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Fibres algébriques sur une surface réelle

Jean Barge et Manuel Ojanguren

Soit A un anneau régulier de dimension 2.

Dans ce travail, nous construisons d&apos;abord explicitement un homomorphisme
surjectif p du groupe de Witt Wlf(A) des espaces symétriques de longueur finie
sur A dans le groupe de Witt W~(A) des espaces antisymétriques. L&apos;existence de

p nous était garantie par la théorie générale développée dans [BSV] et dans [P3].

Ensuite, nous déterminons le noyau de p - et donc W~(A) - lorsque A est
l&apos;anneau des coordonnées d&apos;une surface affine, réelle, compacte 5. Le résultat est
étonnant (ou, du moins, nous étonne): à un 2-groupe élémentaire près, W~(A)
est un invariant topologique de 5. Le groupe W~(A)/2W~(A) avait déjà été
déterminé dans [P^ et dans [OPS].

Les classes d&apos;isomorphisme des fibres algébriques orientés de rang 2 sur 5
forment un groupe que l&apos;on calcule en termes de W~(A) et de K0(A). Nous
obtenons, par exemple, pour A U[X, Y, Z]/(Z2+ Y2 + Z2- 1)- c&apos;est-à-dire

S S2 - que deux A-modules projectifs de rang 2 sont isomorphes si et seulement
si les fibres vectoriels topologiques correspondants le sont.

Nous remercions Michèle Cipolla de son invitation à l&apos;Université de Palerme,
où ce travail a été rédigé, et son épouse Rita pour son hospitalité. Nous
remercions Margherita Galbiati, Michel Kervaire, Gilbert Levitt et John Morgan
de leurs suggestions et de l&apos;intérêt qu&apos;ils ont montré pour ce travail.

Barge remercie le Fonds National Suisse de lui avoir offert une heureuse
année à l&apos;Université de Genève.

CHAPITRE I

Dans ce chapitre A est un anneau commutatif unitaire noethérien régulier de
dimension 2. Tous les A-modules considérés sont de type fini.

Si P est un A-module projectif, on note P* Hom^ (P, A) son dual. Si M est

un A-module de longueur finie, on note M le A-module Ext^ (M, A).
Soit M un A-module de longueur finie et soit

0-*P2-±Pl-i&gt;Po-+M-&gt;0 (R)

616
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une résolution projective de M. On note D(R) la suite

0-&gt; Po* -^&gt; P* -^ P*-* M-&gt; 0.

C&apos;est une résolution projective de M et, en redualisant, on obtient le diagramme
commutatif ci-dessous où les flèches verticales sont les identifications canoniques.
Elles induisent l&apos;isomorphisme /:Af—»M qu&apos;on vérifie être indépendant de la
résolution projective (R).

(R) 0 &gt; P2 ^-+ Px -^ Po &gt; M &gt; 0

i i i \
D\R) 0 &gt; p** ^+ P** -^ PS* M &gt; 0

L&apos;isomorphisme ; se décrit de la façon suivante. Soit me M. Choisissons

poe Po au-dessus de m. Le &quot;push-out&quot; de D(R) par po^Hom^ (Pq, A) est une
extension de M par A. C&apos;est j{m).

1. Le groupe de Witt antisymétrique de A

Un espace alterné sur A est un couple (P, W) où P est un A-module projectif
et W un isomorphisme antisymétrique (W= -W*°i) de P sur P*.

Un espace alterné (P, W) est neutre s&apos;il existe un sous-module Q facteur direct
de P (et donc projectif) qui est égal à son orthogonal.

Le groupe de Witt antisymétrique de A, que l&apos;on note W~(A), est le quotient
du monoïde (pour la somme orthogonale) engendré par les classes d&apos;isométrie

d&apos;espaces alternés, par le sous-monoïde engendré par celles des neutres. C&apos;est un

groupe abélien. On note [P, W] la classe de (P, W) dans Vf &quot;(A). L&apos;opposé de

[P, W] est [P,-W].
Pour tout A-module projectif P on note H(P) l&apos;espace symétrique (P©

P*, h), où h(p 0/, q ©g) =/(?) -g(p). H est neutre.

