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New link invariants and applications

Kent E. Orr

§0. Introduction

This paper présents a new séquence of higher dimensional link cobordism
invariants which vanish on boundary links. Thèse extend invariants of J. Levine
and N. Sato. The Sato-Levine invariants are shown to vanish on higher
dimensional links with simply connected components. Thèse new invariants
employ the lower central séries of the link group and should be viewed as the
correct higher dimensional analogues of the classical link cobordism invariants
defined by J. Milnor in [Mi], answering question (b) from the end of his paper.

An m-link in the (n + 2)-sphere Sn+2 is an oriented, locally flat, codimension
two and ordered m-component submanifold L 2X U • • • U 2m c 5&quot;+2. This

paper is concerned with m-links L c Sn+2 with n ^ 2. Such a link is spherical if
each component Zt of L has the homotopy type of the n-sphère. A cobordism of
a link Lo to a link Lx is a manifold C &lt;= Sn+2 x [0, 1] piecewise linearly
homeomorhic to Lox[0, 1] and meeting Sn+2x{0, 1} transversely with CD
(5n+2 x î) Lt\ i 0, 1. A boundary m-link L cz Sn+2 is an m-link which has m
pairwise disjoint, oriented, locally flat {n + l)-manifolds (Seifert manifolds)
V^ U • • • U Km cSn+2 such that for each i, dVl In the ith component of L.

Classifying higher dimensional spherical link cobordism yields two problems:
(i) Classify cobordism of boundary links, and

(ii) Détermine the relationship under cobordism between the collection of
spherical links and the subcollection of boundary links.
This division arises naturally since ail knots (1-links) bound Seifert manifolds
making the first problem accessible to the techniques used to study knot
cobordism. The first problem was solved for knots in [L] and for links in [CS].
(See also [Ker], [Kea], [Ko].) In contrast, most fundamental questions arising
from the second problem remain unanswered. (For partial results, see [Cl] and

[D]. A classification of links in S4 is obtained in [Cl].) Although methods exist
for constructing non-boundary links it is not known if ail higher dimensional
spherical links are cobordant to boundary links.

Early progress on (ii) was made independently by J. Levine and N. Sato (see
also [Cl], [C2], [C3], [D]). To an m-link LczSn+2 they associate an élément
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j8(L) € Jtn+2(Sm) called the Sato-Levine invariant of L. j8(L) is a well defined
cobordism invariant of L, defined on a class of links containing ail spherical links.
Sato gives homological conditions characterizing links L for which fi(L) is defined
and calls thèse links semi-boundary links. His constructions realize éléments in
rcn+2{S2), n &gt;2 by non-spherical 2-links [Sa]. (See also [R].) In [C2], T. Cochran

proves that if L cz S4 is a spherical 2-link with one unknotted component,
j8(L) 0. He displays other large classes of spherical 2-links in S4 with p(L) 0.

The invariants defined in this paper fully explain the failure of the Sato-
Levine invariant to detect spherical links not cobordant to boundary links but still
provide considérable évidence that such links may exist. We prove the following
theorems.

THEOREM 4.1. Let L c S&quot;+2 be an m-link with HX(L) 0, then j8(L) 0.

THEOREM 3.5. Let Lc=5n+2 be any link with at least four components for
which j8(L) is defined, then p(L) 0.

This has a nice corollary.

COROLLARY 3.6. Let {Mt} be a collection of at least four locally fiât,
orientedy codimension one submanifolds of Sw+2 with transverse intersection.
Assume 3Ml fl M} 0, i =£/. (Of course, 9Mt may be empty.) Then OJli Mt is a

framed boundary.

Let F(m) be the free group on m generators and let Fk(m) be its kth lower
central subgroup. The quotient homomorphism

induces an inclusion of Eilenberg-MacLane spaces

Let K™ be the mapping cône of V?- ^? is simply connected. The homomor-

phisms ty™ induce a homomorphism
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and an inclusion of the spaces

Let KZ be the mapping cône of t/&gt;«- The quotient homomorphism

induces a map

If / &gt; k &gt; l then ipT,i° Vm is homotopic to tp^h We abuse notation and also write
ipZj for the induced homomorphism on homotopy groups

We hâve a homotopy commutative diagram of maps and spaces.

