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A uniqueness theorem for Z"-periodic variational problems

V. BANGERT

1. Introduction

We consider a variational problem of the following type: Given an integrand
F:R" X R XR"— R which is Z-periodic in the first n + 1 variables we look for
functions u : R” — R which minimize [ F(x, u, u,) dx with respect to all compactly
supported variations of u. Under appropriate growth conditions on F, Moser [9]
succeeds to construct a large set of so-called “minimal solutions without
selfintersections” to this problem. These solutions are natural generalizations of
the affine functions u(x) = o - x + uy, o € R"?, which are minima for integrands F
depending on u, only. In particular, Moser’s solutions have a uniquely deter-
mined ‘“‘slope” or ‘“rotation vector” « € R". For irrational « these minimal
solutions are obtained as limits of minimal solutions with rational slope.
Obviously this procedure leads to a uniqueness problem: To what extent do these
limit sets of minimal solutions with irrational slope depend on the approximating
sequence? Here we show that for every a e R*\Q" this limit set is essentially
unique. Though the problem at hand is elliptic the minimality and the boundary
conditions at infinity allow us to state this uniqueness in a form which is
reminiscent of a 1-dimensional initial value problem:

THEOREM. Suppose & =(—a, 1) e R**! is rationally independent and x, e
R". Then for every ug€ R there exists at most one minimal solution u without
selfintersections such that u(x,) = uy and u has slope a.

From Moser’s work [9] it is known that the set of u,eR for which such
solution does exist contains at least a Cantor set. For more details and for the
case that « is irrational but & = (—a, 1) is rationally dependent see Section S.

For integrands F depending on u, only Moser ([9], Theorem (2.3)) proved
that every minimal solution without selfintersections is affine. This implies the
theorem stated above in this particular case.

In our proof we use Moser’s estimates which are based on the delicate
regularity theory for minima of such problems, see e.g. the book by Ladyzhen-
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512 V. BANGERT

skaya and Ural’tseva [6]. Apart from this the methods are elementary. They rely
on the interplay of the Z"*'-action and the maximum principle.

All this work is inspired by results on the case n=1, in particular by
Hedlund’s investigations [S] on geodesics on a 2-dimensional Riemannian torus
and by Mather’s [7] and Aubry/LeDaeron’s [1] work on invariant subsets of
monotone twist maps. In particular, the uniqueness theorem stated above is due
to Aubry/LeDaeron in the case n = 1. For a survey of these topics see [10].

A direct generalization of Hedlund’s ideas would consist in considering
hypersurfaces in R**! which are (homotopically or absolutely) area minimizing
with respect to a Z"*'-periodic Riemannian metric on R**!. This entails the
wellknown difficulty that one has to handle parametric hypersurfaces instead of
graphs. For n =2 such generalization to homotopically area minimizing surfaces
is possible and we intend to describe this in a subsequent paper. The starting
point is the work by Freedman/Hass/Scott [3] and Schoen/Yau [11] in which the
periodic case is treated.

The paper is organized as follows: In Section 2 we fix the notation and present
Moser’s variational problem. Section 3 gives a survey of Moser’s results [9]. At
the end of Section 3 we can state our goal in a precise form. In Section 4 we
describe a new approach to the basic invariant, the rotation vector of a minimal
solution without self-intersections. Section 5 contains the statements of our results
which will be proved in Section 6. In Section 7 we indicate some directions for
future research and open problems.

Acknowledgement

I would like to thank Prof. J. Moser (ETH Ziirich) whose motivation and
interest inspired me to solve this problem.

2. The variational problem

In this section we describe the setting of the problem which is due to J. Moser
[9]. Moreover we briefly survey the results on partial differential equations that
we need.

The coordinates of a point in R***! will be denoted by (x, x,.1, p) = (%, p)
where x€R", x,.,€R, x=(x, x,,.1) € R"! and p e R". The integrand of our
variational problem is a function F:R**!'— R with the following properties, cf.

[91, (3.1).
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(F,) F e C**(R***") for some £ >0.

(F,) Fis Z"* -periodic in %, i.e. F(X + k, p) = F(%, p) for all k e Z**".

(F3) S IEP<Xp .1 Fpp (% p)EE <067 |Ef for some 6 € (0, 1).

(Fy) |Fs(% p)l<c(1+]|p]) and |F5(%, p)| <c(1+ |p|?) for some ¢ >0.
According to (F,) we can consider F as a function on T"*'xR"” where
T"*!'=R""/Z"*' denotes the (n + 1)-torus. (F;) ensures the ellipticity of the
Euler equation corresponding to F. Obviously (F;) implies that F grows
quadratically in |p|, i.e. there exist 8 € (0, 1), ¢, =0 such that

(2.1) S lpl*—co<F(x, p)<d5' |pI*+co

We want to consider integrals like

f F(x, u(x), u,(x)) dx

where © c R" is open and u: Q22— R. According to (2.1) it is reasonable to work
in the Sobolev space WiA(Q) of all uelLl () with (distributional) first

derivatives in LZ,(£2). The subspace of all ¢ € W3(Q) with compact support will
be denoted by W2, (£).

