d.

Proposition 6 is known as ‘“Maranda’s Theorem” in case d =1 and ¥ =
mody A. Originally it has been proved by Maranda for the group ring of a finite
group over the ring of p-adic integers [Ma 53], and later it has been generalized
by D. G. Higman to arbitrary orders over complete discrete valuation rings
[Hi 60]. In generalizing Maranda’s Theorem to algebras over higher dimensional
ground rings, as formulated in Proposition 6, I drew much benefit from the
beautiful presentation of this topic given in [Cu/Re 81] for the case d = 1. The
reason for considering arbitrary full subcategories & of modz A will become clear
in the sequel, when we shall apply Proposition 6 inductively.

DEFINITION. Let A be an R-algebra as above. We define the Ext-
annihilating ideal of A to be the annihilator ideal (in R) of the bifunctor
Ext) ( , ):modg A X mod A— mod R. We denote the Ext-annihilating ideal of A
by a.

Note the asymmetry in the product category modiz A X mod A which, for
definition of the Ext-annihilating ideal, we choose as domain of the bifunctor
Ext}, ( , ). Observe that, if R is Cohen—Macaulay and « is »-primary, then there
exist plenty of maximal R-regular sequences which are contained in «. (Choose

any system of parameters x,,...,x; of R. Then x%,...,xJ is a maximal
R-regular sequence for -all n € N, and there exists n, € N such that x7, ..., x5 is
contained in « for all n =n,.)

Given any finite set of elements {r,,..., r,} in R, we denote by (r,...,r,)
the R-ideal generated by {r,...,r,}, and we denote by (r,,..., r,)A the
twosided A-ideal generated by {r,, ..., r,}.

THEOREM 7. Let R be a commutative noetherian complete local Cohen—
Macaulay ring and let A be an R-algebra which is finitely generated as R-module.
Assume that the Ext-annihilating ideal « of A is m-primary. Then for every
maximal R-regular sequence a,...,a, contained in «, (a3,...,a%)A is a
reduction ideal of A.
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Proof. Leta,, ..., a; be a maximal R-regular sequence which is contained in
@, and set $=(a}, ..., a3)A. From our assumptions on a,, ..., a, it follows
immediately that $ c~A and that A/# is artinian. For investigation of the
functor F; = A/$ @ ,:modg A— mod (A/F) we introduce a sequence of func-
tors, associated with the given R-regular sequence as follows. Set 2= (0) and
o=}, ...,a}), for all i=1,...,d. Let &% be the full subcategory of
modg,,, (A/a;A) which is given by the class of objects {M/a;M | M € modg A}, for
all i=0,...,d We consider the sequence of functors %,:: ¥,_;— ¥, given by
Fp= AlajA®,, where i=1,...,d. Then the following statements hold for
eachi=0,...,d—-1.

(i) R/a; is a complete local ring, A/a;A is an R/a;-algebra which is finitely
generated as R/e;-module, and ; is a full subcategory of modg,,, (A/2;A).

(ii) The residue class a,,, + «; is a nonunit and nonzero divisor of R/e;.

(iii) (@41 +e;) Exty, o (M/a;M, NJa;N)=0 for all M, NemodgA. (As-
sertion (i) follows trivially from our assumptions and definitions. Since a3, . . . , a3
is an R-regular sequence in », we obtain assertion (ii) and the isomorphism

Extly, o (M/2;M, N/a;N) =Ext4(M, N/a;N), forall M, N e modg A.

Now assertion (iii) follows in view of a?,; €« and the definition of «.) Due to
(1)—(iii) the hypotheses of Proposition 6 are satisfied for each of the functors
Fop:S1— ;. Therefore F,: preserves indecomposability and separates iso-
morphism classes, for all i=1,...,d. On the other hand #, =%, -. .. - %z,
and therefore %; preserves indecomposability and separates isomorphism
classes. q.e.d.

3. Isolated singularities with ».-primary Ext-annihilating ideal

This section is mainly devoted to showing for two classes of isolated
singularities that their Ext-annihilating ideals are »-primary, namely

a) for isolated singularities of finite type, and

b) for isolated Cohen—Macaulay singularities which are of the form A=
A[[X1, ..., X,])/I, where £ is an algebraically closed field and Ic
4[[X1, ..., X,]] an ideal.

