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Isolated critical points of mappings from R* to R*> and a natural
splitting of the Milnor number of a classical fibered link.
Part I: Basic theory; examples

Lee Ruporpu!

§0. Introduction; statement of results.

From a fibered link % =(S°, K) may be constructed a field Sy of (not
everywhere tangent) 2-planes on S°. When % = ¥ is the link of an isolated
critical point of a map F:R*— R?, S, is essentially the field of kernels of DF.
Homotopically, Sy determines integers A(¥) and p(¥).

THEOREM. A(X) + p(¥) = u(%).

Here u(X) is the Milnor number of ¥, that is, the rank of the first homology
of the fiber surface of #. At least in some cases, this splitting of u(¥)
corresponds to a geometrically natural direct sum decomposition of this homology
group, into subgroups corresponding to “negative” (or “left-handed”) and
“positive” (or “right-handed’) parts of the fiber surface, [12]. For instance, if ¥
is a closed positive braid (such as the Lorenz links of dynamical systems [1], or
the overlapping class of links of complex plane curve singularities — links ¥
where F:C?*—C is complex-analytic), then A(¥)=0 and p(¥)=u(¥),
substantiating the intuition that such links are as positive as they can be. If ¥ is
the figure-8 knot, then A(¥) =1 = p(¥X).

The Euler characteristic 1 — u(¥) of a fiber surface of # can be computed by
correctly counting the singularities of a vectorfield on the surface. There is a sense
in which the extra information in the splitting u(¥) = A(¥) + p(%*) comes from
making this calculation “all around the circle” of fiber surfaces.

This is the first of several papers devoted to the study of A, p, and related
invariants. In this paper I develop the basic theory, and compute a number of
examples.

More specifically, in §1, I construct the field Sy, and two related (tangent)
2-plane fields T, from an open-book structure on $> of type ¥%. A standard
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Splitting the Milnor number 631

parallelization of S* permits one to consider Sy as a map $°— $> x §? and T as
maps S°— S%; the Hopf invariants (—A(¥), p(%)) and 7%(¥) of these maps
depend only on %*. In §2, the following results are obtained.

THEOREM 2.3. For any fibered link ¥, t*(¥) — t=(¥) =1 — u(¥).

THEOREM 2.5. For any fibered link ¥, M¥)=—1"(¥) and p(¥X)=
T (¥)+ 1

COROLLARY 2.6. For any fibered link X, A(X) + p(¥) = u(¥).

In §3, I exploit the close relationship between fibered links and isolated
critical points of mappings from R* to R? to give another way to calculate A and p
(in theory), which is used in examples in §4.

In [12], A and p are computed for closed strict generalized homogeneous
braids. In [13], the pair {t*(%)} of invariants of a fibered link ¥ in S> is
generalized to a set {T°(¥):s € {+, —}™} of invariants of a fibered link ¥ of m
components in any closed 3-manifold. Work with Walter Neumann ([8], [9])
extends the definition of A and p to higher dimensions, and studies their behavior
(in dimension 3) under various geometric operations (cabling, connected sum,
Murasugi sum, Stallings twists); it is shown, in particular, that for many pairs of
fibered links ¥, X' in S, {A(K), p(¥)} #{AMK"), p(X")} although X and XK'
have identical Seifert forms and algebraic monodromy. A projected future paper
generalizes A and p to non-fibered links, using [2].

An interesting phenomenon (still unexplained as of December, 1986) is that in
no known example is A(¥) or p(¥) negative.

§1. Some plane fields associated to a classical fibered link; the invariants A, p,
and 7%,

The 3-sphere S° is the boundary of the unit 4-disk D* of C2. The 1-sphere S is
the boundary of the unit disk D? of C. These spaces are oriented by the usual
conventions; R* (resp. R?) is the oriented real vectorspace underlying C? (resp.
C); H, the quaternions, is oriented by the usual identification of its underlying
vectorspace with R* The oriented span of a k-frame (U,,..., Uy) is
(Uy, ..., Up).

A link X is a pair (S, K) where K is an oriented closed smooth 1-submanifold
of §? (if K is connected, ¥ is also called a knot); X is fibered if there exist a
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closed disk-bundle neighborhood N(K) of K in S* with a smooth trivialization
Yy :N(K)— D?

and a smooth fibration over S! of the link exterior E(K) = S>\Int N(K)
¢:E(K)—S'

such that v |dN(K)=¢ | SN(K). Such maps v, ¢ glue together to give a
piecewise smooth map

n:83— D?

which is called an open-book structure on S°, of type . (This summary treatment
follows [8]; cf. also [4].) If & is a fibered link, then all open-book structures of
type J are equivalent in quite a strong sense [4], and the ambient isotopy type of
J determines the ambient isotopy type of any fiber surface of # —1.e., a fiber of
(any) ¢. The Milnor number u(¥) of ¥ is the rank of the first homology of a
fiber surface of %.