2. Le groupe de Witt des A-modules de longueur finie

Soient M un A-module de longueur finie et &lt;f&gt; un isomorphisme symétrique
(0 $ oy) de M sur M.

Un tel couple (M, 0) est neutre s&apos;il existe un sous-module N de M égal à son

orthogonal, c&apos;est-à-dire tel que N &lt;p~l (ker i) où i N-» M est l&apos;inclusion.

Le groupe de Witt des A-modules de longueur finie, que l&apos;on note Wlf(A) est

le quotient du monoïde (pour la somme orthogonale) engendré par les classes

d&apos;isométries des couples (M, &lt;j&gt;), par le sous-monoïde engendré par celles des
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neutres. C&apos;est un groupe abélien. On note [M, 0] la classe de (M, 0) dans

Wlf(A). L&apos;opposé de [M, 0] est [M, -&lt;/&gt;].

Nous rappelons maintenant le calcul de Wlf(A).
Supposons d&apos;abord A local, d&apos;idéal maximal m et de corps résiduel AIm

k(m) k.
Le choix d&apos;un générateur § du groupe Ext^ (k, A) fournit, pour tout ^-espace

vectoriel £, un isomorphisme jç.E*-*Ê qui associe kfeE* le &quot;pull-back&quot; de §

par/.

Proposition 2.1. Uapplication qui, à tout espace symétrique (£, b), associe le

couple (E, j%°b) induit un isomorphisme

De plus, si | c2rj pour un c e k*, i% /n.

Preuve. Voir [P3].

Soit de nouveau A global et soit M l&apos;ensemble de ses idéaux maximaux. La

décomposition d&apos;un module de longueur finie en composantes primaires
(nécessairement orthogonales pour toute forme &lt;f&gt;) fournit un isomorphisme

W*(A)* 0 W&apos;f{Am).

meM

On obtient alors:

Proposition 2.2. Pour chaque meM choisissons un générateur %{m) de

(k(m), A). Uhomomorphisme

est un isomorphisme.

3. Construction de p:W*{A)-*W~(A)

Soient M un &gt;4-module de longueur finie et Q un .A-module projectif.
L&apos;accouplement

U : Ex£ (M, G*) x Q-+ Ex£ (M, A)
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qui consiste à faire le &quot;push-out&quot; induit un isornorphisme

0 :Ext* (M, Q*) 3.Honu (Q, M)

(évident pour Q =A). Soient alors a :P—» M un homomorphisme surjectif d&apos;un

module projectif P sur M et p.Q-*M un homomorphisme quelconque d&apos;un

module projectif Q dans M. On note e(ay P) T&apos;unique&quot; suite exacte

0

qui représente d~l(P) et qui se termine par P ^&gt;M.

Dans la suite, nous utiliserons systématiquement la caractérisation de e(a, P)
par les deux propriétés suivantes:

(i) pour tout q e Qy on a e(a, P)Uq P(q)
(ii) e(pc, P) se termine par P ^&gt;M.

Proposition 3.1. Les propriétés suivantes sont équivalentes:

(i) P est surjectif
(ii) K{a, P) est projectif.

Preuve. Le conoyau de P s&apos;identifie à Ext^ (K(a, jfJ), A).

Nous supposerons dorénavant p surjectif. La suite e(a, P) est alors une
résolution projective de M.

Proposition 3.2. D(e(a, p)) e(P, j°a).

Preuve. La formule e(a, P) U q p(q) montre que D(e(a, p)) se termine par
En utilisant la description de j donnée au début, on voit que, pour tout

Théorème 3.3. Soient &lt;j&gt;&apos;.M-*M un isornorphisme symétrique, P un A-
module projectif et a.P-*M une surjection. Le diagramme

M

j
M
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où )8 (j)°a, se complète en

e(af fi) 0 &gt; P* -U K(a, fi) —U P -1* M &gt; 0

I h II 1-

D(e(ûr, j8)) 0 &gt; P* —U #(&lt;*, 0)* -^ F -^ M &gt; 0

où W est un isomorphisme antisymétrique. De plusy le couple (K(a, fi)y W) est

unique à isométrie près. On note f (a, (p) sa classe d&apos;isométrie.

