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On simple fibered knots in S° and the existence of decomposable
algebraic 3-knots

OsAaMU SAEKI

§1. Introduction

Let f be an analytic function on some neighborhood of the origin 0 in C**!
such that f(0) = 0. Suppose that f has an isolated critical point at the origin. The
algebraic knot associated with f is the isotopy class of the codimension 2 smooth
closed oriented submanifold of $2**' given by f~!(0) N §2**! for £ > 0 sufficiently
small. (As a general reference for this see [20].) More generally, a (2n — 1)-knot
in the sphere $***! is the isotopy class of a codimension 2 smooth closed oriented
submanifold of $>**!. We say that a knot is decomposable if it is the connected
sum of two non-trivial knots.

In the case of classical knots (n = 1), algebraic 1-knots are always indecom-
posable by a theorem of H. Schubert [26]. A. Durfee asks whether an algebraic
knot is always indecomposable ([6, Problem 4]). In 1982, F. Michel and C. Weber
showed that for any n =3 there exist decomposable algebraic (2n — 1)-knots in
§2**1 ([19]). This result is obtained by using the classification theorem of simple
fibered knots by their Seifert matrices ([5], [10]). However, for n =2 this
classification breaks down and the problem above has been open until now. The
main purpose of this paper is to prove the existence of infinitely many algebraic
3-knots which are the connected sum of two non-trivial simple fibered 3-knots
(85).

We also prove that for a given closed orientable 3-manifold K there exists a
simple fibered knot (S°, K') such that K’ is diffeomorphic to K (§6).

Throughout the paper, all manifolds and maps are C*, the symbol = denotes
diffeomorphism between manifolds, and the symbol = denotes congruence over Z
between integral square matrices.

The author would like to express his sincere gratitude to Professor Y.
Matsumoto for his constant encouragement. He also wishes to express his
appreciation to the referee for giving invaluable advice.
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§2. Preliminaries

In this section we recall the definitions of simple fibered knots and their
Seifert matrices.

DEFINITION 2.1. A fibered knot is a knot ($™, K™ %) together with a
smooth fiber bundle ¢ :S™ — K— S’ that has the following property:

There exist a tubular neighborhood T of K and a bundle equivalence o of T to
the trivial bundle K X D? so that the diagram commutes, where p is the obvious

al(T - K)
—

T-K
oT-ON P
Sl

K x (D* - {0})

projection. In other words, K is the binding of an open book decomposition of
S™.

DEFINITION 2.2. A fibered knot ($***!, K*"!) (n=1) is simple if the
manifold K is (n — 2)-connected and the fiber of ¢ is (n — 1)-connected.

Set F=¢ '(1)—Int T. Then if n=3, the above condition is equivalent to
that F has a handlebody decomposition consisting of one 0-handle and some
n-handles which are attached to the 0-handle simultaneously. In this case we say
that F has a special handlebody decomposition.

Remark 2.3. An algebraic knot is always a simple fibered knot ([20]).
Furthermore, even when n =2, F has a special handlebody decomposition ([16]).

Let ($***!, K**"!) be a simple fibered knot. For 6 e R, let F, = ¢~ '(e) —
Int T. Then we have the homology isomorphism kg : H,(F)— H,(F,) induced by
the path w:/— S' defined by w(t) =e'", where I=[0, 1]. (We always assume
that the homology is with integer coefficient, unless otherwise indicated.)

/, DEFINITION 2.4. The Seifert form of a simple fibered knot ($***', K**™!) is
the bilinear form I': H,(F) X H,(F)— Z defined by I'(x, y) = link (h,x, y) where
link (h,x, y) is the linking number of A,x and y in "',

When we fix a basis {a;} of H,(F), we can identify I" with the square matrix
L = (I'(a;, a;)). We call L a Seifert matrix. By the Alexander duality, we see easily
that L is always unimodular.

For n 23, one has the following classification theorem.



Simple fibered knots in S° 589

THEOREM A ([5], [10]). For n =3, the map

isotopy classes of congruence classes of
®,:4 simple fibered (2n — 1)- ¢ — 3 integral unimodular
knots in §2**! matrices

which associates with each knot its Seifert matrix is well-defined and bijective.