Associated to a fibered link % are maps Sy, T3 and T3 from S° to
G = G*(2, 4), the Grassmann manifold of oriented 2-planes in R*, which will be
defined in terms of certain vectorfields.

Let n be an open-book structure of type ¥. Then x/|x|:S°\K—S' is a
fibration (by fiber surfaces to which open collars are attached piecewise-
smoothly) extending ¢. It is always possible to take & such that x/|z| is smooth,
and we do so. Let U be the field of unit tangent vectors on $°\ K perpendicular to
the plane ker (D(x/|x|)), so oriented as to point to the positive side of the fiber
surfaces. Let V be the field of unit tangent vectors on N(K) which span the line
ker (Dxr), so oriented as to induce the given orientation on K =x"'(0). In
N(K)\K, where both-are defined, the vectorfields U and V are orthogonal; let
U XV be the field of unit vectors, tangent to S3, such that the orthonormal
3-frame (U, V, U X V) gives the orientation of S°. Finally, let W be the field of
unit inward normal vectors on S (so the orthonormal 4-frame (U, V, U X V, W)
gives the orientation of C?).

DEFINITION 1.1. For Q € E(K), Sx(Q)=T3(Q)=T3(Q) is the ori-
ented tangent plane to the fiber surface ¢ ~'(¢(Q)) through Q. For Q e N(K)\K,
Sx(Q) =(V(Q), |m(Q) (U xV)(Q)+ (1 - |n(Q)")*W(Q)) and THQ)=
(1@ V(Q) F (1= [7(Q)P)'2U(Q), (UxV)Q)). For QeK, Sx(Q)=
(V(Q), W(Q)) and T3(Q) is the plane tangent to S> and orthogonal to V at Q, so
oriented that 1V points to its positive side.
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It is easy to see that the maps Sy and Ty are continuous, and that their
homotopy classes in 73(G) depend only on J and not on the choice of & (so the
notation is not too abusive).

It is well known that G is diffeomorphic to $*X S% so that x3(G) is
isomorphic to Z® Z. To obtain an explicit isomorphism (and, thus, integer
invariants of X), we use quaternions to give an explicit diffeomorphism, with
pleasant properties which will facilitate later computations. Let 1, i, j, k be the
standard orthonormal basis of H; in terms of the identification of H with C?
already established, we have 1=(1,0), i=(i, 0), j=(0,1), and k= (0, i) (note
that we distinguish the quaternion i from the complex number i by boldface). The
tangent space of S° at 1 is (i, j, k), the pure quaternions; let $*=$>N (i, j, k) be
the oriented sphere of unit pure quaternions. Let 2:H— (i, j, k) be the “pure
part” mapping; write conj: H— H for quaternionic conjugation; let % :H\ {0} —
$*:Q0—Q/||Q||. For Q eH, let L,:H—H (resp., Ry) be the real-linear map
A QA (resp. A—>AQ).

It is a fact that S? consists precisely of the square roots of —1 € H. Hence each
p € S* determines two complex structures on R*, with structure maps respectively
L, and R,; call (R* L,) (resp. (R% R,)) the p-left (resp. p-right) complex
structure. (The i-left complex structure is the original structure of R* as C?; the
i-right complex structure is as it were the direct sum C@® C.) Each p-left (resp.
p-right) complex structure determines a subset of G, namely, the oriented real
2-planes which are left (resp. right) p-stable — that is, which are complex lines in
that structure. (Note that if a plane is left or right p-stable with one orientation,
then the same plane is left or right —p-stable with the opposite orientation.)
There are, in fact, well-defined maps / and r from G to S? such that, for every
WeG, Wis a complex line in the I/(W)-left complex structure and in the
r(W)-right complex structure, and in those structures only.

LEMMA 1.2. If (A, B) is a 2-frame, then [({A, B)) = UP(B conj (A)) and
r({(A, B)) = UP(conj (A)B). In complex coordinates, if A=(z,,w), B=
(22, W), then

l((A, B)) = %@(2]22 + W1W2, Ziiw, — WIZZ)’
r(<A) B)) = Oug)(flzZ + W wZ) 4 WZ - WIZZ)‘

The pair (I, r): G — 5% x 8% is a diffeomorphism.