Once this is established, all results of section 1 apply to any isolated
singularity which belongs to a) or b), by Theorem 7. As a consequence we obtain
the results announced in the introduction.
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3.1. Isolated singularities of finite type
Let R be a commutative noetherian complete regular local ring and let A be
an R-algebra which is finitely generated free as R-module.

PROPOSITION 8. If A is an isolated singularity of finite type, then the
Ext-annihilating ideal of A is m-primary.

Proof. Let M;,..., M, be a set of representatives for the isomorphism
classes of indecomposable objects in modi A, and set M = @7_; M,. To each pair
(X, Y) emodg A Xmodg A we assign the R —ideal ey y = anng (Hom, (X, Y)).
Then by [Au 84, main theorem], for every pair (X, Y) there exists a number
/={x y€eN such that e ax y- Moreover, the following inclusions are easily
verified.

(1) emm=(Vj=1 MM,

(2) (exyNexz)cexyez forall X,Y,ZemodgA.

(3) (exzNayz) caxeyz foral X,Y,ZemodgA.

Properties (1)-(3) imply that e 4 <[ \xemodzna@x,x- Hence we obtain »‘c
am.m ©a, Where /= {, », and where « is the Ext-annihilating ideal of A, as defined
in section 2. In addition, « c», because otherwise A would be nonsingular.
Therefore « is »-primary. q.e.d.

THEOREM 9. Let A be an isolated singularity of finite type. Then the Cartan
class of any connected component € = (€, €,) of the stable Auslander—Reiten
quiver A (A) is a Dynkin diagram.

Proof. By Proposition 10 and Theorem 7, A has a reduction ideal. Since A is
assumed to be of finite type, each point of €, is periodic, and the Cartan class of
€ cannot be A.. Therefore, by Corollary 4, the Cartan class of € is a Dynkin
diagram. q.e.d.

Remark. If A is of finite type, then it has to be an isolated singularity or
nonsingular [Au 84]. Therefore in Theorem 9 we may as well omit the hypothesis
that A is an isolated singularity.

3.2. Commutative local isolated Cohen—Macaulay singularities

Assume that £ is an algebraically closed field, that V c A"(£) is an affine
algebraic variety of dimension d, and that 0 e V is an isolated Cohen—Macaulay
singularity of V. Let A= &, , be the complete local ring of V at 0, and let R c A
be a chosen Noether normalization. We call such an R-algebra A an affine-
algebraic isolated singularity. An affine-algebraic isolated singularity A is an
isolated singularity in the sense of section 0, and modz A is the category of
Cohen-Macaulay A-modules. Our aim is to study the Ext-annihilating ideal « of
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A. However, much of what follows will be formulated in a more general setting.
Ultimately, all results proved for affine-algebraic isolated singularities generalize
to arbitrary isolated singularities which arise as factorring of the formal power
series ring over #, by Artin’s Theorem [Ar 69].

We first consider the noncomplete situation. Let A =£[X, ..., X,]/I be the
affine coordinate ring of V c A"(£). Let A°=A ®, A be the enveloping algebra
of A, and let A =A;®,;As be the enveloping algebra of Az, for any
P e Spec (A).

PROPOSITION 10. For all ? € Reg(A), we have the inequality pd., As =d.

Proof. We first prove the statement for maximal ideals. For any # e
Max (A) N Reg (A), set d'=dim A, and let £:A% > A, be the augmentation
map. Then 2:=¢"'(#MA,) is a maximal ideal in A%, and we have the following
facts.

(1) A% is noetherian.

(2) (A%)2 is a commutative noetherian regular local ring of dimension 2d’.

(3) Ay/MA 4= (A%)al 2(A%)a, as fields and as (A%)q-modules.

Ay if 2'=2
(4) (AM)-Q'={O if 2'eMax(A%)\{2}.