To obtain the aforementioned theorems it is necessary to consider links with
additional structure. By a based m-link (L, r) we mean an m-link L a Sn+2 and a

choice of meridians x for L. Similarly, we define a notion of based cobordism
between two based m-links. (See §1 for the précise définitions.) Our main
theorem présents a framework for studying problem (ii). It holds for based links
in any higher dimension with any number of components.

THEOREM 2.1. Let (L, t) be a based m-link with L c 5n+2 and H^L) 0.

There is an infinité séquence of éléments {0?(L, t)}, 2 &lt; k &lt; co, with 0?(L, t) e

nn+2(K&apos;k) and a collection of homomorphisms {^T,dk&gt;i where ykj&apos;-nn+iiK™)-*
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nn+2{K?) with the following properties:
(i) d™(L, r) is an invariant of the based cobordism class of (L, r).
(ii) Ifk&gt;l then VUff£(L9 t)) dT(L, r).
(iii) /// &gt; k &gt; l then xpT,i° Ç* V#-
(iv) 0™(L, r) 0 for a choice x of meridians for L if and only if 0/T(L, x&apos;) 0 for

any other choice x&apos; of meridians for L.
(v) If L is cobordant to a boundary link then d™(L, x) 0 for all2^k&lt;co and

ail choices of meridians for L.
(vi) 02*(L, 0) 9T(L) does not dépend on the choice x of meridians for L.

Thèse invariants can be defined for a more gênerai class of links and, in this
broader context, are ail realizable (see §5.)

In §2 we define thèse invariants and discuss their properties. §3 conducts a

detailed analysis of the invariant d^L) e ^rn+2(^2l) and reveals its relation to the
Sato-Levine invariants. This section ends with a proof of Theorem 3.5. In §4 we
apply Theorem 2.1 to obtain Theorem 4.1. The paper concludes with a brief
discussion of how thèse invariants can be generalized to study classical links and

some applications to appear in a future paper.
The results presented hère constitute my Ph.D. thesis written at Rutgers

University under the supervision of Professor Julius L. Shaneson. I thank him for
his unfailing encouragement, patience and insight.

§1. Notation and définitions

For an m-link L c S&quot;*2, T(L) will dénote a tubular neighborhood of L in
5rt+2. The exterior of L, the closure of Sn+2-T(L), will be denoted £L. nL will
represent the fundamental group of the link exterior EL. We write n when the
link L is understood. Similarly, we write nc for the group of the exterior Ec of a

cobordism C c 5rt+2 x [0, 1].

By a choice of meridians for L we mean an embedding

such that t restricted to the ith copy of S1 will be homotopic relative the base

point to a fiber of the tubular neighborhood of St joined by a path to the base

point of EL. We will alternatively speak of a choice of meridians for L as the

homomorphism induced by t on fundamental groups,
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Note that r maps the generators of F(m) to a set in kl whose normal closure is

ail of nL.
A based m-link (L, r) is an m-link L c 5n+2 and a choice of meridians r for

L. A based cobordism between two based links (Lo, t0) and (Llf tx) is a pair
(C, T) where C is a cobordism from Lo to L! and T:F{m)-^nc is a

homomorphism making the following diagram commute:

t0 and it are homomorphisms induced by inclusions of spaces. Based cobordism is

an équivalence relation on based links.
Ail homology and cohomology is taken with untwisted integer coefficients and

we write H,(X) and Hl{X) for Ht{X, Z) and H&apos;(X, Z), respectively. H*(G) is

H*(K(G, 1)) where K(G, 1) is an Eilenberg-MacLane space, i.e., a CW-complex
with nx{K{Gt 1)) G and Jtl{K{Gf l)) 0, /&gt;2. For a group G, Gk is the kth

lower central séries subgroup of G defined recursively by Gi G and Gk

[G, G*_J.

§2. New invariants of link cobordism

Let (L, r) be a based m-link with HX(L) 0; L e Sn+2. The Mayer-Vietoris
séquence implies //a(£L) Zm and, along with the condition that HX(L) 0,

implies H2(EL) 0. By Hopfs theorem [BJ, H2(jtl) 0.

