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Nonexistence of spatially localized free vibrations for a class of
nonlinear wave equationst

P.-A. VUILLERMOT

Abstract. We prove the nonexistence of free vibrations of arbitrary period with polynomially
decreasing profiles for a large class of nonlinear wave equations in one space dimension Our class of
admissible models includes examples of non integrable wave equations with certain polynomial
nonlinearities, as well as examples of completely integrable ones with exponential nonlinearities
related to Mikhailov’s equations. Our result thus proves a particular case of a conjecture first
formulated by Eleonskii, Kulagin, Novozhilova and Silin, and dispels some confusion regarding the
relationship between the existence of so-called breather-solutions and the complete integrability of the
wave equation. Our class of admissible nonlinearities also contains a particular instance of the
nonlinear scalar Higgs’ equation, but does not contain the Sine-Gordon equation which is known to
possess a 2x-periodic solution in time with exponential fall-off in the spatial direction. Our results may
be considered as complementary to recent results by Coron and Weinstein. Our arguments are
entirely global, and rest upon methods from the calculus of variations.

1. Introduction, statement of the main results and discussion of some examples

There has been much interest and controversy recently concerning the
existence of spatially localized periodic solutions to nonlinear Klein—Gordon
equations of the form

Up(X; 1) = Uer(x; 1) — g(u(x; 1)) (1.1)
where (x;t) € R*. While the Sine-Gordon equation
Un(X5 t) = Uy (x; 1) — 2 sin (u(x; 1)) (1.2)

is known to possess the particular breather-solution

ELION

usgg(x;t) = 4 arctang {cosh )

(1.3)

T Work supported in part by the Los Alamos National Laboratory under contract COL-2335, by a
University of Texas summer grant and by the ETH-Forschungsinstitut fiir Mathematik.
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574 P.-A. VUILLERMOT

(see for instance [1] and [2]), it has been recently suggested that the wave
equation

U205 8) = U (x5 1) + u(x; £) — u’(x; ) ' (1.4)

should also possess spatially localized free vibrations converging to the trivial
solutions uy = F1 as |x|— = [3]. The case of convergence to u, = 0 is ruled out by
virtue of a recent result by Coron [4], whose one-sided decay conditions imply
that every spatially localized periodic solution to (1.4) is independent of time (see
however, Example 1.3 below and the remark following it). Coron’s theorem
asserts that as long as g € €”(R; R) and g(0) =0, classical solutions to equation
(1.1) cannot simultaneously be nontrivial T-periodic in time and exhibit a
sufficiently fast spatial decay at infinity, unless the period of vibration is chosen
sufficiently large — specifically, unless g’(0) > (2x/T)> It has been further conjec-
tured by Eleonskii, Kulagin, Novozhilova and Silin in [5] and [6] that equation
(1.1) possesses no nontrivial spatially localized periodic solutions whenever g is a
polynomial, and also speculated by Brézis in [7] that a behaviour similar to (1.3)
for the solutions to (1.1) should rather be an intrinsic feature of equation (1.2).
However, Weinstein recently proved that if g € €®(R; R), g(0) =0 and g'(0) >
(27/T)?, there do exist exponentially localized nontrivial T-periodic solutions to
equation (1.1), under the crucial additional assumption that (1.1) be considered
on a half-plane instead of R? [8]. In this paper, we go one step further in proving
the nonexistence of free vibrations with polynomially decreasing profiles for
equation (1.1) on R?, for a broad class of nonlinearities and regardless of the
value of the preassigned period 7. In view of the applications, our class of
admissible wave equations must allow for both polynomial and exponential
nonlinearities in (1.1); according to the physical picture, our class of admissible
spatially localized free vibrations must contain solutions to (1.1) which converge
to constant solutions ¥ = upe R as |x|— . These remarks motivate the following
definitions.

DEFINITION 1.1. Let uy,€eR; the function g:R—R is said to be an
admissible nonlinearity for equation (1.1) if the following hypotheses hold:

(H,) | ge ¢(R;R)
—(u—up)?
(Hy) lim sup ¢ 18() <o
|uj—>oe 'u - uOI

(Hs) lim sup 18l <o

u—rug Iu - uOl
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We note that hypotheses (H;) and (H;) imply g(u,) =0, hence that u = u, solves
(1.1). For u smooth on R? we now define (u),=u,u,, u, for j=0,1,2
respectively, and write u; = ((1););. We still need the following.