For n=2, @, is still well-defined. (For example, consider the 2-fold cyclic
suspension of knots. For details see [22].) However, we shall see in §3 that &, is
not injective. We do not know whether @, is surjective or not.

§3. Constructing simple fibered 3-knots

We first describe how to construct simple fibered knots. Our method is the
open book construction.

Let F*" be an (n — 1)-connected compact smooth 2n-manifold with boundary
OF = K*"~! (n — 2)-connected (n =2). Let h: F— F be a diffeomorphism which is
the identity map on the boundary. Then we define N, = (K x D?)|, E where

E=FxI/(h(x),0)~(x, 1)
and

@:0E=08F xI/(x,0)~(x,1)>3(KxD*)=K x §*
is the map defined by @(x, ) = (x, e¥™). It is easy to check that N, is a smooth

closed 1-connected (2n + 1)-manifold. If N, = $?"*1, then of course (N,, K X {0})
is a simple fibered knot.

DEFINITION 3.1. The wvariation map of h is the homomorphism
A, :H,(F, 9F)— H,(F) induced by (idg), — h,. (Note that h | OF = id 51.)

We recall the following lemma of L. Kauffman ([11]).

LEMMA B. If n=2, then N, is a homotopy sphere if and only if A, is an
isomorphism.
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From now on we shall confine ourselves to simple fibered 3-knots in §°. Our
aim in this section is to realize certain Seifert forms by simple fibered 3-knots.
Let

2100 00O00O0

12100000

01210000

00121000 0 1
Eg= and U=( ),

00012101 10

00001210

0 00O0O0T1Z2P0

0 0001002

both of which are integral unimodular symmetric matrices. Our first result is the
following.

THEOREM 3.2. Let L be an integral unimodular matrix such that L +'L =
aEg @ BU where « is even and B =23 |a|+ 1. (‘L is the transposed matrix of L.)
Then there exists a simple fibered 3-knot (S°, K) such that its Seifert matrix is L
and K =S°.

Proof. Let a' = a/2, B'=B—3|a’'|and Y= —a'V, # B'(S* X $?) where V, is
diffeomorphic to a non-singular hypersurface of degree 4 in CP; (see [18, pp.
23-24 and p. 33]). Let F = Y° (=Y — Int D*). It is well-known that V, and $* x §?
have intersection matrices —2Eg@ 3U and U respectively. Therefore F has
aEs ® BU (=L +'L) as its intersection matrix.

Now set H=—L"'-'L, then H is unimodular and ‘H(L +‘L)H is equal to
L +°L. Thus H is the matrix of an isometry of H,(F). The hypothesis on « and B
implies that at least one S?x S? is present. Thus, by [29] there exists a
self-diffeomorphism & of F which induces H. Furthermore we may assume that
h | 3F = idyr.

Since 8F =S§°, i,:H,(F)— Hy(F, 9F) is an isomorphism where i is the
inclusion map. Hence, the variation map A, : H,(F, 9F)— H,(F) is an isomorph-
ism. By Lemma B, N, = (3F x D*) U E is a homotopy 5-sphere, so that N, = S°.
Therefore (N, oF x {0}) is a simple fibered knot.

If we let L, be the Seifert matrix of (N,, dF X {0}), then L +‘L = L,(I — H)
by [5, p. 52], where I is the unit matrix. This implies that L, = L. This completes
the proof.



Simple fibered knots in S° 591

Before stating the next theorem, we introduce some notations concerning
framed links in > (see [13]). Let A be a framed link in S°, then M, denotes the
4-manifold obtained by adding 2-handles to the 4-ball D* along the components
of A using their framings, and M, denotes the boundary 3-manifold of M,.

By the argument given in the proof of Theorem 3.2, we can prove the
following theorem.

