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The non-vanishing of the déviations of a local ring

Stephen Halperin*

Let R be a local noetherian ring with maximal idéal m and residue field k.
Then (cf. [3], [6]) Tor* (k, k) has the structure of a free divided powers algebra
on a graded k-vector space V ®tVt. In particular the Poincaré séries for R has

the form

fi (i+^+i)dimvvii [dim Torf (k, k)]t&apos; ^ (1)
°

The integers e} dim V; are called the déviations of R. The équation above
shows they are completely determined by the betti numbers dim Torf (k, k), and

conversely. Moreover ([1], [11], [12]) the Yoneda Ext-algebra, Ext£(k, k), is

naturally the universal enveloping algebra of a graded Lie algebra LR dual to V,
and hence

et dim LlRy ail /.

Let R dénote the completion of R with respect to the powers of m. By the
Cohen structure theorem, Ê has the form R/I where R is a regular local
noetherian ring (with maximal idéal m) and la m2. We call R a weak complète
intersection if / is generated by a regular séquence.

Now in [3] Assmus proves the following

THEOREM A (Assmus). The following conditions are équivalent:
(i) R is a weak complète intersection.

(ii) e, 0,j^3.
(iii) e3 0.
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This raised the question of whether or not any déviation could vanish if R was not
a weak complète intersection.

A first step was taken by Gulliksen [7], [8] who showed that infinitely many
e2k must be nonzero for non weak complète intersections. Subsequently Avramov
and Halperin [5] showed that only finitely many et could be zéro. Moreover in
spécial cases (eg. Jacobsson [9], Lôfwall [10]) it was known that no déviation was

zéro.
In this paper we completely settle the question with

THEOREM B. Suppose R is not a weak complète intersection. Then no
déviation can vanish:

The rest of this paper is devoted to the proof of Theorem B, which dépends

on a variation of an idea (spécial variables) of André [2], and an adaptation of
the minimal models of Avramov [4].

Our first observation is that betti numbers (and hence déviations are unchanged
if we complète R, and hence we may assume without loss of generality that
R R/I, R regular, la m2, as above. We make this assumption henceforth.

The next step is to build a suitable DGA model for R. This involves the

process, introduced by Tate [13], of &quot;adjoining freely commuting variables&quot;

which in our case may be either exterior, symmetric or divided power variables.
To simplify we shall use &quot;Z&quot; to mean an exterior or symmetric variable and &quot;Y&quot;

to mean an exterior or divided power variable. More precisely we establish the
Notation convention. Let Xït X, (resp. Yx, Y;) dénote symbols of
degrees p (resp., q). Dénote by A(XU Xt) the symmetric (resp. exterior)
algebra on the free Z-module with basis Xy if p is even (resp. odd). Dénote by

T(Yi,. Yj) the free divided powers (resp. exterior) algebra on the free
Z-module with basis Yy if q is even (resp. odd).

Then, if A is any graded algebra (commutative in the graded sensé) we adopt
the notation

A[XU ,Xt]=A®zA(Xu ,Xë)

and

A[Yu...,Yi]=A®zIXYu...Yi)

and we say we hâve adjoined variables XY (or YY) to A.
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We now fix an integer q arbitrarily and construct a séquence
• • • of DGA&apos;s augmentée! to R. Indeed we set A(0) R and let jz:A(0)-*R be

the quotient map. Then, choosing représentatives xu,.. xlni e I of a k-basis of
Ifm -1 we set

A(ï) &amp;[Xn,...,Xlni]; dXu=xlt

Extend n (uniquely) to A(l) by setting n{Xh) 0. Then H0(n) : HO(A(1)) ^&gt; R.

Suppose by induction that A(k), l^k^i— 1, are constructed and satisfy

H0(A(l)) Ho(A(k)) and Hj(A{k)) 0, lê/&lt;A:. Choose cycles z4l,. zlrii

representing a k-basis of //,_ x(A(i - l))yU • //,_!(&gt;!(/ - 1)) and define ^4(/) by

...,X^;dXQ zviii&lt;q.
A(i - l)[Yn, Ym]; dYv z,, if i ^ q.

The differential in ^4(0 is then determined by the requirement that A(i) be a

DGA and (in the second case when i is even) that

Y denoting the divided power opérations.