DEFINITION 1.2. Let T >0, uy,e R. We denote by B(T; u,) the set of all
breather-solutions with polynomial decay to equation (1.1), that is the set of all
u € €®(R?; R) such that the following conditions hold:

u is a time-periodic solution to (1.1) of period T, that is

(C) u(x;t+ T)=u(x,t) for each (x, t) e R~
() u(x;0)=u, foreach xeR
(G5) sup |x™ max |(u(x; 1) — ug)y|| <

x€e te[0, T}

for each m € {0; 1; 2}, each i € (0; 1) and each j € {0; 1; 2} with j =i. We note that
if g is an admissible nonlinearity for (1.1), then u =uy€ B(T; uy); B(T; u,) is
therefore not empty. We also observe that with uy,=0, the Sine-Gordon
nonlinearity is admissible, while the breather-solution uggp given by (1.3) satisfies
(Cy) with T =2x, (C,) with uy= 0 and (C;) for each m € N (exponential fall-off).
Thus, the breather-class Bss(27; 0) has at least two elements. But we also have
Bss(T; 0) = {0} for each T € (0; V2x), which follows from Coron’s result in [4]
since our condition (C;) implies his assumptions of decay at infinity; in this
specific case, the actual number of elements in B(T'; u,) thus crucially depends on
the value of the preassigned period 7. What the main result of this paper does is
to exhibit a set of admissible nonlinearities for which the breather-class B(T'; u,)
reduces to the singleton {u,} for each T > 0. Its statement requires the following

DEFINITION 1.3. Let G, (u)= [u d&g(§); G, is said to be convex in
(u — uo)? if there exists a function H € €'(Rg; R) such that G, (u) = H(y) with
y = (u — ug)? and H convex in y.

The above notion was introduced in [9] and used in [10], [11], [12] and [13] for
investigations concerning nonlinear elliptic eigenvalue problems. Its relevance to
the above hyperbolic problem is exhibited in the following

THEOREM 1.1. Let T>0 and uy,eR; assume that g is an admissible
nonlinearity for equation (1.1). If one of the following statements holds:

(S1) G, (u) =0 for each u e R

(S2) G, is convex in (u — ug)*

(S3) G, (u) + 3g(u)(u — uo) <0 for each u e R
then B(T; ug) = {uo}.
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Remarks. (1) The fact that our result holds for each T >0 is in sharp contrast
with Weinstein’s results on the half-space Ry X R; this will be illustrated by
several examples.

(2) Theorem (1.1) dispels some confusion regarding the relationship between
the existence of breathers and the complete integrability of the wave equation
(1.1); indeed, our examples will show that the class of nonlinearities for which
Theorem (1.1) holds contains models for which (1.1) is nonintegrable, as well as
nonlinearities for which (1.1) is completely integrable. It also contains certain
polynomial nonlinearities, which proves a part of the Eleonskii—-Kulagin-
Novozhilova-Silin conjecture mentioned above.

(3) Coron and Weinstein assume g € $”(R;R) and g(0) =0, but have no
other significant restrictions besides the period conditions; we only assume
g € 4(R; R) and have no period condition, but this is at the expense of having the
growth conditions (H;) and (Hs) at infinity and around u, (see Proposition 2.1
below).

(4) G,, need not be convex in (« — uo) in order to be convex in (u — ug)> (see
Example 1.3 below).

In the following examples, we simply write Go=G and B(T;0)= B(T) if
uo = 0; we begin with the following

EXAMPLE 1.1. Consider the wave equation
N .

Un(X3 1) = U (x5 ) £ D ¥ (x5 1) (1.5)
j=1

on R?, where c; =0 for each j; here, g(u)= FLX,cu?", G(u)= FELX, u?
with é; = 0. With the minus sign, we have G(u) =0 for each u; otherwise, G(u) is
convex in u? In either case, B(T) = {0} for each T >0, by statements (S;) and
(S,) of Theorem 1.1.°

The preceding result contrasts sharply with the following, which is a direct
consequence of Weinstein’s arguments in [8].