THEOREM 3.3. Let L be an integral unimodular matrix such that L + 'L =
aEy D BU where o and B satisfy one of the following conditions:

1) =0

2) laj=1and p=1

3) |@|=2and B=2.
Furthermore suppose that there exists a framed link A in S> such that the linking
matrix of A is congruent to L+'L over Z and such that A has at least

one O@O separated from other components by an embedded 2-sphere. Then

there exists a simple fibered 3-knot (S°, K) whose Seifert matrix is L and such that
K = 3M,.

Remark 3.4. Our method can be used to give another proof of the
4-dimensional embedding theorem of Cappell-Shaneson ([4, Theorems 1 and 2])
in the simply connected case.

We now give an example showing that the map @, defined in Theorem A is
not injective. Let L =2L, @ 2L, where

O O O O O O O
O O O O O O M= =
O OO O = O
O OO R = O O
S O O = = O O O
SO = OO O O
O = o= OO OO O
-0 O = O O O O
o
|
p—
— O = O
S OO -

then L satisfies the condition of Theorem 3.2. Thus there exists a simple fibered
3-knot (S°, K,) whose Seifert matrix is L and such that K,~S>. Furthermore
define the framed link A in S> as in Figure 1. (OM, =23(2, 3, 5) where 2(2, 3, 5)
is the dodecahedral space.) Then L and A satisfy the condition of Theorem 3.3.
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Thus there exists a simple fibered 3-knot (S°, K,) whose Seifert matrix is L and
such that ,(K,) # 1. The 3-manifolds K, and K, do not have the same homotopy
type; hence the corresponding knots cannot be isotopic. Therefore the map &, in
§2 is not injective.

Remember that in higher dimensions the diffeomorphism type of a simple
fibered knot is determined by its Seifert matrix; in fact the isotopy type is
determined.

§4. When are two simple fibered 3-knots isotopic?

In this section we consider simple fibered 3-knots which are homology
3-spheres. For these knots diffeomorphism types and Seifert matrices are
complete invariants. More precisely we can prove the following theorem.

THEOREM 4.1. Let (S° K;) be two simple fibered 3-knots with Seifert
matrices L; respectively (i=1,2). Suppose that K; are homology 3-spheres,
K,=K,, and L,=L,. Then (S°, K,) is isotopic to (S°, K,) as a knot.

Remark 4.2. In higher dimensions, isotopic simple fibered knots have the
same fibering structure ([5]). However we do not know whether this is also true
for simple. fibered 3-knots.

To prove Theorem 4.1, we need the following lemmas.

LEMMA C. Let F, (i =1, 2) be compact 1-connected oriented spin 4-manifolds
with boundaries 3F, =93F,. Suppose that OF, =~ dF, is connected, that H'(3F;
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Z2/27)=0 (i =1, 2), and that the signature of F, is equal to that of F,. Then
F, # k(5* X §?) = F, # k'(S* X §?) for some non-negative integers k and k'.

Lemma C was essentially proved by R. Kirby. See [13, Remark 3].

LEMMA 4.3. Let F be a compact 1-connected spin 4-manifold with boundary
OF a (connected) homology 3-sphere. Then F # k(S* x S%) has a special handle-
body decomposition for some non-negative integer k.

Proof. By [9] there exists a framed link A in S> with M, =~ OF such that all
the framings of A are even. Set W = F U (—M,) identified along oF =~ dM,. Then
W is a closed oriented 1-connected spin 4-manifold, so that the signature of Wis a
multiple of 16 by Rohlin’s theorem. Since o(W) = o(F) — o(M,) (o denotes the
signature), we can change A so that o(F) = o(M,) and that M, = 3F by adding a
number of copies of A; or A, where A, are framed links in S3 with oM, =S§ 3 such
that o(M,,) = 16 and o(M,,) = —16 (see [9, Th3.3], [18, p. 66]). Then by Lemma
C, F # k(S*x S*) =M, # k'(5* x §?) for some k and k’. Clearly M, # k'(5* x §%)
has a special handlebody decomposition. This completes the proof of Lemma 4.3.

Using these lemmas, one can prove Theorem 4.1 by the same argument as in
[17, pp. 192-194].

Remark 4.4. By Theorem 4.1, simple fibered 3-knots in S°, diffeomorphic to a
given homology 3-sphere, are isotopic if and only if their Seifert matrices are
congruent. If the homology 3-sphere is S°, this result goes back to J. Levine [17].