Our choice of meridians T:F(m)-*JiL induces an isomorphism H^F^m))-*
Hx{nL). Since H2(nL) 0, Stalling&apos;s theorem [St] implies F(m)/Fk(m) Jï/jtk for
ail finite k. The induced homotopy équivalence K(F(m)/Fk(m), l)-&gt; K(jz/jrk, 1)

will be denoted f.
Let &lt;j)k:EL-*K(F(m)/Fk(m),l) be the composition of the map £L-&gt;

K(nlnk, 1) realizing jzL~*Jt/jïk with the map (f)&quot;1. Let ^xS1-^^ be the
inclusion in EL of the boundary of a tubular neighborhood of It in Sn+2;

Xt x S1 97X2;) c ££. Choosing paths from the base point of EL to the

components of dT(L) in EL defines a homomorphism

x S1)

Since Ht(L)^0, (n^I^^nfà) so that nl(2l)-*F{m)IFk(m) is the trivial
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homomorphism for ail i. This implies, for suitably chosen paths, the composition

is homotopic to a map sending the first factor to a point and the second factor to
the image of the ith generator in K(F(m)/Fk(m), 1). Since K(F(m)IFk(m), 1) is

an Eilenberg-MacLane space, we hâve a homotopy commutative diagram of
maps and spaces.

Fk

u

The left vertical map is projection on the second factor. Thus &lt;pk extends

canonically to a map (f&gt;k :Srt+2-&gt; K%. Define 0?(L, t) [&lt;j&gt;k] e jrrt+2(^)-

Similarly, the composition nL-*limk(jt/jzk)^*limk(F(m)/Fk(m)) detennines

a map &lt;j&gt;œ :EL-+K(limk(F(m)/Fk(m), 1) extending to a map 0û&gt;:Sn+2-&gt; *T£.

Define 0£(L, x) [$m] e Jtn+2(K^). Note that e%(L, r), 2&lt;A:&lt;û&gt;, is well
defined if we assume (pk is induced from &lt;pœ.

THEOREM 2.1. The éléments {d^L, r)}, 2&lt;fc&lt;co and the homomorph-
isms ty^i hâve the following properties
(i) 0£*(L, t) is an invariant of the based cobordism class of (L, t).
(ii) Ifk&gt;l then VMWXL, r)) 0T(L, t).
(iii) /// &gt; k &gt; l then q^i* C* Ci-
(iv) 0£(L, t) 0 for a choice x of meridians for L if and only if dTiL, t&apos;) 0 for

any other choice x&apos; of meridians for L.
(v) IfLis cobordant to a boundary link then 0?(L, t) 0 for alll^k^a) and

ail choices of meridians for L.
(vi) 02*(L, t) d™(L) does not dépend on the choice x of meridians for L.

Proof The éléments 0JT(L, x) are defined above and the homomorphisms
{*/&gt;*!/}*&gt;/ in the introduction. Properties (ii) and (iii) are clear from construction.

Let (C, T) be a based cobordism between based links (Lo, t0) and (Llt Tj).
Since HX(C) s HX{LQ) 0, T : F(m)—&gt; kc induces isomorphisms

F{m) m jïç

for ail k. We hâve a commutative diagram.
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Fk{m)

As in the construction of 6™(L, r), we hâve a map Ec—* K(F(m)/Fk(m), 1)

extending to a homotopy 5n+2 x [0, 1]-» AT between 9™(L0, r0) and 0T(Llf t,).
This demonstrates (i).

Let t and t&apos;: \Jm Sl-*EL be two choices of meridians for L. Let &lt;pk and
&lt;t&gt;&apos;k:EL^&gt;K(F{m)lFk(m), 1) be the maps corresponding to the choices of meridians

r and t&apos;, respectively. The map

sends &lt;t&gt;k to &lt;f&gt;k. Clearly, (f&apos;)
1

° f induces a map h : K™-^ K™ which is a homology
équivalence of simply connected spaces and, therefore, is a homotopy
équivalence. If /i*:^n+2(^r)~&gt;^n+2(^D is the homomorphism induced by h, then h*
is an isomorphism and /i*(0^(L, r)) 0™(L, r&apos;) which proves (iv).

When A: 2 it is easily observed that the map (f )~lof induces the identity
automorphism on the abelian group F(m)/F2(m). Thus, it induces the identity
map on K™. Therefore, (vi) is true.

Lastly, assume L is a boundary link. Then a theorem of Gutierrez [Gu] gives a

choice of meridians r:\/mSl-*EL which splits. Let a\EL-*\JmS1 be a splitting
map. The epimorphism nL-*Jt/jzk is realized by a map EL—*K(jt/jik, 1)

factoring through Vm S1 ^ K(jt/jtk, 1) representing the image of a suitable choice
of meridians for L in K(jt/jtky 1). So, &lt;t&gt;k\EL-*K{F(m)IFk(m),\) factors

through \JmSl and 0^(L, r) 0. This proves (v) and complètes the proof of
Theorem 2.1.