. EXAMPLE 1.2. Consider the equation

Uy (x; 8) = U (x3 1) — ﬁv‘, cu? ™ (x; f) (1.6)

j=1

on the half-plane Rg XR, where ¢;>0 and the c’s are arbitrary for je
{2,...,N}; let T >2mc7"?; then there do exist nontrivial solutions to equation
(1.6), T-periodic in time, which decay exponentially fast along the x-direction.
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Remark. 1If ¢, <0 in (1.5) taken with the minus sign, then B(T) = {0} as well
for arbitrary ¢;’s, je{2,..., N}. This follows from the fact that ¢, <0 implies
g'(0) <0 and that condition (C;) with uy =0 implies Coron’s in [4]. The above
results thus prove the Eleonskii—Kulagin—-Novozhilova-Silin conjecture in a
significant number of cases.

Our next example is concerned with a translated version of equation (1.4), the
so-called scalar Higgs equation; it illustrates the use of Theorem (1.1) for uy,#0
and also suggests that the Eleonskii—Kulagin—-Novozhilova-Silin conjecture might
not be true in general.

EXAMPLE 1.3. Consider the equation
U (x5 8) = Uee (x5 £) — 2u(x; £) + 3u’(x; t) — u(x; 8) (1.7)

on R?; we have g(u) =2u — 3u®+ u’ = (u — 1)’ — (u — 1); in this case, uy=11is an
admissible trivial breather-solution to (1.7) and we have

(u—-1)° (u-1)°

Gl(u) = 4 2

which is convex in (u —1)* (but not in u —1). Theorem (1.1) then implies that
B(T;1) = {1} for each T > 0; by translation, this is of course the same as saying
that B(T) = {0} for equation (1.4), or that B(T; —1) = {—1} for

Ug(X58) =t (x5 8) — 2u(x; £) = 3uP(x; ) — u’(x; t) (1.8)
on R2

Remark. The above argument does not preclude equation (1.4) from having
nontrivial breather-solutions which converge to u,= F1 as |x|— . This is
because the potential G, ,(u) = u*/4 — u?*/2 + } = }(u — 1)’(u + 1)? is neither con-
vex in (u — 1)? nor convex in (u + 1) It is perhaps such solutions which might
explain the existence of breather-solutions in field theory which is suggested by
the numerical and asymptotic evidence exhibited by Campbell et al in [3]; the
polynomial g(u) = u> — u might thus provide a counterexample to the Eleonskii—
Kulagin—Novozhilova-Silin conjecture.

Our next example is one with exponential nonlinearities, which appears in
Mikhailov’s study regarding the integrability properties of two-dimensional
generalizations of the Toda chain [14]. It shows that there are integrable
hyperbolic equations which possess no breather-solutions.
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EXAMPLE 1.4. Consider the equation
u,(x;t) = u.,(x;t) £ sinh (u(x;t)) (1.9)

on R?; here, g(u) = Fsinh (1), G(u) = F(cosh (u) — 1) so that either G(u)=0
for each u or else G(u) is convex in u?; therefore B(T) = {0} for each T >0, as in
Example (1.1).

Similar arguments also apply to the following examples; in each case,
Weinstein’s result still predicts nontrivial exponentially localized breather-
solutions on Ry X R for sufficiently large periods.

EXAMPLE 1.5. Consider the equation
Ue (x5 1) = U (x5 8) £ 2u(x; t) exp [u(x; t)] (1.10)

on R?; then B(T) = {0} for each T >0. Here, Weinstein’s arguments apply for
T >V2 x if (1.10) is taken with the minus sign.

EXAMPLE 1.6. A similar conclusion holds for the equation

Ua(X58) = Uee(x; 1) £ % luCx; 1772 Ju(x; 1) (1.11)

on R?, where ¢;=2 for each j; for equation (1.11) taken with the minus sign,
Weinstein’s argument can be applied if g; = 2 for at least one j.

Remark. The class of nonlinear Klein—Gordon equations recently investigated
by Zhiber and Shabat [15] cannot be discussed using the above method; the
problem of the existence of breather-solutions for these equations remains open.
Their class contains in particular Liouville’s equation u, =u,, —exp[u] and
another Mikhailov’s equation, namely u, = u,, + exp [2u] — exp [—u].

