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Bounded domains with prescribed group of automorphisms

Eric Beprorp* and Jirt DaDoOK*

§ 0. Introduction

By an automorphism of a complex manifold € we mean a biholomorphic
mapping f:9Q2— Q. A classical result of H. Cartan (see {9]) states that for a
bounded domain Q = C" Aut (£2) has the structure of a Lie group. This is also the
case if Q is a relatively compact domain in a Stein manifold.

Let Q E€Q be a relatively compact domain in a Stein manifold with a C?,
strongly pseudoconvex boundary. It is known [11] that if Aut (£2) is not compact
then £ is biholomorphic to an open unit ball in C". Thus the automorphism group
of such a domain is either SU(n, 1) or a compact Lie group. It is natural to ask
whether every compact group can appear as the automorphism group of such €.
For the case of the trivial group G = {id}, there are triply connected domains in
C with smooth boundary but with no nontrivial automorphisms. Finding
contractible strongly pseudoconvex domains Q = C", n =2 with Aut (£2) = {id} is
less easy, but it is possible to take £ to be a small, smooth perturbation of the
ball B" (see [4]). The next simplest case is G = T, the circle group. There is no
smoothly bounded Riemann surface M with Aut (M)=T"', but an appropriate
domain may be constructed in C* (Proposition 1.3). In this paper (Theorems 1, 2)
we show how to construct a smoothly bounded domain €2 in C" whose group of
biholomorphisms is any prescribed compact group G. If G is connected our
construction (§ 3) is quite explicit:

THEOREM 1. Let G be a connected compact Lie Group and Gg its
complexification. Then there exists a strongly pseudoconvex domain Q < G¢ (or
Q < G¢ X C in case the center of G is one dimensional) with real analytic boundary
so that Aut (2) = G, acting by left translations.

The object in constructing < G¢ is to keep it invariant under left
translations by G while ruling out additional symmetries. If G acts on a complex
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562 ERIC BEDFORD AND JIRI DADOK

manifold M # G¢ by biholomorphisms it may happen that no such Q c M exists
(see example 3.0).

The following two theorems were first obtained by Saerens and Zame [12]
independently of our Theorem 1, but the proofs we give in § 4 are shorter and
more elementary in nature.

THEOREM 2. Let G be any compact Lie group. Then there is a strongly
pseudoconvex domain £2 € C" with real analytic boundary such that Aut () = G.

THEOREM 3. Let G be a compact Lie group. Then there exists a surface
2 cR" which is an arbitrarily small smooth perturbation of the unit sphere
§"~' = R" whose group of isometries is linear and isomorphic to G. Moreover, if
for some affine map T of R" T2 =X then T € G = O(n)

Remark. The dimension n in the above two theorems may be taken to be
n = k? if G has a faithful action on R*.

Note that while Theorem 2 applies to disconnected Lie groups it only gives
existence of required domains €2 (typically with dim £ >> dim G). Its proof cannot
be used to actually construct € without prohibitive calculatiorns.
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Notation

Let G be a compact group and ¢ its Lie algebra. We choose a faithful
imbedding of G into some unitary group U(n). Thus ¢ = U(n) is a subalgebra of
skew Hermitian matrices. We set gc =g @ ig and Gc =« GL(n, C) the connected
Lie group corresponding to gc. If G itself is connected then G = G¢ as a totally
real submanifold of the Stein manifold G¢. If @ —g¢ is a small neighborhood of
Oeg then Q=G -expiw =G X w is a tubular neighborhood of G in Gc. Here
exp is the matrix exponential function. The groups L(G), R(G) c Aut (G¢) are
the groups of left and right translations by G. If g€ G, X, Y €4 we, as usual,
define, Ad (g)X =gXg ™! and ad (X)(Y) = XY — YX (matrix multiplication).
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§1. Tori

In this section we give examples of domains whose automorphism groups are
T". First we consider a Reinhardt domain < C", i.e. Q is invariant under
(Z1y .- s 20)— (€02, ..., €%2,) for 0,,...,0,€R. It is obvious that T" is
contained in the automorphism group of a Reinhardt domain. The logarithmic
image of Q2 is

w=Log(2)={(&,...,&E):(e%, ..., e5%)e Q}. 1)

The automorphism group for certain € is given as follows (see [1]).

THEOREM 1.1. If Q is a Reinhardt domain, and if Log (L) is a bounded
convex domain in R", then Aut (€) consists of transformations of the form

(zy, ..., 2)—= (2™, ..., C,2™) (2)

where the matrix M with rows my, . . . , m, belongs to GL(n, Z).