We are interested in functions u which minimize [ F(x, u, u,)dx in the
following global sense:

(2.2) DEFINITION. A function u € WiZ2(R") is a minimal solution of the

variational problem with integrand F (briefly: u is minimal) if for all ¢ €
Weimp(R™)

(Fx,u+ ¢, u,+¢,)—F(x, u, u,))dx =0.
R’l
If 2 cR"is open we say that u € W;;2(£2) is minimal in Q if for all ¢ € WLZ (L)
[ FGut 6wt 09— Foxu,w) dr=o0
Q

According to (F,) we have a Z"*'-action T on the set of minimal solutions: If
ueWLAR™) and k = (k, k1) € Z"*" let Tru € WE3(R™) be defined by

23) (Tau)(x)=u(x—k)+k,41
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Obviously (F,) implies that 7Tzu is minimal if ¥ is minimal. The action of T
corresponds to translation of graph (1) by k € Z"*!. As a consequence of (F;) and
(F,) every u e W32(£2) which is minimal in & inherits regularity from the
integrand F, i.e. if F € C**(R*"*') and [ =2 then u € C"¢(Q).

This regularity result is proved in three steps:
First one uses minimality to show Holder continuity, in particular local
boundedness of u. For this we only need property (2.1). Then one can use the
regularity theory for bounded solutions of quasi-linear elliptic equations (the
Euler equation of our problem) to obtain u € C"“(L2). Here one uses (F;) and
(F,). Now C"‘-regularity allows us to reduce the regularity problem to the
wellknown linear case. For details we refer to the books by Ladyzhenskaya/
Ural’tseva [6] and by Giaquinta [4].

The preceding discussion shows that every minimal solution is a classical
solution of the quasi-linear elliptic Euler equation of our problem. So we have the
following maximum principle:

(2.4) LEMMA. Suppose u, v e Wi2(Q) are minimal in the connected open set
Q cR". If u<v then either u=v or u <v.

A detailed proof of (2.4) is given in [9], Section 4.

3. Moser’s results

We survey those notions and results from [9] whch are necessary to
understand this paper. For the convenience of the reader we freely weaken or
omit statements from [9].

In the present noncompact situation the existence of minimal solutions poses a
nontrivial problem. Moser’s work deals with existence and properties of a
distinguished class of minimal solutions which we define below.

Note that C°(R") is partially ordered by setting u<v if and only if
u(x) <v(x) for all x € R”. The Z"*'-action (2.3) preserves this order.

(3.1) DEFINITION. A function u € C°(R") is said not to have selfintersections
if the T-orbit of u is totally ordered, i.e. for all £ e Z"*' we have Tru <u or
Tiu=uor Tiu>u.

Obviously this condition means that any two translates of graph (u) by integer
vectors are either identical or disjoint. Put differently, the projection of graph (u)
into T"*' = R"**!/Z"*" does not have non-trivial selfintersections.
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(3.2) NOTATION: We let M =M(F) denote the set of minimal solutions
without selfintersections.

EXAMPLE. For the Dirichlet integrand F(%, p) =|p|* the affine functions
ulx)=ao-x +uy, aeR" uyeR constitute M(F).

This example shows that for n =2 one cannot expect that every minimal solution
does not have selfintersections: Every harmonic function on R"” which is not affine
is a minimal solution for the Dirichlet integrand and has selfintersections, for
details cf. [9], Section 2. For n = 1, however, minimal solutions (for arbitrary F)
do not have selfintersections. This can be deduced from [1], see also [2]. The set
M(F) is thought to be the natural generalization of the set of affine minimal
solutions for the Dirichlet integrand (or, more generally, for integrands only
depending on p).

Now suppose that u € C°(R") does not have selfintersections. It is not difficult
to show that there exists a unique & € R" such that |u(x) — a - x| is bounded. For
reasons to be discussed in Section 4 this o € R” is called the rotation vector of wu.
In particular, # decomposes into the disjoint union

(3.3) M= U M,

aeR”
where #, denotes the T-invariant set of those u € # with rotation vector a.
The most important properties of minimal solutions without selfintersections
can be stated as follows, cf. [9], Theorems (2.1) and (3.1):
THEOREM. There exist constants c, and vy, such that for all u € M,,:
(3.4) |u(x+y)—u@x)—a-y|<c,V1+]af

(3.5) |u,

<"
Here c, only depends on F while v, depends on F and |a|.

Geometrically (3.4) says that the distance from graph (u) to the affine
hyperplane in R**! through (0, u(0)) with normal & =(—a, 1) is bounded
uniformly for all u € #. By (3.5) all u € #, are Lipschitz with constant y,. (3.5)
has the following consequence, cf. [9], Corollary (3.3):

(3.6) THEOREM. Every sequence u; with u; e M, and both |u,(0)| and |a|
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bounded contains a subsequence which is C'-convergent on compact sets to some
ueM.

In particular, # and the #, are closed with respect to C'-convergence on
compact sets.

