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Isolated critical points of mappings from R4 to R2 and a natural
splitting of the Milnor number of a classical fibered link.
Part I: Basic theory; examples

Lee Rudolph(1)

§0. Introduction; statement of results.

From a fibered link 3if (S3, K) may be constructed a field Sx of (not
everywhere tangent) 2-planes on S3. When 3C JCF is the link of an isolated
critical point of a map F:R4—»R2, Sx is essentially the field of kernels of DF.

Homotopically, Sx détermines integers A(3iT) and p(3if).

THEOREM.

Hère ju(3îf) is the Milnor number of JC, that is, the rank of the first homology
of the fiber surface of 3if. At least in some cases, this splitting of ju(3if)

corresponds to a geometrically natural direct sum décomposition of this homology
group, into subgroups corresponding to &quot;négative&quot; (or &quot;left-handed&quot;) and
&quot;positive&quot; (or &quot;right-handed&quot;) parts of the fiber surface, [12]. For instance, if %
is a closed positive braid (such as the Lorenz links of dynamical Systems [1], or
the overlapping class of links of complex plane curve singularities - links 3CF

where F:C2-»C is complex-analytic), then Â(3if) 0 and p(X) ju(3if),
substantiating the intuition that such links are as positive as they can be. If JC is

the figure-8 knot, then À(3if) 1 p(3if).
The Euler characteristic 1 — ju(3T) of a fiber surface of X can be computed by

correctly counting the singularities of a vectorfield on the surface. There is a sensé
in which the extra information in the splitting ju(3if) Â(3if) + p{3C) cornes from
making this calculation &quot;ail around the circle&quot; of fiber surfaces.

This is the first of several papers devoted to the study of À, p, and related
invariants. In this paper I develop the basic theory, and compute a number of
examples.

More specifically, in §1, I construct the field 5^, and two related (tangent)
2-plane fields T% from an open-book structure on S3 of type 3if. A standard

(1) Research partially supportée by the Fonds National Suisse.
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parallelization of S3 permits one to consider S^ as a map S3-&gt; S2 x S2 and T^ as

maps S3-+S2; the Hopf invariants (-X(X), p(X)) and t±{3C) of thèse maps
dépend only on X. In §2, the following results are obtained.

THEOREM 2.3. For any fibered link X, t+(3if) - r~(X) 1 - fi(X).

THEOREM 2.5. For any fibered link Xy k(X) -r+(X) and p(X)
t~(X) +1.

COROLLARY 2.6. For any fibered link Xy k(X) + p{X) ju(3T).

In §3, I exploit the close relationship between fibered links and isolated
critical points of mappings from R4 to R2 to give another way to calculate A and p
(in theory), which is used in examples in §4.

In [12], A and p are computed for closed strict generalized homogeneous
braids. In [13], the pair {T±(3if)} of invariants of a fibered link X in S3 is

generalized to a set {^(Xjis e {+, —}m} of invariants of a fibered link X of m
components in any closed 3-manifold. Work with Walter Neumann ([8], [9])
extends the définition of A and p to higher dimensions, and studies their behavior
(in dimension 3) under various géométrie opérations (cabling, connected sum,
Murasugi sum, Stallings twists); it is shown, in particular, that for many pairs of
fibered links X9 X&apos; in S\ {k(X), p(X)} * {A(9T)&gt; P(X&apos;)} although X and X&apos;

hâve identical Seifert forms and algebraic monodromy. A projected future paper
generalizes A and p to non-fibered links, using [2].

An interesting phenomenon (still unexplained as of December, 1986) is that in
no known example is A(3if) or p(X) négative.

§1. Some plane fields associated to a classical fibered link; the invariants A, p,
and t*.

The 3-sphere S3 is the boundary of the unit 4-disk D4 of C2. The 1-sphere S1 is

the boundary of the unit disk D2 of C. Thèse spaces are oriented by the usual

conventions; R4 (resp. R2) is the oriented real vectorspace underlying C2 (resp.
C); H, the quaternions, is oriented by the usual identification of its underlying
vectorspace with R4. The oriented span of a fc-frame (Uïf..., Uk) is

&lt;Uu...,Uk).
A link X is a pair (S3, K) where K is an oriented closed smooth 1-submanifold

of S3 (if K is connected, X is also called a knot); X is fibered if there exist a
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closed disk-bundle neighborhood N(K) of K in S3 with a smooth trivialization

and a smooth fibration over S1 of the link exterior E(K) S3\Int N(K)

&lt;t&gt;:E(K)-*Sl

such that t/&gt; | 3N(K) &lt;p \ 9N(K). Such maps ip, &lt;p glue together to give a

piecewise smooth map

which is called an open-book structure on S3, of type JC. (This summary treatment
follows [8]; cf. also [4].) If % is a fibered link, then ail open-book structures of
type 3i are équivalent in quite a strong sensé [4], and the ambient isotopy type of
3if détermines the ambient isotopy type of any fiber surface of % - i.e., a fiber of
(any) $. The Milnor number ju(^f) of 3C is the rank of the first homology of a

fiber surface of %.

