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Sommes de Gauss attachées aux caractères quadratiques: une
conjecture de Pierre Conner

Bruno Kahn

Soit p un nombre premier et K une extension finie de Qp. Notons v la
valuation discrète (normalisée) de Ky OK l&apos;anneau de valuation de vy U O% le

groupe des unités de OK et, pour i &gt; 0, U, {xeK\ v(x - 1) &gt; i} (Uo U). Si x
est un homomorphisme continu de K* dans Sï {z eC\\z\ l}f c&apos;est-à-dire un
caractère de K*, on appelle conducteur de x l&apos;entier f(x) inf{/&gt;0 | #(£/,)=
{1}}. A un tel x on associe un nombre complexe de module 1 [6, p. 94]:

xeU/Uf

où q est le cardinal du corps résiduel de OK, f =f(x)&gt; d est un générateur de
Mf9)K {M idéal maximal de OK, 2K différente de K/Qp) et tyK est le caractère
additif de K défini par la composition

Supposons x quadratique, i.e. x2 ~ 1- Alors x est de la forme x ?-» (-l){a&apos;x\ où
(a, x) e Z/2 est le symbole de Hilbert de deux éléments de K*; ainsi les caractères

quadratiques sont en bijection avec les éléments de K*/K*2. Si a e K*, notons
pa(x) (~l)(fljr); on a la formule, pour a, b e K* [6, p. 126, cor. 2]:

W(paPb) W{pa)W{pb){-\r &gt;b\ (1)

En faisant a — by on en déduit que W(pa) est une racine 4e de l&apos;unité. Soit
w(a) € \IIZ tel que W(pa) i4w(a); on a donc:

w(ab) w(a) + w(b) + \{ay b).

La fonction w définit donc une fonction quadratique de K*/K*2 dans
iZ/ZcQ2/Z2, relevant le symbole de Hilbert. Suivant une idée de Pierre
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Conner, on peut considérer sa classe dans WQ(Q2, Z2) [4, App] et lui associer

une somme de Gauss &quot;à la Weil&quot; y(w) (cf par exemple [2, p. 26-17]). Par

définition même, on a:

aeK*/K*2

Ainsi, le membre de droite de l&apos;égalité ci-desus est une racine 8ème de Vunité.

La conjecture de Conner, démontrée dans cet article, consiste à identifier y(w) à

une somme de Gauss attchée à une autre forme quadratique. Pour l&apos;énoncer,

notons QK la forme quadratique sur Qp définie par X*-*Ttk/Qp x2 (x g K); par le

procédé de [2, §7], on lui associe une racine 8ème de l&apos;unité y(Qk)&gt;

THEOREME 1. On a y(w) y(QK).

Je donnerai de ce théorème deux démonstrations: une démonstration locale et

une démonstration globale. La démonstration globale est due à Pierre Conner, la

démonstration locale est due à moi-même.
Afin de préparer les démonstrations, notons, pour tout a e K*, QKa la forme

quadratique Jc^Tr^^ ax2 et y(a) y(QK,a)- D&apos;après [2, prop. 8], on a:

; (2)

la formule à démontrer se réduit donc à:

(K*:K*2)-112 2 y(o) l.
aeK*IK*2

Première démonstration. Posons A- K*/K*2. Soit AnrczA le sous-groupe
formé des classes de carrés non-ramifiées (i.e. telles que /(pa) 0): c&apos;est un
groupe d&apos;ordre 2. Posons B U/AnrU2: c&apos;est un sous-quotient de A, et on a
|fi|=2n, avecn 0sip*2, n [K:Q2] sip =2. Déplus, |A|=4|B|.

(Dans cet article, on convient de noter \X\ le cardinal d&apos;un ensemble fini X.)

LEMME 1. Soit ô un générateur de 3)K. Posons, pour a e K*, y&apos;(a) y(ôa).
Alors, si aeU, y&apos;{a) ne dépend que de la classe de a dans B, et on a:

aeA aeB
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En effet, les formules (1) et (2) ci-dessus entraînent, pour a, b eA:

Y(ab) Y(a)Y(b)Y(iyl(-iya&apos;b). (3)

Soit aeA, ueAnr. On déduit de (3):

Y\au) Y(àau) r(ôa)r(W)y(l)-1(-l)(ôa&apos;M).

Mais W(pu) (-l)(ôu): cela résulte de la définition de W. On en conclut (voir
(2)) que:

Y&apos;(au) Y&apos;(a)(-l)(au) y&apos;(tf)(-l)v(fl) si u est non-trivial. (4)

Si a € U, on a donc Y&apos;(au) - Y&apos;(a)&gt; ce qui prouve la première affirmation du
lemme. Dans celui-ci, la première égalité est triviale; pour la deuxième, on écrit:

SrW S y() S r() S r() S y()
fle&gt;l aeUlU2 a*UIU2 aeU/U2 aeU/U2

où ^ est une uniformisante de K. Mais (4) que, pour ueAnr — {1}, on a

Yf(nau) — y&apos;(jra); les termes de la deuxième somme se détruisent donc
deux-à-deux. Enfin, dans la première somme, y&apos;(a) y&apos;(flw) si m 6^4nr et a e £/,
d&apos;où l&apos;énoncé du lemme 1.

