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Fibrés algébriques sur une surface réelle

JEAN BARGE et MANUEL OQJANGUREN

Soit A un anneau régulier de dimension 2.

Dans ce travail, nous construisons d’abord explicitement un homomorphisme
surjectif p du groupe de Witt W¥(A) des espaces symétriques de longueur finie
sur A dans le groupe de Witt W™(A) des espaces antisymétriques. L’existence de
p nous était garantie par la théorie générale développée dans [BSV] et dans [P;].
Ensuite, nous déterminons le noyau de p—et donc W™ (A)-lorsque A est
I’anneau des coordonnées d’une surface affine, réelle, compacte S. Le résultat est
étonnant (ou, du moins, nous étonne): a un 2-groupe élémentaire prés, W~ (A)
est un invariant topologique de S. Le groupe W~ (A)/2W~(A) avait déja été
déterminé dans [P,] et dans [OPS].

Les classes d’isomorphisme des fibrés algébriques orientés de rang 2 sur S
forment un groupe que l'on calcule en termes de W™ (A) et de Ky(A). Nous
obtenons, par exemple, pour A=R[X,Y, Z]/(X?+ Y*+ Z*—1) - C’est-a-dire
§ = §? - que deux A-modules projectifs de rang 2 sont isomorphes si et seulement
si les fibrés vectoriels topologiques correspondants le sont.

Nous remercions Michele Cipolla de son invitation & I'Université de Palerme,
ou ce travail a été rédigé, et son épouse Rita pour son hospitalité. Nous
remercions Margherita Galbiati, Michel Kervaire, Gilbert Levitt et John Morgan
de leurs suggestions et de I'intérét qu’ils ont montré pour ce travail.

Barge remercie le Fonds National Suisse de lui avoir offert une heureuse
année a 'Université de Genéve.

CHAPITRE 1

Dans ce chapitre A est un anneau commutatif unitaire noethérien régulier de
dimension 2. Tous les A-modules considérés sont de type fini.

Si P est un A-module projectif, on note P* = Hom, (P, A) son dual. Si M est
un A-module de longueur finie, on note M le A-module Ext3 (M, A).

Soit M un A-module de longueur finie et soit
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une résolution projective de M. On note D(R) la suite

0— P¥—=5 p* s P M —0.

C’est une résolution projective de M et, en redualisant, on obtient le diagramme
commutatif ci-dessous ot les fléches vertlcales sont les identifications canoniques.
Elles induisent I'isomorphisme j: M —>M qu’'on vérifie étre indépendant de la
résolution projective (R).

(R) 0— P, > P, — Ph— M—0
1 -.1 .-1 L
A 4

D*(R) 0——>P;‘*:£—'+Pi"*_—s.:>P3*—->A2——-—->O

L’isomorphisme j se décrit de la fagon suivante. Soit m € M. Choisissons
Do € Py au-dessus de m. Le “push-out” de D(R) par poe Hom, (Pg, A) est une
extension de M par A. Cest j(m).

1. Le groupe de Witt antisymétrique de A

Un espace alterné sur A est un couple (P, ¥) ou P est un A-module projectif
et ¥ un isomorphisme antisymétrique (¥ = —W*¢j) de P sur P*.

Un espace alterné (P, ¥) est neutre s’il existe un sous-module Q facteur direct
de P (et donc projectif) qui est égal & son orthogonal.

Le groupe de Witt antisymétrique de A, que I'on note W™ (A), est le quotient
du monoide (pour la somme orthogonale) engendré par les classes d’isométrie
d’espaces alternés, par le sous-monoide engendré par celles des neutres. C’est un
groupe abélien. On note [P, ¥] la classe de (P, ¥) dans W™ (A). L’opposé de
[P, W] est [P, — W]

Pour tout A-module projectif P on note H(P) I’espace symétrique (P D
P*, h),ou h(p ®f, q Dg) =f(q) —g(p). 1l est neutre.

2. Le groupe de Witt des A-modules de longueur finie

Soient M un A-module de longueur finie et ¢ un isomorphisme symétrique
(¢ = poj) de M sur M.