§5. Proof of the main result

Let g(x, y) be the same polynomial y* — 2x’y? — 4x°y + x® — x7 as in §4 of [19].
We define the polynomial f,(x, y, z) by f,(x, y, z) =g(x, y) + 2", where r =2 is an
integer. The purpose of this section is to prove the following theorem.

THEOREM 5.1. The algebraic 3-knot associated with f, is decomposable for

r=5 (mod 78). In fact it is the connected sum of two non-trivial simple fibered
3-knots.

Remark 5.2. By [1, p. 155], each eigenvalue of the monodromy for g(x, y) is a
156-th root of unity. Since the monodromy for f,(x, y, z) is the tensor product of
those for g(x, y) and for z’, its eigenvalues are products of those for g(x, y) and
for z". Thus if r is prime to 156, each eigenvalue for f, is of composite order. By
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results on cyclotomic polynomials, one obtains A.(1) =1, where A(?) is the
characteristic polynomial of the monodromy for f =f,. This implies that the
algebraic knot associated with f, is a homology 3-sphere.

Remark 5.3. The condition r =5 (mod 78) does not seem to be essential.
Possibly the algebraic knot associated with f, will be decomposable for any r
prime to 156.

Proof of Theorem 5.1. First we calculate the Seifert matrix of the algebraic
1-knot [ associated with g. The Puiseux expansion of g at the origin is
y =x>?+ x”*, Therefore [ is the {(3,2), (13, 2)}-iterated torus knot (for example
see [1]). If we let A, B, be the Seifert matrices of the (13, 2)-torus knot and the
(3, 2)-torus knot respectively, then A is the 12 X 12 matrix given by

“11 0
-1 1, . (—1 1)
_..1.' .1 an 1= O _1

0 -1

(for example see [25]).
By [28] the Seifert matrix L, of / is the 16 X 16 matrix given by

B, 'B; 0
L] = B1 Bl 0
0O 0 A
Let
B= (B1 ’Bl )'r
Bl Bl

then we have L, =B © A.

Now let L be the Seifert matrix of the algebraic knot (S°, K;) associated with
f=f,. By [25] we have L=L,®C,=(BQ®C,) D (A®C,) where C, is the
(r — 1) X (r — 1) matrix given by

1 -1
_ 1 -1, 0
C,- 1_1
0 B

Let D=A®C,and E=B®C,, sothat L=E® D.
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We want to realize D and E as Seifert matrices of simple fibered 3-knots. In
order to use Theorems 3.2 and 3.3, we must calculate the signatures of D + ‘D
and E +‘E. Note that L + ‘L is unimodular by Remark 5.2, so that D + ‘D and
E +'E are also unimodular. Let r =78¢q + 5 (g =0).

(1) The signature op of D +‘D.
By [25] we see that D = A ® C, is the Seifert matrix of the algebraic 3-knot
associated with x>+ y'* + z". By [3], 0p = 0p, — 0p_, Where

op+ = number of triples (i, j, k) of integers, 0<i<2, 0<j<13, 0<k<r
such that 0<i/2+j/13+ k/r <1 mod 2
and

op- = number of triples such that —1<i/2+j/13 + k/r <0 mod 2.

By a direct computation, we see that the number of integers k with 0 <k <r and
0<i+j/13+k/r<1 mod2 is [(|]13 —2j|/26)-r] for each j (j=1,2,...,12).
Hence,

2113 -2j
OD+=2 [L—26—]|r] =216q + 8.
j=1

Thus,
Op =0py+ — Op_=0p, — (12(r — 1) — 0p,) = —504q — 32.

Since D +'D is a symmetric unimodular matrix of type II and of rank
12(78q +4), D +'D = —(63q +4)Es ® (2169 + 8)U by Serre’s theorem ([27, p.
93)).

(2) The signature o, of L + L.

We compute the signature o, of L + ‘L using the formula of A. Durfee [7].