Lemme 3.4. Pour tout (j):M^&gt;M,

(j&gt;*(D(e(a, &lt;p°a))) e(a, 4&gt;°j°a).

Preuve. On calcule [&lt;t&gt;*(D(e(a, 0°ar)))]Up pour tout peP. Comme le
&quot;pull-back&quot; et le &quot;push-out&quot; commutent, on trouve

&lt;l&gt;*[D(e(a, &lt;t&gt;oa))[jp] (t)*[e(pJoa)Up] (Prop. 3.2)

0*[/ o a(p)] 0 oj o a(p).

D&apos;autre part, il est clair que &lt;l&gt;*(D(e(a, &lt;j)°a))) se termine par oc.

Preuve du Théorème 3.3. Puisque 0 0 °y, il résulte du lemme 3.4 l&apos;existence

du diagramme annoncé, à ceci près que W n&apos;est pas nécessairement

antisymétrique. En redualisant, on s&apos;aperçoit que W + W* à défaut d&apos;être nul est

de la forme —s*°f°s pour un certain/ e Hom^ (P, P*). De plus, ce/symétrique
est, comme W+ W*, pair. Il s&apos;écrit donc g + g*- On remplace alors W par
W + s*°g°s. Ceci montre l&apos;existence du diagramme annoncé.

L&apos;unicité est de la même veine.

Remarque 3.5. Soit / un idéal de hauteur 2 do A. La donnée d&apos;un

0 :A/I-* A/I est alors équivalente au choix d&apos;un générateur 0(1) § de AIL On

pose /(Ç)=/(jt, §) où jî&apos;.A-^AH est la surjection canonique. La construction
dans ce cas est bien connue ([MS], [Pi], [S]).

Théorème 3.6. La correspondance (M, 0) »-&gt;/(&lt;*, 0) pour n&apos;importe quel oc

définit un homomorphisme p : Wlf(A)-+W~(A).

Lemme 3.7. Soient at:Pt-+M, i 1, 2, deux surjections. Alors /(tfi,0)©
/(ûr2, -0) est neutre.
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Preuve. Par (i) et (ii), e(alf &lt;t&gt;o&amp;i)(Be(a2,-&lt;f&gt;°a2)==e(alf--&lt;f&gt;&lt;&gt;

e(a2, &lt;/&gt;o(Xi). On vérifie que le facteur direct K{ax&gt; —&lt;f)oa2) de f(txlf
f(&amp;2&gt; -&lt;t&gt;) est son propre orthogonal.

Lemme 3.8. Soit (M, 0) un couple neutre. Il existe une surjection a:P-*M
telle que f(a, (f&gt;) soit neutre.

Preuve. Soit N un sous-module de M égal à son propre orthogonal.
Recouvrons la suite exacte 0^&gt;N-*M-+M/N-*0 par une suite exacte 0-»
PN—&gt;Pm—^Pm/n^Q de modules projectifs. On obtient le diagramme

~M ^ ^ MIN

Pm/n

N -*¦ * MIN-

1/

On vérifie que le sous-module K(aN, /5N) def(aM, &lt;f&gt;) est une facteur direct égal
à son orthogonal.

Théorème 3.9. Uhomomorphisme p est surjectif.

Preuve. D&apos;après [OPS, Cor. 1.3], tout élément de W~(A) est la classe d&apos;un

(P, W) où P est de rang 2. D&apos;après [J, page 102], il existe une &quot;section

générique&quot;, c&apos;est-à-dire un x e P tel que l&apos;idéal de A I { W(x, y) \ y e P} soit de

hauteur 2. On a alors le diagramme

0

0

au

¦ a/i

0

0

ou t(l) x et s(y)= W(x,y), qui induit un isomorphisme symétrique &lt;j&gt;:AII-

TT. Il est évident que p([A/I, &lt;t&gt;]) [P, V] dans W~(A).

Soit (f, g) une suite régulière de A. Le complexe de Koszul qui lui est associé
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est canoniquement isomorphe à son dual, comme le montre le diagramme
ci-dessous;

0 &gt;A* &gt; A2 &gt; A &gt;A/Af + Ag &gt;0

H i

II *

0 &gt; A* (A2)* &gt; A ÂjAf~+~Ag 0

où y^est la forme hyperbolique. ______
On note &lt;f&gt;ftg l&apos;isomorphisme de A/Af + Ag sur A/Af + Ag induit par W.