Un tel couple (M, ¢) est neutre s’il existe un sous-module N de M égal a son
orthogonal, c’est-a-dire tel que N = ¢~ (ker i) ot i = N— M est l'inclusion.

Le groupe de Witt des A-modules de longueur finie, que 'on note W¥(4) est
le quotient du monoide (pour la somme orthogonale) engendré par les classes
d’isométries des couples (M, ¢), par le sous-monoide engendré par celles des
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neutres. C’est un groupe abélien. On note [M, ¢] la classe de (M, ¢) dans
WY (A). L'opposé de [M, ¢] est [M, —¢].

Nous rappelons maintenant le calcul de W% (A).

Supposons d’abord A local, d’idéal maximal » et de corps résiduel A/m =
k(m) = k.

Le choix d’un générateur & du groupe Ext} (k, A) fournit, pour tout k-espace
vectoriel E, un isomorphisme j. : E*— E qui associe a f € E* le “pull-back” de &
par f.

ProprosITION 2.1. L’application qui, a tout espace symétrique (E, b), associe le
couple (E, je °b) induit un isomorphisme

is : W(k) 3 WY (A).

De plus, si & =c*n pour un c e k*, iz =i,.
Preuve. Voir [P3].

Soit de nouveau A global et soit # 'ensemble de ses idéaux maximaux. La
décomposition d’'un module de longueur finie en composantes primaires
(nécessairement orthogonales pour toute forme ¢) fournit un isomorphisme

w¥ )= © WY¥(A,).

meM

On obtient alors:

ProproSITION 2.2. Pour chaque » € M choisissons un générateur E(m») de
Ext% (k(m), A). L’homomorphisme

D igy: © W (k(n))— W (A)

meM

est un isomorphisme.

3. Construction de p: W7 (A)— W~ (A)

Soient M un A-module de longueur finie et Q un A-module projectif.
L’accouplement

U :Exti (M, Q*) x Q— Ext] (M, A)
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qui consiste a faire le “push-out’ induit un isomorphisme

6 :Exty (M, 0*) 3 Hom, (Q, M)

(évident pour Q = A). Soient alors a: P— M un homomorphisme surjectif d’un
module projectif P sur M et 8:Q— M un homomorphisme quelconque d’un
module projectif Q dans M. On note e(a, B) I'“unique” suite exacte

0— Q0* > K(a, )—>P->M—0

qui représente 0~'(B) et qui se termine par P > M.
Dans la suite, nous utiliserons systématiquement la caractérisation de e(a, )
par les deux propriétés suivantes:

(i) pour tout g € Q, on ae(a, B)Uq =B(q)
(ii) e(a, B) se termine par P - M.

PrOPOSITION 3.1. Les propriétés suivantes sont équivalentes:
(i) B est surjectif
(i) K(«a, B) est projectif.

Preuve. Le conoyau de B s’identifie a Ext} (K(a, B), A).

Nous supposerons dorénavant f surjectif. La suite e(a, B) est alors une
résolution projective de M.

ProposITION 3.2. D(e(a, B)) =e(B, j° a).

Preuve. La formule e(a, f) U g = B(q) montre que D(e(a, B)) se termine par
Q £ M. En utilisant la description de j donnée au début, on voit que, pour tout

p€P, j(x(p))=D(e(a, B)) Up.

THEOREME 3.3. Soient ¢ :M— M un isomorphisme symétriqgue, P un A-
module projectif et o : P— M une surjection. Le diagramme

l1')-“—>

M
1¢
P-4HM
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ou f§ = ¢ o «, se compléte en

e(a, B) 0 >P* 5 K(a, B) —> P25 M— 0

ll A

D(e(a, B)) 0 —> P* =5 K(a, f)* > P> M —0

ot ¥ est un isomorphisme antisymétrique. De plus, le couple (K(a, B), W) est
unique a isométrie prés. On note f(«a, ¢) sa classe d’isométrie.

LemME 3.4. Pour tout ¢ :M— M,

¢*(D(e(w, o)) =e(w, gpojoa).

