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SK, of finite group rings: V

ROBERT OLIVER

We continue here the study of
SK(ZG) = Ker [K,(ZG)— K,(QG)]

for finite G: the group shown by Wall [26] to be precisely the torsion subgroup of
Wh (G). In earlier papers in this series, SK;(ZG) has been studied via the
extension

0— CL,(ZG)— SK,(ZG)— 2, SK,(2,G)—0; 0.1)

p1IG|

where Cl,(ZG) = SK(ZG) is the subgroup of elements described via K, in
localization sequences.

This paper contains the last step in deriving a combinatorial algorithm for
describing the odd torsion in SK,(ZG). By [17, Theorem 4.8], SK,(ZG)[3] splits
naturally as a sum

SKA(ZG)[3]=Cl(ZG)3] ® 3. SK\(Z,G).

p>2

The groups SK(Z,G) (also for p =2) are described by [15, Theorem 3] and [16,
Theorem 2], in terms of H,(Z;) for certain subgroups Z; = G. On the other hand,
in [17], the problem of describing Cl,(ZG),, for any odd prime p and any finite
G is reduced to the case where G is a p-group (see [17, Theorem 4.8], and the
discussion at the end of Section 3 below).

The following theorem is the central result of this paper, and gives a relatively
simple way of describing CI,(ZG) when G is a p-group (and p odd). Note that if
G is any group, and G acts on ZG by conjugation, then for any set S & G of
conjugacy class representatives,

H\(G;ZG)= 3 H(Zs(h)) ® Z(h).

heS

465



466 ROBERT OLIVER

(If X<G is any conjugacy class, and heX, then Z(X)=IndZ ) (Z) as
ZG-modules.) Thus, H,(G; ZG) is generated by elements g ® h for commuting g,
heG.

THEOREM 3.6. Fix an odd prime p and a p-group G. Write QG =11, B,,
where each B; is simple with center F, and irreducible representation V,. For each i,
let (ur,), be the group of p-th power roots of unity. Define

k
Yo Hi(G; ZG)— I:Il (MF)ps

where G acts on ZG by conjugation, by setting
Yo ®h)=[dets (g, V] (g, heG,gh=hg, Vi={xeV,:hx =x)}).
Then Cl,(ZG) = Coker (y¢).

Examples of computations of CI/,(ZG) using Theorem 3.6 for non-abelian G
are given in Section 4. For abelian G, the isomorphism SK,(ZG) = Coker (y) is
proven in [1, Theorem 1.8], and some examples of calculations of SK,(ZG) using
that are given in Section S of the same paper.

Theorem 3.6 (and the other theorems referred to above) are stated, for
simplicity, as describing the components of SK,(ZG) as abstract groups only. But
the proofs also contain enough information so that one can take a specific
element in SK,(ZG) (e.g., a specific element in Coker (y) as described above),
and represent it by a matrix. The opposite problem, taking a specific matrix over
ZG and deciding how it sits in SK;(ZG) (if it does) is harder in general; the study
in [20] of the Whitehead transfer homomorphism for oriented S'-fiber bundles
gives one example where this can be done.

In general, for any finite group G, CI,(ZG) is described by localization exact
sequences

K¥*(Z,G) % C,(QG) Cl(ZG),)— 0

for each prime p; where for any maximal order It c QG:

C,(QG) = lim Coker [K, (%) K,(0t/p"D)] = lim CI,(W; p" )

= Coker {Kz(im[i]) — K§°"(0,,G)]

®)
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The C,(QG) are described by the work of Bak and Rehmann on the congruence
subgroup problem [3]. The remaining problem is then to find a set of generators
for K(Z,G), or at least for its image in C,(QG). In the case of an odd prime p
and a p-group G, the formula

Cl,(ZG) = Coker [V’G :H(G; ZG)— fl (MF.-)p]

can be explained by noting that norm residue symbols define an isomorphism of
C,(QG) with I (ug),, and that H,(G;ZG)(=H,(G;2,G)) and K,(Z,G) both
are closely related to the cyclic homology group HC,(Z,G) (see [21]).

The key new result here about generators for KZ(ZPG) is:

THEOREM 1.4. Let p be any prime, and fix a p-group G and an element
z € Z(G). Then

Ker [K¥P(2,G)— K¥*(2,[G/z])]
=({g, 1+A(1—2z)h}:A€2,,i=1,g, heG, gh=hg).