The compositions (/, r)° Sy, (I, r)°eT%, and (I, r)° Ty map S° to $* X §* and
so provide elements of m3(S? X $%) = m5(S%) @ 4(S?). Recall that the Hopf
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invariant H(g) of a continuous map g : $>— S° can be defined as follows: let p and
q be distinct regular values of g,, a map homotopic to g which is smooth near
g:'({p, q}); then H(g) is the linking number of the smooth links g;'(p) and
g7 '(q), where g7'(p) is oriented so that, if D is a small oriented normal disk
intersecting it once positively, then g, |D:D—>S* preserves orientation (and
similarly for g;7'(q)). The Hopf invariant of

Hopf:5°— S$2:(z, w)— ([|z|* = |w|*i, 2izw),

the complex (as opposed to conjugate-complex) Hopf fibration, is +1. The Hopf
invariant of maps induces an isomorphism (denoted by the same name and letter)
H:my(S*)> Z. If —:5*— §? is the antipodal map, then H(—°g) = H(g) for any
g:85°— 5%, since fibers of —og are fibers of g with orientation reversed, and
linking number is bilinear.

LEMMA 1.3. If T:8°— G is such that T(Q) is tangent to S* at Q for every
Q€S then H(roT)=1+ H(l>T).

Proof. We first check a special case in which H(/°T)=0. The tangent
space to S° at Q is (iQ, JO, kQ). Let T(Q)= (jQ, kQ); then (I T)(Q) =i is
constant, so H(/°T)=0. On the other hand, (r°T)(Q) = UP(conj (jO)kQ) =
Q~(~jk)Q = ~Hopf (Q), so H(rT)=1.

In general, let T(Q) = (p(Q)0Q, q(Q)Q). Then

I(T(Q)) =q(Q)Q conj (p(Q)Q) = —q(Q)p(Q) =p(Q)q(Q),
r(T(Q)) = conj (p(Q)Q)q(Q)Q = -0~ 'p(Q)q(Q)Q,

so roT =Ado(id, —°T), where Ad:S>x §?— §%:(Q, x)~ Q~'xQ. Thus

H(roT) = H(Ad<(id, - T)) = H(Ada([id], [~ ° T]))
= H(Adg([id], [*])) + H([~ ° T)H(Ad«([*], [Hopf]))
=1+H(l°T)

by the special case and the sentence preceding the lemma.

DEFINITION 1.4. By A(¥), p(¥), and t*(¥) will be denoted the integers
—H(l°Sy) (note the sign'), H(roSy), and H(l>T%), respectively.
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§2. Braided open-book structures; relations among t*, A, p, and pu.

Let O={(z,0):|z|=1} =Hopf™* (i), O’ ={(0, w):|w|=1}=Hopf™" (—i).
Let D be a round disk on S centered at i, N = N(O) = Hopf™' (D). The map
$°\0'— 0:(z, w)—>(z/|z|, 0) is a fibration by open great hemi-2-spheres; its
restriction to N presents N as a disk-bundle neighborhood of O, with fibers
meridional disks of O. Let R be the oriented unit tangent vectorfield to the
oriented fibers of Hopf.

Let #' = (S° K') be any link. Then if 1> ¢ >0, there is an ambient isotopic
link % = (S?, K) such that K is contained in Int N and, at each point of K, the
component of R along the positively directed tangent line to K is at least 1 — &.
(Apply the classical lemma of Alexander to find an isotopy carrying K’ onto a
closed braid with axis O’, on some number n >0 of strings; then use a “radial”
isotopy in the open solid torus S\ O’ to make this closed braid lie arbitrarily
Cl-close to O, the core of the solid torus, and note that R | O is the field of unit
tangent vectors to O.) In fact, K can be taken to have a disk-bundle
neighborhood N(K) that intersects each meridional disk of O in a union of n
meridional disks of K, which can be taken to be round (in the spherical geometry
of the meridional disk of O), with a trivialization y : N(K)— D? such that the
component of R along the oriented line ker (D) is at least 1 — &.

If, further, % is fibered, then there are such a trivialization of N(K) as above,
and a fibration ¢ of E(K) over S!, which glue together to give an open-book
structure 7w of type X such that & is smooth and i and —i are regular values of
[0S, reS, leT*, and roT~ (where S=S4 and T* =T are the plane fields
constructed from ¥ as in §1). We will call such a & a braided open-book structure.

LEMMA 2.1. Let n be a braided open-book structure. Then: (1) each of
([o8)}(—=1i), (reS)™'(A), (leT*)"'(Fi), and (ro T*)~'(ki) has empty intersection
with N(K) (in particular, it is homologous to 0 in N(K)); (2) the naturally oriented
1-submanifold N(K) N (1°S)'(i) (resp. N(K) N (reS)~'(—i); N(K) N (I T*)"!(+
i); N(K) N (ro T*) ' (Fi)) of N(K) is homologous to K (resp. —K; £K; ¥K) in
N(K).

Proof. By using R in place of V, construct plane fields § and T* on N(K).
Note that W =iR. Using 1.2, one calculates that [S, roS, [oT*, and ro T* have
non-negative i component in N(K); it follows easily that the i components of /- S,
roS, loT*, and roT* are bounded away from —1, establishing the statements in
(1).