It is evident that a mapping of the form (2) will map Q to  if and only if
TE = ME& + log |c| is an affine self-mapping of w.

COROLLARY 1.2. Let w = R" be a bounded convex domain, and let 2 c C"
be the Reinhardt domain with Log(2)=w. If w has no nontrivial affine
self-mappings, then Aut (2)=T".

If n=2, then it is clear that a ‘“‘generic’ domain w in R" has no affine
self-mappings. This is not true for n = 1, since every interval in R has an (affine)
inversion.

Let D < C be a smoothly bounded triply connected domain with Aut (D) = id.
Let 0 <r,(z) <ry(z) be continuous functions on D and set

Q={(z,w)eD xXC:n(z)<|w|<nr(z)}.

PROPOSITION 1.3. Let DcC be a smoothly bounded triply connected
domain with Aut (D) =id. If we choose r\(z), r,(z) such that r(z)ry(z) is not the
modulus of an analytic function on D, then with Q as above, Aut (2)=T".

It is clear that we may arrange for £ to have real analytic, strongly pseudo-
convex boundary.

For the proof we will use invariant 2-forms, as in [2]. We may choose a,,



564 ERIC BEDFORD AND JIRI DADOK

a, € C such that

___dZ/\dw

T 1TV

J

are linearly independent cohomology classes. If [T}] is the set of holomorphic
2-forms cohomologous to T}, then there exists a unique w; which minimizes the
L*norm ||o|| =| [o @ A @|"? over [T;]. We may write

wr,= >, fiz)wdz A dw.
k

= —0C

Since 7; is independent of the rotation (z, w)— (z, e'°w), so is wr,. Thus
wr, =f(z)w™ dz A dw.
If f € Aut (£2), then
wf"T1= *(_ai'l_'_l) 3
pat A prey 3)

By the arguments above, wr, /w7, = m(z) is a nonconstant meromorphic function,
and the left hand side of (3) is another meromorphic function, m(z). Thus writing

f(z, w) = (fi(z, w), fo(z, w)) we have
m(z) =m(fi(z, w))

and so fi(z, w) depends on the variable z alone. We conclude, then, that f induces
a mapping of the vertical fibers 2, = {(z, w) e Q:z =2z)) of Q. Thus f; is an
automorphism of D, and therefore fi(z, w) = z.

We conclude from this, that f,(z, w) must be an automorphism of the fiber
Q, ={weC:n(z)<|w|<r(z)}.

Therefore either
iz, w) = e Ow

or

f(z, w) =c(z2)/w.

In the first case, 0(z)= 0, is constant, since it must be real-valued and
holomorphic. In the second case, however, c(z) is a holomorphic function and

n(z) = lc(2)l/r2).

which is a contradiction.
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§ 2. Simple and connected groups

Given a simple compact group G we construct (in Lemma 2.3) a domain
Q2 c G in the complexification of G and prove (Proposition 2.6) that the
connected component of the identity Aut (£2), = G. At first we shall assume that
G is compact connected and semi-simple. Simplicity of G is necessary only in
Proposition 2.6.

The Killing form x(x, y) =Tr(ad x ady) is negative definite on ¢, the Lie
algebra of G. In this section we shall use —x as the inner product on g. This inner
product on the left invariant vector fields gives a biinvariant metric on G.

Let Aut(g) be the Lie group of Lie algebra automorphisms of ¢, and
Ad (G) c Aut(g) be the image of G under the adjoint representation i.e. the
inner automorphisms of 4. Recall [7] that Aut(¢)/Ad(G) is a finite group (of
order =6 if g is simple) and that each o € Aut(g) preserves the Killing form
which we will write as Aut (¢) = O(¢), the orthogonal transformations on g. If
I € O(g) is the identity map we readily observe:

LEMMA 2.1. —I ¢ Aut (g).

We proceed to construct the domain Q< Ge. Let {e;,...,e;} be an
orthonormal basis for ¢ and let x,, ..., x; be coordinates with respect to this
basis.

LEMMA 2.2. On 4\{0} we may find a smooth function y(x) with the
following properties:

i) Y(Ax)=|A| p(x) forall AeR
i) yog =1y, g€ O(g) implies g = £I.

Proof. Let yo(x) = L, x!. Note that the maxima of vy, on the unit sphere
S lcgareat te;i=1,2,...,d Setv=(1,2,3,...,d)and
'Po(x) + €<x’ U>4

el?

