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Nonexistence of spatially localized free vibrations for a class of
nonlinear wave equationst

P.-A. VUILLERMOT

Abstract. We prove the nonexistence of free vibrations of arbitrary period with polynomially
decreasing profiles for a large class of nonlinear wave équations in one space dimension Our class of
admissible models includes examples of non integrable wave équations with certain polynomial
nonlinearities, as well as examples of completely integrable ones with exponential nonlinearities
related to Mikhailov&apos;s équations. Our resuit thus proves a particular case of a conjecture first
formulated by Eleonskii, Kulagin, Novozhilova and Silin, and dispels some confusion regarding the

relationship between the existence of so-called breather-solutions and the complète integrability of the

wave équation. Our class of admissible nonlinearities also contains a particular instance of the
nonlinear scalar Higgs&apos; équation, but does not contain the Sine-Gordon équation which is known to

possess a 2^-periodic solution in time with exponential fall-off in the spatial direction. Our results may
be considered as complementary to récent results by Coron and Weinstein. Our arguments are
entirely global, and rest upon methods from the calculus of variations.

1. Introduction, statement of the main results and discussion of some examples

There has been much interest and controversy recently concerning the
existence of spatially localized periodic solutions to nonlinear Klein-Gordon
équations of the form

utt(x; t) uxx(x; t) - g(u(x; t)) (1.1)

where (x; t) e M2. While the Sine-Gordon équation

utt{x\ t) uxx(x; r)-2 sin (u(x; t)) (1.2)

is known to possess the particular breather-solution

(1.3)

t Work supported in part by the Los Alamos National Laboratory under contract COL-2335, by a
University of Texas summer grant and by the ETH-Forschungsinstitut fur Mathematik.
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574 P-A VUILLERMOT

(see for instance [1] and [2]), it has been recently suggested that the wave
équation

utt{x\ t) uxx{x\ t) + u(x; t) - u\x\ t) (1.4)

should also possess spatially localized free vibrations converging to the trivial
solutions m0 Tl as |jc|—&gt; &lt;*&gt; [3], The case of convergence to u0 0 is ruled out by
virtue of a récent resuit by Coron [4], whose one-sided decay conditions imply
that every spatially localized periodic solution to (1.4) is independent of time (see

however, Example 1.3 below and the remark following it). Coron&apos;s theorem
asserts that as long as g e ^(2)(IR; R) and g(0) 0, classical solutions to équation
(1.1) cannot simultaneously be nontrivial T-periodic in time and exhibit a

sufficiently fast spatial decay at infinity, unless the period of vibration is chosen

sufficiently large - specifically, unless g&apos;(0) &gt; (2jt/T)2. It has been further conjec-
tured by Eleonskii, Kulagin, Novozhilova and Silin in [5] and [6] that équation
(1.1) possesses no nontrivial spatially localized periodic solutions whenever g is a

polynomial, and also speculated by Brézis in [7] that a behaviour similar to (1.3)
for the solutions to (1.1) should rather be an intrinsic feature of équation (1.2).
However, Weinstein recently proved that if g e &lt;£(2)(R; R), g(0) 0 and g&apos;(0) &gt;

(2ji/T)2, there do exist exponentially localized nontrivial T-periodic solutions to
équation (1.1), under the crucial additional assumption that (1.1) be considered

on a half-plane instead of R2 [8]. In this paper, we go one step further in proving
the nonexistence of free vibrations with polynomially decreasing profiles for
équation (1.1) on R2, for a broad class of nonlinearities and regardless of the
value of the preassigned period T. In view of the applications, our class of
admissible wave équations must allow for both polynomial and exponential
nonlinearities in (1.1); according to the physical picture, our class of admissible

spatially localized free vibrations must contain solutions to (1.1) which converge
to constant solutions u w0e R as |x|—»&lt;». Thèse remarks motivate the following
définitions.

DEFINITION 1.1. Let uoeU; the function g:R-&gt;R is said to be an
admissible nonlinearity for équation (1.1) if the following hypothèses hold:

(HO • ge

-(M-uo)2 \g(u)\
(H2) HmSUP \u-u|U|_,œ |M Mol

(H3) J^L
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We note that hypothèses (Hx) and (H3) imply g(u0) 0, hence that u u0 solves

(1.1). For u smooth on U2, we now define (u); u,ux, ut for ;=0,1,2
respectively, and write utJ ((u),)r We still need the following.