Si p^=2, on a 5 1 et |A|=4, donc la démonstration est terminée.
Supposons p 2; posons 5 EaeBy&apos;(^)- Pour aeU, la forme bilinéaire
symétrique (x, ;y)h-&gt;Tr(axy/ô) est unimodulaire sur OK; par conséquent, on a

par définition:

Soit B un système de représentants de B dans [/. Considérons l&apos;application:

f:Ëx OKI2OK^&gt; OK/4OK

(a, x) *-* ax2 (mod 4OK)&gt;

Comme les éléments de Anr sont représentés par des éléments de 14- 4OK,
l&apos;image de/n&apos;est autre que Uo^^e T^, oùe est l&apos;indice de ramification absolu de
K et Ta~{yeOK\v(y) a} (mod4O*). Si oc&lt;e et yeT2a, alors /(a,x)

/(a&apos;, jc&apos;) y si et seulement si a-a&apos; et jc2 £&apos;2 (mod4O*); comme v(x)
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v(xf) ocy ceci signifie que x&apos; tx, avec t2 =s 1 (mod 4OK), donc toutes les fibres de

f au dessus de T2a ont même cardinal.

LEMME 2. Pour 0 &lt; oc &lt; 2e,

1 si a 2e

0 sinon.

En effet, on a

y -Tro&gt;/ô)_ y -

(sommer modulo 4OK). Dans le membre de droite, les deux sommes représentent
la somme des valeurs d&apos;un caractère sur un groupe, qui est nulle sauf si le
caractère est trivial; ceci n&apos;arrive que lorsque a 2e.

Donc dans la somme 5, il ne reste que les termes (a, jc) tels que
ax2 0 (mod 4OK). Chacun de ces termes donne une contribution de 1 et il y en a

|fl|; cela termine la première démonstration du théorème 1.

Deuxième démonstration. On suppose démontré le théorème 1 pour
c&apos;est la partie facile de la démonstration précédente (Conner a aussi une autre

preuve).
Soit K un corps de nombres; si v est une place finie de K, on l&apos;identifie à la

valuation qu&apos;elle définit. Si v est une place réelle de K, on note ^v l&apos;ordre induit
sur K par v. Enfin, si v est une place quelconque de K, on note Kv le complété de

K en v.
Soit 5 un ensemble fini de places de K, contenant les places à l&apos;infini. On note

5/ l&apos;ensemble des places finies de 5, Os {x e K \ v(x) ^ 0 si v $ S} l&apos;anneau des

5-entiers de K et G(S) UV€SK*/K*2: c&apos;est un groupe fini d&apos;exposant 2, et on a

un homomorphisme diagonal Os/Os2-^ G(S). Par le théorème des 5-unités [3,

p. 105, corollaire], on a (O^:Of) 2n+n+n où n \Sf\ et rx (resp. r2) est le
nombre de places réelles (resp. complexes) de K.

Notons K+ {x eK* \x&gt;v0\/v réelle et v(x) pair \fv finie}. Le groupe
K+/K*2 est fini: en effet, soit CK le groupe des classes de K et 2CK le sous-groupe
des éléments tués par 2. On définit un homomorphisme K+-*2Ck de la manière
suivante: si a 6 K+, l&apos;idéal fractionnaire (a) est par définition de la forme si2, où

si est un idéal fractionnaire bien déterminé; l&apos;image de a est la classe de M dans



536 BRUNO KAHN

CK. Ceci induit un homomorphisme K*/K*2-*2CK, de noyau 0£/0£2, où
O+ k+ H O*K. Comme 0£/O£2 et 2CK sont finis, K+/K*2 est fini.

Disons que l&apos;ensemble 5 est gros si:

a) S contient toutes les places dyadiques de K ;

b) S contient toutes les places de K ramifiées sur Q (il suffirait de prendre les

v telles que v(3)K) soit impair, où 3)K est la différente absolue de K);
c) pour tout x e K* - K*2, il existe v eSf telle que x ne soit pas un carré dans

Kv.
La finitude de K+/K*2 implique que l&apos;on peut trouver de tels 5.