Proposition 3.10. p([A/Af+Ag, &lt;t&gt;ffg\) 0.

CHAPITRE II
Dans ce chapitre A est l&apos;anneau des coordonnées d&apos;une surface algébrique X,

affine, réelle et lisse. Soit 5 l&apos;ensemble des points réels et T l&apos;ensemble des points
complexes de X. Nous supposons 5 compact (pour la topologie transcendente).

Il résulte de 2.2 que le groupe Wlf(A) est isomorphe (non canoniquement) à

\(T)

4. Elimination des points complexes

Théorème 4.1. Pour tout m e T on a p(Wlf (Am)) 0.

Lemme 4.2. Soit me T. Il existe dans A une suite régulière (/, g) telle que
A/Af + Ag ait une décomposition primaire Mx © • • • © Mr avec Mx m-primaire de

longueur impaire et M2, Mr de support complexe et de longueur paire.

Preuve de 4.1. Puisque l&apos;homomorphisme de Wlf(Am) sur Z/2Z s&apos;obtient en
associant à [M, (/&gt;] la longueur de M modulo 2, la classe de [A/Af + Ag, &lt;f)fg\

dans Wlf(A) est le générateur de Wlf(Am). Le théorème résulte alors de 3.10.

Preuve de 4.2. On commence par choisir un/ew tel que Spec(A/Af) est

une courbe sans points réels, lisse en m. (Par exemple, en coupant la surface par
une hypersurface sans points réels.)

On applique alors la proposition ci-dessous à B -A/Af

Proposition 4.3. Soit B une M-algèbre affine de dimension 1, sans idéaux
maximaux réels. Soit m un idéal maximal régulier de B. Il existe un g e B tel que
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B/Bg est un B-module de longueur finie avec (B/Bg)m de longueur impaire et
(B/Bg)m&gt; de longueur paire pour tout idéal maximal m&apos;

Preuve. Supposons d&apos;abord que B soit lisse. En ce cas, Spec B est un ouvert
affine d&apos;une courbe réelle projective Y, lisse et sans points réels. D&apos;après [K,
Théorème 10.9], le degré des diviseurs définit un isomorphisme

deg : Pic Y/2 Pic Y-* 2Z/4Z.

Soit P le point de Y correspondant à m et soit Q un point de YXSpecB. La
classe du diviseur P + Q de degré 4 appartient donc à 2 Pic Y. Ceci entraîne que
la classe de m dans Pic B est un carré. Il existe donc un idéal inversible a cr B tel

que ma2 est principal, engendré par un g e B. Il est clair que B/Bg a la propriété
requise.

Soit maintenant B une R-algèbre comme dans l&apos;énoncé. Soit Bq B/md B et
soit C la clôture intégrale de Bo sans son corps total de fractions. On a

C Cx x • • x Cr, où les C, sont des R-algèbres lisses, intègres, de dimension êl
et sans points réels. La démonstration faite dans le cas lisse nous assure de
l&apos;existence d&apos;un idéal inversible a c= C tel que ma2 est principal. La suite de

Mayer-Vietons [B, IX, 5.3], associée au diagramme cartésien

I I
BJc &gt; C/c

(où c est le conducteur de C dans Bo)&gt; fournit une suite exacte

où (C/c)# est le groupe des unités de C/c. Il existe donc un idéal inversible
OqczBq tel que ctoC a. La classe de mal est donc dans l&apos;image de (C/c)\
Comme C n&apos;a pas de points réels, (C/c)* est divisible et la classe de mc^ est un
carré. Il existe donc un idéal inversible ax c Bo tel que mc^ai est principal.
Puisque Pic B Pic Bo, il existe un idéal inversible a2c:B tel que mal est

principal, engendré par un g e B. Si m&apos; ¥*m, on a

où a est un générateur de a2 en m Comme ne divise pas zéro dans Bm&gt;,
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aBm/a2Bm&gt; Bm/aBm&gt; et B/Bg est de longueur paire. Par contre, en m on a

a2Bm =mkBm pour un certain entier k et Bm/gBm Bm/m2kJtlBm est de longueur

impaire.