While the proof of Coron’s theorem rests on an astute application of
Wirtinger’s inequality, Weinstein’s argument amounts to applying the stable
- manifold theorem to an infinite-dimensional dynamical system equivalent to (1.1)
for which x € Rj plays the role of time. Our proof of Theorem 1.1 rests upon
methods from the calculus of variations, and the rest of this paper will accordingly
be organized as follows: in Section 2, we associate with equation (1.1) a
variational problem on the infinite strip 2 =R X (0, T). We then establish two
integral identities valid for each u € B(T'; uo) and finally prove Theorem (1.1).
We end section 2 by some remarks. For a short announcement of the results, see
[24].
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2. A smooth variational problem associated with equation (1.1) and proof of
Theorem (1.1)

Let T>0 and uo€ R; write 2, =R X (0; T) and consider the Sobolev space
H'(Qr;R). Define g,:R—R by g,(u)=gu+uy) and write G, (u)=
[4dEg, (E) (note that G, is different from the G,, of Theorem 1.1). On
H'(Q,; R), define the functional

Sanwlt] =] dxdt{3ul(x;t) — ui(x;t) — G, (u(x; )} (2.1)

Our first result is the following
PROPOSITION 2.1. Assume that g is an admissible nonlinearity for equation

(1.1); then Sq, ., is a real-valued, differentiable functional on I-i'l(.QT; R), with
Fréchet derivative S, [u] € H™'(2r; R) for each u € H'(Q;; R) and

Sorull(v)= | dxde{u(x;)v,(x;t) — u(x; )v.(x;t) — gu(u(x; t))v(x; 1)}

Qr
(2.2)
Proof. The only part of Sq,,,, which requires attention is
Sapulul=| dxdtG, (u(x;?)) (2.3)

Qr

and we subdivide the proof into three steps for convenience (see also Appendix A).

Step 1. Finiteness of sq.,,., on H'(2r; R).

Hypotheses (H,), (H), (H;) imply g,, € €(R; R) and

lim sup ||~ |gu,(§)] < (2.4)
lim sup |§| 7" |g.(§)| < (2.5)
1§1—0

Hence, |g,,(8)|=c(|5]+ |E|e¥) by interpolation, for each £€R and for some
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¢ >0 (depending on u, in general). Let ®(t) =e“ —1; & is a Young function in
the sense of [10]. Let K4(£27) be the convex balanced set of all (equivalence
classes of) real-valued measurable functions u on € such that exp[u’]—1¢€
LY(27; R); let Lo(L227; R) be the Orlicz space associated with @, namely the real
Banach space obtained by taking the linear hull of K4(€27) endowed with the
norm

||uu¢,g,,=inf{k>0: ) dxd:cp(-‘f-(%i))sl} (2.6)

Finally, let E4(€2,; R) be the Banach space obtained by closing the set of all
bounded functions with bounded support in Q, with respect to (2.6). From
Adams’ improvement [16] to Trudinger’s embedding theorem [17], we have the
continuous embedding H'(2;; R)— Lo(27; R); hence if u € H(Qr; R), there
exists (u,),-1 < 65(27r; R) with u,— u strongly in L4(£2r;R) as n— ; since
(U)n-1< Eo(£2r;R), we in fact have u € E4(L2r;R), so that the chain of
continuous embeddings/inclusions

ﬁl(gr; R)— Eo(27; R) c Ko(27) © Lo(27;R)— LZ(QT; R) (2.7)

holds. From (2.3) and the interpolated estimate for g,,, we therefore get

150, ufu]] sg dxdt{u*(x; £) + exp [u?(x; 1)] — 1} <o (2.8)

Qr

so that s, is real-valued on H (27 R).

Step 2. Membership of sg,. . [u] in H™'(27; R).

On H'(2r;R), consider the functional

Saorultt](v) = | dxdg, (u(x;)v(x;t) (2.9)

LQr

First, note that @ is a Young function convex in #* in the sense of [10]; hence
u— @'ou maps EH(€2r; R) continuously into the strong dual Eg($2r;R) by
Lemma 2.1 of [10], where ®:s— max,., {|s|t— @(t)} denotes the Legendre
transform of ®. We therefore have 2u’exp [u?]=u(® -u)e L'(Q;;R) by
Young’s inequality, for all u € H'(£2;; R). By the interpolated inequality for 8un
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we infer that

dx dt |8, (u(x; )P =c® |  dx de{u’(x; 1) + 2u*(x; £)e**)
Qr

Qr

+ u¥(x; £)e? "9} <o,

Thus g, °u e L*(2;;R), hence s [u]e H Y(27;R) for each ue H(Qr;R),
from (2.9) and Schwarz inequality.