Let V =f~1(0) N D¢ for £ >0 sufficiently small. There exists a minimal good
resolution 71:V — V of V at the origin 0 e V. (As a general reference for this see
[14].) Let E = x~'(0) be the exceptional locus, which is described by the dual graph
as in Figure 2 (g =2). Each vertex represents a non-singular rational curve, the
number attached is the Chern class of the normal bundle to that curve, and two
vertices are joined if the corresponding curves intersect. Thus the number of
vertices s =4q + 16 and h =rank H;(E)=0. Next let K e H,(V;Q) be the
canonical class (for the definition see [7]). Using the adjunction formula [7,
Lemma 1.4], we see that the self-intersection number K? of K is —676q — 24.
Since the Milnor number u of V at the origin is 16(78q +4), we obtain
o,=-3-u+K*+s+2h)=-608g —40 by the formula of [7]. By similar
arguments we see that this equality is also valid for g =0, 1.
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_2 _2

2 2 -2 2 2 -3 9 ----2 -6 -2 -2 -2
-2 e —
- (q-2)-vertices
=7
-2
(3g-1)-vertices N\ ™,
> -2

Fig. 2

(3) The signature o of E +'E.
Since L=E ® D, o, = 0 + 0p. Thus o = 0, — 0, = —104g — 8. By Serre’s
theorem E + ‘E = —(13q + 1)Es ® (104q + 4)U.

Next we find a framed link A, in $° such that every framing of A, is even and
GMA, == Kf.

LEMMA 5.4. There exists a framed link A, in S*> which has the following
properties.

(1) oM, =K.

(2) Let Q be the linking matrix of A,. Then,

Q~{“Es@(4q + U if q is even (q =2)
" E,®@4q +15Uif q is odd (q =3).

Proof. We consider the case of g even. The case of ¢ odd can be handled
similarly.

Let A{ be the framed link in S* induced by the resolution diagrm (Figure 2).
The characteristic sublink of A; (for the definition see [9, p. 240]) is described in
Figure 3.

Using the framed link calculus of Kirby [13], we can change A;, without
changing M,;, so that its characteristic sublink k consists of one unknotted
component with framing —4q — 8. Then by [9, Th 4.2], we can find a framed link
Ay with M, =9dM,,, rank H,(M, ) =rank H,(M,;) +||-4q —8|—1|—-1=8q+
22, and o(M, ) = 0(M,;,;) — (—4q — 8). (Note that the characteristic sublink k is an
unknotted circle.) Since A; is induced by the resolution diagram of a normal
surface singularity, its linking matrix is negative definite ([21]). Hence, o(M, ) =



‘2-2& J iy _ (L 2

(@ —2)-components \ N\ 2

The characteristic sublink of A; consists of all the

components of the form @ .

—8. Thus the linking matrix Q of A, is congruent to —E3 @ (49 + 7)U by Serre’s
theorem. This completes the proof of Lemma 5.4.

Fig. 3

Next we realize D and E as Seifert matrices.

Case 1. q is even (q =2).

By (1) D +'D = —(63q + 4)Eg @ (216q + 8)U. Thus D satisfies the hypothesis
of Theorem 3.2. Therefore there exists a simple fibered 3-knot (S°, K) such that
its Seifert matrix is D and K, = S°.

Next we consider E. By (3) E+'E=—(13¢g + 1)Eg® (104g + 4)U. On the
other hand, the framed link A, of Lemma 5.4 has linking matrix congruent to
—E;® (4g + T)U. To change this matrix to —(13g + 1)Egz @ (104q +4)U, we
must add —13gEs; @ (100q — 3)U. Since 100q —3>3-13q, this can be done
geometrically by adding to A, a number of copies of A, and A; where A, is
Kaplan’s framed link (see [9, Th 3.3], [18, p. 66]) which has 22 components and

linking matrix congruent to —2Eg® 3U and A, is O@O. The resulting

framed link A and the unimodular matrix E satisfy the hypothesis of Theorem 3.3.
Thus there exists a simple fibered 3-knot (S°, Kg) such that its Seifert matrix is E
and Kg =~ oM, = oM, = K,.
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Case II. q is odd (q =3).
By a similar argument, we can show that there exist simple fibered 3-knots

(S°, Kp), (S°, Kg) whose Seifert matrices are D and E respectively and such that
KD = Kf and KE =z S3.