Preuve. On calcule [¢p*(D(e(a, ¢°a)))]Up pour tout p e P. Comme le
“pull-back” et le “push-out’’ commutent, on trouve

¢*[D(e(a, poa))Up]=¢*[e(B,j°a)Up] (Prop. 3.2)
= ¢*[joa(p)]=ejoa(p).

D’autre part, il est clair que ¢*(D(e(a, ¢ °«))) se termine par a.

Preuve du Théoréme 3.3. Puisque ¢ = ¢ oj, il résulte du lemme 3.4 ’existence
du diagramme annoncé, A ceci prés que W n’est pas nécessairement
antisymétrique. En redualisant, on s’apergoit que ¥ + W* a défaut d’étre nul est
de la forme —s*of os pour un certain f € Hom, (P, P*). De plus, ce f symétrique
est, comme ¥+ W* pair. Il s’écrit donc g+g*. On remplace alors ¥ par
Y + s*ogos. Ceci montre I'existence du diagramme annoncé.

L’unicité est de la méme veine.

Remarque 3.5. Soit I un idéal de hauteur 2 de A. La donnée d’un

¢:A/l — A/T est alors équivalente au choix d’un générateur ¢(1) = § de Z/\I On
pose f(§)=f(x, §) ot m:A— A/I est la surjection canonique. La construction
dans ce cas est bien connue ([MS], [P,], [S])-

THEOREME 3.6. La correspondance (M, ¢)— f(a, ¢) pour n’importe quel «
définit un homomorphisme p: WY (A)— W~ (A).

LemME 3.7. Soient «;:P,— M, i=1,2, deux surjections. Alors f(a,, ¢) D
f(az, —¢) est neutre.
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Preuve. Par (i) et (ii), e(a;, poa,) De(ay, —poa;)=e(a;, —Pca,)D
e(a,, poa;). On vérifie que le facteur direct K(a,, —¢oa,) de f(ay, ¢)D
f(a,, —¢) est son propre orthogonal.

LemMme 3.8. Soit (M, ¢) un couple neutre. Il existe une surjection a:P—>M
telle que f(a, @) soit neutre.

Preuve. Soit N un sous-module de M égal a son propre orthogonal.

Recouvrons la suite exacte 0— N—->M—> M/N—0 par une suite exacte 0—
Py— Py, — Pyn— 0 de modules projectifs. On obtient le diagramme

0 — P, — PM__"PM/N_—*O

\ | a'MIN
- M /IN—0
ﬁM/N / B /

0-—-)1?\ ME

On vérifie que le sous-module K(ay, By) de f(an, @) est une facteur direct égal
a son orthogonal.

THEOREME 3.9. L’homomorphisme p est surjectif.

Preuve. D’aprés [OPS, Cor. 1.3], tout élément de W™ (A) est la classe d’'un
(P, W) ol P est de rang 2. D’apres [J, page 102], il existe une ‘“‘section
générique”, C’est-a-dire un x € P tel que I'idéal de A I ={¥(x, y) |y € P} soit de
hauteur 2. On a alors le diagramme

0 > A* L5 P25 A—5 A/l — 0

N

0 —A* =5 pr5 4 —> A/ — 0

od t(1)=x et s(y) = ¥(x, y), qui induit un isomorphisme symétrique ¢:A/[—
A/I 1l est évident que p([A/I, ¢]) =[P, ¥] dans W~ (A).

Soit (f, g) une suite réguliere de A. Le complexe de Koszul qui lui est associé
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est canoniquement isomorphe a son dual, comme le montre le diagramme
ci-dessous;

0— A*—> A2 — A — A/Af+Ag — 0

o i

0 —> A*—> (A)* —> A —> AJAf + Ag —> O

ou ¥ est la forme hyperbolique.
On note ¢y, I'isomorphisme de A/Af + Ag sur A/Af + Ag induit par V.

ProrosiTioN 3.10. p([A/Af + Ag, ¢r.]) =0.

CHAPITRE 11

Dans ce chapitre A est 'anneau des coordonnées d’une surface algébrique X,
affine, réelle et lisse. Soit S I’ensemble des points réels et T ’ensemble des points
complexes de X. Nous supposons S compact (pour la topologie transcendente).