We indicate the proof of (1)—(4). On setting T ={s ® ¢ |s, t € A\M} = A°, we
have that A% =T '(A°). On the other hand, A° is isomorphic to the coordinate
ring of V X V < A"(4) X A"(#), and therefore is noetherian. This proves (1). Let
p €V be the regular point corresponding to /#. Then (p, p) is a regular point on
V x V. The local ring of V X V at (p, p) is isomorphic to (A%),, and its residue
class field is isomorphic to A,/MA,. This proves (2) and (3). For any
9' e Max (A%), if 2' oker € then 2' = 2. Therefore, if 2’ € Max (A%)\{2} then
there exists an element s € ker €é\2' such that sA, =0. Hence (A ,)o- =0, which
proves (4).

Using (1)-(4), together with standard arguments on the projective dimension
of a finitely generated module over a regular local ring, we obtain the following
equalities.

pda, A= sup , {Pd(As.)y- (Au)a}

2’ eMax (A%
= pdeasy, Au
= pdiac, Au/ MA—d’
= Pd(ass (A%)2/ 2(A%)s — d'’
=2d'—-d'=d' =d.
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Now let ?eReg(A) be arbitrary. Then there exists a maximal ideal
M € Reg (A) containing P. Thus Ap=T"'A,, where T={s®t|s,teA,\
PAu} < A% Therefore pdy, Ap=pdy, Ay=d. q.e.d.

COROLLARY 11. Let M be the maximal ideal of A which corresponds to the
isolated singular point 0 € V. Then for all P' € Spec (A 4)\{MA,}, we have the
inequality

pd(Aﬂ)g,, (A_,u)gv =d.

Proof. Let ?' € Spec (A )\{#MA 4} =Reg(A,). Then ?' =PA, for some
P € Reg (A). Applying Proposition 10 we obtain that

Pdugs (Au)e =pdas A =d. q.e.d.

For the next step we adopt a more general setting. We assume now that § is
any commutative noetherian local Cohen-Macaulay ring, with # =rad S and
d = dim §, subject to the following conditions.

(a) § contains an algebraically closed field 4 such that S°=S®,S is
noetherian.

(b) Sing (S) = {M).

(c) pdss, S»=d, for all ? € Reg (S).

We denote the class of all such rings S by &. If V < A"(#) is an affine algebraic
variety and 0 € V is an isolated Cohen—Macaulay singularity, as above, then the
local ring Oy o of V at 0 belongs to &, due to Corollary 11. For any local ring § in

¥, let S be the completion of S and set 4 = rad S. Further, let 0—J— 5°5 S —0

be the augmentation sequence of S¢, and set M = Q9(S) (the d-th syzygy of S in
mod §°). Finally, let o be the ideal in S which is given by « =
anng (Endse M/J Ends M).

PROPOSITION 12. For any local ring S in ¥, the ideal s{ =S has the
following properties.

(i) M" = A, for some n € N.

(ii) o Exts*' (X, Y)=0, forall X, Y e Mod S.

Proof. For brevity we write Ey, = Ends M, E}, = {¢ € E,; | ¢ factors through
a projective ‘S°-module}, and Ey, =FE,/E,,=Ende+M. Since E,/JE, =
Ey/(JEy+ Ey), we have HEycJEy+E). For any ?eReg(S) set T =
T(P)={s®t|s, teS\P}cS°. Then T™'M = Q*(S,). From property (c) of §
we obtain that T7'M is a projective T~'S°-module, and hence that T~Y(E,,) =0,
for all 2 € Reg (S).



Reduction of isolated singularities 669

We now turn to the proof of (i) and (ii). For all 2 € Reg(S) we have that
(Em/VEM)e=T YEm/JEym)=T Y(Ey)/T '(JE))=0. Hence supps (Ey/JEy) <
{M}, and therefore M" = anng (Ey/JEy) = &, for some n € N.

For all X,YeModS we have isomorphisms Ext¢*'(X,Y)=
Extd+! (S, Homy (X, Y)) = Extl (M, Homy (X, Y)) [Ca/Ei56, IX, Corollary
4.4]. Using the composed isomorphism and the inclusion SE, cJEy +E},
we obtain that & Ext?*!' (X, Y)= o Ext} (M, Homy (X, Y)) = J Extg. (M,
Homy (X, Y)) + Ej) Exts. (M, Hom, (X, Y)). In this sum, the first summand is
isomorphic to JExti*'(X,Y), hence zero, whereas the second summand
vanishes by definition of E;,. q.e.d.