Thus the connected sum (S°, Kp) # (S°, Kg) is a simple fibered 3-knot whose
Seifert matrix is D @ E(=L) and such that K, # K =~ K. Therefore by Theorem
4.1, the algebraic knot (S°, K;) is isotopic to (S°, Kp) # (S°, Kg).

For g =0, 1, similar arguments can be used. This completes the proof of
Theorem 5.1.

Remark 5.5. Due to a theorem of N. A’Campo, an algebraic knot cannot be a
connected sum of two non-trivial algebraic knots ([2]). In the above example,
when g is even, the knot (S°, Kz) is not algebraic because the trace of its
monodromy is zero. (For a non-trivial algebraic knot, the trace of its monodromy
is +1. See [2].) The knot (S°, Kp) is not algebraic, either, because it is non-trivial
and K, ~=S> (see [21]). When g is odd, we do not know whether the knot
(S°, Kp) is algebraic or not.

Remark 5.6. Let (S°, K) be an algebraic 3-knot. Then by W. Neumann, X is
always irreducible as a 3-manifold (see [23], [8]). Hence, if an algebraic 3-knot is
a non-trivial connected sum, one of the summands must be a spherical knot.

§6. Every 3-manifold is the binding of an open book decomposition of S°

In this section we shall prove the following theorem.

THEOREM 6.1. Let K be a closed orientable (connected) 3-manifold. Then
there exists an embedding vy :K— S such that (S°, Y(K)) is a simple fibered

3-knot. (Moreover the fiber of this fibered knot has a special handlebody
decomposition.)

This theorem is motivated by the problem of characterizing diffeomorphism
types of algebraic 3-knots (see [6]). In view of the above theorem, we cannot

restrict such diffeomorphism types only by the fact that algebraic knots are
fibered.

Proof of Theorem 6.1. For K as above, there exists a framed link A in S* with
oM, = K such that all the framings of A are even (see [9]). Let Q be the linking
matrix of A. We need the following lemma.
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LEMMA 6.2. There exist a non-negative integer k and an integral unimodular
matrix L such that Q @ kU =L + ‘L.

Proof. Let n be the size of Q. Then
Q Xl Xl XZ XZ' ) 'Xn Xn

Y, U
Y, U
Y, U

Qd2nU=| Y, U
Y, U

where X; is an n X 2 matrix given by
00
X, = 0 1 <« i-th row
0 0

and Y;=‘X;fori=1,2,...,n. Set

R X, 0 X, O---X, O
0 g
Y, O 0010
0 1000
- S h S =
L= % where 100 1
00 0

0
Y, O S

and R is an n X n matrix with R +‘R = Q. Then L + 'L =Q @ 2nU and L is easily
seen to be unimodular. This completes the proof of Lemma 6.2.

Adding a number of copies of 0@0 to A, we may assume that

Q =L +‘L for some unimodular matrix L and oM, =K. Then using the
argument of M. Kervaire ([12, I1.6]), we can embed M, in S° so that its Seifert

matrix is L.
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Let T be a tubular neighborhood of M, in S° and let V be the manifold which
is given by S°>— Int T cut along M,. Since L is unimodular, V is an h-cobordism
with boundary. By work of F. Quinn [24] and T. Lawson [15], for some
non-negative integer k, there exists a diffeomorphism between V #, k(S* x §? x
I) and (M, # k(S*x $%)) x I which extends the product structure on the bound-
ary, where #_. denotes connected sum along the cobordism (see also [18, Th
6.22)).

In fact there exists a simple fibered 3-knot (S°, K,) whose fiber is
diffeomorphic to (S* X $? # $* x $%)° and such that K,= S> by Theorem 3.2. (For
example its Seifert matrix is

o

|

p—
—_— O = O
Bl el S

Thus for some k', (S°, OM,) # k'(S°, K;) is a simple fibered 3-knot. Since
Ko=S3, dM, # k'K,~ dM, = K. This completes the proof.
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