Associated to a fibered link X are maps S^f Tj, and 7^ from S3 to
G G+(2, 4), the Grassmann manifold of oriented 2-planes in R4, which will be

defined in terms of certain vectorfields.
Let n be an open-book structure of type JC. Then jt/\ji\ :S3\K-^S1 is a

fibration (by fiber surfaces to which open collars are attached piecewise-
smoothly) extending (p. It is always possible to take n such that nl\n\ is smooth,
and we do so. Let U be the field of unit tangent vectors on S3\K perpendicular to
the plane ker (D(ji/\jt\)), so oriented as to point to the positive side of the fiber
surfaces. Let V be the field of unit tangent vectors on N(K) which span the line

ker(D^r), so oriented as to induce the given orientation on K n~l(0). In
N(K)\K, where both are defined, the vectorfields U and V are orthogonal; let
UxV be the field of unit vectors, tangent to S3, such that the orthonormal
3-frame ((/, V,UxV) gives the orientation of S3. Finally, let W be the field of
unit inward normal vectors on S3 (so the orthonormal 4-frame ((/, Vy U x Vy W)
gives the orientation of C2).

DEFINITION 1.1. For QeE(K), SW(Q) T^Q) T^{Q) is the
oriented tangent plane to the fiber surface &lt;t&gt;~l(&lt;t&gt;(Q)) through Q. For QeN(K)\K,

&lt;V(Q), \n(Q)\ (U x V)(Q) + (1 - WÔ)|2)1/2W(Ô)&gt; and

(Q)?(l-MQ)\2)mU(Q)f (UxV)(Q)). For QeK,
(V(Q), W(Q)) and T%(Q) is the plane tangent to S3 and orthogonal to Vat Q, so
oriented that ±Vpoints to its positive side.
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It is easy to see that the maps 5^ and T^ are continuous, and that their
homotopy classes in ^(G) dépend only on 3C and not on the choice of n (so the
notation is not too abusive).

It is well known that G is diffeomorphic to S2 x S2, so that 3i3{G) is

isomorphic to Z©Z. To obtain an explicit isomorphism (and, thus, integer
invariants of 3£), we use quaternions to give an explicit diffeomorphism, with
pleasant properties which will facilitate later computations. Let 1, i, j, k be the
standard orthonormal basis of H; in terms of the identification of H with C2

already established, we hâve 1 (1,0), i (i, 0), j (0,1), and k (0, î) (note
that we distinguish the quaternion i from the complex number i by boldface). The

tangent space of S3 at 1 is (i, j, k), the pure quaternions; let S2 S3 H (i, j, k) be

the oriented sphère of unit pure quaternions. Let ^iH-» (i, j, k) be the &quot;pure

part&quot; mapping; write conj:H-»H for quaternionic conjugation; let %:H\{0}-&gt;
S3:Q*-*Q/\\Q\\. For QeH, let LQ:H^&gt;H (resp., RQ) be the real-linear map
A^QA (resp. A^AQ).

It is a fact that S2 consists precisely of the square roots of — 1 e H. Hence each

p 6 S2 détermines two complex structures on R4, with structure maps respectively
Lp and Rp; call (R4, Lp) (resp. (R4, Rp)) the p-left (resp. p-right) complex
structure. (The i-left complex structure is the original structure of R4 as C2; the

i-right complex structure is as it were the direct sum C©C.) Each p-left (resp.
p-right) complex structure détermines a subset of G, namely, the oriented real

2-planes which are left (resp. right) p-stable - that is, which are complex lines in
that structure. (Note that if a plane is left or right p-stable with one orientation,
then the same plane is left or right -p-stable with the opposite orientation.)
There are, in fact, well-defined maps / and r from G to S2 such that, for every
W e G, W is a complex Une in the /(W)-left complex structure and in the

r(W)-right complex structure, and in those structures only.

LEMMA 1.2. // {A, B) is a 2-framey then l{{Ay B)) °U@(B conj (A)) and

r((A, B)) %0&gt;(conj (A)B). In complex coordinates, if A (zlf w{), B
(z2, Wz), then

B)) m^(zlZ2 + wxw2y zxw2 - wxz2),

r((A, B)) %®(zxz2 + wxw2t zxw2 - wxz2).

The pair (/, r) : G -? S2 x S2 is a diffeomorphism.