We continue to work over rings § in . However, we point out that the
following Lemma 13 is valid for any commutative noetherian local ring S.

LEMMA 13. (i) Hom; (X, Y) = Homg (X, Y), for all X, Y € Mod §.

(ii) Exts(P, Y)=0, for all ieN and P,YemodS, with P a projective
S-module.

(iii) Ext (X, Y)=Ext{(X,Y), for allieNyand X, Y e mod S.

Proof. (i) Let X, Y e Mod S. Clearly we have an inclusion Hom; (X, Y) <
Homg (X, Y), given by restriction of scalars, and we have to show surjectivity of
this inclusion. So let ¢ € Homg (X, Y), x € X and § € S. Since S is dense in S,
there exists a convergent sequence (s;);cn < S such that lim,_,..s; = §. Then

#(5x) = ¢ (1ims,)x) = ¢ (1im (s)) = lim ¢ (s.0)

{—>»oc j—>0

= lim (s6(x)) = (lims,) px) =56 (x).
Hence ¢ € Hom; (X, Y).

(i) Let ieN and P, Y emod $, with P a projective §-module. Then for all
B,IeMod$, with I an injective $-module, we have Ext(P, Hom; (B, I))=
Hom; (Tor; (P, B), I) [Ca/Ei 56, VI, Proposition 5.1]. Since P is a flat S-module,
Tor? (P, B) =0 and therefore Exts (P, Homg (B, I)) =0. Now if we choose I to
be the injective hull of §/# and B=Hom;(Y,I), then Hom;(B,I)=
Homg (Homg (Y, I) =Y. Therefore Exts (P, Y) =0.

(iii) Given X, YemodS$, let P:---—P— P,—X—0 be an S-projective
resolution of X, and let P;:---—P,— P,— Q(X)—0 be the S-projective
resolution of €(X), obtained from P by shifting. Denote by P’, respectively P;,
the acyclic S-complex which arises from P, respectively P, by restriction of
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scalars. Then for all i e N, Ext (X, Y)= H'(Homg (P, Y)) = H' (Homg (P, Y)),
by (i). It remains to show that Ext (X, Y) = H'(Homg (P’, Y)), for all i e N.
Applying Homg ( , Y) to the short exact sequence 0— Q(X)-> P,— X—0,
we obtain the long exact sequence 0— Homg (X, Y)— Homg (F, Y)—
Hom; (2(X), Y)— Ext} (X, Y)— Ext§ (P, Y)— - - -. By (ii), Exts (B, Y) =0 for
al  ieN. Therefore  Extg (X, Y) =Homg (2(X), Y)/Homg (P, Y)i =
H'(Homg (P', Y)). Moreover, if Exts (X, Y) = H'(Homg (P’, Y) for some i € N,
then Ext{"! (X, Y)=Ext{(2(X), Y)= H'(Homg (P}, Y)) = H""'(Homg (P', Y)).
Hence Ext; (X, Y) = H'(Homg (P’, Y)) for all i e N, by induction on i. q.e.d.

PROPOSITION 14. For any local ring S in &, the ideal s{ = A4S < § has the
following properties.

(i) s is M-primary.

(i) £ Exti(X, Y)=0 forall X, Y e mod §, with X Cohen—Macaulay.

Proof. Choose a Noether normalization R = $. Then, since § is Cohen—
Macaulay and Sing (§) = {#(}, the R-algebra § is an isolated singularity in the
sense of section 0. In particular, § is an R-order in the sense of [Au 78], and the
category of Cohen—Macaulay S-modules coincides with the category of S-lattices
in the sense of [Au78]. Therefore, for each Cohen-Macaulay S-module X we
have that Extj(Tr X, .§) =0 for all i=1,...,d, where Tr X denotes the
transpose of X [Au 78, Proposition 7.5]. Thus X is d-torsionfree in the language
of [Au/Br69)], and hence there exists X' emod$ such that X = Q% X’), by
[Au/Br 69, Theorem 2.17].