Now we discuss Moser’s results on the existence of minimal solutions. For
a € Q" set

ME = {ueM,|Teu=uforal keZ*" withk,,,=k- a)

So u € M, is in ME if graph (1) is translated into itself by every vector k € Z"*!
orthogonal to & =(—a, 1). Hence the projection of graph (u) to T"*' is an
n-torus representing a prime Z-homology class. Moser’s basic existence result
says:

(3.77 THEOREM. For all @ € Q" we have ME" + .

Given a € R"\ Q" we can choose a sequence a; € Q" with lim «; = &. Using (3.7),
the T-invariance of M5 and (3.6) we see that there exist u; € M5 such that a
subsequence of u; converges to some u € #. (3.4) implies u € #,, hence M, + .
For ue M,, let

Mu)c M,

denote the closure (with respect to C'-convergence on compact sets) of the
T-orbit of u. By the maximum principle (2.4) the set #(u) is totally ordered. It is
not difficult to conclude that for & € R*\ Q" the order-preserving Z"*'-action T on
M(u) has a unique minimal set (i.e. a unique smallest closed and non-empty
T-invariant set) which we denote by #™“(u), for details see Section 4. These
minimal sets are constructed and discussed in [9], Section 6. It is easily proved
that one of the following alternatives is true (a € R"\Q", u € M,,):

(3.8) The graphs of the minimal solutions v € M*“(u) form a foliation of R"*,
i.e. for every ¥ € R"*! there exists a unique v € M (u) such that ¥ = (x, v(x)).
(3.9) The graphs of the minimal solutions v € M™°(u) form a lamination of R"*',
i.e. the order preserving homeomorphism

H:ve M™u)—v(0)eR

maps M °(u) onto a (Z-periodic) Cantor set in R.
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Our principal aim is to prove that for all « e R*\Q" and all u, v € #, we have
MI‘CC(u) — MI'CC(U).

4. The rotation vector

We describe an alternative approach to the rotation vector of a nonselfinter-
secting u € C°(R") as defined in [9]. This leads to some results on the the T-action
on A, which will be used in the sequel. One of the advantages of the approach
presented here is that it generalizes easily to the case of parametric hypersurfaces.

For every u € C°(R™) we can consider semigroups

G.(u)={keZ"" | Tw=u)
and

G-(w)={keZ"" | Tau<u}=-G,(u).

If u does not have selfintersections in the sense of (3.1) we have G, (u)U
G_(u) =Z"*'. The subgroup

G.(wW)NG_(u)={keZ" | Twu=u)}

cannot have rank n + 1 since i-€,,,¢ G, (u) N G_(u) for all i e Z\{0}. Using
these facts we will prove:

(4.1) LEMMA. If ue C°R") does not have selfintersections there exists a
unique & = (—a, 1) e R**! such that

(keZ'*' |k-a>0}cG, (u)c{keZ"" |k -a=0)

Remark. Alternatively one can characterize & =(—a, 1) by the following
statement which we will mostly use:

(4.2) IfkeZ™' and k-&>0 then Tiu>u.
Note, however, that T > u will only imply £ - ® =0 in general. According to
(4.2) the order of the T-orbit {Tzu |k € Z"*'} is closely related to the order of

the real numbers & - &, cf. the remarks following (4.7).

From (4.2) one can easily derive that |u(x) — & - x| is bounded.
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Proof of (4.1). Let p:R*"!\{0}— S" denote the radial projection, p(x) =
||~* - x. For a semigroup G c Z"*! let C(G) = S" denote the closure of the set
p(G\{0}). Then C(G) is locally convex, i.e. every great-circle segment of length
<m with endpoints in C(G) is completely contained in C(G). We want to show
that C(G,(u)) is a hemisphere. It is wellknown and easy to prove that a locally

convex subset C of $” is contained in some hemisphere unless C =S$". Since
C(Z"")=5"and G,.(u)U (—G.(u)) =Z"""! we have

C(G.(u)) U (-C(G.(u))) = S"

So either C(G,(u)) is a hemisphere or C(G,(u)) =S". We want to show that the
assumption C(G,(u)) = S" leads to a contradiction:

Since rank (G,.(u) N G_(u))<n+1 the set C(G,.(u) N G_(u)) is contained in a
great (n — 1)-sphere. Let H denote one of the corresponding open hemispheres.
Since C(G, (1)) = S" there exist linearly independent vectors k; € G, (u), 1 <i<
n+1, such that p(k;)e H. Denote the semigroup generated by the k; by
G < G.(u). Then C(G) has non-empty interior Int (C(G)) < H. By our asssump-
tion we have C(G_(u)) =S" 2 C(G). Hence there exists kK € G_(u) with p(k) €
Int (C(G)) c H. But this implies k = Y, t,k; for rational numbers ¢ > 0. So there
exists m € N such that mk € G.(u) N G_(u) and p(mk) = p(k) e H which con-
tradicts C(G,.(u)NG_(u))NH=. Thus C(G,(u)) is indeed a hemisphere.
Obviously C(G.(u)) contains the coordinate vector é,., in its interior. So there
exists a unique & = (—a, 1) € R*' such that

CG,(w)={xeS"|x-a=0}

In particular, k € G,(u) implies k - @ =0. Since G,(u)U (=G, (u))=Z"*" we
conclude that k - @ >0 implies k € G, (u). This proves our claim.