The compositions (/, r)°Sx, (/, r)o rj, and (/, r)°^ map S3 to S2 x S2 and

so provide éléments of jf3(S2 x S2) jr3(S2) © jr3(S2). Recall that the Hopf
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invariant H(g) of a continuous map g : S3-* S2 can be defined as follows: let p and

q be distinct regular values of gu a map homotopic to g which is smooth near
gr*({p&gt; q}); then H(g) is the linking number of the smooth links grx(p) and

gf^q), where gîfHp) is oriented so that, if D is a small oriented normal disk
intersecting it once positively, then ga| £&gt;:£&gt;-* S2 préserves orientation (and
similarly for gr^q))- The Hopf invariant of

Hopf:S3-*S2:(z, h&gt;)^([|z|2- |w|2]i, 2m*),

the complex (as opposed to conjugate-complex) Hopf fibration, is +1. The Hopf
invariant of maps induces an isomorphism (denoted by the same name and letter)
H:n3(S2)^&gt;Z. If -:S2-+S2 is the antipodal map, then //(-°g) H(g) for any
g:S3—»S2, since fibers of — °g are fibers of g with orientation reversed, and

linking number is bilinear.

LEMMA 1.3. // T:S3-*G is such that T(Q) is tangent to S3 at Q for every
Q e S3, then H(r o T) 1 + H(h T).

Proof We first check a spécial case in which H(l°T) 0. The tangent
space to S3 at Q is (iQ,jQ,kQ). Let T{Q) (jQ, kQ); then (/or)(Q) i is

constant, so //(/°r) 0. On the other hand, (r&lt;&gt;T)(Q) %0&gt;(conj (jQ)kQ)
G-!(-jk)G -Hopf (G), so H(roT) 1.

In gênerai, let T(Q) &lt;p(G)G, q(G)G&gt;- Then

KT(Q)) q(G)G conj (p(G)G) -q(G)p(G) P(Ô)q(Ô),

r(T(Q)) conj (p(G)G)q(G)G -Q^
so r°T Ad°(id, -°T), where Ad:S3 x S2-&gt;S2:(&lt;2&gt; x)^Q~1xQ. Thus

/f(r o r) H(Ad o (idf - « r» if04d#([id], [- o r]))
H(Adn([idl [*])) + «([- ° T])i/(Ad#([*], [Hopf]))

by the spécial case and the sentence preceding the lemma.

DEFINITION 1.4. By A(5if), p(3if), and r±(3if) w/ff 6e deno^d the integers
Sx) (note the signl)f H(r°Sx), and H(hTi)f respectively.
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§2* Braided open-book structures; relations among r±, À, p, and ju.

Let O {(z,0):|z| l}=HoPr1(i), O&apos; {(0, w):\w\ 1} =HoPr1 (~i).
Let Dbea round disk on S2 centered at i, A^ J/V(O) Hopf&quot;1(D). The map
S3\O&apos;-&gt;0:(z, h&gt;)»-»(z/|z|, 0) is a fibration by open great hemi-2-spheres; its
restriction to N présents N as a disk-bundle neighborhood of Of with fibers
méridional disks of O. Let R be the oriented unit tangent vectorfield to the
oriented fibers of Hopf.

Let SiT (S3, K&apos;) be any link. Then if 1 &gt; e &gt;0, there is an ambient isotopic
link 3îT (S3, K) such that K is contained in Int N and, at each point of K, the

component of R along the positively directed tangent Une to K is at least 1 - s.

(Apply the classical lemma of Alexander to find an isotopy carrying K&apos; onto a

closed braid with axis O&apos;, on some number n &gt;0 of striogs; then use a &quot;radial&quot;

isotopy in the open solid torus S3\Of to make this closed braid lie arbitrarily
C^close to 0, the core of the solid torus, and note that R \ O is the field of unit
tangent vectors to O.) In fact, K can be taken to hâve a disk-bundle

neighborhood N(K) that intersects each méridional disk of O in a union of n
méridional disks of K, which can be taken to be round (in the spherical geometry
of the méridional disk of O), with a trivialization ty\N(K)-*D2 such that the

component of R along the oriented Une ker (Dty) is at least 1 — e.

If, further, X is fibered, then there are such a trivialization of N(K) as above,
and a fibration &lt;f&gt; of E(K) over S1, which glue together to give an open-book
structure n of type 3if such that n is smooth and i and —i are regular values of
h S, r°S, l°T+, and r°r~ (where S S% and T+ Tj are the plane fields
constructed from X as in §1). We will call such a n a braided open-book structure.

LEMMA 2.1. Let n be a braided open-book structure. Then: (1) each of
(/o5)-x(-i), (roS)-1^), (/•7H&quot;)~1(:Fi), and (roT+y\±i) has empty intersection
with N(K) (in particular, it is homologous to 0 in N(K)); (2) the naturally oriented

1-submanifold N(K) D (hS)&apos;1^) (resp. N(K) H (roSy^-i); N(K) n (/oT±)~1(±
i); A^/OnO-r*)-1^!)) ofN(K) is homologous to K (resp. -K; ±K; *K) in
N(K).

Proof By using R in place of Vy construct plane fields S and f± on N(K).
Note that W iR. Using 1.2, one calculâtes that h S, r°5, h f±&gt; and rot* hâve

non-negative i component in N(K); it follows easily that the i components of /°5,
r°S, l°T±f and r°T± are bounded away from — 1, establishing the statements in
(1).