Since Coker [K¥?(2,G)— K¥?(2,[G/z])] is also known in the above situation
(see Proposition 2.1 below), it should in principle now be possible to inductively
construct a set of generators for K‘2°P(Z,,G ). Unfortunately, it’s not always easy to
explicitly lift elements from K¥P(Z,[G/z]) to K¥P(2,G), even where they are
known to lift. But such an inductive procedure does work to give generators for
K5°"(ZPG)+ when p is odd, and this suffices when computing CI/,(ZG).

Another consequence of Theorem 1.4 involves a comparison of Cl;(RG) -
when G is any finite group and R the ring of integers is some number field
K ¢ C - with the “‘complex Artin cokernel”

Ac(G) = Coker [2 {R¢(H):H c G cyclic} 2128 RC(G)].

Natural epimorphisms Iz : Ac(G) - Cl;(RG) are constructed, for such R and G,
via localization sequences. Theorem 1.4 can then be applied to show that for any
G, Igs is an isomorphism for R large enough. Thus, Ac(G) represents the
“largest possible” CIl,(RG) when G is fixed and R varies. This is the second
unexpected appearance of Artin cokernels when studying K, (RG): it was shown
in [18] that D(ZG)* = Aq(G) when G is a p-group and p any odd regular prime.
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The obvious remaining question is: what about 2-power torsion in SK,(ZG)?
Unlike the case of odd torsion, this cannot be completely reduced to studying
Cli(ZG) for 2-groups G, but the results in [17] show that the main problem is
with 2-groups. If G is a p-group (for any p) and [G, G] is central and cyclic, then
we can show that K¥?(Z,G) is generated by {—1, —1} and symbols {g, u} for
g€G and u € (2,[Z5(g)])*; and when p =2 this suffices to get a description of
Cli(ZG). But there are 2-groups G for which K¥®(Z,G) is not generated by such
symbols, and there may not be any simple algorithm for describing CI/;(ZG) in
general. The best conjecture we have been able to make so far gives upper and
lower bounds for Cl,(ZG), bounds which differ by exponent two. The question of
whether the inclusion Cl;(ZG);) = SK1(ZG),) ever fails to split is also still open.

The paper is organized as follows. Section 1 and 2 deal with the problems of
finding generators for Ker (K,(Z,«)), and of detecting Coker (Ko(Z,@)),
respectively, when a is a surjection of p-groups whose kernel is central and cyclic.
This is applied in Section 3 to prove that Cl,(ZG) = Coker () when G is an
odd p-group; and ways of using that to compute the odd torsion in CI,(ZG) for
arbitrary finite G are discussed. Examples are given in Section 4 to illustrate how
Theorem 3.6 works in practice for computing CI/,(ZG). Finally, in Section 5, the
relationship between Cl,(RG) and the complex Artin cokernel is studied, and the
isomorphism Cl;(RG) = A¢(G) proven for large R.

As for notation, C, always denotes a (multiplicative) cyclic group of order n,
and ¢, a primitive n-th root of unity. If F is any field, then ur denotes the group
of roots of unity in F, and (ur), the group of p-th power roots of unity.

If R is a Q,-algebra or a Z,-order (e.g., R =Q,G or Z,G), then K,(R) always
denotes the topological K,. The precise definition of these groups, and their
occurrence in localization sequences, is described in [20]: in Theorem 2.1 and the
preceding discussion (see also [3]). Here we just note that if R is a Z,-order, then

KyP(R)= li%n_Kz(R/p"R)-

Section 1
If R is a ring, and I c R is a 2-sided ideal, we define here
K5(R, I) = Ker [K5(R)— K,(R/1)].

A braid diagram analogous to that in [12, Remark 6.6] shows that for any ideals
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I cicR, there is an exact sequence
0— K,(R, I)—> Kx(R, D— Kx(R/I, 1/1) 3 K (R, )= K,(R, [)> - - -
The main result of this section is to describe a set of generators for

Kx(Z,G, (1 —z)); when p is any prime, G is any p-group, and z € Z(G). Three
lemmas will first be needed.