DEFINITION 1.2. Let T&gt;0, uoe R. We dénote by B(T;u0) the set of ail
breather-solutions with polynomial decay to équation (1.1), that is the set of ail
u e &lt;£(2)(R2; U) such that the following conditions hold:

u is a time-periodic solution to (1.1) of period T, that is
^l} u(x; t+T) u(x, t) for each (x, t) e U2.

(C2) u(x; 0) m0 for each x e R

(C3) sup
xeh

xm max \(u(x;t)-uo)tJ\
te[0,T]

&lt;oo

for each m e {0; 1; 2}, each i e (0; 1) and each ; € {0; 1; 2} with / &gt; i. We note that
if g is an admissible nonlinearity for (1.1), then u uoeB(T;uo); B(T;uQ) is

therefore not empty. We also observe that with uo 0, the Sine-Gordon
nonlinearity is admissible, while the breather-solution uSGB given by (1.3) satisfies

(Q) with T Itï, (Q&gt;) with u0 0 and (C3) for each meN (exponential fall-off).
Thus, the breather-class Bsg(2jz;0) has at least two éléments. But we also hâve

BSg(T; 0) {0} for each T e (0; V^jt), which follows from Coron&apos;s resuit in [4]
since our condition (C3) implies his assumptions of decay at infinity; in this
spécifie case, the actual number of éléments in B(T; u0) thus crucially dépends on
the value of the preassigned period T. What the main resuit of this paper does is

to exhibit a set of admissible nonlinearities for which the breather-class B(T;u0)
reduces to the singleton {u0} for each T &gt; 0. Its statement requires the following

DEFINITION 1.3. Let GUo(w) j£0 &lt;%(§); GUo is said to be convex in
(u - u0)2 if there exists a function H e ^(Mç,; U) such that GUQ(u) H(y) with

y (u - m0)2 and H convex in y.

The above notion was introduced in [9] and used in [10], [11], [12] and [13] for
investigations concerning nonlinear elliptic eigenvalue problems. Its relevance to
the above hyperbolic problem is exhibited in the following

THEOREM 1.1. Let T&gt;0 and uoeU; assume that g is an admissible

nonlinearity for équation (1.1). Ifone of the following statements holds:

(Si) GUo(u)&lt;0 for each ueU
(S2) GUo is convex in (u - w0)2

(S3) GUQ(u) + \g{u)(u -u0)&lt;0 for each ueU
thenB(T;uo)
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Remarks. (1) The fact that our resuit holds for each T &gt; 0 is in sharp contrast
with Weinstein&apos;s results on the half-space Rq xR; this will be illustrated by
several examples.

(2) Theorem (1.1) dispels some confusion regarding the relationship between
the existence of breathers and the complète integrability of the wave équation
(1.1); indeed, our examples will show that the class of nonlinearities for which
Theorem (1.1) holds contains models for which (1.1) is nonintegrable, as well as

nonlinearities for which (1.1) is completely integrable. It also contains certain
polynomial nonlinearities, which proves a part of the Eleonskii-Kulagin-
Novozhilova-Silin conjecture mentioned above.

(3) Coron and Weinstein assume ge &lt;g(2)(R; R) and g(0) 0, but hâve no
other significant restrictions besides the period conditions; we only assume

g € &lt;#(R ; R) and hâve no period condition, but this is at the expense of having the

growth conditions (H2) and (H3) at infinity and around u0 (see Proposition 2.1

below).
(4) GUo need not be convex in (ir— w0) in order to be convex in (u — u0)2 (see

Example 1.3 below).
In the following examples, we simply write G0=G and B(T;0) B(T) if

u0 0; we begin with the following

EXAMPLE 1.1. Consider the wave équation

utt{x) t) uxx(x; 0 ± E cy^x; t) (1.5)
/=i

on R2, where c, 2&gt; 0 for each ;; hère, g(u) T Sjli c,u2j-\ G(u) =F E£i c;u2j

with c} ^0. With the minus sign, we hâve G (u) ^ 0 for each w; otherwise, G(u) is

convex in u2. In either case, fl(T) {0} for each T&gt;0, by statements (Si) and

(S2) of Theorem 1.1.

The preceding resuit contrasts sharply with the following, which is a direct

conséquence of Weinstein&apos;s arguments in [8].