Finally, set A ]h^A(i) and note that n extends uniquely to K.A-+R with

R. We say A is a model for /? with switching degree q.

PROPOSITION 1. Let A be as above and setq qifq is even andq=q + l
if q is odd. Let m dirn**/**2 dim mlm2. Then

(i) For any ao,...,ame H+(k 8^^ A), a0 • • • • • ocm 0.

(ii) The integers nt satisfy

«, £,+!, l^i&lt;2qf and n2q^e2q+\-

Proof We construct inductively the commutative DGA diagram below in
which the vertical arrows induce homology isomorphisms. Indeed let yOÏ}.
yOme»7 represent a basis of »î/»r2 and set: B(l) A[y0l,. fyOm]\ dYOj=yOj.
Because R is regular the augmentation R[Y0U YOj]-»k induces an isomorph-
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B(0) B(l) &gt; ¦¦¦ B(i) ¦¦¦ B(q)

II I- I- 1= &lt;2&gt;

A * k ®tA » k (g*,,,,-,, A... * k «,,„_„ /L

ism of homology. Because 5(1) is a free ^î[Yoi&gt; • • • &gt; ^om] module the induced

morphism

also induces an isomorphism of homology.
Suppose next that the diagram has been constructed up through B(i). Note that

Thus the Xl} (l ^j ^ nt) are cycles representing a basis of Ht(k ®Ao-i)A). Choose

cycles utJeB(i) mapping to the XtJ (lê/^n,) and set B(i + 1)

B(i)[Ytl, Yin); dYtJ ulr When î is odd set d{fYv) utJ • f-%.
We hâve then the séquence of DGA morphisms

(k®M(,-i)i4)[^i, •• • Ym] (dYlt X,,)

The first arrow induces an isomorphism of homology because B(i)-*kÇ$A(l-.ï)A
does, and the second induces an isomorphism of homology because

k[XlU Yin]—&gt;k does. This complètes the construction of (2).
Again, because each B(i) is a free &gt;i-module and because A-*&gt;R induces an

isomorphism H(A) ^&gt; R it follows that for 0 â i ë q - 1

S(/ + l)-&gt;/?®^B(/ + l) JR[y01, Ym]

induces an isomorphism of homology. In particular R ®A B{\) is just the Koszul

complex, KR, and R ®A B(i +1) is obtained from R ®A B(i) by adjoining
a minimal number of exterior or divided power variables so as to kill
Ht(R®AB(i)). Thus by adjoining such variables in degrees &gt;q to RÇ$AB(q),
we get Tate&apos;s acyclic closure C, of R.

Now Gulliksen&apos;s theorem [6] asserts that d(C)^mC. Since /f+(C) 0 it
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follows that (ker d)+ amC. Since C is a free R ®A B(q) module it follows that

(ker &lt;*)+ fl (R ®A B{q)) am®A B(q).

The argument of Gulliksen [7; Lemma 1] now shows that the product of m + 1

homology classes in H+(R ®A B(q)) is zéro - in view of the homology isomorph-
isms above this proves part (i) of the proposition.

Moreover, according to Gulliksen [6; Corollary 1], et is the number of
variables in C of degree i. But for 1 ë i &lt; q, the number of variables YtJ of degree
i + 1 is nn and so

nt et+1 l^i&lt;q. (3)

We complète the proof of part (ii) of the proposition by considering a model
A&apos; for R as above, but with switching degree 2q +1. By (3), applied to Af, the
number of variables of degree j in A&apos; is ey+1, l^j^2q. Thus (ii) will be

established once we show that A&apos; has the same number of (resp., at least as

many) variables as A in degrees &lt;2q (resp., 2q).
We may, clearly, take A&apos;(q — 1) A(q — 1). Suppose by induction that for

some r^q, A&apos; and A hâve the same number of variables in degrees ^ r — 1, and
that there is a DGA morphism $ : A&apos;{r — l)-^&gt;A(r — 1) which is an isomorphism
in degrees &lt; 2q.

If r&lt;2q then Hr-i((f)) is necessarily an isomorphism, and so we may choose
A&apos;(r) A&apos;{r- l)[XrU t Xrn\ with //r_1(^):class(dXr/)^class(dyr/). Thus A&apos;

and A hâve the same number of variables in degree r. Moreover, because the Xrl
are either polynomial or exterior variables, we may extend 0 to a DGA
morphism &lt;t&gt;\A&apos;(r)—*A(r) by setting (f&gt;(Xrl) Yrl. Since

A(r)&lt;2^czA(r - 1) 0 0JÏ., A(r - 1) • Yr,

(and similarly for A&apos;{r)) it follows that # is an isomorphism in degrees &lt;2q.