To verify (2), first note that (the fondamental class of) K générâtes
HX(N(K); Z), so what has to be determined in each case is what integer multiple
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of K the 1-submanifold in question represents, and this is given by its linking
number with the boundary of any one of the méridional disks K. An argument
similar to that given for (1) can now be applied.

DEFINITION 2.2. Let pos (30 (resp. neg (30) dénote the oriented l-sub-
manifold E(K)n(loSyl(i) EWnihT*)-1® (resp. E(K)n(l&lt;&gt;syl(-ï))

THEOREM 2.3. For any fibered link X, t+(W) - t~(30 1 -
Proof. We may assume we hâve a braided open book structu/e n of type

X. Then x+(3if) //(/« T+) lk((loT+)-l(i), (/or)&quot;l(-i)). By 2.1-2, this
equals lk(K + pos (30, neg (30). Similarly t&quot;(30 //(/&lt;&gt; T~) lk((lol&quot;)-1®,

(/ o t-)-\~ï)) /*(pos (30, -/C + neg (X)). Thus r+(30 - x&apos;(X) lk(K,
pos (3iT) + neg (3îf)). Now, the linking number of K with an oriented
1-submanifold L of S3\K is equal to the inter-section number of L with any
Seifert surface of K. It follows that lk(K, pos (3£) -h neg (5T)) is the intersection
number of pos (9if) + neg (3iT) with a fiber surface F of 3if, that is, the algebraic
number of points of F where the tangent plane to F is left ±i-stable. Thèse points
are exactly the zeroes of a certain tangent vectorfield on F (namely, the

orthogonal projection of R into the tangent plane to F), and the sum of the
indices of the zeroes of that vectorfield equals 1 — fi(3C)} the Euler characteristic
of F. The theorem follows upon observing that the multiplicity assigned to a point
of (pos (3if) + neg (3îf)) H F by the orientation of pos (X) + neg (X) is the index of
that vectorfield at the point.

Remark 2.4. In some vague sensé, the new information in the splitting of
1 - fi(X) as T+(3if) - t~(jK) is coming from carrying out the vectorfield argument
&lt;4all around the circle&quot; of fiber surfaces.

THEOREM 2.5. For any fibered link X, A(3P)=-T+(3if) and

t~(X) +1.

COROLLARY 2.6. For any fibered link 3C, k(X) + p(X) ju(3if).

Proof of 2.5. By 2.1-2, k(X) -H(hS) -/*(K + pos (SiT), neg (30)
for this proof, let POS (30 E(K) D (r O5)&quot;1(i), NEG (30 E(K)H

Then p(30 H(r&lt;&gt;S) lk(-K + POS (W), NEG (30) H(r&lt;&gt;

1 (using 1.3).
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§3. Isolated critical points; Â and p as intersection numbers

Let U be an open neighborhood of a point x in R4; let /:i/-*R2 be

continuous at x and smooth in U\{x). Dénote by Df the (real) differential of/,
which we take to be a smooth mapping from £A{x} into the space of 2-by-4
matrices, the rows of Df(y) being the gradients at y of the components of/. As
usual, y is called a regular point of/if Df(y) has rank 2, a critical point otherwise.

Slightly extending the standard usage, we will call x an isolated critical point of /
if, for e &gt; 0 sufficiently small, every y with 0 &lt; ||x - y|| &lt; e is a regular point of/.
(So, if it happens that /is smooth at x and x is a regular point of/, by this usage x
is also an isolated critical point of /.) By &quot;counting constants&quot; one finds that the

expected dimension of the set of critical points of a smooth mapping is 1; thus,
the (genuinely critical) isolated critical points are unusual, but of correspondingly
great interest.

If y is a regular point of /, then the matrix Df(y) considered as an ordered
pair of rows is a 2-frame, and so (Df) is a smooth mapping from the set of
regular points of / into the Grassmann manifold G.

DEFINITION 3.1. Let x be an isolated critical point of f. For e&gt;0 small
enough that y is a regular point for 0&lt;||x —y||&lt;£, let E:S3^S3(xy e):u»-»
x + en; then define A(/; x) -H(h (Df) °£), p(/; x) H{r° (Df)°E). (Clearly
thèse do dépend only on f and x.)

Two basic facts about isolated critical points are relevant hère: (A) when/is
sufficiently well-behaved (e.g., real-polynomial) near its isolated critical point x,
there is an associated &quot;local link&quot; 3if(/;x), well-defined up to ambient isotopy,
and 3if(/; x) is fibered; (B) conversely, given a fibered link 3if in S3, there may be
constructed a well-behaved /^R4—»R2 with an isolated critical point at 0, such

that 3if(/^; 0) X More détails will be recalled shortly.

Remark 3.2. Milnor [7, Sect. 10] proved (A) for polynomial mappings;
Kauffman and Neumann [4] extracted from his proof the relevant property of
real-polynomial maps, which they called &quot;tameness&quot;, see 3.3. So far as I know,
(B) was shown first by Looijenga [6], and rederived in [4] (see 3.7). AU this work
is in gênerai dimensions. None of it describes À or p.

