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Power series with integer coefficients in several variables*

E. J. STRAUBE

Abstract. A classical theorem of Borel-Pélya, which concerns rationality of an analytic function
whose Taylor expansion at a point has integer coefficients, is generalized to several variables.

1. Introduction and main results

A classical theorem of Pélya ([7], [8], see also [3], chapter VII), which
generalizes an earlier result of Borel ([1]), may be stated as follows. A function f,
analytic in the domain C*\E, whose Taylor coefficients at « are integers, must be
rational if the CebySev constant of E is less than 1. Here, E is a compact subset of
C (such that C\E is connected) and C* is the Riemann sphere. It is the purpose of
this paper to generalize this result to power series in several variables. As we
discuss the main results, we will also point out earlier work dealing with this
problem ([5], [6]). Besides their intrinsic interest, results concerning power series
with integer coefficients play a role in the theory of arithmetic functions as well
(see for example [12]).

We first introduce some notation. For z=(z,...,2,)eC” and a=
(a1, ..., a,)€Z" we set z¥=2z{"---z;» and |a|:=F7; a; (so |a| may be
negative). We order the set N" as follows: o< if |a|<|B| or |a|=|B| and
(ay, ..., @,) comes before (B, ..., B,) in the lexicographic order.

A polynomial in'n (complex) variables will be called monic, if has the form

P(z)=z"+ >,  agz’ (1)

that is, if the leading coefficient is 1.
Let K be a compact subset of C". Following [S], [11], we consider a particular
Cebyéev constant associated to K, namely

" (K):= lim sup (M) ve! (2)

* This research partially supported by an Indiana University Summer Faculty Fellowship.
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Power series in several variables 603

Here, a’ denotes the j-th element of N” (in the order defined above), and for y € N”

M, = inf {Elelg {{IP@I}/P(2)=z"+ D, aﬁz"} 3)

Remarks. (1) It can be seen from simple examples that in contrast to the
one-dimensional case, the limsup in (2) is not a limit. However, if certain
restrictions are imposed on the sequence {a’}, the limit will exist ([11]).

(2) If K=K;x ---xK,, where the K; are compact sets in C, then 7%(K) =
t*(Kyx - - - xK,) = max, =, {1(K;)}. Here, 7(K;) is the classical Cebysev constant
of the compact set K; in C. If we denote by IT; the projection of C" onto the j-th
coordinate axis, we have therefore in particular the estimate

t(K) = max {r(IT(K))} (4)

1=<j=n

(since K < IT(K)x - - - xII(K)).

Finally, we make the convention that the homological condition which
appears in the theorems below is to be understood in the sense of (C”—)
differentiable homology.

THEOREM 1. Let Q* be a domain in (C*)" which contains the point
(o,...,o). Let Q:=Q*NC". Suppose there is an n-cycle W in Q with
17(W) <1, and such that for all k, 1 <k =n, W is homologous in Q\U;‘;;‘ {z;=0}
to tori {|zjl=R;j|1=<j=n} contained in arbitrarily small neighborhoods of

(%, ..., ). Then any function analytic in Q, with integer Taylor coefficients at
(o, ..., ®), is a rational function
P
f= o’

moreover, the polynomials P and Q can be taken to have integer coefficients, with
Q monic.

Remarks. (1) “Taylor coefficients at (e, ..., ®)” refers to the coefficients of
the expansion of f in powers of (1/z, ..., 1/z,). Though formally a Laurent
expansion, it is a Taylor expansion in terms of the standard local coordinates at
(,...,).

(2) It should be noted that in the one-dimensional case, the condition in
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Theorem 1 is just the one in the classical Borel-P6lya Theorem: in this case the
homological condition just says that W must be homologous to circles {|z| = R}
(for arbitrarily large R) in L. The existence of such a W is easily seen to be
equivalent to the singular set of the functions having Cebysev constant (=
transfinite diameter ([3])) less than one.