EXAMPLE 1.2. Consider the équation

utt(x; t) uxx(x; t) - £ c^2&apos;&quot;1^; r) (1.6)
; 1

on the half-plane RJxR, where c1&gt;0 and the c/s are arbitrary for je
{2,..., N); let T&gt;2nclm\ then there do exist nontrivial solutions to équation
(1.6), T-periodic in time, which decay exponentially fast along the x-direction.
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Remark. If cx &lt;0 in (1.5) taken with the minus sign, then B(T) {0} as well
for arbitrary c/s, / e {2,... N}. This follows from the fact that ct &lt;0 implies
g&apos;(0)&lt;0 and that condition (C3) with wo 0 implies Coron&apos;s in [4]. The above
results thus prove the Eleonskii-Kulagin-Novozhilova-Silin conjecture in a

significant number of cases.

Our next example is concerned with a translated version of équation (1.4), the
so-called scalar Higgs équation; it illustrâtes the use of Theorem (1.1) for mo#0
and also suggests that the Eleonskii-Kulagin-Novozhilova-Silin conjecture might
not be true in gênerai.

EXAMPLE 1.3. Consider the équation

utt(x; t) uxx(x; t) - 2u(x; t) + 3u2(x; t) - u3(x; t) (1.7)

on R2; we hâve g{u) 2u- 3u2 + u3 (u - l)3 - (u - 1); in this case, w0 1 is an
admissible trivial breather-solution to (1.7) and we hâve

which is convex in (m — l)2 (but not in u — 1). Theorem (1.1) then implies that

B(T; 1) {1} for each T &gt; 0; by translation, this is of course the same as saying
that B(T) {0} for équation (1.4), or that B(T; -1) {-1} for

un(x; t) uxx(x; t) - 2u(x; t) - 3u2(x; t) - u\x; t) (1.8)

on U2.

Remark. The above argument does not preclude équation (1.4) from having
nontrivial breather-solutions which converge to u0=:Fl as |*|-»&lt;». This is

because the potential G+l(u) w4/4 - u2/2 + \ \{u - l)2(u + l)2 is neither convex

in (m — l)2 nor convex in (u +1)2. It is perhaps such solutions which might
explain the existence of breather-solutions in field theory which is suggested by
the numerical and asymptotic évidence exhibited by Campbell et al in [3]; the

polynomial g(u) u3 - w might thus provide a counterexample to the Eleonskii-
Kulagin-Novozhilova-Silin conjecture.

Our next example is one with exponential nonlinearities, which appears in
Mikhailov&apos;s study regarding the integrability properties of two-dimensional
generalizations of the Toda chain [14]. It shows that there are integrable
hyperbolic équations which possess no breather-solutions.
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EXAMPLE 1.4. Consider the équation

utt(x; t) uxx(x\ t) ± sinh (u(x; 0) (1.9)

on R2; hère, g(u)= Tsinh(w), G(u) T(cosh (u) - 1) so that either G(u)&lt;0
for each u or else G(w) is convex in u2; therefore B(T) {0} for each T &gt; 0, as in
Example (1.1).

Similar arguments also apply to the following examples; in each case,
Weinstein&apos;s resuit still predicts nontrivial exponentially localized breather-
solutions on Uq x R for sufficiently large periods.

EXAMPLE 1.5. Consider the équation

utt{x\ t) uxx{x\ t) ± 2u(x; t) exp [u2(x\ t)] (1.10)

on U2; then B(T) {0} for each T&gt;0. Hère, Weinstein&apos;s arguments apply for
T &gt; V2 jr if (1.10) is taken with the minus sign.

EXAMPLE 1.6. A similar conclusion holds for the équation

N

utt(x; t) uxx(x; t)±JJ \u(x; 0P&apos;~2 \u(x; t)\ (1.11)

on R2, where q,^2 for each j; for équation (1.11) taken with the minus sign,
Weinstein&apos;s argument can be applied if q; 2 for at least one /.