1l résulte de 2.2 que le groupe W¥(A) est isomorphe (non canoniquement) a
7% @ (Z/2)(T).

4. Elimination des points complexes
THEOREME 4.1. Pour tout m € T on a p(W¥(A,,)) =0.

LEMME 4.2. Soit m € T. Il existe dans A une suite réguliere (f, g) telle que
A/Af + Ag ait une décomposition primaire M, ® - - - ® M, avec M, m-primaire de
longueur impaire et M,, . . . , M, de support complexe et de longueur paire.

Preuve de 4.1. Puisque ’homomorphisme de W¥(A,,) sur Z/2Z s’obtient en
associant a [M, ¢] la longueur de M modulo 2, la classe de [A/Af + Ag, ¢r,]
dans WY (A) est le générateur de W¥(A,,). Le théoréme résulte alors de 3.10.

Preuve de 4.2. On commence par choisir un f e » tel que Spec (A/Af) est
une courbe sans points réels, lisse en ». (Par exemple, en coupant la surface par
une hypersurface sans points réels.)

On applique alors la proposition ci-dessous a B = A/Af.

PrOPOSITION 4.3. Soit B une R-algébre affine de dimension 1, sans idéaux
maximaux réels. Soit m un idéal maximal régulier de B. Il existe un g € B tel que
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B/Bg est un B-module de longueur finie avec (B/Bg),, de longueur impaire et
(B/Bg),, de longueur paire pour tout idéal maximal m' % m.

Preuve. Supposons d’abord que B soit lisse. En ce cas, Spec B est un ouvert
affine d’une courbe réelle projective Y, lisse et sans points réels. D’aprés (K,
Théoréme 10.9], le degré des diviseurs définit un isomorphisme

deg:Pic Y/2 PicY—>27/47.

Soit P le point de Y correspondant a » et soit Q un point de Y \Spec B. La
classe du diviseur P + Q de degré 4 appartient donc a 2 Pic Y. Ceci entraine que
la classe de » dans Pic B est un carré. 1l existe donc un idéal inversible a = B tel
que ma® est principal, engendré par un g € B. 1l est clair que B/Bg a la propriété
requise.

Soit maintenant B une R-algebre comme dans ’énoncé. Soit B, = B/rad B et
soit C la cloture intégrale de B, sans son corps total de fractions. On a
C=C,x---XC,, oules C,; sont des R-algebres lisses, intégres, de dimension =1
et sans points réels. La démonstration faite dans le cas lisse nous assure de
I’existence d’un idéal inversible ac C tel que »a® est principal. La suite de
Mayer-Vietoris [B, IX, 5.3], associée au diagramme cartésien

By, —> C

|

B()/C B C/C

(ou ¢ est le conducteur de C dans B,), fournit une suite exacte
(C/c¢)*—>Pic By— PicC—0

ou (C/c)" est le groupe des unités de C/c. Il existe donc un idéal inversible
apc B, tel que ayC=a. La classe de »a} est donc dans I'image de (C/c)".
Comme C n’a pas de points réels, (C/c)" est divisible et la classe de »a3 est un
carré. Il existe donc un idéal inversible a, c B, tel que maja? est principal.
Puisque Pic B =Pic By, il existe un idéal inversible a,c B tel que ma3 est
principal, engendré par un g € B. Si»' #m, on a

(B/Bg),- = (B/a’B),,

ou a est un générateur de a, en »’'. Comme a ne divise pas zéro dans B,,.,
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aB,,/a*B,, = B,, /aB,, et B/Bg est de longueur paire. Par contre, en » on a
a,B,, =m*B,, pour un certain entier k et B,,/gB, = B,,/m***'B,, est de longueur
impaire.

S. Les points réels
Soit

W) = D w¥(4,).

meS

Chaque WY¥(A,,) est isomorphe a Z. On note Uc W{{(A) I’ensemble des
générateurs de chaque W¥(A,,). D’aprés la Proposition 2.1, la donnée d’un tel
générateur équivaut a la donnée d’un générateur de A/m aux carrés pres.