In [5], the problem of finding sufficient conditions on a domain which
guarantee that functions which are analytic in the domain and whose Taylor
coefficients at a point are integers, must be rational, was formulated for domains
in C". Via the inversion (z,,...,2z,)—(1/z,...,1/z,), this reduces to the
situation considered in Theorem 1 (assuming that the point where the Taylor
expansion is considered is (0, ...,0)). However, the situation is more special:
since the domain is in C” (rather than (C*)"), its image under the inversion does
not intersect the coordinate hyperplanes at (0,...,0), so that they are
automatically excluded. An immediate corollary of Theorem 1 is therefore:

THEOREM 1'. Let 2 be a domain in C" containing (0, . . . , 0). Suppose there
is an n-cycle W with t*({(1/z,, ...,1/z,) | (2, ..., z,) e W}) <1 and such that
W is homologous in Q\\ -, {z;=0} to tori {|z]|=r;|1=j=n} contained in
arbitrarily small neighborhoods of (0, . . ., 0). Then any function f analytic in £2,

with integer Taylor coefficients at (0, . . ., 0), is rational
P
f==;
Q

moreover, the polynomials P and Q can be taken to have integer coefficients.

Remark. The cycle W, together with the condition on the Cebysev constant of
the inverted cycle, first appears in Lelong’s paper [5]. In that paper, a weaker
version of Theorem 1’ was proved for the case of C* somewhat restrictive
additional conditions were imposed on W (condition c) in Théoréme 1 in [5]). But
it was indicated that the theorem might be true without these restrictions.

1t is instructive to elaborate a little on the conditions on W. First note that
both the conditions 77(W)<1 and the homological condition taken by them-
selves are trivial; it is only their combination that restricts £2*. In some sense, Q*
must be big enough. The requirement that W be homologous in &2\UJ; {z; = 0}
to big tori (for all k) precisely serves the purpose to make the topology of the
domain where homology takes place sufficiently non-trivial (at the level of n-th

homology), so that the combination of conditions on W becomes effective. For
illustration, consider the following simple
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EXAMPLE. Let Q*:={z € (C*)*/|z;|>2}. Then Q= {z € C*/|zy] >2}. The
tori {|z;| = R;} are null-homologous in &, if R, > 2. Thus any 2-torus W, centered
at some point of Q, and with small 2-radius, satisfies t"(W)<1 and is
homologous to {|zj| =R;} in = Q\{z; =0} (since W is also null-homologous).
Thus all conditions are satisfied except the one requiring homology in £\{z, = 0}
(i.e. k =2). This suffices to make the theorem fail: the conclusion of Theorem 1
does not hold for 2*, compare Proposition 3 below (take as counterexample a
lacunary power series in 1/z;).

When verifying the condition T5(W)<1, one can sometimes verify more,
namely max,<;<, {t(II;(W))} <1. In this case, a stronger conclusion is available:

THEOREM 2. Assumptions as in Theorem 1, but with the condition
7 (W) <1 replaced by max, <, {t(II(W))} <1. Then f is rational of the form

_ P(zy, ..., z2,) _
s ) 01(z1) * * * Qu(2n)’ ©)

the Q; (1 =<j =<n) are monic polynomials of one variable only and Q; as well as P
have integer coefficients.

Remarks. (1) Theorem 2 was proved in [6] in the case where f is analytic in
(C*\Ky)x - - - x(C*\K,)), and ©(K;)<1, 1=j=n. This is a special case of our
result: if 7(K;)<1, then 7(K;U {0})<1. Thus there are 1l-cycles W, with
7(W,) <1 and such that W, is homologous in C\(K; U {0}) to circles {|z| = R} for
arbitrarily large R. The assumptions of Theorem 2 are satisfied with W:=
Wix - - - xW,, in view of (4).

(2) As for Theorem 1, there is a version (i.e. Theorem 2') of Theorem 2 for
domains in C”, which is analogous to Theorem 1'. As in Theorem 2 the
conclusion is that the denominator is a product of polynomials in one variable.