To verify (2), first note that (the fundamental class of) K generates
H,(N(K); Z), so what has to be determined in each case is what integer multiple
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of K the 1-submanifold in question represents, and this is given by its linking
number with the boundary of any one of the meridional disks K. An argument
similar to that given for (1) can now be applied.

DEFINITION 2.2. Let pos (¥X) (resp. neg (X)) denote the. oriented 1-sub-
manifold E(K)N(1-S)"'G)=EK)N{IT*)7'(i) (resp. E(K)N(l-S)"'(-i) =
E(K)N (1= T*)"'(-i)) of E(K).

THEOREM 2.3. For any fibered link ¥, t+(¥) — 1 (¥) =1 — u(¥).

Proof. We may assume we have a braided open book structuie z of type
#. Then t*(H)=H({-T*)=Ilk(({-T*)" (i), (eT*)"'(-i)). By 2.1-2, this
equals k(K + pos (%), neg (¥%)). Similarly t=(¥)=H(T")=1k((l-T~) (i),
(I o T7) Y (—i)) = lk(pos (¥), —K + neg (¥)). Thus t"(¥) — v (¥) = k(K
pos (¥) + neg (X)). Now, the linking number of K with an oriented 1-sub-
manifold L of S$*\K is equal to the inter-section number of L with any
Seifert surface of K. It follows that lk(K, pos () + neg (¥)) is the intersection
number of pos (¥) + neg (¥X) with a fiber surface F of X, that is, the algebraic
number of points of F where the tangent plane to F is left ti-stable. These points
are exactly the zeroes of a certain tangent vectorfield on F (namely, the
orthogonal projection of R into the tangent plane to F), and the sum of the
indices of the zeroes of that vectorfield equals 1 — u(¥), the Euler characteristic
of F. The theorem follows upon observing that the multiplicity assigned to a point
of (pos (¥) + neg (¥)) N F by the orientation of pos (¥) + neg (¥) is the index of
that vectorfield at the point.

Remark 2.4. In some vague sense, the new information in the splitting of
1 —wu(¥K) as T+ (¥K)— t=(¥) is coming from carrying out the vectorfield argument
“all around the circle”- of fiber surfaces.

THEOREM 2.5. For any fibered link ¥, A(H)=—1"(¥) and p(¥X)=
T (X)+ 1.

COROLLARY 2.6. For any fibered link ¥, A(¥) + p(¥K) = u(¥X).

Proof of 2.5. By 2.1-2, AMHX)=—-H(l°S)=—Ilk(K + pos (¥X), neg(¥))=
— 17 (¥). Just for this proof, let POS (%)= E(K) N (r-8)"'(i), NEG (¥)= E(K)N
(re8)7'(=i). Then p(¥X)=H(reS)=Ik(-—K +POS (¥),NEG (%)) = H(ro
T7)=H({T )+1=1"(X)+1 (using 1.3).
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§3. Isolated critical points; A and p as intersection numbers

Let U be an open neighborhood of a point x in R* let f:U—R? be
continuous at x and smooth in U\{x}. Denote by Df the (real) differential of f,
which we take to be a smooth mapping from U\{x} into the space of 2-by-4
matrices, the rows of Df(y) being the gradients at y of the components of f. As
usual, y is called a regular point of f if Df (y) has rank 2, a critical point otherwise.
Slightly extending the standard usage, we will call x an isolated critical point of f
if, for € > 0 sufficiently small, every y with 0 <||x — y|| = £ is a regular point of f.
(So, if it happens that f is smooth at x and x is a regular point of f, by this usage x
is also an isolated critical point of f.) By “counting constants’’ one finds that the
expected dimension of the set of critical points of a smooth mapping is 1; thus,
the (genuinely critical) isolated critical points are unusual, but of correspondingly
great interest.

If y is a regular point of f, then the matrix Df(y) considered as an ordered
pair of rows is a 2-frame, and so (Df) is a smooth mapping from the set of
regular points of f into the Grassmann manifold G.

DEFINITION 3.1. Let x be an isolated critical point of f. For € >0 small
enough that y is a regular point for 0<|x—y||<¢, let E:S’— S*(x,€):u—
x + eu; then define A(f;x)=—H(lo(Df)°E), p(f;x)=H(ro{Df)°E). (Clearly
these do depend only on f and x.)

Two basic facts about isolated critical points are relevant here: (A) when f is
sufficiently well-behaved (e.g., real-polynomial) near its isolated critical point x,
there is an associated ‘“local link” ¥(f;x), well-defined up to ambient isotopy,
and ¥(f; x) is fibered; (B) conversely, given a fibered link % in S, there may be
constructed a well-behaved f; : R*— R? with an isolated critical point at 0, such
that X (fs; 0) = K. More details will be recalled shortly.