Finally, suppose r 2q. Since &lt;p is an isomorphism in degrees &lt; 2q it follows
that Hr^x{(\)) is surjective. In this case the number of variables of degree r to be

adjoined to A&apos;(r - 1) is at least as large as the number adjoined to A(r - 1). This
complètes the proof. ¦

We now establish Theorem B by supposing e3 =# 0 and some et 0 (i &gt; 3) and

deducing a contradiction. Let s ^3 be the least integer for which eJ+1 0. There
are two cases.

Case I. s 2k + 1. Let A be a model for R as above with switching degree 2k.



The non-vanishing of the déviations of a local ring 651

By Proposition 1 (ii),

n2k es &gt; 0 and n2k+l es+l 0.

We construct a deg -2k dérivation, 6, of the DGA, (A, d) such that

8(Y2ktl) l and d{YqY2k,x) yq-lY2ktl. (4)

Indeed, (4), together with the conditions

k) 0 and d(yqY2k&gt;l) 0f Î&gt;1,

defines a dérivation of the DGA, A{2k). Since n2*+i is zéro A(2fc) A(2k + 1).

Suppose 0 is extended to some ,4(/ - 1), / - 1 i£ 2fc 4-1. Then 0(dl^) is a cycle in
Ay_2*-i. Because y &gt; (2A: + 1) and because H+(A) 0 (since H(A) R) it follows
that 0(dî^,) d&lt;l&gt;n some 4&gt;f eA;_2jt.

Thus we may extend 6 to A (y) by setting

y|l) *l (ifyisodd)

and

#, • y^&quot;1^, 9^1, (if y is even).

Finally, observe that 6 factors to give a dérivation d of the DGA k ®A(2k -1&gt; A.
In this quotient DGA, the éléments yqY2kyX are cycles. It follows from (4) that

and hence yqY2k+l represents a non-zero homology class for each q. But if
chark p or 0 then in k[Y2M], y{1+p+p2+&apos;&quot;+pm\Y2k&gt;1) is a scalar multiple of
Y2kti - yp(Y2ktï) Ypm{Y2kt\). Thus this latter élément also represents a non-
zero homology class, which contradicts part (i) of Proposition 1.

Case IL s 2k + 2 (k è 1). Again let A be a model for /? as above with
switching degree 2k. By Proposition 1 (ii),

and n2H2ge,+1 0. (5)

Let yu ym em represent a k-basis for m fa2 and consider the differential
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A-module (free as an A-module)

Now the quotient module MlA is isomorphic (as differential modules) with a

direct sum of copies of A shifted in degree by 1. Since H(A) R is concentrated
in degree zéro, H(M/A) is concentrated in degree 1. From the short exact

séquence A y^M-^M/A and that fact that yl9. ym e Imd we deduce that

H(M) H0(M) 0 #i(M), and that H0(M) k.

Using thèse facts we construct a dérivation 6 of degree —2k from the DGA,
A, to the differential A -module M. (M is a right A -module via m - a

(-l)degmdegaa ¦ m.) Indeed we set 6{A2k.l) 0 and

This defines 0 in A(2k).
Next, for each Y2k+ll we hâve 0(dY2k+ifl)em and hence d(dY2k+i,i):=d&lt;Pl

for some &lt;Pt e ©; R • Yr Extend 6 to A(2A: + î) by setting d(Y2k+u) &lt;Pr

Now because of (5), A(2k + 1) A(2k + 2). Assume we hâve extended 0 to

A(j-1), some j-1^2k + 2. Then 0(dY;ï) e M;_2jt_! and / -2k - 1S2. Our
calculations above (/f(M) //0(^) © #i(A*)) thus imP!y that didY^-dW, and

we can extend 6 to A(/) by setting

y/ if/isodd,

and

0(7^;,) y*&quot;1^) • ^,, S1, if ; is even.

Finally, we extend the projection A-*k®A(2k-t)A to a map p:M-+
k®^(2*.-i)i4 of differential ^-modules by setting p(A-î^) 0. The dérivation

p°d factors to yield a dérivation 6 of the DGA k0^(2^-1)^ and we obtain
a contradiction exactly as in case I.

This complètes the proof. ¦
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