Now let X, Y e mod §, with X Cohen-Macaulay, and let X' € mod S such that
X = Q“(X"). Then, applying Proposition 12 and Lemma 13, (iii), we obtain that

AExti(X,Y)= A Ext}(Q4X"), Y)= A Ext{"' (X', Y)= S Ext§* (X', Y)=0.

This proves (ii).

It follows that &f c M, because otherwise S would be nonsingular. Moreover,
M" = o for some n € N, by Proposition 12 and by definition of sf. Therefore <
is M-primary, which proves (i). q.e.d.

-For the remainder of this subsection we turn to isolated Cohen—Macaulay
singularities of the form A=/4[[X,,..., X,]}/I, I an ideal in 4[[X, ..., X,]],
and draw the main conclusions from Proposition 14.

COROLLARY 15. Let Ic4[[X,,..., X,]] be an ideal, such that A=
X, ..., X))/ is an isolated Cohen—Macaulay singularity. Then the Ext-
annihilating ideal « of A in R is m-primary.
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Proof. By Artin’s Theorem [Ar69, Theorem 3.8] there exists an affine-
algebraic isolated singularity (V, 0) such that A=, ,. From Corollary 11 we
know that 0y o€ &. By Proposition 14, there exists n € N such that #" c & and
m" = (MNR)" = (M" NR) = ( NR) ca. Moreover, « = m, because otherwise A
would be nonsingular. Hence @ is »-primary. q.e.d.

The following two Theorems are immediate consequences of Corollary 15,
Theorem 7, and Corollary 3 respectively Corollary 4.

THEOREM 16. Let Ic/[[X,,...,X,]] be an ideal, such that A=

A[[Xy, ..., X,])/I is an isolated Cohen—Macaulay singularity. Then the first
Brauer—Thrall conjecture is true for A.

THEOREM 17. Let Ic/[[X,,...,X,]] be an ideal, such that A=
£[[X1, . .., X,]}/1 is an isolated Cohen—Macaulay singularity. Let € = (%,, €,) be
a connected component of the stable Auslander—Reiten quiver ,(A), and assume

that €, contains a periodic point. Then the Cartan class of € is either a Dynkin
diagram or A...

3.3. Isolated hypersurface singularities

Throughout this subsection we assume that 4 is an algebraically closed field,
and f(X)=f(Xo,...,X,) is a polynomial in 4£[X,, ..., X;] such that the
hypersurface H c A“*!(£) defined by f(X) has an isolated singularity at 0. Let
A= 0y o=4[[Xo, . .., X4]]/(f(X)) be the complete local ring of H at 0, and let
R c A be a chosen Noether normalization. We call such an R-algebra A an
isolated hypersurface singularity.

Because an isolated hypersurface singularity is an affine-algebraic isolated
singularity in the sense of section 3.2, Theorems 16 and 17 are true for isolated
hypersurface singularities. However, it is interesting to see that for isolated
hypersurface singularities there is a much straighter way of deducing Theorems 16
and 17. Namely we have the following result which has been pointed out to me by
G.-M. Greuel and F.-O. Schreyer.

PROPOSITION 18. Let A=£[[Xy, . . ., X4])/(f(X)) be an isolated hypersur-
face singularity, with unique maximal ideal M. Let J;=(3f/3Xy,...,df/0X,)

be the Jacobi ideal of f(X) in £[[Xo, . . . , X4]], and let $ = (J; + (f(X)))/(f (X))
be its image in A. Then the ideal $: has the following properties.
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(i) #ris M-primary.
(i) $ Exty (C, Y)=0, for all C e modg A and Y € mod A.

(Assertion (i) follows from Jacobi’s Criterion because A is an isolated
singularity. Assertion (ii) can easily be proved by calculating Ext} (C, Y) via the
A-projective resolution of C which is given by the matrix factorization of f(X)
corresponding to C [Ei80, § 6]. We leave the details to the interested reader).
Now Corollary 15 and Theorems 16 and 17 for isolated hypersurface singularities
follow from Proposition 18 in the same way as for affine-algebraic isolated
singularities they follow from Proposition 14.

We proceed to show that for isolated hypersurface singularities Theorems 16
and 17 can be strengthened considerably.

THEOREM 19. Let A=£[[X,, . . . , X4]}/(f(X)) be an isolated hypersurface
singularity of dimension d which is of infinite type. Then the following statements
hold.