Remark 3.2. Milnor [7, Sect. 10] proved (A) for polynomial mappings;
Kauffman and Neumann [4] extracted from his proof the relevant property of
real-polynomial maps, which they called “tameness”, see 3.3. So far as I know,
(B) was shown first by Looijenga [6], and rederived in [4] (see 3.7). All this work
is in general dimensions. None of it describes A or p.

If x is a regular point of f and U is a sufficiently small open neighborhood of x,
then UNf!(f(x)) is a smooth 2-submanifold of U. If x is an isolated critical
point of (even a smooth) f, then this generally fails (but not always: cf. examples
in [7]); all we can say is that, for suitably small U, the level set f~'(f(x))
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intersects U in a ‘2-submanifold with an isolated singularity at x”’. To give a more
precise description of this singularity, we have to impose extra hypotheses on f in
a neighborhood of x.

DEFINITION 3.3 ([4]). Let x be an isolated critical point of f. Then f is tame
at x if, for all sufficiently small € >0,

(A) the level set f~'(f(x)) intersects S°(x; €) transversely,

(B) for all sufficiently small 6 = 6(¢) >0 the intersection f~'(D*(f(x); 6)) N
D*(x; €) is a 4-ball, smooth except for corners along f~'(S'(f(x); 8)) N S°(x; ¢).
If f is tame at x, then (for any sufficiently small €>0) let H(f;x)=
(S3, E7N(SP(x; €) NfY(f(x)))); this is the local link of f at x.

Remarks 3.4. (1) As given in [4], the definition of ‘“‘tame” includes the
(inessential) further hypothesis that f is smooth at x. (2) A mapping can have an
isolated critical point at which it is smooth but not tame. (3) Hypothesis (A) of
3.3 already ensures that #(f;x) is well-defined (up to ambient isotopy);
hypothesis (B) ensures that X (f;x) is fibered. (4) As remarked in [4], the proof
of the “fibration theorem for real singularities’’ in [7] consists of showing that a
real polynomial mapping is tame at an isolated critical point.

CONSTRUCTION 3.5. Let z:5°— D? be a smooth open book structure of
type ¥. Define cone 7 :R*— R? by (cone x)(y) = ||yl #(y/|lyll) if y#0, (cone

m)(0) = (0, 0). Then the only critical point of cone x is 0, cone 7 is tame at 0, and
H(cone 7; 0) = K.

Remarks 3.6. (1) This construction is a stripped-down version of the original
one in [6]. (Looijenga showed that, by an appropriate choice of &, cone & can be
taken to be a real polynomial in x and ||x||, and thus real-algebraic, though
typically not smooth but merely continuous at 0; when, however, X is antipodally
equivariant — in particular if it is a connected sum of some fibered knot with
itself — then cone & can be taken to be a polynomial in x alone. It was to this case
that Looijenga drew explicit attention.) (2) By replacing ||x|| with a smooth,
monotone function of ||x|| infinitely flat at 0, cf. [4], cone & can be assumed
smooth (but transcendental) at 0.

PROPOSITION 3.7. If X is a fibered link with smooth open-book structure m,
then A(X) = A(cone 7; 0) and p(X) = p(cone &; 0). If x is an isolated critical point
of f and f is tame at x then A(¥(f; x)) = A(f; x) and p(¥X(f; x)) = p(f; x).

Proof. We may assume 7« is braided (§2). By taking the ¢ in the definition of
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“braided open-book structure” sufficiently small, one may make the 2-plane fields
S« and (D(cone 7)) | S arbitrarily close; so they are homotopic.

Let crit (f) denote the set of critical points of f. For each p € S, consider the
sets

L*(f, p)=crit (f) U (1= (Df)) "' (p), (
R*(f, p) =crit (f) U (r>(Df)) " (p)-

If A(y) and B(y) denote the rows of Df(y), considered as quaternions, then (cf.
1.2)

L*(f, p) U L*(f, —p) = {y: P(pP(B(y)(conj A(y)))) = 0},
R*(f, p) UR*(f, —p) = {y: P(pP((conj A(y))B(y))) = 0},

while L*(f, p) ={y e L*(f, p)UL*(f, —p):pP(B(y)(conj A(y)))<0} (and so
on), when we identify (1) c H with R. Note that, for p#q, L*(f,p)N
L*(f, q) =crit (f) = R*(f, p) " R*(f, q). (Note also that, though L*(f,p)U
L*(f, —p) and R*(f, P) U R*(f, —p) are level sets of mappings to a 3-dimensional
vectorspace, their expected codimension is not 3 but 2 because of the Pliicker
conditions.)

Now suppose crit (f) N D*(x; ) = {x}.

