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Sommes de Gauss attachées aux caracteres quadratiques: une
conjecture de Pierre Conner

Bruno KAHN

Soit p un nombre premier et K une extension finie de Q,. Notons v la
valuation discréte (normalisée) de K, Ok 'anneau de valuation de v, U = Ok le
groupe des unités de Ok et, pour i >0, U;={xe K |v(x —1)=i} (Uy=U). Si x
est un homomorphisme continu de K* dans S'={z e C||z| =1}, c’est-a-dire un
caractére de K*, on appelle conducteur de x I'entier f(x) =inf{i =0 | x(U,) =
{1}}. A un tel y on associe un nombre complexe de module 1 [6, p. 94]:

W) =g > x(d 'x)'yk(d'x),

xeU/Uf

ol g est le cardinal du corps résiduel de Ok, f =f(x), d est un générateur de
M Dy (M idéal maximal de Og, D différente de K /Q,) et Y est le caractere
additif de K défini par la composition

e

K™% Q,—Q,/7, - Q/7<25 8",

Supposons x quadratique, i.e. x*=1. Alors x est de la forme x — (—1)“*, ou
(a, x) € Z/2 est le symbole de Hilbert de deux éléments de K*; ainsi les caractéres
quadratiques sont en bijection avec les éléments de K*/K*% Si a € K*, notons
p.(x) = (—1)?; on a la formule, pour a, b € K* [6, p. 126, cor. 2]:

A W(p.ps) = W(p)W (ps)(—1)?. (1)

En faisant a =b, on en déduit que W(p,) est une racine 4° de I'unité. Soit
w(a) € 1Z/Z tel que W(p,) =i**®; on a donc:

w(ab) = w(a) + w(b) + 3(a, b).

La fonction w définit donc une fonction quadratique de K*/K*? dans
iZ/Z < Q,/Z,, relevant le symbole de Hilbert. Suivant une idée de Pierre
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Conner, on peut considérer sa classe dans WQ(Q,, Z,) [4, App] et lui associer

une somme de Gauss “a la Weil” y(w) (cf par exemple [2, p. 26-17]). Par
définition méme, on a:

YW)=(K*:K*)7 > W(pa).

aeK*/K*?

Ainsi, le membre de droite de I’égalité ci-desus est une racine 8°™ de l’unité.
La conjecture de Conner, démontrée dans cet article, consiste a identifier y(w) a
une somme de Gauss attchée & une autre forme quadratique. Pour I’énoncer,
notons Q la forme quadratique sur Q, définie par X > Trxq, x* (x € K); par le
procédé de [2, §7], on lui associe une racine 8™ de I'unité y(Qx).

THEOREME 1. On a y(w) = y(Qk).

Je donnerai de ce théoréme deux démonstrations: une démonstration locale et
une démonstration globale. La démonstration globale est due a Pierre Conner, la
démonstration locale est due a moi-méme.

Afin de préparer les démonstrations, notons, pour tout a € K*, Qg , la forme
quadratique x > Trg,q, ax® et y(a) = y(Qx.,.)- D’apres [2, prop. 8], on a:

W(p,) = y(@)y(1)™ (2)

la formule a démontrer se réduit donc a:

(K*:K*)™'2 3 y(@)=1

aeK*/K*?

Premiere démonstration. Posons A = K*/K*?. Soit A,, A le sous-groupe
formé des classes de carrés non-ramifiées (i.e. telles que f(p,) =0): cC’est un
groupe d’ordre 2. Posons B = U/A,, U? c’est un sous-quotient de A, et on a
|B| =2", avecn=0sip#2, n=[K:Q,] si p=2. De plus, |A| =4|B].

(Dans cet article, on convient de noter |X]| le cardinal d’un ensemble fini X.)