§3. 0?(L) and the Sato-Levine invariant

Let L « £, U • • • U Im c Sn+2 be an m-link such that each It bounds a Seifert
manifold Vt with Vt Pi 2^ 0, î#y. N. Sato [Sa] finds homological conditions on
L c 5rt+2 necessary and sufficient to insure that manifolds {VJ exist and calls such
links semi-boundary links. In particular, any link L c Sn+2 with HX(L) 0 is a

semi-boundary link. However, //,(L) 0 is not a necessary condition and ail
results in this section hoid for arbitrary semiboundary links.
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A choice of a normal one-frame for each manifold Vt détermines a framing for
V ppli Vr V &lt;= 5n+2 is a framed (n + 2 - m)-manifold and by the Pontrjagin-
Thom construction (see e.g. [Sto]) yields an élément j8(L) € jrn+2(Sm). p(L) 0 if
P£Li V; is a framed boundary. /3(L), the Sato-Levine invariant of L, is a well
defined cobordism invariant of L which vanishes on boundary links. Note that if
L&apos; c L is a sublink of L then p(Lf) is a cobordism invariant of L.

For a semi-boundary m-link L cz S&quot;4&quot;2 with given Seifert manifolds {V;} we will
construct an explicit realization of the Hurewicz homomorphism ni(EL)~*
Hx{Ei}. This construction utilizes the Seifert manifolds for L and allows a
detailed investigation of 0%(L) e 7tn+2(K%). The relationship between 0?(L) and
the Sato-Levine invariant will become apparent.

LEMMA 3.1 (compare [C2, Lemma 3.1]). For a semi-boundary m-link L
there is a map Pl*El—*HmS1 Tm with the followingproperties
(i) pL realizes the Hurewicz homomorphism, Le., pL induces an isomorphism

(pL)*:H1{EL)^&gt;H1(Tm).
(ii) There is a regular point * e Tm for pL such that pl\*) Hîli Vr

Proof. Assume V, H 7(2^) is a collar for the manifold Vt. Apply the

Pontrjagin-Thom construction to (V; H ELf d(Vt H EL)) cz (EL, dEL) in a relative
form to obtain a map pt:EL-+ S,1. Let

be the product map. Alexander duality implies Hl(EL) Zm generated by
meridians. Since p( sends the ith meridian to a generator in Hi(Sl) and ail other
meridians to OeH^Sl), it follows that pL induces an isomorphism on the first

homology groups, showing (i).
Let *,bea regular point for plf then * (*,)£Li is a regular point for pL. By

construction, pr\*t)== V, so that

Up.) (*)=npr1(*,)=nv,
l=1 / 1=1 i=i

confirming property (ii) and proving the lemma.

PlUel • 9EL L x S1 -* Vm S1 c Tm. So pL extends to a map pL from Srt+2 to
the mapping cône of the inclusion

V S1 K(F(m), l)-&gt; K(^ l) Tm.
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This mapping cône is K™. Since pL realizes the Hurewicz map, this extension

represents 6^{L) e 7tn+2(K^).

COROLLARY 3.2. 0™(L) is defined whenever L is a semi-boundary link.

Note. It is not hard to construct Seifert manifolds from any map p : EL-+ Tm if
p realizes the Hurewicz map and extends to a map Sn+2—&gt;K%. This implies
0™(L) is defined if and only if L is a semi-boundary link.

Let rjm:K^-^Sm be the degree one map defined by collapsing everything
outside a bail in K™ to a point. By construction, there is a regular point * € Sm for
the map r\m°pL such that

This proves the foliowing proposition.

PROPOSITION 3.3. For each m&gt;2 there is a degree one map rjm:K?-+ Sm

inducing ^?:^+2(^2ï)-^&apos;7rn+2(5w) such that rj™(d%(L)) fi(L) for every semi-
boundary m-link L.

We conclude this section by proving Theorem 3.5. We need a lemma which
will also be used in the proofs of Propositions 4.2 and 4.3.

LEMMA 3.4. Let Ç be a bundle over Sq with fiber Sr and letp\%-+Sm be any
map. If q&lt;r&lt;m then

is the zéro homomorphism for ail n.