LEMME 3. Supposons S gros. Alors 4:0|/0|2-»G(S) est injective, et

Démonstration. L&apos;injectivité de A résulte de la condition c). Soit v eS: alors

on a

1 si v est complexe;

2 si v est réelle;
(K*v:K*v2)=\a _4 si v est finie, non dyadique;

2«t+2 si v est dya(iique et Hy ^ q2]

Les places complexes offrent à G(S) une contribution totale de 1; les places
réelles une contribution de 2ri; les places finies non dyadiques une contribution de

4W~, où n_ est leur nombre; enfin les places dyadiques offrent une contribution de
2S &quot;&quot;

• 4rt+, où l&apos;on somme sur toutes les places dyadiques de K (cf a)) et où n+ est

leur nombre. Mais E nv [K : Q] rt + 2r2 et w n+ 4- «_, donc:

2&quot; • 4n- • 2ri+2r2 • 4n+ 22r&apos;+2r2+2&apos;1 (O* : 0*2)2.

A partir de maintenant, on suppose 5 gros. Pour v eSf, soit wv :K*/K*2—*
Z/4 l&apos;application définie prédédemment; si v est une place réelle, posons
H{,(x) —i si x&lt;v0, wv(x) 0 si jc&gt;vO: ceci définit encore une application
wv:K*/K*2-^Q2/Z2f telle que wv(xy) - wv(x) - wv(y) ^(x, y)v, où (,)„ est le

symbole de Hilbert local en v.
Définissons une application w:G(S)-*Q2/Z2 par w((xv)veS) £V6s *&gt;„(*„). Il

est clair que pour (xv), (yv)eG(S), on a w((xvyv))~ w{(xv))- w((yv))
\ YtV€s(Xv&gt;yv)v L&apos;application w définit donc un élément de WQ(Q2, Z2) qui est
évidemment égal à la somme des classes des wv pour v e S. Notons H(S) l&apos;image

de OtIOf dans G(5).
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LEMME 4. La restriction de w à H(S) est identiquement nulle; en particulier,
la classe de w dans WQ(Q2, Z2) est triviale.

En effet, si % est un caractère du groupe des classes d&apos;idéles de K, notons,

pour toute place v de K, %v sa restriction à K* et Wv(x) W(Xv)- (Pour la
définition de W(xv) quand v est réelle, cf [5, p. 32, déf.].) On sait [5, p. 33, th.
2.3] que les Wv(x) sont presque tous égaux à 1 et que II W^(x) est la constante de

l&apos;équation fonctionnelle de L(x, s); cette constante est égale à 1 si x est un
caractère quadratique [6, p. 125]. Soit aeK* et pa le caractère quadratique tel

que (pa)v(x) (&lt;*&gt; *)v pour toute place v et tout x e K*: alors II Wv(pa) 1; de

plus, Wv(pa) pa(£iïv) si v est finie, nondyadique et a e Uv (Uv: unités de KVf 2)v

différente absolue de Kv). En particulier, on a Wv(pa) l si aeO% et v$S
(condition b) sur 5), d&apos;où la première affirmation du lemme 4. La deuxième en
résulte grâce au lemme 3.

COROLLAIRE. On a FUs y(n&gt;v) 1.

Cela résulte du lemme 4 et de l&apos;additivité de y.

Fin de la démonstration. Soit maintenant K une extension finie de Q2.
D&apos;après [3, p. 44, cor. à la prop. 4], il existe un corps de nombres E c K tel que
[E : Q] [K : Q2] et que E soit dense dans K. En particulier, E n&apos;a qu&apos;une place
dyadique v0 et Ey0 K. Notons QE-Q-TrE/Qx2; alors pour toute place /de Q,
Qi 0=Ô®qQ/) est la somme des QEv, où v décrit les places divisant /. Par
réciprocité de Weil [7, p. 179, prop. 5], on a:

ny(ô/) rir(ô^) i. (5)
/ V

Soit v une place finie, non dyadique de £; on a supposé connu que
y(Hi) 7(ô^)- Si v est une place infinie, la même formule se vérifie trivialement.

La formule (5) et le corollaire au lemme 4 entraînent donc que

Transformée de Fourier. Le nombre y(w) peut s&apos;interpréter comme la valeur
en 1 de la transformée de Fourier de W. Plus précisément, soit A&apos; le groupe des
caractères quadratiques de K, dual de A K*/K*2. Munissons A et A de la
measure de Haar de volume total |A|1/2= |A&apos;|1/2. Alors la transformée de Fourier
de W est par définition:

aeA
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THEOREME 2. Pour tout xeA, on a W(x) y(jc).

Démonstration. Pour x 1, c&apos;est le théorème 1. Pour x quelconque, on
calcule:

W(x)W(l)=\A\-1 2 W(pa)W(pb)(-l)™
(a,b)eA2

\A\~l 2 W(paé)(-1)&lt;&quot;^&gt; (formule (1))
{a,b)eA2

2
(a,c)eA2

Si -cx=Él, on a Eûe^ (-l)(fl&apos;&quot;cx) 0: en effet, le symbole de Hilbert est

non-dégénéré. On trouve donc:

W(pc)
ceA

Comme W(l) y(l) y(l)&quot;1, on trouve W(jc) y(-x) y(x) (additivité
dey).