By making suitable coordinate changes, or by scrutinizing the proofs
(especially for Theorem 2), one may obtain theorems when unions of hyperplanes
passing through certain other points than (0,...,0) are removed in the
formulation of the homological condition on W. More generally, it might be
interesting to know what sets could serve the same purpose. We do not pursue
this here. Rather, we would now like to point out some generalizations of the
previous theorems along the classical lines. Just as in the classical case ([7] p. 27,
[8]), the assumption that the Taylor coefficients of f are integers may be relaxed.
Let 6 be a solution of z>+pz +q =0, p and q € Z, p>* — 49 <0, and denote by
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Z(0) the subring of C generated by Z and 6. Then it suffices to assume that the
coefficients are in Z(0). The polynomials involved will then also have coefficients
in Z(6). This generalization follows by inspection of the proofs below (sections 2
and 3). Martineau ([6]) has pointed out that the classical proofs actually yield a
stronger result than is commonly stated: instead of one function f, one may
consider a normal family {f,}. Then there exist P, and Q, all with Z(6)
coefficients, such that f, = P,/Q. This generalization also holds for Theorems
1(1’), and 2(2'): in both cases the denominator has the indicated form, but may
be taken independent of o. Note that since all f, are analytic near (e, . . ., ®), the
degree of P, is less than that of Q (or Q, - - - Q,); this gives in particular a bound
on the degree of P, which is independent of 0. Again, the proof is by inspection
of the proofs below; if (f,) is a normal family, all the estimates in the proofs will
be uniform in o.

In the case of one variable, P6lya ([7]) has shown that the conditions in
Theorem 1 are not only sufficient, but also necessary, at least for simply
connected (in C*) Q. Let Q*=Qix---xQ2,;, ©eQ'cC*, Q' simply con-
nected, for 1 =j <n. Then, by Pélya’s result, for the conclusion of Theorem 1 to
hold, it is necessary that 7(C*\Q}") <1, 1=j = n (otherwise consider a function of
the variable z; only to get a contradiction). Since then also T((C*\Q/)U {0}) <1,
there are cycles W, with ©(W;)<1, W, homologous in £/\{x, 0} to circles
{|z]| = R}, for arbitrarily large R. Thus £2* must indeed contain a cycle W as in
Theorem 1: W:=W,x - - - xW,. Hence in this case the conditions in Theorem 1
are also necessary. Another class of domains where Theorem 1 is sharp is

provided by the following proposition, proved in [5] (for C?, but the arguments
carry over to C").

PROPOSITION 3 ([5]). Let Q be a Reinhardt domain of holomorphy
containing (%, . . ., ®©) in (C*)". If Q contains the n-torus {z € C"\ |zj|=1,1=j =<
n}, then every function analytic in €, with integer Taylor coefficients at
(o, ..., ) is a polynomial in (1/z,, . .., 1/z,). If Q does not contain this n-torus,
there exist functions analytic in 2, with integer coefficients at (», . .., ©), which
are not rational.

Remarks. (1) In the question of necessity it is reasonable to assume that the
domain is a domain of holomorphy.

(2) Note that the conclusion that f is a polynomial in (1/z, ..., 1/z,) is
compatible with the conclusion of Theorem 2, which in this case applies.

(3) Actually, the non-rational functions constructed in [5] in the case where
does not contain the n-torus of polyradius 1 have a stronger property: they cannot
be continued beyond the Reinhardt domain of convergence of the series
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expansion about (w,...,x). This follows from a generalization of Ostrowski’s
gap theorem to several variables, due to Siciak, see [10], in particular the
corollary on p. 573.