HYPOTHESIS 3.8. p, q€ S p#q, are such that (with respect to
some convenient theory of geometric cycles representing ordinary homology
over Z) the set (Ie(Df)) '(p)NS°*(x;e) (resp. (I°{Df))"'(q) N S*x;e);
(ro(Df)) Y (p) N S3(x; €); (ro(Df))"'(q) N $*(x; £)) is the support of an absol-
ute 1-cycle in S3(x; €) which bounds a relative 2-cycle in D*(x; €) supported by
L*(f,p)ND*(x; &) (resp. L*(f, q) N D*(x; e); R*(f, p) N D*(x; €); R*(f, )N
D*(x; €)). (We will use the same symbols for the cycles and their supports.)

PROPOSITION 3.9. Under Hypothesis 3.8, A(f;x) (resp. p(f;Xx)) is the
homological intersection number at x of L*(f,p)ND*x;e) and L*(f, q)N
D*(x; €) (resp. R*(f, p) N D*(x; £) and R*(f, q) N D*(x; £)).

Proof. This is a tautology, given the definitions of A and p as Hopf invariants
and the relationship between linking numbers and intersection numbers.

Remarks 3.10. (1) The point of 3.8-9 is that frequently 3.8 can be verified, as,
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for instance, in the examples in §4. (2) One might conjecture that, for any f with
an isolated critical point at f, 3.8 holds for almost all pairs (p, q). Certainly it
seems reasonable to expect, of a given f, that for almost all p the sets L*(f, p)
and R*(f, p) are ‘“2-manifolds with isolated singularities at x”’. Perhaps some sort
of higher-order tameness should be defined. (3) If f is a real-polynomial mapping,
then, for any p, L*(f, p) UL*(f, —p) is a real-algebraic set and L*(f, p) is
semi-algebraic (of course the same goes for R*). Suppose x is an isolated critical
point of f and that p, q € S°, q # %p, are such that both L*(f, p) U L*(f, —p) and
L*(f, QU L*(f, —q) are purely 2-dimensional near x. Then, near x, each of
L*(f, p), L*(f, —p), L*(f, q), and L*(f, —q) is the cone on some singular-link-
with-integer-multiplicities, so 3.8 holds. One might be tempted, therefore, to
reason from the distributive law that “4A(f, x) is the real-algebro-geometric
intersection number at x of the real-algebraic surfaces L*(f, p) U L*(f, —p) and
L*(f,qQqUL*(f, —q)”. It seems hard to make that statement true inside real
algebraic geometry! (Real-algebraic cycles are naturally oriented over Z/2Z
rather than over Z. In the present case, even if each of the algebraic sets
L*(f, p)UL*(f, —p) is purely 2-dimensional, giving them local Z-orientations
algebro-geometrically is complicated by the fact that the parameter space for this
family of surfaces is the non-orientable real projective plane RP? rather than S
cf. the last sentence of 4.1.) Perhaps there exists (I have not been able to learn of
it) an applicable theory of integer intersection numbers, calculable inside real
semi-algebraic geometry, and giving the correct topological answers? (4) As
mentioned in §0, I know (as of December, 1986) of no example of a fibered link
K with A(X)<0. Especially if no such link exists, it would be interesting to
known whether there exists a function f with an isolated critical point x such that
Af;x)<O.

§4. Examples

Most of the examples in this section involve complex analyticity somehow, so
we begin by introducing some complex machinery.

MACHINERY 4.1. At a point where F:C*—C is smooth, the complex
differential DcF is the complex row vector [F.F:F,F;], where F, = (F, —iE)/2,
F;=(F, +iF,)/2i, etc., and subscripts indicate partial differentiation. In terms of
D¢F, the real differential matrix DF is

[Re (F, + F;) Re (iF, — iF;) Re (F, + F,;) Re (iF, — iFw)]
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As in 1.2, we see that at a regular point of F, [({(DF)) is the unit vector of
(EP = |Fsf + |F,J = |Fs)i— 21m (EF; — FF,)j — 2 Re (EF; — F3F,)k; (*)
similarly, at a regular point of F, r({DF)) is the unit vector of

(IE? = |F3? + |Fg|? — |F,|?)i— 2 Im (EF, — F;F;)j — 2 Re (EE, — F:F ;)k;
(%)

and (if F is smooth everywhere) crit (F) is defined by the vanishing of either (*)
or (*%).

In this complex context, we will have a particular interest in L*(F, i)U
L*(F, —i) and R*(F, i) U R*(F, —i). As sets,

L*(F, £i)= {FE,F; — F;F,=0, £(|E,* — |F;]* + |E,|>— |F;/>) =0}
and

R*(F, xi)= {EF,— F;F;=0, £(|E|*— |F;* — |E,|* + |F3]*) = 0}.