Step 3. Differentiability of Sq,.., on H'(2r; R).

It remains to show that sq_,, has Fréchet derivative sq,,[u] for each
u € H'(Qr; R). By the conclusion of Appendix A, it is sufficient to show that
Sanult] is the Gateaux derivative of sq, ,; using the continuity of g, again, we
have

A YG, o(u+Av)— G, cut—>v(g,,ou) (2.10)
as A—0, almost everywhere on £, and for each ve HY(Sr;R). By the

interpolated inequality for g, and for each |A|e(0;1], we have, almost
everywhere on Qr,

A Gupo (u + Av) = Gypoul = c ul{jul + [v])
+ (lul + Jv]) exp [(lul + v])’]} € L'(2r; R)

uniformly in A, since (Ju|+ |v])(1+ exp [(Ju] + |v])?]) € L3(27;R) from the
method outlined in Steps 1 and 2. Hence

dxdiA="(Cu (u(x30) + Av(x30) — Cu(u(x;2))) = f dxdig, (u(x;O))v(x; 1)

Qr

as A— 0, by dominated convergence. W

We now can prove the following

PROPOSITION 2.2. Assume that g is an admissible nonlinearity for equation
(1.1) and let u € B(T; uy). Then u — uge H'(2r; R), xu, € H' (27, R) and u — u,
is a critical point of S q,, 4,
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Proof. Condition (C;) readily implies u—uoe H'(R27;R) and xu, e
H'(27; R). Furthermore, conditions (C,) and (C,) imply that u — u, =0 on the
lines t =0 and ¢t =T, so that by a slight generalization of the trace theorem for
bounded regions in R [18], we get u —uoe H'(Q2;;R); a similar argument
applies to xu,. Finally, 4 =u — u, solves the wave equation &, = i,, — g,,(i);
using standard considerations in the calculus of variations, we then get

S anul — uo)(v) =0

for each v € €5(L2r; R), hence Sq, ., [u —ug) =0 on fIl(QT; R) from the con-
tinuity result of Proposition 2.1. W

Having shown that Sg_, [© — uo)(v) =0 for each v e HY(2r;R), we now can
prove Theorem (1.1). The main idea is to exploit the freedom on the available
test functions to establish two integral identities for u € B(T'; uy); the method is
reminiscent of the celebrated PohoZaev technique in nonlinear elliptic theory

[19].

Proof of Theorem 1.1. Choose v =u —uyin Sg_, [u — uo)(v) =0; then
dxde(ude; 1) = w3 0) = | dudig (e ) s ) — o) (2.11)
QT QT

Now, choose v = xu,; we get

f dxdix[3u?(x; t) — 3ul(x; ) — G, (u(x; )], = | dxdui(x;t)
Qr

Qr

which, upon integrating by parts and using (C;), leads to

dxdt(u3(x; 1) + u2(x; 1) = 2 f dxdiG,(u(x; 1)) 2.12)
Qr

Q27

'Note that in (2.12), G, is now the potential of Theorem (1.1) and not the G, of
expression (2.1). Adding and subtracting (2.11) and (2.12) we get

dxdt;tf(x s0)=| dxdt(G, (u(x; 1)) — 3g(ulx; £))(u(x; t) — uo)) (2.13)
Qr

Qr

and

[ dxdnie; = | ande(Guutx; 0) + gt i 0 - @.14)
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If statement (S;) holds, then u,=u, =0 on £, from identity (2.12). Hence
u = uoon R? by (C,) and (C,). If statement (S,) holds, then G, (1) — 3g(u)(u — u,)
= H(y)—yH'(y) =<0 by the convexity of H, so that u, =0 on Qr by (2.13),
which again implies u = u, on R? by conditions (C,) and (C;). If statement (S5)
holds, then u, =0 on £, by (2.14), so that u = uy on R? by (C,) and (C,). B

Remarks. (1) If one requires (Cs) to hold for each m e N along with (C,) and
(C,), one gets a subclass Be,,(T'; up) = B(T'; uo) consisting of breather-solutions to
(1.1) with exponential decay, for which Theorem (1.1) obviously holds. The open
question is whether the requirement of exponential fall-off along the spatial
direction is sufficient to prove that B, (T'; uo) reduces to the singleton {u,} for
“almost all” admissible nonlinearities, with the exception of the Sine—Gordon
case g(u) =2sin («) and trivial perturbations thereof. The proof of such a result
clearly requires a detailed study of the geometry of the Sine-Gordon breather
(1.3) considered as a critical point of S,,_on H 1(2,,; R), and cannot follow from
entirely global arguments. Such a study is currently being carried out in [20], and
also has its dynamical system counterpart in [21].