Proof. The obstructions to a section of £ lie in Hq(Sq;Hq~\Sr)) 0 since

q^r. Let s:Sq-*t; be a section and i:Sr-*% be the inclusion of a fiber. The
exact séquence of a fibration implies

is an isomorphism. p*°(i* +S*) =Jp*°/# +/?*&lt;&gt;s* and since r&lt;m both thèse

homomorphisms are zéro.
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THEOREM 3.5. Let LczSn+2 be a semi-boundary m-link with m&gt;4, then

Proof Let p:T2-»S2, q: r&quot;&quot;2-» Sm~2 and c:S2x Sm~2-+ Sm be degree one

maps. Then pXq:T2x Tm~2-*S2x Sm~2 has degree one. Since (m - 2) &gt;2,

S2 x Sm~2 is simply connected and p x q factors through K™ giving the following
homotopy commutative diagram of spaces. The horizontal map is rjm since it is a

ism *7mw cmA.2 * &lt;J\/S2 x Sm~2

composition of degree one maps and thus has degree one. By lemma 3.4,

is the zéro homomorphism implying

factors through zéro. By proposition 3.3, j8(L) rj^(d^(L)) 0.

COROLLARY 3.6. Let {MJ be a collection of at least four locally flat,
oriented, codimension one submanifolds of Sn+2 with transverse intersection.
Assume 9M, fl Af; 0, i =£/. (Of course, 9Mt may be empty.) Then fXLi Mtis a

framed boundary.

Proof. If Mt is any closed manifold then remove a disk from Mt in the

complément of U/#i Mj to obtain a manifold Mt. If dMt is non-empty, let Mt~ Mt.
The resuit is a semi-boundary m-link L Um 3Mt c Sn+2. fXLi Mt PK-i M is a

framed manifold representing j3(L) e 7in+2(Sm)&gt; Since m ^4, Theorem 3.5

implies j8(L) 0 and fïli Af, is a framed boundary.

2(^2&quot;) unless m 2. For example, X^S2vS2vS2vS3 and

by the Hilton-Milnor theorem [WG] ^+2(^2) has summands generated by
Whitehead products. A homotopy équivalence K\-*S2 y S2 v S2 vS3 can be
chosen so that each sphère represents the Sato-Levine invariant of L or one of its
sublinks. The remaining linearly independent summands of jtn+2(Kl) are new
invariants of higher dimensional link cobordism and can be interpreted geometri-
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cally. Any élément in nn+2(K™) can be realized for some suitably chosen

semi-boundary m-link. (See §5.)
Moreover, many classical links are semi-boundary links. A classical link is a

semi-boundary link if ail of its pairwise linking numbers vanish. 62{L) is defined
for classical semi-boundary links. (See §5.) The following, which we offer without
proof, is an example of a semi-boundary 3-link with vanishing Sato-Levine
invariants and non-vanishing 62(L) e n^{K^).

§4. More applications of Theorem 2.1:
the vanishing of the Sato-Levine invariants for spherical links

THEOREM 4.1. Let Le:Sn+2 be an m-link with m 2 or 3 and HX(L) 0.

An analysis of the spaces K™, k 2, 3, 4 and m 2, 3 will imply this resuit. It
is a conséquence of d^(Lf r) being defined for links L with HX{L) 0. This
suggests the viewpoint that O^iL) is an obstruction to 0£XL, r) being defined.
We will exploit this perspective in a future paper. (See §5.)

To prove Theorem 4.1 we need two propositions.

PROPOSITION 4.2. ^4,2^+2(^4) ^^+2(^2) is the zéro homomorphism
for ail n.

PROPOSITION 4.3. rç!°^3,2:7tn+2(Kl)-+ Jtn+2(S3) is the zéro homomorphism

for ail n.

Proof of Theorem 4.1.

Case m~2.i By Theorem 2.1, //1(L) 0 implies that for any choice r of
meridians for L, d\(Ly T)ejïn+2(Kï) is defined and %l&gt;\2(0l(L, r)) 0l(L). By
Proposition 4.2, ipit2 is the zéro homomorphism. Hence 62(L) 0. By Proposition

3.3,
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Case m 3. Since HX{L) 0, Theorem 2.1 implies that a choice of meridians

t for L gives an élément dj(L, r) with y\,2{0\{L9 %)) 032(L). By Proposition 3.3
there is a homomorphism f?i:.7rn+2(^2)~~* Jr«+2(S3) with ^iC^K^)) — 0(L). Thus,

which by Proposition 4.3 is zéro.