() The Auslander—Reiten quiver of A is of the form JH(A)=
€ U (Uic; ZAL/{t"D)), where € is the connected component of s4(A) which
contains [A), 1 is an index set, and n(i) € {1, 2} for all i € I. Moreover, if d is even
then n(i)=1 forall i e I.

(ii) The full subquiver of € which consists of all points different from [A] is of
the form €,= U,e 1ZA;/G;, where ] is a finite index set and for all jeJ, A, is either
a Dynkin diagram or Aco and G; is a group of automorphisms of ZA;.

(iii) If there is only one dzrect predecessor of [A] in A(A), then the stable
Auslander—Reiten quiver of A is of the form ,(A)=JiiZA./{t"?), where
I=10{1}, and n(i) e {1, 2} for all i e I. Moreover, if d is even then n(i) =1 for
alliel

Proof. Let M be any indecomposable nonprojective object in mod; A. Since
A is a Gorenstein R-order in the sense of [Au78], we have that t([M])=
[£2°~¢(M)], by [Au 78, III, Proposition 1.8]. On the other hand, because A is a
hypersurface, we also have that [Q%(M)]=[M], by [Ei80, Theorem 6.1].
Therefore t*([M]) =[M], and if d is even then t([M])=[M]. Then, since A is
assumed to be of infinite type, Theorem 19 follows from Theorem 17 and
Proposition 2. q.e.d.

Remark. In the situation of Theorem 19 it is natural to ask for the index set I,
the function n:7— {1, 2} and the component € associated with A. Knowledge of
these data solves the classification problem of mody A. It seems that a solution of
this problem requires methods which are fundamentally different from those used
in the present article. So far there is just one case in which a complete answer to
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this question is known: Let A =C[[X, Y]]/(f(X, Y)) be the simple elliptic curve
singularity of type [s, given by f(X, Y)=Y(Y — X*)(Y —aX?), witha e C\{0, 1}.
Then there is only one direct predecessor of [A] in #(A) and A (A) = Ui ZA/
(7"®), where I =P'(Q)x P!(C). Moreover, there are four “exceptional para-
meters” &;,..., & in P}C) such that n(i)=1 for all ieP'(Q)x (P'(C)\
{€1, ..., €}) and n(i) =2 for all i e PY(Q) X {e4, . . ., &4} [Di 85].

THEOREM 20. The second Brauer—Thrall conjecture is true for isolated
hypersurface singularities A = 4[[X,, . . . , X4])/(f(X)), with char £ # 2.

Proof. Let A be an isolated hypersurface singularity of infinite type, and let
p:[indg A]—= N be the rank function. Denote by ¥ the unique component of
&(A) which contains [A]. Then we know from Theorem 19 that €, = U,-E 1 6(J),
where J is a finite index set and for all jeJ, €(j)=ZA;/G; with A; either a
Dynkin diagram or A, and G; a group of automorphisms of ZA,. Note that if
A; = A,, then p is unbounded on €(j) = ZA../{1""), n(j) € {1, 2}. (This follows
from the structure of €(j) together with Lemma 1, by the same reasoning as in
the proof of Proposition 2.) Moreover (A)= % U (Ui, €(i)), where I is an
1ndex set and €(i)=ZA./(7t"?) with n(i)e{1,2}, for all iel. We write

={iel|n()=1}, L={iel|n@) =2}, D' =Uic; (i), 9"=Ucs, €(i), and
QZ D'UD"=;s €(i). Since p is additive on 9, its values on each of the
components €(i), i € I, are given as follows. (We set d; = b, + ¢;. Identify along
the interrupted lines.)

N ‘\ o N\, /.
I |
3a; \3a,v 2d; /,' \ { } b,

™~ a\\,/’ N, /”1
N, Vs

1

Sa,-/' Sa; 2d;+b;, 2d;+c

1\\&1 | l e

1 NG I ' |
7a,/’ \7a,- 4d, -—b/,-' 4d, —c\‘ 4;:—— b
P\%@//' r\ﬁ¢ 4d, :
N /NN

9a; ~ Ya, 4d;+b; 4d;+c; 4d;+b,

€(), n(i)=1 | @G), n(i)=2
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We distinguish the following subsets of Z,: A = (2'),,

D={xe(D")|px)e{md;|meN,iek}},

M = {x e (2") | p(x)e (b, c;|ieh}},

T ={x €(2") | p(x) € {2md; — b;, 2md, — c;, 2md; + b;,
2md; +c;|meN,iel)}}.