The vector a € R” is-called the rotation vector of u in [9] since its components
a;, 1=<<i=<n, are the rotation numbers of the ‘“‘generalized circle maps” 7; which
map the set {u(k) +k,,, | k € Z"*'} = R onto itself by

) Ti(u(k) + kni1) =ulk +e) + kpos,

cf. [9], Appendix to Section 2. In this approach property (4.2) corresponds to [9],
Lemma (6.1).

(4.3) DEFINITION. Suppose o€ R"\Q", ueM, and a=(-a,1). We say
that u can be approximated from above (resp. from below) if

u=inf {T7u |k -a&>0}
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(resp. if u =sup {Tzu | k - & <0}). If u can be approximated from above or from
below u is called recurrent.

We let M€ denote the set of recurrent elements of #,, « € R"\Q". For a € Q" it
is reasonable to define M°:= M. We set M =), crn M.

Remarks. 1. If u € M, then the set
M(u) = closure of the T-orbit of u

is totally ordered and every sequence in J{(u) which is decreasing (resp.
increasing) and bounded below (resp. above) C'-converges on compact sets, cf.
(2.4) and (3.6). So u can be approximated from above if and only if there exists a
sequence k; € Z"*! such that k; - & >0 and Tiu C'-converges to u on compact
sets.

2. If e R"\Q" but (— a, 1) = & is rationally dependent then our definition
of recurrence is more restrictive than [9], Definition (6.4).

The following lemma implies that for all « € R*"\Q" and all u € #, the set
M(u) : =M™ N M(u) is the unique minimal set of the Z"*'-action T on M(u).
This accounts for the term ‘“‘recurrent”.

(4.4) LEMMA. Suppose o€ R"\Q" and u € M, can be approximated from
above (resp. from below). Then for every v € M(u) we have

u=inf {Tiv | Tgv > u}
(resp. u=sup {Tgv | Tev <u}).

Note. More generally (4.4) holds for all v e #, for which M(v) U M(u) is
totally ordered.

Proof. Suppose u € M, can be approximated from below and #(u) U M(v) is
totally ordered. Define © =sup {Tzv | Tzv <u} and assume ¥ <u. Since M(u) U
M(v) is totally ordered and since u can be approximated from below there exists
heZ"" such that h - @ <0 and ¥ < Tju <u. Setting k = —h we obtain T;0 <u
and k-&>0. But this contradicts the definition of #: If ¥ =lim T;v with
Tiv=<v we have 0 <T;,.;v <u for all sufficiently large i e N. So ¥ <u is not
true. Now the definition of ¥ and the maximum principle (2.4) show that ¥ = wu.

At this stage it is easy to prove that #™“(u) corresponds either to a foliation
(3.8) or to a lamination (3.9) of R"*!. In the second case H:M"™*(u)— R,
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H(v) =v(0) maps #™°(u) homeomorphically onto a Cantor set C < R. The
endpoints of intervals in R\ C correspond to elements in #"°(x) which can be
approximated only from above or only the from below. The - uncountably
many — other elements of C correspond to minimal solution in #"“(u) which can
be approximated both from above and from below.

If @ is rationally independent (i.e. &-k=0 and keZ""' imply k=0)
“neighboring” recurrent solutions converge to each other for |x|— o (cf. [9],
Section 6):

(4.5) LEMMA. Suppose & =(a, —1) is rationally independent and we have
Vo, U1 € M™(u) c M, such that vy<v, and there does not exist w € M “(u) with
vo<w <wv,. Then

(Ul - v()) dx = 1.
R’l

Proof. Let o= {(x, X,+,) e R"" |vy(x) <x,4; <v,(x)}. Then o does not
intersect any of its translates o + k, k € Z"*'\ {0}. Hence o projects injectively to
T"*1, so that vol,., (0) = [r- (v, — vg) dx <vol (T"*") = 1.

Recurrent minimal solutions are as periodic as possible:

(4.6) LEMMA. Suppose a € R"\Q" and u € M. Then Tiu = u for all k € 2"+’
with k - & = 0.

Proof. Suppose u can be approximated from below. If A€ Z"*' and h- & =0
then T;u=u. Otherwise there would exist k € Z"*! with k- @ <0 and Tju <
Tiu, hence T ;_gu < u. This contradicts (A — k) - @ = —k - @ > 0. Replacing & by
—h we obtain Tou=u. -

The following lemma will be crucial since it allows us to use compactness
arguments in M5°, cf. the proof of (6.4) and (6.6).

(4.7) LEMMA. Suppose @€ R”\Q". and u, v e My° can both be approximated
from below. Let sequences k; € Z"*', h, e Z"*" be given such that

limTiu=da, imTgv=v and Tza<u, limTzi=u.
Then we have

limT;0=v.
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Note. An analogous result holds if # and v can both be approximated from
above.