We conclude this introduction with some remarks about the proof of
Theorems 1 and 2. The classical proofs of the Borel-Pélya theorem ([1], [7], [8],
[3]) as well as the proof in [5] are all based on a characterization of rational
functions by the vanishing of certain Hankel determinants formed from the
Taylor coefficients of a germ of the function (for details see [4], §7.5 and [9], part
7, §2). The condition t*(W)<1 is exploited to show that these determinants
must be small; since they must also be integers, they must vanish, whence the
result. Our proof of Theorems 1 and 2 proceeds along quite different lines. It is
based on the observation that 77 (W)<1 implies the existence of monic
polynomials which are not only small on W (this trivially follows from the
definition of t7(W)), but which have “integer” coefficients: coefficients in
Z(iy={k+im |k, meZ}. For the one variable case, the existence of these
polynomials was observed in [2], and this one-variable result was shown to be
useful in the present context in [6]. We will use the special polynomials in an
inductive procedure: at the k-th step, the function is multiplied by a special
polynomial, chosen so that the product contains only terms z“ in its expansion at
(0, ..., ) with at least k of the a; non-negative. At the n-th step, we arrive at a
polynomial. For n = 1, this gives a new, direct proof of Pélya’s classical result.

The remainder of the paper is organized as follows: section 2 contains the
result concerning small polynomials with “integer” coefficients on sets K with
7+(K) < 1. Section 3 contains the proof of Theorems 1 and 2.

2. On the condition t*(K) <1

Denote by Z(i) the subring of C generated by Z and i (as in section 1). K will
be a compact subset of C” throughout this section.

PROPOSITION 4. Assume t*(K)<1. For each j (1<j=<n) there exists a
monic polynomial of the special form

B(z)=z}+ X apz’f (1)

B<(,...,h,...,0)

J-th position



608 E. J. STRAUBE

with coefficients in Z(i), such that
IBjllx :=sup {IB;(z)I} <1. 2)

Proof. The proof consists of an adaption of the arguments in §2 of [2].
Choose p such that T*(K) < p < 1. Then there is o € N" such that for all y > a°
(in the order defined in section 1) there exists a monic polynomial P, with leading
power z" and with

IR, Il <p"™ (3)

For «, B e N, B < a, consider now linear combinations of the polynomials P, of
the form

Sa,B=Pa+ Z A'YPY (4)

B=y<a

Starting with the biggest y between B and «, one can choose special coefficients
A%P recursively in such a way that

IAsPI=1 (5)

and such that in S, g the coefficients of the powers of z” for f =y =« are all in
Z(i) (since every complex number has a distance less than one from the lattice
formed by the elements of Z(i)). Therefore, with this choice of the coefficients in
(4), we have

Sa’p= Ta,ﬂ+Ra,ﬁ’ (6)

where the coefficients of T, g are in Z(i) and R, g contains only powers z" with
y < B; moreover, the coefficients of R, g are all less than one in modulus. If now
B> a®, S, p will satisfy the estimate

ISasllx =IBullc+ 2 [A%P||IP, Ik

B=y<a«a

= 2 pM= 3 bp'=ic )

B=y=a s=1B|
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Here, b, is the number of y e N" with |y|=s. Note that the last estimate is
independent of «; also, since

2 bp*=

s=0 (1 - p)n<°°’ (8)

cg can be made arbitrarily small, provided only |B] is big enough.
Choose now an integer B; such that B:=(B,0,...,0)>a’ and such that
cg<1/3. Let a*:=(B; +5,0, ..., 0) and consider the sequence

Sa,s_ﬁ= Tas,ﬁ‘*'Ras'ﬁ (9)

Since the coefficients in R, g are always less than one in modulus and since the
“degree” of R,:p does not exceed B, there is a subsequence such that all
coefficients converge. In particular, this subsequence of R, g converges uniformly
on K. Thus there exist s; and s,, 5; >s,, such that

R p— Rasrpllx < 1/3. (10)
Combining this with (9), (7) and the fact that cs <1/3, we obtain
NT as1, = Tas2,pllk = 1S asrpllx + 1S asz,pllx

+ ||Ras1,8 — Ros2 gl x
<1/3+1/3+1/3=1 (11)

Thus By(2):=T 4 p(z) — Tanp(z) satisfies (2). By construction, B, has
coefficients in Z(i) and is of the special form (1) (forj=1). Forj=2,...,n, the
B, are obtained similarly, and the proof of Proposition 4 is complete.