If x is a regular point of/and U is a sufficiently small open neighborhood of x,
then U C\f~l(f(x)) is a smooth 2-submanifold of U. If x is an isolated critical

point of (even a smooth) /, then this generally fails (but not always: cf. examples
in [7]); ail we can say is that, for suitably small U, the level set f~l(f(x))
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intersects U in a &quot;2-submanifold with an isolated singularity at x&quot;. To give a more
précise description of this singularity, we hâve to impose extra hypothèses on/in
a neighborhood of x.

DEFINITION 3.3 ([4]). Let x be an isolated critical point of f. Then f is tame

at x ify for ail sufficiently small e &gt; 0,

(A) the level set f~1(f(x)) intersects 53(x; e) transversely,
(B) for ail sufficiently small ô ô{e) &gt;0 the intersection f~\D2(f(x)&apos;, ô)) H

D4(x; e) is a 4-ball, smooth except for corners along /~1(51(/(x); ô)) n S3(x; e).

If f is tame at x, then {for any sufficiently small e&gt;0) let 3if(/;x)
(S3, E&quot;l(S3(x; e) nf-l(f(x)))); this is the local link offat x.

Remarks 3.4. (1) As given in [4], the définition of &quot;tame&quot; includes the

(inessential) further hypothesis that / is smooth at x. (2) A mapping can hâve an
isolated critical point at which it is smooth but not tame. (3) Hypothesis (A) of
3.3 already ensures that 3iT(/;x) is well-defined (up to ambient isotopy);
hypothesis (B) ensures that X(f;%) is fibered. (4) As remarked in [4], the proof
of the &quot;fibration theorem for real singularities&quot; in [7] consists of showing that a

real polynomial mapping is tame at an isolated critical point.

CONSTRUCTION 3.5. Let n:S3^&gt;D2 be a smooth open book structure of
type 3if. Define cône ;r:R4-&gt;R2 by (cône ^)(y)= ||y|| tf(y/||y||) if y ^= 0, (cône

jt)(0) (0,0). Then the only critical point of cone n is 0, cone n is tame at 0, and

Remarks 3.6. (1) This construction is a stripped-down version of the original
one in [6]. (Looijenga showed that, by an appropriate choice of jz, cone n can be

taken to be a real polynomial in x and ||x||, and thus real-algebraic, though
typically not smooth but merely continuous at 0; when, however, % is antipodally
equivariant - in particular if it is a connected sum of some fibered knot with
itself - then cone n can be taken to be a polynomial in x alone. It was to this case

that Looijenga drew explicit attention.) (2) By replacing ||x|| with a smooth,
monotone function of ||x|| infinitely flat at 0, cf. [4], cone n can be assumed

smooth (but transcendental) at 0.

PROPOSITION 3.7. IfJCis a fibered link with smooth open-book structure n,
then X(X) A(cone n; 0) and p(3if) p(cone n\ 0). Ifxisan isolated critical point
off and f is tame at x then A(3JT(/; x)) A(/; x) and p(3îf(/; x)) p(/; x).

Proof We may assume n is braided (§2). By taking the e in the définition of
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&quot;braided open-book structure&quot; sufficiently small, one may make the 2-plane fields

Sw and (D(cone jï)) | S3 arbitrarily close; so they are homotopic.

Let crit (/) dénote the set of critical points of /. For each p e S2, consider the
sets

R*(f, p) crit

If A(y) and B(y) dénote the rows of £&gt;/(y), considered as quaternions, then (cf.
1.2)

L*(/, p) U L*(/, -p) {y : 0&gt;(p0&gt;(B(y)(conj A(y)))) 0},

R*(ff p) U /?*(/, -p) {y : 0&gt;(p0&gt;((conj A(y))B(y))) 0},

while L*(/,p) {y6L*(/,p)UL*(/,-p):p^(5(y)(conj ^(y)))^0} (and so

on), when we identify (l)c/f with R. Note that, for p#q, L*(/, p)fl
L*(f,q) crit (/) /?*(/, p) H i?*(/,q). (Note also that, though L*(/,p)U
L*(/, -p) and R*(f, P) U /?*(/, -p) are level sets of mappings to a 3-dimensional

vectorspace, their expected codimension is not 3 but 2 because of the Pliicker
conditions.)

Now suppose crit (/) fi D4(x; e) cz {x}.

HYPOTHESIS 3.8. p, qeS2, p # q, are such that (with respect to
some convenient theory of géométrie cycles representing ordinary homology
over Z) the set (/o(û/))-1(p)nS3(x;e) (resp. (/o(D/))-1(q)nS3(x;e);
(ro(D/))&quot;1(p)fl53(x;e); (ro(Df))-\q)nS\x; e)) is the support of an absol-

ute 1-cycle in 53(x; e) which bounds a relative 2-cycle in Z)4(x; e) supported by
L*(/,p)nD4(x;e) (resp. L*(/, q) nD\x; e);R*(f, p)HD4(x; e); /?*(/, q) H

D4(x; e)). (We will use the same symbols for the cycles and their supports.)