LEMME 1. Soit 6 un générateur de Dx. Posons, pour a € K*, y'(a) = y(da).
Alors, si a e U, y'(a) ne dépend que de la classe de a dans B, et on a:

2 v(@)=2 v'(a)=22 7'(a).

aeA aeA aeB
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En effet, les formules (1) et (2) ci-dessus entrainent, pour a, b € A:

y(ab) = y(a)y(b)y(1)~'(-1)“ . ()

Soit a € A, u € A,,. On déduit de (3):
y'(au) = y(8au) = y(8a)y(u)y(1)~'(—1)1®**.

Mais W(p,) = (—1)®*: cela résulte de la définition de W. On en conclut (voir
(2)) que:

v'(au) = y'(@)(—=1)“* = y'(a)(—1)"“ si u est non-trivial. 4)

Si a € U, on a donc y'(au) = y'(a), ce qui prouve la premicre affirmation du
lemme. Dans celui-ci, la premiére €galité est triviale; pour la deuxieme, on écrit:

Sr'@= 2 y@+ 2 y@= 2 v@+ > y'(ra),

a€A aeU/U? a¢U/IU? aeU/U? aelU/IU?

ol & est une uniformisante de K. Mais (4) que, pour ueA, — {1}, on a

y'(mau) = —y'(ma); les termes de la deuxieéme somme se détruisent donc
deux-a-deux. Enfin, dans la premiere somme, y'(a) = y'(au) siue€A,, etae U,
d’ou I’énoncé du lemme 1.

Si p#2, on a B=1 et |A|=4, donc la démonstration est terminée.
Supposons p =2; posons S=Y,zY'(a). Pour aeU, la forme bilinéaire

symétrique (x, y)— Tr(axy/6) est unimodulaire sur Og; par conséquent, on a
par définition:

Y’(a)=(01<:201<)"i’2 E i—Tr(aleé).

xe€0Ok/20k
Soit B un systéme de représentants de B dans U. Considérons I’application:

" f:B X Ox/20x— Ox/40x
(@, x) = ax? (mod 40y).

Comme les éléments de A,, sont représentés par des éléments de 1+ 40,
I'image de f n’est autre que (_y<o<. Tro, OU € est I'indice de ramification absolu de
Ket T,={yeOg|v(y)=a} (modd4Ox). Si a<e et y € T,, alors f(a, x)=
f(a',x")=y si et seulement si a=a’' et x>=x'> (mod 40x); comme v(x)=
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v(x') = a, ceci signifie que x’ = tx, avec * =1 (mod 40y), donc toutes les fibres de
f au dessus de T,, ont méme cardinal.

LEMME 2. Pour 0= a <2e,

1 sia=2e
D i =9 1 sia=2e—1
yela 0 sinon.

En effet, on a

2 l-——Tr(y/é): 2 i—Tr(y/é)__ Z i-—Tr(y/cS)
yeT, v(y)=a v(y)>a

(sommer modulo 40). Dans le membre de droite, les deux sommes représentent
la somme des valeurs d’un caractére sur un groupe, qui est nulle sauf si le
caractere est trivial; ceci n’arrive que lorsque o = 2e.

Donc dans la somme S, il ne reste que les termes (a,x) tels que
ax* =0 (mod 40x). Chacun de ces termes donne une contributionde 1 etilyena
|B|; cela termine la premi¢re démonstration du théoréme 1.

Deuxiéme démonstration. On suppose démontré le théoréme 1 pour p #2;
C’est la partie facile de la démonstration précédente (Conner a aussi une autre
preuve).

Soit K un corps de nombres; si v est une place finie de K, on I'identifie a la
valuation qu’elle définit. Si v est une place réelle de K, on note <, I'ordre induit
sur K par v. Enfin, si v est une place quelconque de K, on note K, le complété de
K env.

Soit S un ensemble fini de places de K, contenant les places & I'infini. On note
S; 'ensemble des places finies de S, Os = {x € K | v(x) =0 si v ¢ S} 'anneau des
S-entiers de K et G(S) =II,s Ki/K}* c’est un groupe fini d’exposant 2, et on a
un homomorphisme diagonal O%/03*-3 G(S). Par le théoréme des S-unités [3,
p. 105, corollaire], on a (O5:05%) =2"*"*" ou n=|$| et r, (resp. r;) est le
nombre de places réelles (resp. complexes) de K.