Ve(x) =

For small enough € >0 there will be local maxima of vy, at +¢; with é; very close
to e;, and with

(é;,&)>0 forallij. 4)

Further, it is clear that for small enough € we will have
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Thus if we fix € >0 with above properties and assume that y.°g =y, g € O(g)
we obtain, using (5), that g(é;) = £¢é;. Finally, using (4), we must have g(é;) = ¢
org(é)=—¢foralli=1,2,...,d.

LEMMA 2.3. There exists a domain w c ¢ such that

i) w=-w

iil) Q=G -exp (iw)Gg is strongly pseudoconvex and smoothly bounded.
iii) If 0 € Aut(¢) and o(w) = w, then o =1.

Proof. Let y(x) be as in Lemma 2.2 and set

d
W5 = {x €g: 0 x2+0y(x) < 62}.

i=1

From Lemmas 2.1 and 2.2 it follows that for €, 6 >0 properties i) and iii) hold.
For € > 6 > 0 sufficiently small property ii) holds as well.

For the next lemma we observe that any group automorphism 4 of G extends
to (a holomorphic) automorphism of G¢, here denoted also by A.

LEMMA 2.4. Let 2 be as in Lemma 2.3. Suppose h, an automorphism of G,
and X € w have the property that

Rexpix°h(£2) = Q.

Then X =0 and h is the identity automorphism.

Proof. The differential dh € Aut (¢) = Aut (gc). We thus have
h(expiY) =exp (i dh(Y)), Yegq.
In G¢ consider the curve y(t) = exp itX. Since dh(w) = —dh(w) it follows that
{teR:y(t) e 2} =(—a, a), a>0
is a symmetric interval. Next we observe that if X # 0 the set
{teR:y(t) € Rexpix°h(£2)) = {t e R :y(t) exp (—tX) € h(L2)}
={teR:(t—-1)X e dh(w)}

is of the form (—b + 1, b + 1) and thus not symmetric. This contradiction shows
that X =0 and Lemma 2.3 then forces dh = I.

COROLLARY 2.5. Suppose R,(2)=Q, z € Gc. Then z € Z(Gg), the center
Of Gc.
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Proof. Write z=gexpiX, g€ G, Xe€g. Since L,(2)=C we have that
R.pix°h(2) = 2, where h(x) =g 'xg is an inner automorphism of G. Lemma
1.4 then implies that X =0 and gx =xg for all x e G and thus, by extending
holomorphically, for all x e Gc. O

PROPOSITION 2.6. Let G be a simple connected Lie group and 2 c G¢ as

constructed in Lemma 2.3. Then the connected component of the identity is
Aut (Q) = L(G).

Proof. Recall that d =dim G. Since £ < G¢ is a small tubular neighborhood
of G, we have H,(Q,Z)=7. By Lemma 2.3 of [3] there exists an orbit of
Aut (Q) in Q whose dimension is at most d. Since L(G) < Aut (£2) that orbit
must be a finite union of G orbits, and any of these are stable under Aut (£),. So
suppose G - x, is Aut (£), stable for some x,€ £2. Restricting the Bergmann
metric ds” to the mainfold G - x,= G we see that Aut (£2), is naturally a subgroup
of the connected component Iy(G, ds?) of the isometry group. By Theorem 1 of
[10] it now follows that any f € Aut (£2), is of the form

f(g-xo)=agh-x,, geG

for some a, b € G. Extending holomorphically to g € Gc we see that f =1L °
R, -1y, and hence R,.i,,(L2)=£. By Corollary 2.5 b € Z(G¢), and so f =
Lab € L(G) O

§ 3. Connected groups and proof of Theorem 1

PROPOSITION 3.1. Let G be a compact, connected Lie group. Then there
exists a piecewise strongly pseudoconvex domain 2 c G¢, (or Q « G¢ X C in case
the center of G is one dimensional) such that G = Aut ().

One may contemplate constructing such w domain £ inside other complex
manifolds that posses a natural G action. The following example shows that
achieving G = Aut (£2) may be impossible.

EXAMPLE 3.0. Let G =S80(3) act on the complex sphere

>={zeC? D 22=1}

Every G orbit on 2 intersects the curve

a(t) = (cosh ¢, i sinh ¢, 0)
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at a(xs) for some s. Consequently the only G invariant pseudoconvex domains in
3 are Qp = {z €2 ||z| <R}. These domains are also O(3) invariant.

Proof of 3.1. Any compact connected Lie group G is of the form
G=T'XxG, X --XG,/H where G,...,G, are simple,
1-connected and connected, H c Z(T' X G, X - - - X G}) is finite, and HN T =

{e}.