Soit € le fibré cotangent a X et w = A%Q. La restriction de w a $ est un fibré
vectoriel de rang 1 dont le fibré principal associé de groupe O(1) = pu, est le
revétement d’orientation § de S. D’autre part [AK, page 16], la fibre de w en
est w(m)=Ext3 (A/m, A). Un point de § définit donc un générateur aux carrés
prés de Ext (A/m, A) et donc un élément de U. Ceci nous permet d’identifier U
a S et de le munir de la topologie transcendante de S. On a, alors, le

THEOREME 5.1. Si u et u' sont dans la méme composante connexe de U,
p(u) =p(u’).

La démonstration de ce théoréme utilise le fait suivant.

PROPOSITION 5.2. Pour chaque couple de points u,,, u,,, de U au-dessus de m,
m' €S, distincts et suffisamment proches, il existe f, g € A tels que A/Af + Ag =
Alm D Alm' ® M o Supp M = T. On peut, de plus, choisir f et g de fagon que
tous les points réels de Spec A/Af et de Spec A/Ag soient contenus dans un méme
ouvert trivialisant du revétement S.

Preuve. On intersecte S par deux petites spheres réelles passant par » et »' et
transverses, d’équation f =0 et g =0.

Preuve de 5.1. 1l suffit de démontrer que pour u, et u,, suffisamment

proches, on a p(u,,) = p(«,,). On choisit f et g comme dans la Proposition 5.2.
On a vu (Proposition 3.10) que p(A/Af + Ag, ¢;,)=0. Or

(A/Af + Ag, br5) =(Alm, ($1,0)n) D (A/m', (P1,6)m) © (M, ¢)
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et donc (Théoréme 4.1),

P(Alm, (Pre)m) + P(AIm', (P1e)m) =0.

Si (¢re)m = €x°u,,, o0 €= 11 et x €k()’, on a (¢s,),. = —€y’u,, pour un
y €k(m')’, dou p(u,) = p(u,.).

6. Calcul de W~ (A)

On note K3?(A) le quotient du monoide (pour la somme orthogonale)
engendré par les classes d’isométrie d’espaces alternés sur A par le sous-monoide
engendré par les classes des H(A™). C’est un groupe abélien. En effet, soit (P, ¥)
un espace alterné et Q un module projectif tel que PO Q = A". On a

(P, ¥)® (P, -¥)®H(Q)=H(P)® H(Q) = H(A").

Il y a une suite exacte évidente

Ko(A) B KP(A)—> W~ (A)—0
et la suite analogue pour C*(S)

Ko(S) B K3P(S)—> W(C™(5))—0.

Le groupe K3?(S) est le groupe des fibrés vectoriels symplectiques stables de
base S. Tout élément de KP(S) est représenté par un unique fibré de rang 2
orienté. La classe d’Euler fournit alors un isomorphisme

e:K3P(S)— H*(S, 2).

Un fibré vectoriel stable sur § est déterminé par ses deux premicres classes de
Stiefel-Whitney. Plus précisément, on a la suite exacte

0— HX(S, Z/2)— Ko(S) — H'(S, Z/2)— 0.

LEMME 6.1. L’application e~H de K(S) dans H*(S,Z) est nulle sur
H*(S, Z/2) et induit le Bockstein

B:HY(S, Z/2)— HX(S, 2).
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Preuve. C’est la formule w,(€ @ &*) = w,(§)~

Notons H},,(S, Z/2) I'image de PicA dans H'(S, Z/2). L’application e induit
alors une application

T: W (A)— HX(S, Z)/ B(H (S, Z/2)).

Nous pouvons maintenant démontrer le théoréme principal de cet article.

THEOREME 6.2. L’homomorphisme

7: W (A)— H*(S, Z)/ B(Hae(S, Z/2)),
obtenu en associant a tout (P, W) sa classe d’Euler, est un isomorphisme.

Avant de démontrer ce théoréme, définissons un homomorphisme
x:Wi(A)— H(S, Z).