Observe that )= AUDUMUT. In the sequel, by an “infinite set {x,} of
constant rank” we mean a subset {x, | v € N} of [indg A], whose elements x, are
pairwise different, such that p(x,) = r for a fixed r € N and for all v e N. We shall
need the following auxiliary result.

(*) If there exists an infinite set {x,} of constant rank in [ind; A], then there
exists an infinite set {y,} of constant rank in A U D.

Proof of (*): Let {x,} be an infinite set of constant rank in [indz A]. For all
j €J with A; a Dynkin diagram, €(j) is finite. For all jeJ with A;=A,, p is
unbounded on 4(j) and is additive on a cofinite full subquiver of €(j)=
ZA./{t"?), n(j)e {1, 2}. Moreover, J is finite. Therefore {x,} N %, is finite.
Hence, choosing a suitable subset of {x,}, we obtain an infinite set {y,} = 9, of
constant rank. If {y,} N (A U D) is infinite, then (*) is proved. So assume that
{y»} N (AU D) is finite. Then either {¢,} = {y,} N T is an infinite set of constant
rank r, or {m,} = {y,} N M is an infinite set of constant r. In the first case, let ¢,
be the unique direct predecessor of ¢, such that p(¢,) <r. Then {¢,} < D is an infinite
set of bounded rank, and therefore there exists an infinite subset {¢,} = {¢,} such
that {¢,} is of constant rank. In the second case, let m, be the unique direct prede-
cessor of m,. Then {m,} c D and, because 7 is given by Q (see proof of Theorem
19), we have that p(m,) =r - p(A). Hence {m,} is an infinite set of bounded rank,
and therefore there exists an infinite subset {m}} = {m,} such that {m}} is of
constant rank. This proves (*).

Now let A be an isolated hypersurface singularity of infinite type, with char 4
#2. It is proven in [Bu/Gr/Schr 86] that there exists an infinite set {x,} of
constant rank in [indg A]. By (*) we conclude that there exists an infinite set {y, }
of constant rank r in AUD. Now the structure of the components €(i), as
pictured above, shows that for each y, =y e (AU D)N €(i) there exists a
sequence (y¥),nc(AUD)N4() such that p(y®)=pur, for all peN.
Therefore we obtain an infinite sequence {y"}, {y?}, {y$}, ... of infinite sets
such that {y} is of constant rank ur, forall ueN. q.e.d.

Remark. Theorem 20 remains valid in characteristic 2, if in addition either
d =1 or mult (f) = 3. Namely in this situation, if A is of infinite type, then there
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exists an infinite set {x,} of constant rank in [indg A] (see [Bu/Gr/Schr 86, proofs
3.1 and 3.5]), and we can continue to argue as above.
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Note added in proof

After finishing this article it has turned out that Y. Yoshino also has studied
reductions of isolated singularities, simultaneously and independently. He con-
siders the case where A is a commutative noetherian complete local Cohen—
Macaulay ring which is an algebra over a perfect valuation field and an isolated
singularity. Denote the class of all such algebras by «/. He shows that ¥ A% is an
Ext-annihilating ideal for A, where R ranges over all Noether normalizations of A
and N3 denotes the Noether different. From this he proves that the first
Brauer-Thrall conjecture is true for &. [Yuji Yoshino: Brauer-Thrall type
theorem for maximal Cohen—Macaulay modules. Preprint, Nagoya University,
1986].

This generalizes Theorem 16 to the wider class of isolated singularities .
Combining Yoshino’s approach with Corollary 4, it is clear that Theorem 17 also
holds more generally for all algebras A € .

Moreover, it has been brought to my attention that K. W. Roggenkamp and
A. Wiedemann also investigated generalizations of Maranda’s Theorem, and
obtained results which are related to Theorem 7 (unpublished).
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