In the following we will denote G, X - - - X G, by G,. Let £° be a domain with
Aut (2°) =T, as constructed in Section 1. For each simple factor G, let €' the
domain constructed in Lemma 2.3. Moreover, we may arrange our choice of w;’s
so that £; is not biholomorphically equivalent to €, if i #j. To see this, we need
only to note that if we shrink w;, then we obtain a biholomorphically inequivalent
€2 (see, for instance, Theorem 3.3 of [2]). Now set

D=8,x Q"' x.--x Q"

We note that D is biholomorphic to a domain in (7' X G, X - - - X G)¢ of the

form (T' X G,) - exp {i(w® X @' X - - - X w*)}. By our choice of D and theorem of
H. Cartan [9]

Aut (D) =T' X Aut (") X Aut (%) X - - - X Aut (£*). (6)
Next set Q= D/L(H). Again, biholomorphically
Q=G -exp {i(0° X w' XX 0*} c Gg.

If f e Aut (L), then it is homotopic to the identity and may thus be lifted to
f € Aut (D),. By (6) and Proposition 2.6 f =L;, §€ T' X G' X - - - X G* and thus
f =L, for some g € G. Hence L(G) = Aut (), is a normal subgroup of Aut (2).
Therefore if & € Aut (£2)

hLeh™ =Ly, - x€Aut(G),

that is for any x € Q

h(g - x) = x(g) - h(x).

Setting x =e€ G, h=R,,)°x on G c 2 which gives h = Rj)°ox on £ after
extending holomorphically to x € Aut (G¢). By composing 4 with a suitable left
translation L, g € G we may assume that h(e) =expiX, X €g. We write the Lie
algebra of g as go + ¢, where ¢, is the Lie algebra of G; and g, is the center of g,
i.e. the Lie algebra of T'. The differential of y must preserve this decomposition,
so dy=dx,°dys =dys;°dy,. Similarly we can write X=X+ X, so
exp iX,exp iX; = exp iX, exp iX,. We conclude that translation by X, followed by
dy, preserves w° and thus by assumption on w°® X,=0 and dy,=I. Finally as in
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the proof of Lemma 2.4 we must have X, =0 and dy,(w' X - X 0°) = 0" X
-+ X % Our choice of these domains forces first dy,(w’)=w’ and then
dy, =1 0O

To complete the proof of Theorem 1 we now apply the semicontinuity
theorem of Greene and Krantz [6] to smoothen the domain £2. Let r(z) be a G
invariant strongly plurisubharmonic exhaustion function of Q. For large A

2, ={ze2:r(z) <A}

is strongly pseudoconvex with smooth real analytic boundary. Evidentiy Gc
Aut (£2,). Lemma 3.2 below shows that Aut (£2,) is a normal family of groups in
the sense of Greene and Krantz, and thus by their semicontinuity theorem
Aut (£2,) = G for A sufficiently large. The proof of the theorem is now complete.

LEMMA 3.2. Let (;) be a sequence converging to +» and let ¢; € Aut (£2,).
Then there exists a subsequence {@, } converging uniformly on compact sets to an
element @ € Aut (Q2).

Proof. Since € is bounded we may assume: (by extracting a subsequence)
that {g,} converges uniformly on compact subsets to a holomorphic 9 € Q— Q.
By a theorem of H. Cartan [9] either y € Aut () or y(£2) = 3Q2. We now show,
arguing as in [3], that the latter case is impossible. Recall that by construction
is covered by a product of bounded domains. By lifting our maps we may assume
that € itself is a product

Q=Q°x Q' x ... x Q

Suppose P(2)NR°x Q' x -+ - x 2*#0. Then, since 3Q° is strongly pseudo-
convex, Y(2)c {po} X ' x---x* for some p,e3R2°. Now let U be a
contractible neighborhood of p, in £2°, and let T be a compactly supported cycle
representing a nontrivial class in H,(£2), where q = dim¢ Q. For large j we have
@(T)c U x Q' x - - - x 2* which is homologically trivial in dimension g. On the
other hand ¢, is a diffeomorphism and hence vy;(T) cannot be a boundary in £
for j large.

§ 4. Existence proofs
In this section we prove Theorems 2 and 3.

PROPOSITION 4.1. Let G be a compact Lie group. Then there exists an
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orthogonal action of G on R" with the following properties
(i) If H c O(n) is a subgroup such that Hx = Gx for all x e R", then H = G.
(ii) There exists a set F c R" consisting of finitely many G-orbits such that if
ge€O(n)and gF =F, then g € G. '

Proof. Let G be faithfully imbedded in O(k), and let G act diagonally on

R*=R*®-- - ®R* (k times). (*)

First we show that (i) is satisfied for this action. By assumption, the
decomposition of R” in (%) is also H-invariant. For vy, ..., v, € R*, we write
v=(vq,..., V) €R" by the decomposition (*). Forhe H, andu=(v,...,v)e
R", there exists by assumption g € G such that

hu=gu=(w,...,w).