Remark. The class of nonlinear Klein-Gordon équations recently investigated
by Zhiber and Shabat [15] cannot be discussed using the above method; the
problem of the existence of breather-solutions for thèse équations remains open.
Their class contains in particular Liouville&apos;s équation utt uxx — exp [u] and

another Mikhailov&apos;s équation, namely utt uxx + exp [2u] - exp [-u].
While the proof of Coron&apos;s theorem rests on an astute application of

Wirtinger&apos;s inequality, Weinstein&apos;s argument amounts to applying the stable
manifold theorem to an infinite-dimensional dynamical System équivalent to (1.1)
for which x e Ro&quot; plays the rôle of time. Our proof of Theorem 1.1 rests upon
methods from the calculus of variations, and the rest of this paper will accordingly
be organized as follows: in Section 2, we associate with équation (1.1) a

variational problem on the infinité strip QT R x (0, T). We then establish two
intégral identities valid for each ueB(T;u0) and finally prove Theorem (1.1).
We end section 2 by some remarks. For a short announcement of the results, see

[24].
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2. A smooth variational problem associated with équation (1.1) and proof of
Theorem (1.1)

Let T &gt; 0 and u0 e R ; write QT U x (0; T) and consider the Sobolev space

H\QT;R). Define gMo:R-»R by gUo(u) g(u + uQ) and write ÙUQ(u)

Jo &lt;%*„(?) (note that ^«o is différent from the GUo of Theorem 1.1). On
Hl(QT\ M), define the functional

SorA»] l dxdt{W&lt;{x\ t) - Wx{x\ t) - Guo(u(f&gt; 0)} (2.1)

Our first resuit is the following

PROPOSITION 2.1. Assume that g is an admissible nonlinearity for équation
(1.1); then SQTtUQ is a real-valued, differentiable functional on H1(QT;U), with
Fréchet derivative S&apos;QtUo[u] e H~\QT\ U) for each u e H\QT\ U) and

S&apos;nrMiv) f dxdt{ut(x;t)vt(x;t) - ux(x\t)vx{x\t) -gMo(w(jt;t))v{x\t)}

(2.2)

Proof. The only part of SqtUq which requires attention is

(2.3)

and we subdivide the proof into three steps for convenience (see also Appendix A).

Step L Finiteness ofsQTtUo on H\QT\ R).

Hypothèses (HO, (H2), (H3) imply gUoe &lt;€(R; U) and

^ (2.4)

Hence, |gMo(§)|^c(|§| + \%\e^) by interpolation, for each §€R and for some
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c&gt;0 (depending on u0 in gênerai). Let &lt;P(t) e*2- 1; &lt;P is a Young function in
the sensé of [10]. Let K&amp;(QT) be the convex balanced set of ail (équivalence
classes of) real-valued measurable functions u on QT such that exp [u2] -le
L\QT\ R); let L&amp;(QT\ R) be the Orlicz space associated with 4&gt;, namely the real
Banach space obtained by taking the linear hull of K0(QT) endowed with the

norm

^ (^)} (2.6)

Finally, let E^(QT;U) be the Banach space obtained by closing the set of ail
bounded functions with bounded support in QT with respect to (2.6). From
Adams&apos; improvement [16] to Trudinger&apos;s embedding theorem [17], we hâve the
continuous embedding Hl{QT\U)-*L&lt;p{QT\U)\ hence if u eHl(QT; R), there
exists (Mw)nM=1c ^(ûr; R) with un-+u strongly in L^(QT;U) as n-*°o-, since

(un)n=i&lt;^E^(QT;U)t we in fact hâve «ef^fir;!), so that the chain of
continuous embeddings/inclusions

H\QT\ R)-&gt; E*(QT\ U) c K&lt;t&gt;(QT) a L*{QT\ R)-* L\QT\ R) (2.7)

holds. From (2.3) and the interpolated estimate for gUQ, we therefore get

l^r,J&quot;]l ^ f dxdt{u\x\ t) + exp [u\x\ t)] - 1} &lt; « (2.8)

so that JûTiao is real-valued on Hl{QT\ R).

2 Membership of s&apos;aTtUi[u] in H~l(QT; R).

On HÎ(QT; R), consider the functional

^T,«0[«](v) f dxdtgU{)(u(x;t))v(x;t) (2.9)

First, note that 0 is a Young function convex in t2 in the sensé of [10]; hence
u-*&lt;p&apos;oU maps £0(£2r;R) continuously into the strong dual £^(£2r;R) by
Lemma 2.1 of [10], where &lt;f&gt;:s—?maxf&gt;0{|«sU- ^(0} dénotes the Legendre
transform of #. We therefore hâve 2u2 exp [u2] u(&lt;P&apos;°u) e Ll(QT;R) by
Young&apos;s inequality, for ail u e Hl{QT\ R). By the interpolated inequality for gWo,
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we infer that

f dx dt !&amp;&gt;(*; 0)|2 ^c2\ dx dt{u\x; t) + 2w2(*;

Thus gU0°ueL2(£2T;R), hence s&apos;Qi[u] eH~l(QT;R) for each u eHl(QT; R),
from (2.9) and Schwarz inequality.