Notons K*={x e K*|x>,0Vv réelle et v(x) pair Vv finie}. Le groupe
K*/K*? est fini: en effet, soit Cx le groupe des classes de K et ,C le sous-groupe
des éléments tués par 2. On définit un homomorphisme K — ,Ck de la maniére
suivante: si a € K*, I'idéal fractionnaire (a) est par définition de la forme &2, ol
s est un idéal fractionnaire bien déterminé; I'image de a est la classe de &/ dans
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Ck. Ceci induit un homomorphisme K*/K**—,Cyx, de noyau Oy/O}¥, ou
O3 = K* N Ok Comme Ox/O0%* et ,Cx sont finis, K*/K*? est fini.

Disons que I’ensemble S est gros si:

a) S contient toutes les places dyadiques de K;

b) S contient toutes les places de K ramifiées sur Q (il suffirait de prendre les
v telles que v(9Dk) soit impair, ou P est la différente absolue de K);

c) pour tout x € K* — K*?, il existe v € ; telle que x ne soit pas un carré dans
K,.

La finitude de K*/K*? implique que ’on peut trouver de tels S.

LEMME 3. Supposons S gros. Alors A:0%/0%— G(S) est injective, et
|G(8)| = (05 : 05%)*.

Démonstration. L’injectivité de A résulte de la condition c). Soit v € §: alors
on a

(1 si v est complexe;

2 si v est réelle;
(K¥:K2?) =1
4 si v est finie, non dyadique;

L2™*?  siv est dyadique et n, = [K, : Q,].

Les places complexes offrent & G(S) une contribution totale de 1; les places
réelles une contribution de 2"; les places finies non dyadiques une contribution de
4"~, ou n_ est leur nombre; enfin les places dyadiques offrent une contribution de
2Zm . 47+ ou I'on somme sur toutes les places dyadiques de K (cf a)) et o n.,. est
leur nombre. Mais Y n, =[K:Q] =r,+2retn=n, +n_, donc:

IG(S)l - 2r| . 4n_ . 2r1+2rz . 4n+ —= 22r,+2r2+2n —_ (O; . 0;2)2.

A partir de maintenant, on suppose S gros. Pour v € §;, soit w,: K}/K}*—
Z/4 Tapplication définie prédédemment; si v est une place réelle, posons
w,(x)=—% si x<,0, w,(x)=0 si x>,0: ceci définit encore une application
Wy :K:/KSZQQZ/ZZ’ telle que wv(xY) - Wv(x) - wv(y) = %(x’ y)v» ou ( ’ )u est le
symbole de Hilbert local en v.

Définissons une application w: G(S)— Q,/Z, par w((x,)yes) = Nves Wo(x,). 11
est clair que pour (x,), (y,)€G(S), on a w((x,y,))—w((x))—w((y))=
3 Xyes (x5 Yu)o. Lapplication w définit donc un élément de WQ(Q,, Z,) qui est
évidemment égal a la somme des classes des w, pour v € S. Notons H(S) 'image
de O%/0% dans G(S).
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LEMME 4. La restriction de w a H(S) est identiquement nulle; en particulier,
la classe de w dans WQ(Q,, Z,) est triviale.