PROPOSITION 3.9. Under Hypothesis 3.8, A(/;x) (resp. p(/;x)) is the

homological intersection number at x of L*(/, p) H D4(x; e) and L*(f, q) H
D4(x; e) (resp. R*(f, p) H D4(x; s) and /?*(/, q) H D4(x; s)).

Proof. This is a tautology, given the définitions of Â and p as Hopf invariants
and the relationship between linking numbers and intersection numbers.

Remarks 3.10. (1) The point of 3.8-9 is that frequently 3.8 can be verified, as,
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for instance, in the examples in §4. (2) One might conjecture that, for any/with
an isolated critical point at /, 3.8 holds for almost ail pairs (p, q). Certainly it
seems reasonable to expect, of a given /, that for almost ail p the sets L*(/, p)
and /?*(/, p) are &quot;2-manifolds with isolated singularises at x&quot;. Perhaps some sort
of higher-order tameness should be defined. (3) If fis a real-polynomial mapping,
then, for any p, L*(/, p) U L*(/, — p) is a real-algebraic set and L*(/, p) is

semi-algebraic (of course the same goes for /?*). Suppose x is an isolated critical
point of / and that p, q e S2, q ^ ±p, are such that both L*(/, p) U L*(/, -p) and

L*(f, q) U L*(/, -q) are purely 2-dimensional near x. Then, near x, each of
£*(/&gt; P)&apos; £*(/&gt; ~&quot;P)» £*(/&gt; &lt;l)&gt; anc* £*(/&gt; -q) is the cône on some singular-link-
with-integer-multiplicities, so 3.8 holds. One might be tempted, therefore, to
reason from the distributive law that &quot;4A(/, x) is the real-algebro-géométrie
intersection number at x of the real-algebraic surfaces L*(/, p) U L*(/, —p) and

L*(/, q) U L*(/, — q)&quot;. It seems hard to make that statement true inside real

algebraic geometry! (Real-algebraic cycles are naturally oriented over Z/2Z
rather than over Z. In the présent case, even if each of the algebraic sets

£*(/&gt; P) u £*(/&gt; ~~P) is purely 2-dimensional, giving them local Z-orientations
algebro-geometrically is complicated by the fact that the parameter space for this

family of surfaces is the non-orientable real projective plane RP2 rather than S2;

cf. the last sentence of 4.1.) Perhaps there exists (I hâve not been able to learn of
it) an applicable theory of integer intersection numbers, calculable inside real

semi-algebraic geometry, and giving the correct topological answers? (4) As
mentioned in §0, I know (as of December, 1986) of no example of a fibered link
% with Â(3if)&lt;0. Especially if no such link exists, it would be interesting to
known whether there exists a function f with an isolated critical point x such that

§4. Examples

Most of the examples in this section involve complex analyticity somehow, so

we begin by introducing some complex machinery.

MACHINERY 4.1. At a point where F:C2-&gt;C is smooth, the complex
differential DCF is the complex row vector [FZFZFWF*], where Fz (Fx - iFy)/2,
F2~(FX + iFy)l2iy etc., and subscripts indicate partial differentiation. In terms of
DCF, the real differential matrix DF is

T Re (Fz + Fz) Re (iFz - iF2) Re (Fw + F*) Re (iFw - iF*) 1

Llm (Fz -f Fz) Im (iFz - iF2) Im (Fw + F*) Im (iFw - iF*) J *
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As in 1.2, we see that at a regular point of F, l((DF)) is the unit vector of

(\FZ\2 - \FZ|2 4- IFJ2 - |F*|2)i - 2 Im (FzJl - TZFW)} - 2 Re (FZF* - YsFw)k; (*)

similarly, at a regular point of F, r((DF)) is the unit vector of

(\F\2 — IF-I24- IF-I2 — IF \2M — 2Im (FW — W-F-M — Re (FW — W-F 1k*

and (if F is smooth everywhere) crit (F) is defined by the vanishing of either (*)
or (**).

In this complex context, we will hâve a particular interest in L*(F, i) U

L*(F, -i) and R*(F, i) U R*(F, -i). As sets,

L*(F, ±i) {FZF* - FZFW 0, ±(|F2|2 - |F,|2 + jFJ2 - |FJ2) ^ 0}

and

R*(F, ±i) {F2^ - F&gt;* 0, ±(|FZ|2 - |F2-|2 - |FW|2 + |F*|2) ^ 0}.