Step 3. Differentiability ofSQrtUo on Hl(QT; R).

It remains to show that sQTtUo has Fréchet derivative s&apos;QtUo[u] for each

ueHl(QT\U). By the conclusion of Appendix A, it is sufficient to show that
s&apos;Qt&gt;Uo[u] is the Gâteaux derivative of sQt&gt;Uo; using the continuity of gUo again, we
hâve

A-1{&lt;V(&quot; + ^)-&lt;V«}-»&quot;(S«o°&quot;) (2-10)

as Â-»0, almost everywhere on QT and for each v eH1(QT;U). By the

interpolated inequality for gUo and for each |Â| e (0; 1], we hâve, almost

everywhere on QT,

\M~l \ôuo°(u + Au) - GWooW| &lt;c |v|{|u| + \v\)

+ (|u| + \v\) exp [(M + \v\)2]} e L\QT; R)

uniformly in A, since (\u\ -h |v|)(l + exp[(|w| + \v\)2]) eL2(QT; R) from the
method outlined in Steps 1 and 2. Hence

f dxda~\GuM^)^^(^0)-^uo(u(x;t)))^\ dxdtguo(u(x;t))v(x;t)

as A—?(), by dominated convergence. ¦
We now can prove the following

PROPOSITION 2.2. Assume that g is an admissible nonlinearity for équation
(1.1) and let u e B(T; u0). Then u~uoe Hl(QT\ R), xux e H\QTi R) and u-u0
is a critical point of Sqt&gt;Uq.
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Proof Condition (C3) readily implies u - uoeHl(QT; R) and xuxe
H^flrjR). Furthermore, conditions (Q) and (Q) imply that M-w0 0on the
lines t 0 and t T, so that by a slight generalization of the trace theorem for
bounded régions in UN [18], we get u-uQeHl{QT\U)\ a similar argument
applies to xux. Finally, û u-u0 solves the wave équation ûtt ûxx - gUo(û);

using standard considérations in the calculus of variations, we then get

S&apos;Qt&gt;Uo[u-uo](v) 0

for each v e ^{Q^ M), hence S&apos;QTtUo[u - u0] 0 on H\S2T;R) from the con-
tinuity resuit of Proposition 2.1. ¦

Having shown that S&apos;Qt&gt;Uo[u - uo](v) 0 for each v e Hl(QT\ U), we now can

prove Theorem (1.1). The main idea is to exploit the freedom on the available
test fonctions to establish two intégral identities for ueB(T;u0); the method is

reminiscent of the celebrated Poho^aev technique in nonlinear elliptic theory
[19].

Proof of Theorem 1.1. Choose v u — u0 in SfaTtUo[u — uo](v) 0; then

f dxdt(u?(x;t)-u2x(x;t))=[ dxdtg(u(x;t))(u(x,t)-u0) (2.11)

Now, choose v =xux; we get

f dxdtx[\u%x;t)-Wx{x;t)-GUo{u(x-t)]x=\ dxdtu2x{x;t)

which, upon integrating by parts and using (C3), leads to

f dxdt(uKx;t) + u2x(x;t)) 2\ dxdtGu£u(x;t)) (2.12)

Note that in (2.12), GUQ is now the potential of Theorem (1.1) and not the Go of
expression (2.1). Adding and subtracting (2.11) and (2.12) we get

f dxdtul\x\i)=\ dxdt(GU0(u(^^)-2g(u(x;t))(u(x;t)-u0)) (2.13)

and

f dxdtuXx; t) f dxdt(GU0(u(x; t)) + x2g(u(x;t))(u(x; t) - u0)) (2.14)
JaT JaT
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If statement (SO holds, then ut-ux 0 on QTf from identity (2.12). Hence

u u0 on R2 by (Q) and (Q). If statement (S2) holds, then GUQ(u) - ig(u)(u - u0)

H(y)-yH&apos;(y)&lt;0 by the convexity of H, so that 1^ 0 on QT by (2.13),
which again implies u u0 on R2 by conditions (Q) and (C3). If statement (S3)

holds, then ut 0 on ûr by (2.14), so that u u0 on R2 by (Q) and (Q). ¦
Remarks. (1) If one requires (C3) to hold for each meN along with (Q) and