Proof. Fix some ieN. Because of T;u<u and limT;u=u we have
T i, +kyu <u for almost all j € N. According to (4.6) this implies (h; + k;) - & <0
and hence T =lim;_... T ;,+£yv < v. The sequence (T;,0)(0) is easily seen to be
bounded. So, by (3.6), we may assume that T; U converges to some w < v and we
have to prove that w =v. If w <wv our hypothesis on v says that there exists
k € Z"" such that k - & <0 and w < Tgv <v. Now T (_gyw <v implies T,z 0 <
v for almost all i e N. The arguments used above show T _iyi <u and hence
T —i&yu < u. But this contradicts (—k) - & > 0.

Statement and proof of Lemma (4.7) may look somewhat mysterious. For
readers familiar with Denjoy theory the following observation may clarify things:
The map h,:Mu)—R, h,(d)=sup{k-a&|Tge<a), is continuous, non-
decreasing and satisfies h,(Ti)=h,(d)+k-a& If h, is strictly increasing
(& M™(u) foliates R"*") then h, conjugates the Z"*'-action on (u) to the
action of Z"*! on R given by te R—t+k - & So, if both #"°(1) and M (v)
foliate R™*' then the actions of Z"*' on #(u) and #(v) are conjugate, so that
(4.7) is obvious (actually we will later see that in this case M(u)=M"(u)=
M™(v) = M(v)). But even in the general case one can use h, and h, to show that
the Z"*'-action on #"°(u) and #M"°(v) are similar to a certain extent and this is
precisely the meaning of (4.7).

5. Statement of the results

The most interesting feature of the minimal solutions without selfintersections
is that they are natural generalizations of the affine minimal solutions u(x) =
« - x + uy of a variational problem with integrand F = F(p) not depending on *.
Now ‘“how natural” these solutions in #,, o € R"\Q", really are depends on an
answer to the following question which remains open in [9].

Is M™(u) independent of u € M,?

If the answer is “no” there will be many disjoint minimal sets of type #"“(u) in
M. These will contain functions whose graphs intersect and #;° will be a very
complicated set unlike the set of affine functions with fixed slope . However, this
complicated situation does not occur:

(5.1) THEOREM. For every o € R"\Q" the set M%° is totally ordered.
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So, as in the case of affine functions of fixed slope, if u, v e #;° and u(0) <v(0)
then u(x) <v(x) for all x e R". As a simple consequence of (5.1) the Z"*'-action
on M, has a unique minimal set:

(5.2) COROLLARY. If @ € R"\Q" and u € M, then M*(u) = M.

Proof that (5.1) implies (5.2). According to the note following (4.4) we can
apply (4.4) to all u, v e M;° since M;° is totally ordered. Hence M5° = M™(v)
for all ve M. If we M N\M5° and v € M™(w) then M™(v) = M™(w). Hence
M = M (w) for all w € M,,.

The methods used in the proof of (5.1) easily yield the following stronger
version of (5.1) for generic a.

(5.3) THEOREM. If & =(—a, 1) is rationally independent then M, is totally
ordered.

To put (5.1)-(5.3) into perspective we compare with the corresponding facts for
MET = MC if o € Q. The analogue of (5.1) is true, cf. [9], Theorem (5.2). This
will also follow from the proof of (5.1). The analogue of (5.2) will not always be
true: The set {u|u(x)=a: x+uy} consists of uncountably many discrete
T-orbits if a € Q". However, for “generic” F there will only be one T-orbit in
MEST. Finally, Morse’s work [8] shows that for » =1 and a € Q the set , will in
general not be totally ordered, cf. also [2], Section §.
As a simple consequence of Corollary (5.2) we obtain:

(5.4) COROLLARY. Every recurrent u € M can be approximated by periodic
minimal solutions without selfintersections.

Proof. As always we talk about the topology of C'-convergence on compact
sets. For @ e R*\Q" let ., denote the set of v € M, which can be approximated
by periodic solutions in . Then M, # is closed and invariant under the
Z"*'-action. Since ° is the unique minimal set of this action restricted to
we have M= < M,,.

6. Proofs of the theorems

We introduce the following abbreviations:

For open sets 2 c R” and u € W}2(Q2) we set

I(u, Q):=] F(x, u, u,) dx

D(u, Q):=sup {f (F(x,u,u,)—F(x,u+ ¢, u,+¢,))dx|¢pe Wégﬁ,,p(Q)}
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provided I(u, £2) and D(u, 2) exist as extended real numbers. Obviously
D(u, £2) =0 if u is minimal in £ and D(u, 2) >0 otherwise.
The maximum principle (2.4) implies:

(6.1) LEMMA. If u#v:2— R are minimal in a connected open set Q c R"
and u(x) = v(x) for some x € Q then

D(max (u, v), 2)>0 and D(min (u, v), Q)>0.