5. Les points réels

Soit

meS

Chaque Wif(Am) est isomorphe à Z. On note U&lt;zW&amp;(A) l&apos;ensemble des

générateurs de chaque Wlf(Am). D&apos;après la Proposition 2.1, la donnée d&apos;un tel

générateur équivaut à la donnée d&apos;un générateur de A /m aux carrés près.
Soit Q le fibre cotangent à X et a&gt; A2Q. La restriction de w à S est un fibre

vectoriel de rang 1 dont le fibre principal associé de groupe 0(1) \i2 est le
revêtement d&apos;orientation S de 5. D&apos;autre part [AK, page 16], la fibre de co en m
est (o(m) ExtA (A/m, A). Un point de 5 définit donc un générateur aux carrés

près de Ext^ (A/m, A) et donc un élément de U. Ceci nous permet d&apos;identifier U
à 5 et de le munir de la topologie transcendante de 5. On a, alors, le

Théorème 5.1. 5/ u et u&apos; sont dans la même composante connexe de U,

La démonstration de ce théorème utilise le fait suivant.

Proposition 5.2. Pour chaque couple de points um&gt; u&apos;m. de U au-dessus de m&gt;

m e S, distincts et suffisamment proches, il existe f, g eA tels que A/Af + Ag
AIm © Alm&apos; © M où Supp M a T. On peut, de plus, choisir f et g de façon que
tous les points réels de Spec A/Af et de Spec A/Ag soient contenus dans un même

ouvert trivialisant du revêtement 5.

Preuve. On intersecte S par deux petites sphères réelles passant par m et m et
transverses, d&apos;équation / 0 et g 0.

Preuve de 5.1. Il suffit de démontrer que pour um et u&apos;m&gt; suffisamment

proches, on a p(um) p{u&apos;m&gt;). On choisit / et g comme dans la Proposition 5.2.
On a vu (Proposition 3.10) que p(A/Af 4- Ag, &lt;f&gt;ffg) 0. Or

(A/Af +Ag, &lt;t&gt;frg) - (A/m, (&lt;t&gt;ftg)m) © (A/m&apos;, (&lt;t&gt;ftg)m) © (M, 0)
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et donc (Théorème 4.1),

p(A/m, (ct&gt;f,g)m) + p(Alm\ {&lt;t&gt;ftg)m) 0.

Si {&lt;t&gt;f&gt;g)m ex2umy où e ±1 et x e k(m)\ on a {&lt;t&gt;f,g)m&apos; -ey2iC pour un

6. Calcul de W

On note ÂTop(.4) te quotient du monoïde (pour la somme orthogonale)
engendré par les classes d&apos;isométrie d&apos;espaces alternés sur A par le sous-monoïde

engendré par les classes des H(An). C&apos;est un groupe abélien. En effet, soit (P, W)
un espace alterné et Q un module projectif tel que P @ Q An. On a

(p, w) e (p, - v) e //(g)=h(p) e //(g)=H(An).

Il y a une suite exacte évidente

et la suite analogue pour C°°(S)

0.

Le groupe Kç&gt;p(S) est le groupe des fibres vectoriels symplectiques stables de
base S. Tout élément de Kqp(S) est représenté par un unique fibre de rang 2

orienté. La classe d&apos;Euler fournit alors un isomorphisme

e:Ks0p(S)-^H2(SfZ).

Un fibre vectoriel stable sur 5 est déterminé par ses deux premières classes de

Stiefel-Whitney. Plus précisément, on a la suite exacte

0-+H2(S, ZI2)-&gt;K0(S)^H\S, Z/2)-&gt;0.

Lemme 6.1. Uapplication e°H de K0(S) dans H2(S,Z) est nulle sur
H2(S, Z/2) et induit le Bockstein
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Preuve. C&apos;est la formule w2(Ç 0 §*) wx(%)2.

Notons /faigOS, Z/2) l&apos;image de Pic A dans /^(S, Z/2). L&apos;application e induit
alors une application

Nous pouvons maintenant démontrer le théorème principal de cet article.