The rest of this section is devoted to proving Propositions 4.2 and 4.3. This
will involve proving several lemmas which we fear may obscure the central ideas

of the proof. So we give a brief outline of the approach. We seek sufficient
homotopy theoretic information concerning the spaces K™ for k small and m 2,
3 to détermine their homotopy type. This is done by relating //*(#£*) to
H*(F(m)/Fk(m)) in the obvious manner. Results of Magnus [MKS] allow the
calculation of H*(F(m)/Fk(m)) for k small. we then apply the following well
known theorem of Whitehead [WJ].

THEOREM 4.4 (Whitehead). Let X be afinite simply connectée CW-complex
of dimension less thon five with no cohomologicat torsion. Then X is determined

up to homotopy type by its cohomology ring H*(X).

The spaces K™ hâve dimensions which increase rapidly with k. For example,
dimX4 5 and dimK3 6; dimensions already too large to apply the above
theorem. This difficulty is effaced by finding four dimensional spaces KE and KG

(related to appropriately chosen group extensions) through which the maps
i//4(3:X5~&gt;^3 and ^3,2-^3*^^2 factor. Theorem 4.4 then supplies ample
information to analyze the maps in question. This results in a situation where
lemma 3.4 proves the desired propositions. Recall some results of Magnus and

some facts about central extensions of groups.
Let 0—*&gt;4—&gt;E^&gt;G-*l be a group extension with A central in E. This

centrality implies the induced action of G on H*(A) is trivial [GR]. Such

extensions are classified by éléments in H\G\A) as follows. The Hochschild-
Serre cohomology spectral séquence for this extension yields a five term
séquence.

If 1A represents the élément in bom (A, A) &amp;Hl(A;A) corresponding to the
identity homomorphism on A then d%\\A) classifies the extension, Le, central
extensions of A by G lie in one-to-one correspondence to éléments in H2(G;A)
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where the correspondence takes the extension 0—»A—&gt;£-»G—»lto the élément

dY{\A)eH\G;A).
In [Ma], Magnus studied the central extensions

Fk(m) F(m) F(m)
Fk+l(m) Fk+l(m) Fk(m)

and showed that Fk(m)/Fk+1(m) is free abelian of finite rank equal to

^ tE ïi{d)mkld.

Hère ju(d) is the Mobius function evaluated on d; ju(l) 1, ii{d) (-1)&apos; if d is a

product of / distinct primes and ju(d) O otherwise. Notice that this implies
K(F(m)/Fk+1(m), 1) is a bundle over K(F(m)/Fk(m), 1) with fiber a torus TN*.

Since K(F(m)/F2(m), 1) is a torus, this implies the spaces K(F(m)/Fk(m), 1)
hâve the homotopy type of manifolds. Hence K^ is a finite complex for any k and

m. Hopfs formula [Gr] implies

Fk+i(m)

Now consider the Hochschild-Serre spectral séquence for 0-*Fk(m)/
Fk+^m)-*F(m)/Fk+i(m)~*F(m)/Fk(m)-*1, where the coefficients lie in any
finitely generated free abelian group A.

H1(F(m)/Fk(m);A) hom(ZmfA) Eb° and d%1 must be injective. By the
Universal Coefficient theorem H2(F(m)/Fk+l(m);A) hom (ZNm, A) which has

no torsion implying Ef° E%° is torsionless. One easily checks that E^1 £2&apos;° so

that dl&apos;1 is an injection of isomorphic Z-modules with torsionless cokernel and

must be an isomorphism.

LEMMA 4.5. Kj - S2 v S2 v S3 and H\Kl)^H2{K\) is the zéro
homomorphism.
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Proof. The group extension

FJ2\ F(l\ F(7\
Z -=^-* ——-&gt;&gt; —— s* Z

F3(2) F3(2) F2(2)

along with a standard spectral séquence argument provides a calculation of
//*(F(2)/F3(2)). (t/2&apos;1 is an isomorphism by the above discussion.)

H*{Kl) #*(*(S|&gt; l)&gt; S1 v S^H*(S2 v S2 v S3)

Theorem 4.4 finishes the proof.