Before we start with the details we outline the proof of Theorem (5.1): We
assume that u # v are in M5°, « € R"\Q", and that u(x) = v(x) for some x € R".
We want to show that this contradicts the minimality of ¥ and v. Lemma (6.1) can
be used to prove this in the special case that v > u holds only on a bounded set
B < R". This case is of no particular importance for the rest of the proof but it
can be used to illustrate the general idea and the difficulties that we have to
overcome: In this case max (u, v) is a compactly supported variation of u and
min («, v) is a compactly supported variation of v. Hence the minimality of u and
v implies that for all connected open sets Q2 o B:

I(max (u, v), ) =I(u, ) + D(max (u, v), Q)
I(min (u, v), ) = I(v, )+ D(min (u, v), Q)

(6.2)

On the other hand the following equation is true quite generally
(6.3) I(max (u, v), Q)+ I(min (u, v), Q) =1(u, Q)+ I(v, Q)

Obviously (6.2) and (6.3) contradict (6.1).

In general we have to cope with the difficulty that every component of the set

{x e R" | u(x) #v(x)} might be non-compact. In this case there are two effects

which work against each other and we want to show that the balance is in our

favor:

a) First, and this is favorable, Lemma (6.1) says that we can reduce
I(max (u, v), ) and I(min (u, v), £2) by compactly supported variations.

b) However, in order to use the minimality of u and v we have to change
max («, v) resp. min (u, v) so that they coincide with u resp. v outside some
large compact set. This has the negative effect to increase the integrals on the
left hand sides of (6.2).

We will show that the increase on the left hand side of (6.2) can be estimated

above by const. - r*~! if we change max (u, v) and min (1, v) only outside the ball

B(0, r) of radius r about 0 € R". On the other hand, a quantitative version of (6.1)

will show that D(max (u, v), B(0, r)) and D(min (u, v), B(0, r)) can be estimated
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below by 6 - r" for r=r, and for some 6 >0. So, for large r =r, the balance
26 - r" — const. - r"~! will be positive and this will contradict the minimality of u
and v.

Now we start with the details. First note that we may assume that both u and
v can be approximated from below: Since u, v € M7 we can approximate u resp.
v by sequences u; resp. v; where all the u; and v; can be approximated from
below, cf. (4.4). Using the maximum principle we see that graph (1) N
graph (v;) # G if i is large enough. So we can replace u, v by u;, v,.

Next we use (4.7) to show that graph () N graph (v) is actually a large set:

(6.4) LEMMA. There exists ry> 0 such that every ball of radius r = r, contains a
point x with u(x) = v(x).

Proof. Otherwise there exists a sequence of balls B(x;, i) where x; e R", i e N
such that u — v does not change sign on B(x;, i), say u >v on B(x;, i). Choose a
sequence k; = (k;, j;) € Z" X Z such that x;+k; €[0,1)" and such that (a sub-
sequence of) T;u and T;v converge, say limTzu=u, limT;v=1"v. This is
possible by (3.6). Since Tzu>Tiv on B(x; +k;, i) we have either #=10 or
i > 0. But then (4.4) and (4.7) imply that u = v or u > v which contradicts our
hypothesis on u and v.

We need the following semi-continuity property of D(u, Q):
(6.5) LEMMA. Let QcR” be open and bounded and let w;: Q22— R be a
sequence of functions with uniform Lipschitz constant L. Suppose the w; converge
with their first derivatives almost everywhere to w:Q2—R. Then D(w, Q)<
lim inf D(w;, Q).

Proof. By Lebesgue’s theorem on dominated convergence we have
I(w, Q) =1lim I(w;, L)

So it remains to prove that for every ¢ € W5 (L) there exists a sequence
¢: € Wiz ,(R2) such that

(*) Iw+ ¢, Q) = lim sup I(w; + ¢;, 2)

We choose 6 >0 such that ¢(x) =0 if x € £ and dist (x, 9Q2) <24. There exists a
Lipschitz function A: Q— [0, 1] such that A(x) = 0 if dist (x, 3R2) <6 and A(x) =1
if dist (x, 02)=28. We set ¢;:=A(w—w;+ ¢) so that ¢, € Wii,,(L2). Since
w,+ ¢;=Aw + (1 —2A)w; and A is Lipschitz the w; + ¢, converge with their first
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derivatives almost everywhere to w + ¢ and the dominated convergence theorem
applies. So

I(w+ ¢, Q) =limI(w, + ¢;, Q)
and this proves (*).

Now we return to u, v € M;° given above and prove a uniform version of
(6.1):

(6.6) LEMMA. There exist €>0 and r,>0 such that for all x e R" with
u(x)=v(x):

D(max (u, v), B(x, r))>€¢ and D(min (u,v), B(x,r))>¢

Proof. We use a similar argument as in the proof of (6.4). If (6.6) is not true
there exists a sequence x; € R” such that u(x;) = v(x;) and, e.g.,

lim (D(max (u, v), B(x;, i))) =0

We choose a sequence k; = (k;, j;) € Z" X Z such that y; = x; + k; € [0, 1)" and such
that (a subsequence of) Tzu, T;v converge, say lim Tu =i, lim T;v = 0. By
Z"*'-invariance (F,) we have

(*) lim D(max (Tzu, Tzv), B(y;, i))=0

By (3.5) we know that the sequence max (Tiu, T¢v) is uniformly Lipschitz
continuous. It is easy to see that max (T;u, T;v) converges together with the
first derivatives almost everywhere to max (i, v).