Théorème 6.2. Uhomomorphisme

t:W-(A)-»H2(S, Z)/p(Hlaïg(S, Z/2)),

obtenu en associant à tout (P, W) sa classe d&apos;Euler, est un isomorphisme.

Avant de démontrer ce théorème, définissons un homomorphisme

Soit um un élément de U S. Posons x(u&gt;») - ef{%) où § est un représentant
de um dans ~AÎm (cf. remarque 3.5). On constate que x(&quot;um) ~ ~x(u,«) et on
étend x à W^(v4) par additivité. Le fibre vectoriel orienté de base S induit par
/(£) est le pull-back du fibre de Hopf sur S2 par l&apos;application de degré 1: S—»S2

obtenue par construction de Thom sur le point m. Il en résulte que si

X{um) - x(uL) les deux éléments de U, um et u&apos;m&gt; sont dans la même composante
connexe de U et, par conséquent, p(um) p(u&apos;m&gt;) en vertue du Théorème 5.1.
Ceci montre que p se factorise à travers x en une surjection

Preuve de 6.2. Démontrons d&apos;abord que t est injectif.

Soit x [P, W] e ker t. Quitte à modifier P par des facteurs hyperboliques, on

peut supposer que P est de rang 2 et e(P, W) 0.

Par le théorème de Bertini [J, p. 102], il existe une section générique de P qui
conduit au diagramme

0 &gt; A* &gt; P &gt; A &gt; A/H m* * °

II h II J^
0 * A* * P* * A * a1Ç\^ * 0

où les m, sont des idéaux maximaux distincts et en nombre fini.
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Ce diagramme induit un isomorphisme (p\AlC\lml-^Alf^\lmly qu&apos;on

décompose en

I l

Admettons la formule

e(^«0 2*[^/*,,fc]- (6.3)

On a

X p\A Ç\mn (j) \ ^p[A/mn ^] EP0^k^]
P S x\Alm,, &lt;p,} /5e(P, V) p(0) 0.

La surjectivité de t résulte de la surjectivité de e qui est assurée par celle,
évidente, de %.

La formule 6.3 est la définition de % s&apos;il y a un seul idéal maximal. Il suffit de
démontrer que

En fait, nous avons plus:

Le diagramme

e(jt, cpojt): o &gt; A* * P

i- i i- i
®e{n,(t&gt;,on): 0 * ®A* *¦ ©P, ^

permet de plonger P isométriquement dans ©Pr On vérifie que
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7. Applications

Proposition 7.1. 5/5 est orientable, on a

W~{A) W-(C°°(5)) H\S, Z).

Proposition 7.2. 5/ 5 est connexe, de caractéristique d&apos;Euler impaire, on a

Preuve. Si co A2£? est le fibre canonique de Xy f}(wx(a))) %(5) mod 2 est

non nul.

Proposition 7.3. ScwM R[x, y, z] R[JT, y, Z]/(*2 + Y2 4- Z2 - 1) /&apos;anneaw

de5 coordonnées de S2. Deux A-modules projectifs de rang 2 sont isomorphes
si et seulement si les fibres vectoriels sur S2 qui leur sont associés sont isomorphes.

Preuve. Soient Px et P2 deux modules projectifs comme dans l&apos;énoncé. Puisque
Pic A 0, on peut choisir sur Px et P2 deux formes antisymétriques non dégénérées W1

et W2. Quitte à changer le signe de W2 on peut supposer que e(Pt, Wi) e(P2, W2) et
donc (Proposition 7.1) que [Pu Wx] [P2, W2] dans W~\A). Or,

W-(A) Ksop(A)/H(Ko(A)).

Nous allons montrer que H(K0(A)) 0. (Ce fait avait été remarqué pendant la
rédaction de [OPS]). On sait que K0(A) est un groupe cyclique (d&apos;ordre 2) engendré

par la classe de X A4jz où k est la matrice idempotente [F]:

On constate que

ex (1 - z, -x, -y, 0, -y, 0, 1 -h z, x)
et

e2 (0, y, -xy z - 1, -x, 1 + z, 0, -y)
sont deux éléments unimodulaires orthogonaux de H(3€). On a donc H(W)
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