Suppose FZF—; - EFW and EF: — EF » are products of complex analytic functions
and conjugates of complex analytic functions. Then their level sets, where they
are 2-dimensional, are equipped with natural integer multiplicities; in particular
this is true of the sets of zeroes, and so at any isolated critical point of F near
which L*(F, i) and R*(F, %i) are 2-dimensional, Hypothesis 3.8 will be satisfied
(with p =i, q = —i). Note, however, that the multiplicity assigned by the defining
function must be twisted by the sign of i to give the multiplicity needed for 3.8
(consider the local coordinates on S given by stereographic projection from the
two poles i and —i).

EXAMPLE 4.2. Let f:C*— C be a complex polynomial. If f is squarefree,
then any critical point (z, w) is necessarily isolated. Claim: in this case,
AMIH(f; (z, w))) = 0. Proof: at any regular point of f, ker Df is a complex line, so
lo (Df) is identically i and A(¥(f; (z, w)) = A(f; (z, w)) is the Hopf invariant of
a constant.

It follows from 2.6 that p(¥%(f; (z, w))) = u(¥(f; (z, w))). In fact, R*(f; —i)
is the complex plane curve {f, =0} with the opposite orientation to that given by
its complex structure, and R*(f; i) is the conjugate-complex plane curve {f, =0}
with the orientation given by its conjugate-complex structure; the intersection
number at (z, w) of these cycles is then (—1)-(—1) =1 times the intersection
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number at (z, w) of the complex plane curves {f, =0} and {f, =0}, which is
Milnor’s definition of u(¥(f; (z, w))) [7, p. 59].

Remarks 4.3. (1) The links ¥(f; (z, w)) are well understood (cf. [3], [5],
etc.); they are (quite restricted) iterated torus links, and also (very special) closed
strictly positive braids. In [12] it is shown that A(¥) =0, p(¥) = u(¥X) for any
closed strictly positive braid *. (More generally, if ¥ is a closed strictly
homogeneous braid [14] or even a closed generalized strictly homogeneous braid,
then A(¥) and p(X) are the negative and positive parts of u(¥) in an obvious
sense.) In [9], A and p are calculated for all fibered iterated torus links. (2) 4.2
substantiates the intuition that the link of a complex plane curve singularity (or
any closed strictly positive braid) is somehow ‘‘as positive as it can be”. It should
be contrasted with the fact that, though the symmetrized Seifert form of such a
link has non-negative signature, [11], it is only rarely positive-definite — for
complex plane curves, this happens exactly when the singularity is “simple” in the
sense of Arnol’d. (Actually, the sign convention in [11] is unusual; with the more
standard one, a closed positive braid has non-positive signature.)

EXAMPLE 4.4. Let Rev:S?—S? be an orientation-reversing diffeo-
morphism. The mirror image of a link ¥ =(S°, K) is the link Rev¥ =
(8°, Rev K). Claim: if ¥ is fibered, then A(Rev ¥) = p(¥) (so also p(Rev ¥) =
A(X)). Proof: this is a simple calculation from the formulas in 2.3 and 2.5-6.
(More generally, if f:H— H has an isolated critical point at 0, then conjef has
also and A(conjef;0) = p(f;0), by consideration of the effect of conj on 75(G);
of course, #(conjof;0) is a mirror image of ¥(f;0).) In particular, if ¥ is
amphicheiral (i.e., isotopic to its mirror image) then A(¥X) = p(¥).

EXAMPLE 4.5. The figure-8 knot X is amphicheiral, and u(¥) =2, so by
4.4, A(X)=1=p(¥X). Now, X is a closed homogeneous braid (the closure of the
homogeneous braid word 0,05 '0,05" in the 3-string braid group Bs), and the
techniques of [14] could also be brought to bear. But it most entertaining to
calculate A(%) and p(¥X) by 4.1.
= First let F(z,w)=w?-3|zP(1+z-Z)w—2(z+2). Then DcF(z, w)=
[F3w(Z+2)z)P-2) -2 -3w(z+2z2-2|z]) -2 3w*-3|z)(1+z-2)0] so
L*(F,D)UL*(F, -)={(-3w(EZ +2* -2z -2)(w* - |z)*(1+ 2z —2)) =0} and
R*(F, ) UR*(F, —i)={(-3w(Z +2|z)* - 25) - 2)(W* - |z* (1 +z—Z)) =0}. For
|z|2+ |w)* small, (=3w(Z+22=2|z/) = 2)(-3w(Z+2|z|*—2%)—2)#0, so at a
point of crit(F) near (0,0), w?=|z|*(1+2z—2Z), w==|z|+0(z]>); then
|E? = |Fsf> + |F,|° = |Fa|* = 4 |z| Re (Z—z+4|zP -2 -2%) +0(z|*) =
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+8|z| (Re z)? + 3(Im 2)?) + o(|z|*). Since (Re z)*+ 3(Im z)? is positive-definite,
the critical point of F at (0,0) is isolated. Also, L*(F, xi) (resp. R*(F, %i)) is
well approximated near (0,0) by {w = %|z|} (resp. {w = F|z|}). These cycles
have intersection number 0 at (0,0), so A(F;(0,0))=0=p(F;(0,0)), so
u(¥*(F; (0, 0))) =0; though (0,0) is a genuine critical point, ¥(F; (0, 0)) is
unknotted.