En effet, si y est un caractére du groupe des classes d’idéles de K, notons,
pour toute place v de K, x, sa restriction 3 K} et W,(x)=W(x,). (Pour la
définition de W(y,) quand v est réelle, cf [S, p. 32, déf.].) On sait [S, p. 33, th.
2.3] que les W, (x) sont presque tous égaux a 1 et que [I W, (x) est la constante de
I’équation fonctionnelle de L(y, s); cette constante est égale a 1 si y est un
caractére quadratique [6, p. 125]. Soit a € K* et p, le caractére quadratique tel
que (p,),(x) = (a, x), pour toute place v et tout x € K;: alors [ W,(p,) =1; de
plus, W,(p.) = p.(%,) si v est finie, nondyadique et a € U, (U,: unités de K,,, 9,
différente absolue de K,). En particulier, on a W,(p,)=1 si a€O5 et v ¢S
(condition b) sur §), d’ou la premiére affirmation du lemme 4. La deuxiéme en
résulte grace au lemme 3.

COROLLAIRE. On all,.s y(w,) =1.
Cela résulte du lemme 4 et de I’additivité de y.

Fin de la démonstration. Soit maintenant K une extension finie de Q,.
D’apres [3, p. 44, cor. a la prop. 4], il existe un corps de nombres E < K tel que
[E:Q] =[K:Q,] et que E soit dense dans K. En particulier, E n’a qu’une place
dyadique v, et E, = K. Notons Qg = Q =Trgg x2; alors pour toute place [ de Q,
Q (:=Q ®g Q) est la somme des Qf , ot v décrit les places divisant /. Par
réciprocité de Weil [7, p. 179, prop. 5], on a:

I[I r(@)=117(Qr)=1. (5)

Soit v une place finie, non dyadique de E; on a supposé connu que
y(W,) = y(Qg,). Si v est une place infinie, la méme formule se vérifie triviale-
ment. La formule (5) et le corollaire au lemme 4 entrainent donc que

Y(Woo) = 7(&,,)-

Transformée de Fourier. Le nombre y(w) peut s’interpréter comme la valeur
en 1 de la transformée de Fourier de W. Plus précisément, soit A’ le groupe des
caractéres quadratiques de K, dual de A =K*/K*>. Munissons A et A’ de la
measure de Haar de volume total |A|"?=|A’|"2. Alors la transformée de Fourier

de W est par définition:

W(x)=|A"""2 X W(p)p(x) =|A|""? X W(p.)(—1)*~.

peA’ aecA
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THEOREME 2. Pour tout x € A, on a W(x) = y(x).

Démonstration. Pour x =1, c’est le théoréme 1. Pour x quelconque, on
calcule:

WEWA)=1A1"" 3 W(p)W(p,)(—1)@

(a,b)eA?

=1AIT" D W(pw)(—1)@b (formule (1))

(a,b)eA?

=141 3 W~

(a,c)eA?

=4t 2 W(p)(—1)@.

(a,c)eA?

Si —cx#1, on a Y,c4 (—1)® ) =0: en effet, le symbole de Hilbert est
non-dégénéré. On trouve donc:

W)W =]A]"" 2 W(p) 2 (D)@ =W(p_,)=y(—x)y(1)"

ceA aeA

Comme W(1)=y(1)=y(1)"!, on trouve W(x)=y(—x)=y(x) (additivité
de y).

Caractéres non quadratiques. Je vais calculer, dans le cas modéré, la
transformée de Fourier de la restriction de W aux caractéres d’ordre n (cas
modéré: on suppose n premier a p). Jignore si ces calculs ont un intérét autre
que de mettre en relief la spécificité du cas n = 2. Il serait intéressant de faire ce
calcul également, disons, dans le cas n = p, mais cela parait plus difficile.

THEOREME 3. Soit n un entier premier a p et X, = X,(K) le groupe des
caractéres de K d’ordre n: c’est le dual de A, = K*/K*". Munissons X, et A,, des
mesures de Haar de volume total |A,|"? = |X,|"*. Alors la transformée de Fourier
de W (restreint a X)) a pour valeurs:

0si v(a) #t¢,t+1(modn);
W(a) ={Vn/r si v(a) =t (mod n);
Vnlgr > e(Trxo, a™'u") siv(a) =t +1;

ueOx/M

oi I'on a noté t =v(Px), r=(n, q — 1) et e(x) = ™,
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Démonstration. Comme n est premier a p, tout élément de X, se factorise par
K*/U,, donc est de conducteur 0 ou 1. On peut écrire K*/U, =Z X k* (ou k est
le corps résiduel) au moyen d’une uniformisante de K. Par conséquent, K*/K*"
s'écrit Z/n X k*/k*"; le premier facteur est cyclique d’ordre n tandis que le
second est cyclique d’ordre r.