We obtained above the following calculation of /#*(F(2)/F3(2)):

/F(2)\ \ Z2&apos; generated by ai and a2&gt; * 1

\Ff2y
&quot;

I
Z2&apos; ëenerated by &amp;1 and *2&apos; &apos; 2

3^ [z, generated by c, i 3

where a,^ ±ô,yc and ail other products are zéro. Let 0-^Z-»£
be the extension classified by bx € /f2(F(2)/F3(2)). The next lemma follows from
observing that since if1(F(2)/F3(2)) is free abelian and //2(F(2)/F3(2)) s
F3(2)/F4(2), then 0-+Z2-*F(2)/F4(2)--*F(2)/F3(2) is the maximal stem cover
over F(2)/F3(2). (See [Gr] for détails.) However we include the following easy
proof for completeness.

LEMMA 4.6. Eisa quotient of F(2)/F4(2).

Proof. In the Hochschild-Serre cohomology spectral séquence for the extension

Z2^F(2)/F4(2)^F(2)/F3(2), let

Let £:F3(2)/F4(2) Z2-*Z be a homomorphism such that if \eH\Z)
corresponds to the identity homomorphism of Z and e*:H1(Z)-»H1(F3(2)/F4(2))t
then e*(l) z € H1(F3(2)/F4(2)). If /f c F3(2)/F4(2) is the kernel of e and G the
cokernel of the inclusion homomorphism H-+F(2)/F4(2)t then we hâve the

following commutative diagram where the rows are extensions and the left two
vertical homomorphisms are onto.
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F(2)
Z &gt;

î
F,(2)

G »

î
F(2)

F,(2)

1

F(2)
F4(2) F4(2) F,(2)

This yields the following diagram where the top and bottom horizontal homo-
morphisms are from the spectral séquence for Z-»G-»F(2)/F3(2) and

F(2)/F3(2) respectively.

î

Thus, d°2\l) d$\e*(l)) d°2A(x) bx and G E.

We now hâve a séquence of homomorphisms with t/;£,3° i/&gt;4,E i/^4,

F4(2) F3(2) F2(2)

Let KE be the mapping cône of the inclusion map K{F(2)y 1) S1 v S1-» K(E, 1)

induced from the quotient homomorphism F(2)—»£.

LEMMA 4.7. KE^Çv S3v S3 where % is a bundle over S2 with fiber S2 and

H3(Ki)-*H3(KE) is the zéro homomorphism.

Proof. In the cohomology spectral séquence for Z—»£—»F(2)/F3(2),
d2l(l) bi€H2(F(2)/F3(2)). The remaining differentials are computed easily
using the ring structure of H*(F(2)/F3(2)). Hère is ££•*:

q l 0 Z Z2 Z

q=0 Z Z2 Z 0

p=0 p 1 p 2 /?=3

After choosing generators j8t, $2eH\E) and ô eH\E) representing gener-
ators in E%° and Eh1, respectively, one can calculate products in H*(E) using the
ring structure of ££&apos;*. p2 0, j8xj82 ô and Pi ^^ for some integer L From the
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exact séquence of the pair (K(E, 1), S1 v S1) we obtain the following computa-
tion of H*(KE) s H*(K(E, 1), S1 v S1).

0 i 1

Z2 generated by p1 and 02, i 2

W i-3
Z generated by &lt;5, i 4

Hère ^!/82 &lt;5, ^3f 0 and fil A&lt;5. AH other products are zéro. By Theorem 4.4,
KE - S2 x S2 v S3 v S3 if A is an even integer and KE ~ CP(2)# - CP(2) v S3 v S3

if A is an odd integer. It is well known (and easy to show) that S2 x S2 and

CP(2)# - CP(2) are both S2 bundles over S2 (see e.g. [Ma].)
We hâve a commutative diagram where the vertical arrows are excision

isomorphisms.

Since H\F(2)/F3(2))-+H3(E) factors through £3&apos;° 0, H\Kl)^&gt;H\KE) is

zéro.

The methods of constructing KE and proving Lemmas 4.6 and 4.7 can be used

to show Lemma 4.8.

LEMMA 4.8. There is an extension Z^G-&gt;F(3)/F2(3), a space KGt and
homomorphisms

* nn+2{KG) and if&gt;Gt2: nn+2(KG)-+jzn+2(K32)

such that t//Gi2°^3,G tylï&apos; Kn+iiKÎ)-* ^«+2(^2) artd the following holds:

(i) /CG =* §! # §2 v 53 v S3 v 53 w/ïere eacA |, w a bundle over S2 with fiber S2.