3. Proof of Theorems 1 and 2

We first prove Theorem 1. Let W be the n-cycle given by the assumption: then
tv(w)<1. Denote by B;, 1=<j=n, the polynomials associated to W by
Proposition 4. Set

4:= max {II1B;lw"} <1 (1)
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Here, h; is the degree of B;. For @ € N" such that (0,...,0)=a<(hy,...,h,)
and non-negative integers m,, . .. , m,, we have

||

"B'lnl v s B:'nnza”W < Mm)hx+--.+mnhn(mjax {”z]”W}>

< Cum1h1+~-+mnhn (2)

for some C independent of o and m,,...,m, (as long as « satisfies the
restriction stated above). Since u <1, (2) implies that

Gt | f@Br @ Br@zdza - nds <1, 3)
provided that mh; +---+m,h, =N, for suitably large NoeN. On the other
hand, in view of the closedness of the form fBY':--:Bp"z%dz;A---Adz,
(analyticity of the integrand), we may integrate over a suitable torus 7" in a
neighborhood of (,...,®) which is homologous to W. Since f has integer
Taylor coefficients at («, . . . ,®), and the B; have coefficients in Z(i), this integral
assumes only values in Z(i). Hence, in order to satisfy (3), it must vanish:

J' F()BT(Z) - - B(z)z%dzy, . . ., dz, =0
¢ 3
©,...,0)=a<(hy,...,h,) 4)
m1h1+' . '+mnh,,_>_N0

We will successively multiply f by polynomials formed from the B;, until we
arrive at a polynomial. First consider fB%. 1t has an expansion of the form

f@)BY(z)= 2 bgz” )
lﬂFSE:’nohl

with by € Z(i). We show that
b_pg=0,if B;>0forl<j=n (6)

(=B=(=Bi,---,—Bn)). The proof of (6) is by induction on B (in the order
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defined in section 1). We have

1

b=
B (zm)n o

f@)BY(2)z{ ™" - -2 dzy A - - A dz, (7)

So for B=(1,...,1), (4) yields the desired conclusion. Assume then that (6)
holds up to some f, and call the next index y = (y,, . . ., ¥,). The components of
y can be written as

with m; and a; € N. By (4), the induction hypothesis and (7):

1
0=Gmy Lnf (2)BY(2)BT"(2) - - - Bin(2)z{' - -z dzy A - - A dz,
1
" @Iy Lnf (2)Bi*(2)z0'™" -+ 2 dzy A - - Adz, = b, )

This concludes the induction and thus the proof of (6). In view of (6), and after
appropriately collecting terms in (5), we obtain

f@B¥z)= 2 = X aj(za)zh, (10)
Ac{l,...,n} yelINA
A%¢  |YI=Noh
Here, the outer summation is over all non-empty subsets A of {1, ...,n}, |A|is
the cardinality of A, A'={1,...,n\A; if A={l;,..., 5} With [, <[,<.--<
lia, then zi=z]"---2z}'; finally z, stands for the “remaining” variables, and

terms are grouped in such a way in (10) that a(z ,-) is a sum of strictly negative
powers of the variables z,.. Thus the inner sum in (10) contains the terms where
precisely the z; with j € A have non-negative exponent. (6) is expressed by the fact
that the outer summation is only over the non-empty subsets of {1,...,n}.