Let G(z, w) = F(z?, w); again (0, 0) is an isolated critical point;

L*(G, i) U L*(G, —i) = {Qz[=3W(Z* + 2* — 2 |z|) — 2))
X (w?=|z|* (1 + 22— 2%)) =0}

and
R*(G, i) UR*(G, —i) = {(2z[-3w(Z* + 2 |z|* - z*) - 2)(W* — |z|* (1 + 2% - £?)}

so one quickly calculates A(G; (0, 0)) =1=p(G; (0, 0)), u(¥(G;0,0)))=2.
Now, K(G; (0, 0)) double-covers K(F; (0, 0)), which is connected, so it has 1 or 2
components — but u(¥(G; (0, 0)) is even, so K(G; (0, 0)) has an odd number of
components. Thus K(G; (0, 0)) is connected and #(Gj; (0, 0)) is a knot. It must
be the figure-8 knot. (Only three fibered knots have Milnor number 2 — the two
trefoils and the figure-8 knot. One trefoil is H(z>+ w?; (0, 0)); A(H(z*+
w?; (0, 0)) =0 by 4.2. The other trefoil is Rev (z> + w?; (0, 0)); p(Rev ¥ (2% +
w?; (0, 0))) =0 by 4.4.)

Of course it is easy enough to see directly that #(G; (0, 0)) is a figure-8 knot,
by considering the closed braid cut out by G =0 in a sufficiently small bidisk
boundary {(z, w):|z| =g, |[w|=¢'}, which is readily seen to be the closure of
0,05 0,05

Remark 4.6. Perron was the first to give a real-polynomial mapping R*— R?
having an isolated critical point with local link the figure-8 knot, [10]. His
polynomial is somewhat more complicated than that in 4.5, and in particular has
resisted my occasional attempts to use it to calculate A and p; the ‘half-

complex” nature of F and G (the vanishing of their w-derivatives) is a great
simplification.

EXAMPLE 4.7. Let f(z, w) =z +w?>, g(z, w) =23+ w?, f =f3. Then

DcF(z, w) = [225 37 3w 2wf],
L*(F, i) U L*(F, —i) = {(4zw — 922w?)fg =0},
R*(F, i) U R*(F, —i) = {62%? |g|* — 622w |f|* = 0}.
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The origin is an isolated critical point of F. 4.1 applies directly to calculate
A:L*@)={zf =0} and —L*(F, —i)={wg(4—9zw)=0} as cycles, so
A(F; (0, 0)) = 1. (Of course the complex curve 4 —9zw =0 doesn’t pass through
(0, 0) so it isn’t involved in the calculation.) 4.1 doesn’t quite apply to calculate p,
since (as a set) R*(F,i)={w|g|*—z |f*=0}, and w|g|*— z |f|* isn’t just the
product of some complex analytic and some conjugate-analytic factors. But one
may verify that there is a neighborhood of (0, 0) which has the same intersection
with R*(F, i) as it has with {w — Z =0}, and then calculate p(F; (0, 0)) =2 (since
—R*(F, —i) = {zw =0} as a cycle).

This example can be generalized. Let a, b, ¢, d be positive integers,
f(z,w)=z"+wb, g(z,w)y=z+w? F(z,w)=f(z, w)g(z, w), G(z,w)=
f(z, w)g(z, w). Then ¥(F;(0,0)) and H#(G; (0, 0)) are certain iterated torus
links (of GCD (a, b) + GCD (c, d) > 1 components). For most choices of a, b, c,
d, the critical point of F (resp. G) at (0, 0) is isolated so #(F; (0, 0)) (resp.
H*(G; (0, 0))) is a fibered link; the invariants A(F; (0, 0)), . . ., p(G; (0, 0)) can be
calculated. Typically such a link is neither (isotopic to) the link of a complex
plane curve singularity nor (isotopic to) the mirror image of such a link; this is
detected by A and p without recourse to the classification of links of curve
singularities. Note that for certain bad choices of exponents, the critical point of F
or of G at (0, 0) will not be isolated; e.g., a = c is bad for F, and b =d is bad for
both F and G. Note also that it can be determined just which of the links
H(F,; (0, 0)) and #(G; (0, 0)) are, and are not, fibered — for instance, by using
the calculus of splice diagrams [3]. Interestingly, it appears that whenever
X(F; (0, 0)) is fibered, in fact F has an isolated critical point at (0,0), and
likewise for G (cf. [13]).
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