Soit u,, un élément de U = S. Posons x(u,,) = ef (€) o & est un représentant

de u,, dans A/m (cf. remarque 3.5). On constate que y(—u, )= —x(u,) et on
étend x 2 Wi(A) par additivité. Le fibré vectoriel orienté de base S induit par
f(&) est le pull-back du fibré de Hopf sur S? par l’application de degré 1: S— §?
obtenue par construction de Thom sur le point ». Il en résulte que si
x(u,,) = x(u,,) les deux éléments de U, u,, et u,,- sont dans la méme composante
connexe de U et, par conséquent, p(u,) = p(u,,) en vertue du Théoréeme 5.1.
Ceci montre que p se factorise a travers y en une surjection

p:HXS, Z)—> W~ (A).
Preuve de 6.2. Démontrons d’abord que t est injectif.

Soit x =[P, ¥] € ker 7. Quitte a modifier P par des facteurs hyperboliques, on
peut supposer que P est de rang 2 et e(P, ¥) =0.
 Par le théoréme de Bertini [J, p. 102], il existe une section générique de P qui
conduit au diagramme

0— A*— P —> A —> A/\mi— 0

I

T —

0 — A*—> P*— A —> A/(1m; —> 0

ou les »; sont des idéaux maximaux distincts et en nombre fini.
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. . . . . /\
Ce diagramme induit un isomorphisme ¢:A/();m;—>A/( ;i m;, qu’on
décompose en

@ ¢i:$ A/m,—*@ m.

Admettons la formule

e(P, W)= 3 x[Alm;, )] (6:3)
On a

X = p[A/Omn ¢] = 2 p[A/”’i’ ¢1] = 2 [-)°X[A/m,-, ¢l]

=p 2, x[Almi, ¢;] = pe(P, ¥) = p(0) =0.

La surjectivité de 7 résulte de la surjectivité de e qui est assurée par celle,
évidente, de y.

La formule 6.3 est la définition de yx s’il y a un seul idéal maximal. Il suffit de
démontrer que

e(f(¢(1))) = 2 e(f(¢:i(1))).

En fait, nous avons plus:

EP f(9:.(1)) =f(¢(1)) ® H(A™).
Le diagramme

e(n, pom): 0 — A* — P — A — A/\m; — 0

S

De(x, pom): 0 —> DA* — OP, —> DA 25 GPA/m, — 0

permet de plonger P isométriquement dans & P.. On vérifie que

® f(¢.(1)) =f(¢(1)) ® H(Coker A).
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7. Applications
ProrosITION 7.1. Si S est orientable, on a
W~ (A) =W~ (C=(S)) = H*(S, 2).
PROPOSITION 7.2. Si S est connexe, de caractéristique d’Euler impaire, on a
W= (A)=0.

Preuve. Si o = A*Q est le fibré canonique de X, B(wi(w)) = x(S) mod 2 est
non nul.

PropPOSITION 7.3. Soit A =R[x, y, z]=R[X, Y, Z]/(X*+ Y*+ Z? - 1) 'anneau
des coordonnées de S*. Deux A-modules projectifs de rang 2 sont isomorphes
si et seulement si les fibrés vectoriels sur S* qui leur sont associés sont isomorphes.

Preuve. Soient P, et P, deux modules projectifs comme dans I’énoncé. Puisque
Pic A = 0, on peut choisir sur P, et P, deux formes antisymétriques non dégénérées ¥,
et ¥,. Quitte a changer le signe de ¥, on peut supposer que e(P,, ¥,) = e(P,, ¥,) et
donc (Proposition 7.1) que [P, ¥,] =[P, ¥,] dans W~'(A). Or,

W™ (A) = KFP(A)/H(Ko(A)).
Nous allons montrer que H(Ky(A)) =0. (Ce fait avait été remarqué pendant la
rédaction de [OPS]). On sait que K(A) est un groupe cyclique (d’ordre 2) engendré

par la classe de # = A*r ol & est la matrice idempotente [F]:

1-z —-x =y 0

-x 14+z 0 -y
-y 0 1+z «x
0 -y x 1-x

On constate que

e;=(1-2z,—x,-y,0,-v,0,1+ 2z, x)
et
e;=0,y, —x,z-1, -x,1+2,0, —y)
sont deux éléments unimodulaires orthogonaux de H(). Onadonc H(¥) = H(A?).
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