We assume now inductively that there is a monic polynomial P (z) with
coefficients in Z(i), such that fP, has a Laurent expansion of the form

f@P(z)= > D> aX(za)zh; (11)
Ag{l,...,n} yeIN!4
lAlzk  |y|=deg P

that is, the outer summation is only over subsets of cardinality at least k.
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Letk<n,andlet A={n—k+1,...,n}. Note that W and T" (T" as in the
theorem, suitably close to (=, ..., ®)) are homologous in 2\U}_, {z;=0}. In
that domain the function f(z)Pc(z)/z,_x+1 - * * 2, is analytic. Also, the coefficients
of the expansion at (x, ..., ) are in Z(i). Therefore, the same arguments that
lead to (4) yield, when applied to this function, that there exists an integer N,
such that

f(Z)Pk(z) Bml( ) B:l:—l-ck(z)zf . zﬁn kd21 e A dzn = 0
T"Zp—k+1"
OSﬂS(hl,...,hn k) (12)

mlhl + AR +m,,_kh --k—Nl

Now we plug (11) into (12) and observe that no proper subsets of A appear in the
summation (since no sets of cardinality less than k appear). Therefore, any
contribution coming from a A # A is annihilated by integration with respect to dz;
for a suitable je AN{1,...,n—k}. For A= A, all contributions coming from
y# (0, ..., 0) vanish, since then at least one of the z,_;.y, ..., 2, would have
non-negative exponent. If for the remaining contribution (i.e. A=A, y=

0, ..., 0)) we perform the integration with respect to dz,_;,1 A - - Adz,, We
find similarly

an—ka& ..... 0)(219 R Zn--k)B;nl(zly sy Zppy 0) s ey O) e

XByrit(z1, oo 20t 0,0, 00280 - 2Bpdz Ao - A dz,_ =0
Osﬁs(hl’ se ey n-—k) (13)
m1h1 +---+ mn-khn—kZNl .

In the same way (4) was used to show (6), (13) implies that

aA ____ Q)(Zl,...,Zn_.k)Bllvl(Zl,...,Zn_k, 0,,0)
= ¢ C 2z | I ZBn_— 14
o2, Cpzlto 2l (14)
ZB;=<Nih,
not all §;<0

The important point in (14) is that not all §;<0. To obtain the analogous
conclusion for af with y#(0,...,0), we replace fP. by



Power series in several variables 613

(8"8zX g4y - - Oz (fP,) and apply the preceding discussion. Finally, by
symmetry, the conclusion holds for all A of cardinality k:

a2(za)BN47(0, z,) = Zlcg'vzg,, |A| = k; (15)
not al|
B8;<0

ja is an element of A’. Let

Pi1(z):=P(z) T[] BY*(0, z4) (16)

'Al'y‘:k

Then Py, is monic, has coefficients in Z(i), and, as follows from (11) and (15),
fP,., has an expansion like the one in (11), but with only sets of cardinality at
least kK + 1 appearing. This completes the inductive step. We therefore find a
monic polynomial P,, with coefficients in Z(i), such that

f@P()= 2 a,2"=:P(2) (17)
|Y|a—<ild;]gz(§n)

The right side of (17) is thus also a polynomial (also with Z(i) coefficients).
Observe now that f has integer (i.e. real) Taylor coefficients at «. It follows from
(17) that

(18)

~
I
;U'l .-

where P and P, are the polynomials obtained from P and P, respectively by
taking the real parts of the coefficients. Thus f has the desired form, and the proof
of Theorem 1 is complete.

Essentially the same proof works for Theorem 2. We only have to observe
that from the stronger assumption

max {t(I[(W)} <1 (19)

1=sj=n

it follows that the polynomials B; from proposition 4 can be chosen to be
polynomials of one variable only:

B(z)=2!+ X azj (20)

O=s<h
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Then, with the induction hypothesis (11) modified to the effect that P, is a
product of polynomials in one variable, the above induction yields

f(z)Ql(zl) e Qn(zn) = P(Z)’ (21)

where the Q; are monic, and all Q; as well as P have coefficients in Z(i). Denote
by Q, the polynomial obtained from Q; by conjugating the coefficients. Then Q,Qj
has integer coefficients, and (21) yields

f(Z)Q1(21)Q1(Zl) T Qn(zn)Qn(zn) = P(Z)Ql(zl) T Qn(zn) (22)

This establishes Theorem 2, because the coefficients of the polynomial on the
right side of (22) are automatically integers (since f and Q,Q; have integer
coefficients).
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