So (6.5) and (*) imply

D(max (&, v), B(0, r))=0

for all » > 0. Since & and v coincide at every accumulation point of the sequence

y; Lemma (6.1) yields & = 0. As in (6.4) we can use (4.4) and (4.7) to conclude
that u = v, contrary to our hypothesis.

Lemmas (6.4) and (6.6) combine to complete the first part of the proof of
(5.1):

(6.7) LEMMA. There exist 6 >0 and r,> 0 such that for all r = r;:

D(max (u, v), B(0,r))>9d -r* and D(min (u,v), B(0,r))>46-r"
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We prove the first inequality: According to (6.4) and (6.6) there exists a constant
¢ =c(n, ry, ry) >0 such that for every r=r,:=r, + r, the ball B(0, r) contains at
least ¢ - r" disjoint balls of radius r, such that u and v coincide at the centers of
these balls. Now our claim follows from (6.6) with r,=ry+r, and d =¢ - c.

In the second and last part of the proof of (5.1) we construct functions

w}, w; € Wi2(R") which coincide with max (u, v) resp. min (, v) on B(0, r) and

with u resp. v outside some compact set. If we can achieve this so that there exists
A >0 such that for all r =1

(F(x, w), WH,) —F(x,u,u,))dx<A-r!
R'l
and

(F(x, w;, w,),)—F(x,v,v,))dx<A-r"!
Rn

our proof will easily be completed. Here is the general construction of such w}:

(6.8) LEMMA. Let wy, w,:R"—> R have Lipschitz constant L and suppose
O0<w,—w, <C. Then for all r =1 there exists w:R"— R such that

(a) w is Lipschitz with constant 2L + 1,

(b) w|B(0, r)=w| B(0, r),

(c) w=w, outside some compact set,

(d) vol, ({x e R" | |x[=r and w(x) #wi(x)}) < (1+ C)""" [s80,) (W2 — wy) do

Here do denotes the volume element of $"~'(r) = 3B(0, r).

Proof. We define w | B(0, r):=w, | B(0, r) so that (b) is satisfied. To define w
outside B(0, r) let x,:= (¢t + r)x/|x| be the radial line starting at x, = r(x/|x|) and
parameterized by arclength. We define for x #0, t =0:

w(x,) :=max {wy(xo) — (L + 1)t, wi(x,)}

Since the radial lines are orthogonal to 8B(0, r) one easily proves that w is
Lipschitz with constant 2L + 1. Since w; has Lipschitz constant L we have

wi(x,) = wy(xo) + (Wi(x0) — walxo)) — Lt
and hence

w(x) =wi(x,) if = mws(xe) — wi(xo).
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Since w, — w; < C the functions w and w, coincide outside B(0, r + C). Moreover,
|x| = r and w(x) # wi(x) imply

x|sr+(wm—w) ri <r+c
x|

Now integration in polar coordinates and a simple estimate yield (d).
As a simple consequence of (6.8) we obtain:

(6.9) LEMMA. Under the hypotheses of (6.8) there exists a constant A =
A(n, C, L, F), independent of r, such that:

[ w) =P w D x| <A =) do
R™\B(0,r)

3B(0,r)

Note. We obtain the same estimate with w, replaced by w, if we require w to
coincide with w; on B(0, r) and with w;, outside some compact set.

Proof. Since F(x, w(x), w(x)) and F(x, w(x), (w;),(x)) are uniformly
bounded for all x € R” our claim follows from (6.8)(d).

Finally, we complete the proof of (5.1): For given r=1 we apply (6.9) to
w, =u, w,=max (4, v) and obtain w=:w,. If we write w; =u + ¢, then, by
(6.8)(a) and (c), ¢} e Wi (R") and u+ ¢, =max(u,v) on B(0,r), by
(6.8)(b). Moser’s estimates (3.4) and (3.5) show that the assumptions on w, = u
and w, = max (u, v) are satisfied. Hence (6.9) implies that there exists A > 0 such
that for all r =1:

[ R uof, @t 6700~ Fexw, w)) de| <4
R™B(0,7)
If ¢ € Wi, (R") and 2 c R” we abbreviate
A, 6, Q)= [ (Fw u+ 6, (4 $)) - F, 1)) d
Q

So the inequality above takes the form

(6.10) |A(u, o7, R" —B(0, r))| <A - r*"
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Similarly there exists ¢; € W2, (R") such that v + ¢, =min (&, v) on B(0, r)
and

(6.10)' |A(v, ¢;, R"\B(0, r))|<A-r"!
On the other hand (6.3) implies

(6.11) I(u+ ¢;, B(0,r))+1(v+ ¢,, B(0, r))=1(u, B(0, r))+ I(v, B(0, r))
Adding (6.10), (6.10)’ and (6.11) we obtain

6.12) |A(u, 7, R") + A(v, ¢;, R")| <24 - r" .