Thus we conclude that H acts diagonally on the decomposition (*). Finally, if

{e1, ..., e} is a basis of R*, we set v={(ey, ..., e) to see that hv = gv implies
that h = g.
For part (ii), we construct a sequence of sets F, j=1,2,3,..., with the

following properties:

1. E is the union of j G-orbits.

2. If H={g€O(n):gE=F}, and if H;# G, then H; 2 H;,,.
Since the H; are compact and each contains G, we must have H, = G form some L
Indeed, at each step either the dimension or the number of components must
decrease.

Now fix € >0, pick x; of length 1+ ¢, and set F,=Gx,. We proceed
inductively, under the assumption that H; # G. By part (i) there exists a point x;,,
such that Hix;,, # Gx;.,. We then set

E+1 = F; U Gx]'+1. .

Since we may take ||x;.|| > ||x]|| for all x € F,, we see that H;,F, c F,, and thus
H;., S H;

PROPOSITION 4.2. Let G be a compact Lie group. There exists an
orthogonal action of G on R" and a G invariant domain w = R" which is a small,
smooth perturbation of the unit ball with the property that gw = w and g affine
implies g € G.

Proof. Let Gx;U - --U Gx; denote the set obtained in (ii) of Proposition 1.
For any 6 >0, we may assume that 1+ 8 > |x,| > |x,|>--->|x,| > 1. From §"!
we remove a small tubular neighborhood V; of |x;| ™" - Gx; such that the area of V,
is small and such that VNV, = for i #j.
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Now we may make a small smooth perturbation of $”~' of the form
S={r(x)x:xeS""}

where r(x) is a smooth function on §"~" with r =1, and r(x) =1 for x ¢ U, V.
Let us write '

w={x eR":|x|<r(x/|x])}.

Before we specify r(x) more precisely, let us note that if h is an affine
transformation of R” with A(X) = X, then h € O(n). To see this, write

w;={xeR":|x|<1,x/|x|¢ VU--- UV}

Thus w, is a conical subset of w generated by the complement of V;U---UV,.
Since h(w) = w, h must preserve volume. And since the volume of w — w, is
small, h(w,) N w, contains an open set. It follows, then, that |A(x)| =1 for x in an
open subset of $”~'. We conclude, then, that & € O(n).

Let x € C*(R) be monotone decreasing with x(0)=1, x'(0)<0 and x =0 on
[1, ). We define

r(x) =1+ (lx;] — Dx(M dist? (x, |x;|~'Gx;))

for x € V; and r=1 elsewhere on $"'. For M sufficiently large, r is smooth.
Choosing 6 > 0 sufficiently small, we have r close to 1.

Now if h € O(n) and h2 =2, then h must map Gx; to a portion of X with
distance |x;| to the origin. At the same time, A must map Gx; to a portion of X
where the distance to the origin takes a local maximum. Thus h(Gx;) c Gx;. We

conclude from Proposition 1, then, that 4 € G.

Proof of Theorem 3. We let w be the domain obtained in Proposition 2, and
let 2 =3dw. If w is sufficiently close to the unit ball, then %' is positively curved.
Thus X' is rigid, and any isometry g of 2 extends to an isometry of R” (cf. [8]). It
follows that g € G, and thus G is the group of isometries of X'

Proof of Theorem 2. Let w — R" be the domain from Theorem 1, and let
Q=(w+iR")-V,

where
V={z}+---+22,,=1%}.

We claim that Aut (2) = G. Since G < O(n), it follows that Aut (£2) o G. On the
other hand, w is contained in a proper cone, and thus is biholomorphic to a

bounded domain. Thus any f € Aut(£2) extends to a holomorphic mapping
f € Aut (w + iR™). By the Corollary to Theorem 1 of [5] or by [13] f(z) is of the
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form
f(z)=Az+b+ic

where A € GL(n, R), and b, c e R". Since Az + b maps w to itself, it follows
from Proposition 2 that b =0 and A represents an orthogonal transformation in
G. Thus A maps V to itself, but it is evident that V#V +ic if c#0. We
conclude, then, that f € G.

To complete the proof of Theorem 2, we now smoothen the domain £, as in
the proof of Theorem 1. The only difference is that in the normal families
argument we now use the fact that € cannot be retracted to V, since
H, (VN Z)#0 but Q is contractible. We can then apply the Semicontinuity
theorem of Greene and Krantz [6] to smoothen Q.
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