Suppose FZF* — FZFW and F/^ — FZF^ are products of complex analytic functions
and conjugates of complex analytic functions. Then their level sets, where they
are 2-dimensional, are equipped with natural integer multiplicities; in particular
this is true of the sets of zeroes, and so at any isolated critical point of F near
which L*(F, ±i) and R*(F, ±ï) are 2-dimensional, Hypothesis 3.8 will be satisfied

(with p i, q — i). Note, however, that the multiplicity assigned by the defining
function must be twisted by the sign of i to give the multiplicity needed for 3.8

(consider the local coordinates on S2 given by stereographic projection from the

two pôles i and — i).

EXAMPLE 4.2. Let/:C2-»C be a complex polynomial. If fis squarefree,
then any critical point (z, w) is necessarily isolated. Claim: in this case,

M^(/; (z&gt; w))) 0- Proof: at any regular point of/, ker D/is a complex line, so

l°(Df) is identically i and A(3if(/; (z, w)) A(/; (z, w)) is the Hopf invariant of
a constant.

It follows from 2.6 that p(X(f; (z, w))) ju(3îT(/; (z, w))). In fact, R*(f; -i)
is the complex plane curve {fz 0} with the opposite orientation to that given by
its complex structure, and /?*(/; i) is the conjugate-complex plane curve {^ 0}
with the orientation given by its conjugate-complex structure; the intersection
number at (z, w) of thèse cycles is then (-l)-(-l) l times the intersection
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number at (z, w) of the complex plane curves {/2 0} and {/„ ()}, which is
Milnor&apos;s définition of ju(3if(/; (z, w))) [7, p. 59].

Remarks 4.3. (1) The links 5if(/;(z, w)) are well understood (cf. [3], [5],
etc.); they are (quite restricted) iterated torus links, and also (very spécial) closed

strictly positive braids. In [12] it is shown that A(3if) O, p(Sf) jU(^T) for any
closed strictly positive braid 3if. (More gênerally, if 3£ is a closed strictly
homogeneous braid [14] or even a closed generalized strictly homogeneous braid,
then A(3if) and p(3îT) are the négative and positive parts of ju(9if) in an obvious

sensé.) In [9], A and p are calculated for ail fibered iterated torus links. (2) 4.2
substantiates the intuition that the link of a complex plane curve singularity (or
any closed strictly positive braid) is somehow &quot;as positive as it can be&quot;. It should
be contrasted with the fact that, though the symmetrized Seifert form of such a

link has non-negative signature, [11], it is only rarely positive-definite - for
complex plane curves, this happens exactly when the singularity is &quot;simple&quot; in the
sensé of Arnol&apos;d. (Actually, the sign convention in [11] is unusual; with the more
standard one, a closed positive braid has non-positive signature.)

EXAMPLE 4.4. Let Rev: S3-* S3 be an orientation-reversing diffeo-

morphism. The mirror image of a link jK (S3, K) is the link Rev X
(S3, Rev K). Claim: if X is fibered, then A(Rev X) p(X) (so also p(Rev X)
A(3if)). Proof: this is a simple calculation from the formulas in 2.3 and 2.5-6.

(More generally, if /:H—»H has an isolated critical point at 0, then conj°/has
also and A(conj °/; 0) p(/; 0), by considération of the effect of conj on n3(G);
of course, 3if(conj°/;0) is a mirror image of 3iT(/;0).) In particular, if 3if is

amphicheiral (i.e., isotopic to its mirror image) then A(3if)

EXAMPLE 4.5. The figure-8 knot % is amphicheiral, and /i(^f) 2, so by
4.4, A(5if) 1 p(3if). Now, 3V is a closed homogeneous braid (the closure of the

homogeneous braid word OiO^o^1 in the 3-string braid group B3), and the

techniques of [14] could also be brought to bear. But it most entertaining to
calculate A(3T) and p(X) by 4.1.
- First let F(z, w) w3-3 |z|2(l + z -z)w -2(z + z). Then DcF(z, w)
[-3h&gt;(z + 2|z|2-z2)-2 -3w(z + z2-2|z|2)-2 3h&gt;2- 3 |z|2(l + z -z)0] so

L*(F, i) U L*(F, -i) {(-3w(z + z2 - 2 |z|2) - 2)(h&gt;2 - |z|2 (1 + z - z)) 0} and

R*(F,ï)UR*(F, -i) {(-3^(z-f2|z|2~z2)-2)(iv2-|z|2(l + z-z)) 0}. For
|z|2 + M2small, (-3îv(z + z2~2|z|2)-2)(-3&gt;v(z + 2|z|2-z2)-2)^0, so at a

point of erit(F) near (0,0), w2= |z|2(l + z - z), w ±\z\ + o(|z|3); then
\FZ\2-\F-Z\2+\FW\2-\F*\2 ±4 \z\ Re (z - z + 4 |z|2 - z2 - z2) + o(|z|4)
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±8 \z\ ((Re z)2 + 3(Im z)2) + o(|z|4). Since (Re zf + 3(Im zf is positive-definite,
the critical point of F at (0,0) is isolated. Also, L*(F, ±i) (resp. /?*(F, ±i)) is

well approximated near (0,0) by {h&gt; ±|z|} (resp. {iv =F|z|}). Thèse cycles
hâve intersection number 0 at (0,0), so A(F; (0, 0)) 0 p(F;(0, 0)), so

ju(3if(F; (0, 0))) 0; though (0,0) is a genuine critical point, 3îf(F;(0, 0)) is

unknotted.
Let G(z, w) F(z2, w); again (0,0) is an isolated critical point;