LEMMA 1.1. Fix a prime p, and a finite ring R of p-power order. Let J c R
be the Jacobson radical, and let {«,, . . ., ay} =J be any set of elements such that
{p, ay, . .., ay} generates J (as an ideal). Then for any ideal I = J of R such that
II=JI=0, and such that Ic{a,, ..., ax)g if p=2, K,(R, I) is generated by
symbols of the form

{(1-a,1—x}:1=i<k, xel (1)

Proof. We use the notation and relations for pointed bracket symbols in [25,
Proposition 96-97]. By [17, Proposition 2.3], K,(R, I) is generated by symbols of
the form

1—-a,1+x}=(a,1+x)=(a, x)

for o eJ and x € I (ax =xa =0). Write a =pry+ a r, + - - - + a,ry; so that

(@, %) = (pro, x) + 2 (arr x) =, re) + 3 (i i)

(R

i
o

{1—a;, 1+rx}+(p, rex) +p{—1, rox)

é {1—a;, 1+rx}+(p,rox) + <-—p + (g)rox, r(,x> (x*=0)

k
=> {1-a;, 1+rx}+ <(§)r(,x, r(,x>. (px €JI =0).
i=1

If p is odd, then (g)x =0, and we are done. If p=2 and I c(a,, ..., ax)r,

then the same procedure shows that for any x € I, (x, x) is a sum of symbols of
the form in (1). O
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The following technical relation between symbols will be needed in the
calculations.

LEMMA 1.2. Let R be any ring. Fix a, u € R* and n =2 such that

[a", u] =1=[a'ua™, dua™)

for any i, j. Then

{a, u(aua)(@*ua™?) - - - (a" 'ua'"")}

={a", u}+(n—1){u, u} + ’il {a'ua™, u}.

Proof. In St(R), set x = hy,(u), y = hy5(a), and

T =@xy )xy™?) - (" xy'™).

Then

{a, u(aua™?) - - - (@" 'ua'"")} =y, xT]
=(xy " YOTy DT x'=TQO"xy ™) T x =T, y"xy "][y", x]

= (diag (aua™' - a*ua™?- - - a"'ua' ™", u'™") » diag (u, u~")) + {a", u}

n—1
= > {aua”, u} + {u'™", u'} + {a", u}.
i=1 2
Here, for commuting matrices M, N € E(R), M*N € K,(R) denotes the com-
mutator [M, N] of liftings to M, N € St(R). O

The third lemma will be needed when constructing filtrations of group rings by
ideals. By a p-ring is meant the ring of integers in any finite extension of Q,.

LEMMA 1.3. Fix a prime p, a p-group G, and some z € Z(G). Let p" =|z|.
Then, for any p-ring A, there are isomorphisms

(1-2)*AG
1-2)**1AG

fktA/P"[G/Z]f*( (k=1)
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and

(1-2z)*"'A/p[G]’

(Isk=p"-1)

both induced by sending & to (1 — z)*E for £ € AG.
Proof. Note first that for any § € AG, and any k =1,

1-2)pre=1-2)Q+z+2*+---+2zF""HE=0 (mod (1-2)*"'AG).
(1)

Thus, (1 -2)*AG/(1 —2z)**'AG has exponent at most p” for k=1; and is in
particular finite. So the map

(1-2)*:(1-2)AGS (1-2)'AG

is an isomorphism: it is clearly onto, and the groups are free A-modules of the
same rank.

Thus, for £ € AG and k =1, if (1 - 2)*§ = (1 —z)**'n for some n € AG, then
1-2)(§-(1-2z)n)=0, and so

Ee(l-z2)n+(1+z+---+2""HAG c(1-2)AG +p"AG.
Together with (1), this shows that (1—z)*e(1-2z)**'AG if and only if
Eep"AG + (1 —2)AG. So f; is well defined and an isomorphism.

If 1<k=<p"—1, and &' € A/p[G] is such that (1 —2)*E' e (1 - z)**'A/p[G]
then

Q+z+---+2" N =1-2z)"""'8e(1-2zyA/p[G]=0;

and so &' € (1—2z)A/p[G]. The converse is clear, and so f; is a well defined
isomorphism. O -

The main result of this section can now be shown:

THEOREM 1.4. Fix a prime p, an unramified p-ring A, a p-group G, and an
element z € Z(G). Then

K»(AG, (1 -2)AG) =Ker [Ky(AG)— Kx(A[G/z])]
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is a finite group, and is generated by symbols of the form
{g,1-A(1—2z)h}:g,heG,[g, h]=1,A€A,i=1.
Proof. Let Hy= (z), and fix a series of subgroups
HycHc---cH,=G

such that foreachi=1,...,n,
H; <G and [H;:H,_,]=p.