On B(0,r) we have u+ ¢, =max (u, v), v+ ¢, =min (u, v) so that (6.7)
implies for all r =r,:

(6.13) D(u+ ¢, B0, r))+ D(v + ¢, B(0, r)) =28 - r".

Now (6.13) says that by compactly supported variations of u + ¢,” and v + ¢, we
can reduce the corresponding integrals by 6 - r” while (6.12) says that the sum of
these integrals exceeds the sum of the integrals for u and v by at most 24 - r*~ .
So, if r >max {A/§, r,} we find compactly supported variations of u and v such
that the sum of their integrals is reduced. This contradicts our hypothesis that
both u and v are minimal and completess the proof of (5.1).

Finally we present a proof for Theorem (5.3): If @ is rationally independent
then A, is totally ordered.

We argue by contradiction. In view of (5.1) we are left with the case that
ue M, N\M and v € M, coincide for some x € R”, but u #v. We set

u*:=inf {a € M°(u) | &> u}

u~:=sup {i € M(u) |G <u)}

Since u ¢ M™°(u) we have u~ <u <u* and, by (4.5),
(6.14) (ut—u)dx=1.
R’l

We want to show that we may assume that u~™ <v <u™. According to (5.1) this is
true if v e M5C. If v e M N\M5C and v(y) =u"(y) for some y € R"” the preceding
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arguments can be used with u replaced by v and v replaced by u~. But u™ € M5°,
hence v~ <u~ <v*. So we obtain the same situation as above, i.e. we may
assume u~ <v <u" right away.

Now our argument is similar to the proof of (5.1), but simpler: By (6.1) there
exist € >0 and r, > 0 such that for r =r,

(6.15) D(max (u, v), B(0,r))>¢ and D(min (u,v), B(0, r))>e.

On the other hand (6.14) and u™ <u<u™, u~ <v <u™ imply
(max (u, v)—u)dx <1
R’l

(v —min (4, v))dx <1
R’l

Hence there exists a sequence r;— , r; =1, such that

g :=f (max (u, v) —u)do
aB(0,r,)

£ :=I (v —min (u, v)) do
3B(0.r,)

both converge to 0. Now we apply (6.9) with w,:=max (¥, v), w,:=u and r:=r,
and obtain ¢;" € W2 (R") such that u + ¢; = max (4, v) on B(0, ;) and
(6.16) |A(u, ¢, R*\B(0, r,))| <A - ;.

Similarly there exists ¢; € Wi, (R") such that v + ¢; = min (4, v) on B(0, r;)
and

(6.16) |A(v, 97, R"\B(0, ,))| <A - ¢; .
If we choose i so large that r;=r, and A(e;" + €;) <2¢ then (6.15), (6.16) and

(6.16)' contradict our hypothesis that u and v are minimal.
7. Concluding remarks

For rationally independent & =(—a, 1) e R"*! Theorem (5.3) provides a
qualitative description of ., which is as complete as we can reasonably expect it



530 V. BANGERT

to be: M, is totally ordered, i.e. the graphs of functions in ./, laminate R**'. The
elements of M;° are those which can be approximated (with respect to
C'-convergence on compact sets) by their own translates (and hence by translates
of any v € M, ). Either the graphs of functions in #5* foliate R"*' or they form a
Cantor set. In the second case neighboring elements u™ <u™ in M5° satisfy

" —u)dx=<1
R’l

Any u € M \M3° determines two neighboring elements u~, u™ € MX° such that
u~ <u<u". It is not difficult to show that for given rationally independent & we
will have M, = M for “generic”’ integrands F.

Theorem (5.1) and Lemma (4.6) give a similarly complete picture for #5° if
a € R"\Q"” and @ = (—a, 1) is not necessarily rationally independent. For a € Q"
Moser’s results [9], (5.2)-(5.4) answer the basic qualitative questions for
MET = M. Contrary to the rationally independent case, however, we do not
generically have M, = #M;° in these cases. This can be proved by considering
limits of sequences u; € #, where the &; =(—aq;, 1) are rationally independent
while @ = lim &; is rationally dependent. The interesting structure of #, for n =1
and a € Q, cf. [2], Section 5, indicates that it is worthwhile to study #,\ #5° in
the case n>1. This is one of the subjects of a forthcoming paper. A related
problem is the following:

The discussion following (3.2) shows that for n > 1 the set # can be properly
contained in the set of all minimal solutions. Now it is desirable to characterize #
by properties which are weaker than the condition “no selfintersections”. In
analogy to the Liouville theorem for harmonic functions one might ask if not
every minimal solution u with linear growth (i.e. |u(x)|<C(|x|+ 1) for some
C>0)is in M, i.e. does not have selfintersections. A weaker conjecture is that a
minimal solution u is in  if |u(x) — & - x| is bounded for some a € R". Actually
this is true if & = (—a, 1) is rationally independent but it is an open question as
soon as

“rank (Z"T' N {x|x-a=0})=2
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