L*{G, i) U L*{G, -i) {(2z[-3w(z2 + z4 - 2 |z|4) » 2])

x(h&gt;2-|z|4(1 + z2-z2)) 0}

and

/?*(G, i) U R*(G, -i) {(2z[-3&gt;v(z2 4- 2 |z|4 - z4) - 2])(h&gt;2 - |z|4 (1 + z2 - z2)}

so one quickly calculâtes A(G; (0, 0)) 1 p(G; (0, 0)), ju(3if(G; (0, 0))) 2.

Now, K(G; (0, 0)) double-covers K(F; (0, 0)), which is connected, so it has 1 or 2

components - but ju(3if(G; (0, 0)) is even, so K(G; (0, 0)) has an odd number of
components. Thus K(G; (0, 0)) is connected and 9if(G; (0, 0)) is a knot. It must
be the figure-8 knot. (Only three fibered knots hâve Milnor number 2-the two
trefoils and the figure-8 knot. One trefoil is 3if(z2 + w3; (0,0)); A(3ÎT(z2 +
w3; (0, 0)) 0 by 4.2. The other trefoil is Rev 3if(z2 + w3; (0, 0)); p(Rev X(z2 +
n&gt;3;(0,0))) 0by4.4.)

Of course it is easy enough to see directly that 3if(G; (0, 0)) is a figure-8 knot,
by considering the closed braid eut out by G 0 in a sufficiently small bidisk
boundary {(z, h&gt;):|z|^£, |w|&lt;e&apos;}, which is readily seen to be the closure of

Remark 4.6. Perron was the first to give a real-polynomial mapping R4-»R2
having an isolated critical point with local link the figure-8 knot, [10]. His
polynomial is somewhat more complicated than that in 4.5, and in particular has

resisted my occasional attempts to use it to calculate A and p; the &quot;half-

complex&quot; nature of F and G (the vanishing of their vv-derivatives) is a great
simplification.

EXAMPLE 4.7. Let /(z, w) z2 + w3, g(z, w) z3 + w2, f =/|. Then

DcF(z, w) [2zg 3z2/ 3w2g 2wf],

L*(F, i) U L*(F, -i) {(4z&gt;v - 9z2w2)/g 0},

R*(F, i) U R*(F, -i) {6zh&gt;2 |g|2 - 6z2* |/|2 0}.
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The origin is an isolated critical point of F. 4.1 applies directly to calculate
A : L*(i) {zf 0} and -L*(F, -i) {wg(4 - 9zw) 0} as cycles, so

A(F; (0, 0)) 1. (Of course the complex curve 4 — 9zw 0 doesn&apos;t pass through
(0,0) so it isn&apos;t involved in the calculation.) 4.1 doesn&apos;t quite apply to calculate p,
since (as a set) R*(F, i) {w \g\2-z |/|2 0}, and w|g|2-z|/|2 isn&apos;t just the

product of some complex analytic and some conjugate-analytic factors. But one

may verify that there is a neighborhood of (0,0) which has the same intersection
with /?*(F, i) as it has with {w - z 0}, and then calculate p(F; (0, 0)) 2 (since

-R*(F, -i) {zw 0} as a cycle).
This example can be generalized. Let a, b, c, d be positive integers,

/(z, w) za + w\ g(z, w) zc + wd, F(zy w) =/(z, w)g(z, w), G(z, w)
/(z, w)g(z, w). Then X(F\ (0,0)) and 9if(G;(0, 0)) are certain iterated torus
links (of GCD (a, b) + GCD (c, d) &gt; 1 components). For most choices of a, b, c,

d, the critical point of F (resp. G) at (0,0) is isolated so jK(F\ (0, 0)) (resp.
3if(G; (0, 0))) is a fibered link; the invariants A(F; (0, 0)),. p(G; (0, 0)) can be

calculated. Typically such a link is neither (isotopic to) the link of a complex
plane curve singularity nor (isotopic to) the mirror image of such a link; this is

detected by A and p without recourse to the classification of links of curve
singularities. Note that for certain bad choices of exponents, the critical point of F
or of G at (0,0) will not be isolated; e.g., a c is bad for F, and b d is bad for
both F and G. Note also that it can be determined just which of the links
3if(F;(0, 0)) and 3if(G;(0, 0)) are, and are not, fibered-for instance, by using
the calculus of splice diagrams [3]. Interestingly, it appears that whenever
3if(F;(0, 0)) is fibered, in fact F has an isolated critical point at (0,0), and
likewise for G (cf. [13]).
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