Caractères non quadratiques. Je vais calculer, dans le cas modéré, la
transformée de Fourier de la restriction de W aux caractères d&apos;ordre n (cas
modéré: on suppose n premier à p). J&apos;ignore si ces calculs ont un intérêt autre

que de mettre en relief la spécificité du cas n — 2. Il serait intéressant de faire ce

calcul également, disons, dans le cas n—p, mais cela paraît plus difficile.

THEOREME 3. Soit n un entier premier à p et Xn=Xn(K) le groupe des

caractères de K d&apos;ordre n: c&apos;est le dual de An K*/K*n. Munissons Xn et An des

mesures de Haar de volume total \An\ll2 \Xn\m. Alors la transformée de Fourier
dé W (restreint à Xn) a pour valeurs:

0 si v(a) ^ t, t + 1 (mod «);
y/n/r si v(a)s t (mod n);

y/n/qr 2 e(TrK/Qp a~lun) si v(a) t+ 1;
* ueOKIM

où l&apos;on a noté t v(3)K)f r («, q - 1) et e(x) e2mx.
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Démonstration. Comme n est premier à p, tout élément de Xn se factorise par
K*/Ui, donc est de conducteur 0 ou 1. On peut écrire K*/Ut Zxk* (où k est
le corps résiduel) au moyen d&apos;une uniformisante de K. Par conséquent, K*/K*n
s&apos;écrit Z/nx k*/k*n; le premier facteur est cyclique d&apos;ordre n tandis que le
second est cyclique d&apos;ordre r.

Dualement, on peut trouver une base (xo&gt; Xi) de %ni où Xo est un caractère
non-ramifié d&apos;ordre n et X\ un caractère ramifié (donc de conducteur 1) d&apos;ordre r.
Il en résulte, pour a eAn:

où (A, ju) décrit Z/n x Z/r. Rappelons la formule [6, p. 98, Cor.2]:

si x est non-ramifié et 2X&gt; Mf(-x)3)K. On en déduit que:

W(a) |,4n|-

Si t/(a) ^ ^ r + 1 (mod n), il est clair d&apos;après cette formule que W(a) 0. De
même, si v{a) t (mod n), on voit que W(a) |An|~1/2 n y/n/r puisque \An\

nr. Il reste le cas où v(a) ^ 4-1 (mod n); on peut même supposer v(a) r + 1.

Alors la formule ci-dessus devient:

n\An\-l/2ql/2q-m

a~xd(mod £/&quot;)

-fl-^(mod (/&quot;)

xeU/Ut
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On a £*€*//£/, VK(d~lx) -1: c&apos;est la somme sur OK/M - {0} des valeurs d&apos;un

caractère non trivial de OK/M. Comme il y a r racines nlèmes de l&apos;unité dans K*y
on en conclut après changement de variables:

W(a) n\An\-™q-l/2 £ VK(a&quot;V)
ueOK/M

VÏ/q~r 2 e{TxKIQpa-xun)
ueOK/M

COROLLAIRE. Si &lt;?=p, on a \W(a)\ ^(r- l)VnJr lorsque v(a)~t + l
(mod n).

En effet, on peut alors trouver un b e F* tel que p Tr^/Qp a~lu s bû (mod/?),
où û est la réduction de u modulo M; le corollaire résulte alors de [1, p. 258, th.

8.5]. Par la même méthode on doit pouvoir établir le corollaire pour q

quelconque.
(Je remercie Etienne Fouvry de m&apos;avoir indiqué le résultat et la référence

ci-dessus.)

Remarquons que dans l&apos;énoncé du théorème 3, on peut remplacer les un par
des ur.

EXEMPLES, a) n 3. Si r 1, on trouve d&apos;après le théorème 3 et la
remarque précédente:

0 si v(à) $ t (mod 3)
V3 siv(a)

Si r 3, prenons par exemple J£ Q7: alors, si v(a) l, on obtient
W(a) l/V7(l + 3e(l/a) + 3e(-l/a)), nombres algébriques totalement réels de

degré 6 et de norme -28/73.
b) n 4. Si r 2, on trouve

W(a) =&lt;

0siv(a)f t, f + l(mod4)
\/2 si v(a) ¦ t (mod 4)

yjly(a) si v(a)s/ + l (mod4).

Si r 4, prenons par exemple K Q5. Alors si v(a) l, on obtient
(a) 1/V5(1 + 4e(a~1)), nombres algébriques de degré 4 et de norme 41/5.
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