(C2), one gets a subclass Bexp(T; u0) czB(T; u0) consisting of breather-solutions to
(1.1) with exponential decay, for which Theorem (1.1) obviously holds. The open
question is whether the requirement of exponential fall-off along the spatial
direction is sufficient to prove that Bexp(T; u0) reduces to the singleton {m0} for
&quot;almost ail&quot; admissible nonlinearities, with the exception of the Sine-Gordon
case g(u) 2 sin (u) and trivial perturbations thereof. The proof of such a resuit

clearly requires a detailed study of the geometry of the Sine-Gordon breather
(1.3) considered as a critical point of Sa2x on H1(Q2jt; U), and cannot follow from
entirely global arguments. Such a study is currently being carried out in [20], and
also has its dynamical System counterpart in [21].

(2) The sharp contrast between Weinstein&apos;s results on Uq x U and ours on U2

can also be explained in two différent ways. On the one hand, if one associâtes

with (1.1) a dynamical System for which x ^0 plays the rôle of time, the problem
is that of the intersection of the stable manifold with the unstable one ([8], [21]).
This intersection is a very unlikely event in the corresponding phase space, which

prevents one to carry over Weinstein&apos;s results to the whole plane. On the other
hand, if one attempts to define a class of breather-solutions to (1.1) on Rq x R in
replacing condition (C3) by

(C3+) sup
(xm max \(u(x; t) - u{))tJ\) &lt; oo

xeUJ \ te[0,T\
&apos;

/

our argument breaks down since membership of u -u{) in if^Ro x (0; 7&quot;);R)

does not hold. This is because condition (C^&quot;) does not necessarily imply
w(0; 0 - u0 0 for te [0, T].

(3) If condition (C3) is replaced by

(C?) &lt;oo

conditions (Ci), (C2) and (Çf) then provide a possible définition of Segur&apos;s

wobbling kink-solutions [22]. However, since condition (C3) implies (C5% the
class of wobbling kinks is larger than the class of breather-solutions, and the

question whether équation (1.1) possesses such solutions for admissible
nonlinearities other than g(u) sin (u) and g(u) u3 ~u remains open.
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Appendix A. On the £(1)-differentiability of SQttUo

In this appendix, we prove that under the above admissibility conditions for g
(hypothèses (H0,o (H2) and (H3) of section 1), S«r,Wo is in fact Cë&apos;(1)-Fréchet

differentiable on Hl(QT; R). This requires the following two extra steps.

Step A.l. An Almost Everywhere Pointwise Bound for Strongly Convergent
Séquences in E&lt;p(QT; R).

Let un-*u strongly in £^(flr;R); there exists a subsequence {unk}^=i with
\\unk+l — unk\\&lt;ptQT&lt;T~k and unk-^&gt;u pointwise almost everywhere on QT\ define

N
vN(x&apos;,t)= 2 \Unk+l(x;t)-unk(x;t)\

From the above sélection of {wnj*=i, it follows that {uat}/v=i is a Cauchy
séquence in E^(QT; R). Let v e E&lt;p(QT; R) its limit and define û \uni\ + v; then

ûeE0(QT;U) and the inequalities \unk\&lt;û, |w|&lt;w hold pointwise almost
everywhere on QT.

Step A.2. Strong Convergence s&apos;QTtJ[un]--+SQTtU£u] in H~1(QT; R).

It remains to prove that if un-^u strongly in Hl(QT,R), then s&apos;aTUo[un]-+

SaT,u0[u] strongly in H~\QT\ R); we already know that gUo°u, gUo°un e L2(QT; R)
so that by Schwarz inequality, we get
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Thus, it remains to prove that gMo°w«&quot;-&gt;gMo°w strongly in L2(QT;U); by the
continuity of gUQ) we may assume that \gUo°un -gUo°w|2-»0, pointwise almost
everywhere on QT\ since \gUo°un -gUQ°u\ ^ \guo°un\ + \guo°u\&gt; it is sufficient to
prove that \gUQ°un\ possesses an L2(fir)-bound uniform in n; by the interpolated
inequality for gUo and the resuit of step A.l, we may write

almost everywhere on QTy since un-*u strongly in H\OT;U) implies un-+u
strongly in E0{QT\ U). Since û e E0(QT; R), the fact that û + ûe*2 e L2(QT\ R)
follows from the same arguments as in step 2; the conclusion then follows from
dominated convergence.
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