(2) The sharp contrast between Weinstein’s results on Rg X R and ours on R?
can also be explained in two different ways. On the one hand, if one associates
with (1.1) a dynamical system for which x =0 plays the role of time, the problem
is that of the intersection of the stable manifold with the unstable one ([8], [21]).
This intersection is a very unlikely event in the corresponding phase space, which
prevents one to carry over Weinstein’s results to the whole plane. On the other
hand, if one attempts to define a class of breather-solutions to (1.1) on R§ X R in
replacing condition (C;) by

(CG3) sup (x'" maxl |(u(x;t) — u(,),.j|) <o
T _

xeRy" telO

our argument breaks down since membership of u —u, in H (R % (0; T); R)
does not hold. This is because condition (C3) does not necessarily imply
u(0;¢t) —uy,=0for t € [0, T].

(3) If condition (C;) is replaced by

T

x™ | dt|(u(x; ) — ug);l | <o
0

(G3) su

X €

conditions (C,), (C,) and (C3) then provide a possible definition of Segur’s
wobbling kink-solutions [22]. However, since condition (C;) implies (C}), the
class of wobbling kinks is larger than the class of breather-solutions, and the
question whether equation (1.1) possesses such solutions for admissible non-
linearities other than g(u) = sin (#) and g(«) = u® — u remains open.

A}
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Appendix A. On the ¢V-differentiability of S,

In this appendix, we prove that under the above admissibility conditions for g
(hypotheses (H,), (H;) and (Hs) of section 1), Sq,, is in fact €V-Fréchet
differentiable on H'(Q;; R). This requires the following two extra steps.

Step A.1. An Almost Everywhere Pointwise Bound for Strongly Convergent
Sequences in E4(Q2; R).

Let u,— u strongly in E4(Q27; R); there exists a subsequence {u,, }i-; with
iy, — tUn, |l 0,2, =27 and u,, — u pointwise almost everywhere on Q;; define

N
un(x;t) = kz |t (X3 8) = 1, (x5 8)]
=1

From the above selection of {u, }x-;, it follows that {vy}ny-; is a Cauchy
sequence in Eq(Q27; R). Let v € Eg(Q2r; R) its limit and define & = |u,, | + v; then
e E4(£27;R) and the inequalities |u, |=<#, |u|=4a hold pointwise almost
everywhere on Q.

Step A.2. Strong Convergence sg, , [u,]— s, .[u] in H'(2r; R).
It remains to prove that if u,— u strongly in H'(27,R), then sg_, [u.]—

S a,,ul] strongly in H ~1(27; R); we already know that 8uo®Us 8uy®Un € L*(2:;R)
so that by Schwarz inequality, we get

”Sbr,uo[un] - S;?r,uo[u]”H—I(QT,R) = ”guoo u'l - guoo u”LZ(Qr,R)
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Thus, it remains to prove that g, ou,— g, ou strongly in L*(Qr;R); by the
continuity of g,,, we may assume that |g, °u, — g, °u[*— 0, pointwise almost
everywhere on £2r; since |g,,°u, — 8u,° U| = |8.,°Un| + |84,°ul, it is sufficient to
prove that |g, ou,| possesses an L*(£2;)-bound uniform in n; by the interpolated
inequality for g, and the result of step A.1, we may write

|8u,° Un| = (@i + Ge™)

almost everywhere on Q7, since u,—> u strongly in H'(Qr; R) implies u,—u
strongly in Eq(Qr; R). Since & € E 4(27; R), the fact that 2 + 4e® € LY(Qr; R)
follows from the same arguments as in step 2; the conclusion then follows from
dominated convergence.
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Note added in proof: The results of this paper have now been considerably
generalized in [23], where the authors deal with the problem of almost periodic
breathers.
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