(ii) H3(K2)^&gt; H3(KG) is the zéro homomorphism.

We proceed to prove Propositions 4.2 and 4.3.

Proof of Proposition 4.2. By Lemma 4.5, Kj^S2v S2vS3 and H2(Kl)-+
H2(K2) is the zéro homomorphism. So K\^&gt;K\ factors through S3 by a map
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a^Kl-^S3 inducing an isomorphism at:H3(S3)-^H3(Kj). Lemma 4.7 implies

is the zéro homomorphism. By Lemma 4.7, KE — % v S3 v S3. Thus (xx°
^e,3&apos;Ke-^S3 factors through § by a map aA:KE-*% and we hâve a homotopy
commutative diagram as follows.

Kl ±U K, ^ K\ ^ K\

ty\i^(X2ooc3QaA&lt;&gt;%l)AtE. By Lemma 3.4, (cx3)*:nn+2{%)-+ 7in+2(S32) is the zéro
homomorphism implying ^4,2-^+2(^4)&quot;-^ «^«+2(^2) is also.

Proof of Proposition 4.3. By Lemma 4.8 (ii), H3(K32)-*H3(KG) is the zéro
homomorphism. So the composition \l)G2°(r]3)*:H3(S3)-^H3(KG) is zéro. By
Lemma 4.8 (i), KG^ ?i#Ç2 v 53 v S3 v S3 so that rç3°t//G,2:ieG---&gt;S3 factors

through §i#£2 by some map &lt;*i:£g~*§i#§2- Let ^i^^^^^S3 be a map
such that ar2oar1:^G^53 is homotopic to f]3°il)G2. %2 has a cell décomposition
with two 2-cells and one 4-cell. Since S3 is two connected we can identify thèse

2-cells to a point obtaining a map a3 : ^ # Ç2~^ §1 which factors ar2 : £i # |2&quot;-* 53

through §!. We hâve a homotopy commutative diagram of maps and spaces:

Hence ^3ot^3,2- (X4°oe3oaiotip3fG. By Lemma 3.4,

is zéro implying

is zéro.
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§5. Further remarks

The condition HX(L) 0 is considerably stronger than is necessary to show

f}(L) vanishes. If, for a based semi-boundary 2-link, the compositions jtl(Si)-&gt;

nL-+nlnA are trivial, one can show that n/ji4^F(2)/F4(2) and that no
obstructions exist to defining Q\(Ly x) e nn+2(Kl). Thus, 0|(L) jS(L) 0. This
viewpoint enables one to study classical link cobordism. If the longitudes of a

classical link La S3 lie &quot;deeply&quot; in the lower central séries for nL then 0?(L, t)
is defined. One can show, for example, that j8(L) B\{L) 0 if and only if the

longitudes lie in (jflV* a fact first observed by T. Cochran in [C3]. This lays the

groundwork for the relation between the invariants {6k(L)} for classical links and
the jû-invariants defined by J. Milnor in [Mi]. A future paper will examine this

viewpoint and offer new results about Milnor&apos;s invariants.
Milnor&apos;s invariants hâve been identified with Massey products, Cochran&apos;s

derived invariants, and invariants of Murasugi [P], [C4], [Mu], [T]. Massey

products and some of Cochran&apos;s derived invariants are invariants of higher
dimensional links. It would be interesting to understand their relation to the

0*-invariants.
The strength of our invariants for studying link cobordism is illustrated by the

following realization theorem whose statement and proof will appear in a future

paper.

THEOREM. Let x e Jtn+2(KT), n &gt; 1, k finite, then îhere is a based m-link
(L, t), (L may not be sphericaï) with 6™(L, r) definable and equal to x.

Notice this is true in the classical dimension where ail links are spherical. As a

corollary, this implies Sato-Levine invariants are realizable for two and three

component semi-boundary links. Of course, for 2-links in any dimension j8(L) has

been realized by N. Sato in [Sa]. (See also [R].) The proof of this theorem is an

easy transversality argument which suggests a geometrical interprétation for two
links to hâve the same ^-invariants. This takes the form of a cobordism of links
as manifolds in Sn+2 x [0, 1] with certain homotopy theoretic conditions on the

complément.
Lastly, the invariant 0™(L, t) is presently the only known invariant which can

even potentially detect a classical link whose longitudes lie in the intersection of
the lower central séries of its link group but which is not cobordant to a boundary
link.
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