Dualement, on peut trouver une base (o, x;) de x,, ol xo est un caractére
non-ramifi€ d’ordre n et x; un caractere ramifi€é (donc de conducteur 1) d’ordre r.
Il en résulte, pour a e A,;:

W(a)=1A.""* X x(a)"'W(x)= IA,,I“”; xo(@) ™M x1(@) T*W (xdxh),

xeX,
ou (A, u) décrit Z/n X Z/r. Rappelons la formule [6, p. 98, Cor.2]:
W(xx') = x(2,)W ('),

si x est non-ramifié et @, = M *)Px. On en déduit que:

W(@) = 4,7 3 (@) Wet) S xolx~ D) + 2 X' @Y.

u+#0 A

Si v(a) # ¢, t+1(modn), il est clair d’apres cette formule que W(a) =0. De
méme, si v(a) =t (mod n), on voit que W(a) = |A,|""2n = Vn/r puisque |A,| =
nr. 1l reste le cas ot v(a)=t+ 1 (mod n); on peut méme supposer v(a) =t + 1.
Alors la formule ci-dessus devient:

W(a)=n|A,""? 3 xi(a) *W(xh)

u+0

=n A7 2 (@) 2 (d ™) T Fyk(d )

u#0 xeU/U;

=n|A,77q7 2 yk(dx) 2 xi(ad )7

xeU/Uy u+0

=l 7¢? 3 (—yad )
xEU/Ul
x%a~'d (mod U")

D R )
xeU/U;
x=ma~'d(mod U")

=4 S @ - 3y ).

xeU/U; xeU/U,
xm=a~'d(mod U")
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Ona ¥, cuw, Yx(d ~Ix) = —1: c’est la somme sur Oy/#M — {0} des valeurs d’un
caractére non trivial de Ox/#M. Comme il y a r racines n**™* de I’'unité dans K*,
on en conclut aprés changement de variables:

W@)=nl|A,l"2q7"* 2 yxka'u")

ueOx/M

=Vnlgr >, e(Trgg, a~'u")

ueO,(Ml

COROLLAIRE. Si g=p, on a |W(a)|<(r—1)Vn/r lorsque v(a)=t+1
(mod n).

En effet, on peut alors trouver un b € F; tel que p Trgq, a”'u = bit (mod p),
ol i est la réduction de u modulo #; le corollaire résulte alors de [1, p. 258, th.
8.5]. Par la méme méthode on doit pouvoir établir le corollaire pour g
quelconque.

(Je remercie Etienne Fouvry de m’avoir indiqué le résultat et la référence
ci-dessus.)

Remarquons que dans ’énoncé du théoréme 3, on peut remplacer les u” par
des u'.

EXEMPLES. a) n=3. Si r=1, on trouve d’aprés le théoréme 3 et la
remarque précédente:

o« [0 siv(a)=1t(mod3)
W(“)"{\[g si v(a) =t (mod 3).

) Si r=3, prenons par exemple K=Q,: alors, si v(a)=1, on obtient
W(a) =1/V7(Q + 3e(1/a) + 3e(—1/a)), nombres algébriques totalement réels de
degré 6 et de norme —28/7°.

b) n=4. Sir=2, on trouve

0siv(a) £t t+1(mod4)
W(a) ={V2siv(a) =t (mod 4)
V2y(a) siv(a) =t + 1 (mod 4).

) Si r=4, prenons par exemple K=Q;. Alors si v(a)=1, on obtient
W(a) =1/V5(Q + 4e(a™")), nombres algébriques de degré 4 et de norme 41/5.
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