For each i, fix z; € H;\H;_,. Note that in G/H,_,, z; is central of order p.
Let p™ = |z|. Define

S={(k;r,ig,...,0):0=<k=n,i;=1,0sr=m-1,0<i,,...,<p-1}.
For each o= (k;r, iy, ..., i) €S, set k(o) =k, and

X(0)=p"(1—-2)°(1—2z)"---(1-2z)*eAG.
Define ideals I'(0) c I(0) < AG by setting

r'@)=(1-z)", p™*'(1-2)Yosp"(1 - 2)o(1—z)1r--- (1 - z)'* 1 1=j<k)
and-

I(0)=1I'(0) + {X(0)).

The idea now is to use S as a bookkeeping system for filtering the ideal
(1-2)AG into ‘“pieces” small enough so thast the theorem can be proven
starting with Lemma 1.1. The following diagram gives a visual overview of this
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filtration in the case where p =3, m =2, and n =2 (i.e., |z| =9 and |G| = 81):

k(o)=0 k(o)=1 k(o)=2
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The horizontal lines represent ideals in AG, ordered sequentially with the
largest at the top. Each box represents some element o € S; the horizontal line at
the top of the box represents I(c), while the line at the bottom represents I'(0).
That the I(o) and I'(0o) actually do correspond with this picture will be shown in
Step 2A below.
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Step 1. We now show that for any o € S, there is an isomorphism

fo:Alp[G/Hio)] > 1(0)/1'(0) (2)
defined by setting f,([§]) =[X(0)-&] for E€ AG. This will be proven by
induction on k =k(G). If k=0, so 0=(0;r,i) forsome i=1and Or=m — 1,
then

(1 -z)AG/(1-2)*'AG =A/p™[G/Z] = A/p™[G/H,)]

by Lemma 1.3; and so

p'(1-2)AG +(1-2z)*'AG _ P'AIp"[G/H,]

") = _ : = = A/p[G/H,).
I(O)/I (0') pr+1(1 _ Z)IAG + (1 _ Z)1+1AG pr+1A/pm[G/HO] /P[ / 0]
Now assume k =1, and write o = (k;r, iy, . . ., ix). Set

6'=(k'"1;r, i(), oo ,ik_l)es.

By induction, we can assume that 1(6)/1'(6) = A/p[G/H,_,]. By definition

I'(0) =I'(8) + X(0)(1 — z.)**'AG,
1(0) = I'(8) + X(6)(1 — z.)*AG,
1(3) = I'(8) + X(8)AG.

Thus, 1(6) 2 I(6) 21'(6) 2 I'(3); and by Lemma 1.3:

(1-2)*A/p[G/H,,]
(1-2)"*"'A/p[G/H;-]

1(0)/I'(0) = = A/p[G/H,].

(Recall that H, = (H;_,, z), and that 0 <i, <p — 1.)
Step 2. We next show that for any o € S,
KAAG/I'(0), 1(0)/I'(0)) = {{g, 1 — X(0)Ah}:[g, h] € Hyy, A€A).  (3)

This will be proven by downwards induction on k = k(o).
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Note first that AG is a local ring with Jacobson radical
J(AG)=(p,1-g:g€G). (4)

If 0eS and k(o)=n, then H,=G, and so I(o)/I'(c)=A/p by Step 1. In
particular,

(I(a)/I'(0)) - J(AG/I'(0))=0=J(AG/I'(0)) - (I(0)/I'(0)).

So (3) follows in this case from Lemma 1.1 (applied using {1 —g:g € G} for the
" S&iow fix some o= (k;r, iy, ..., i) €S, where k<n. For each 0=i=p -1,
set

o =(k+1;r iy ..., i)€S.

Assume inductively that (3) holds for the o;.

Step 2A. We now show that the I(o0;)21'(0;) and I(0) 21'(0) have the
relations implied by diagram (1) above. By definition, I(0o) = I(0) (X(0p) =
X(0)). Forany 0=i=<p -2,

I'(0) =1'(0) + X(0)(1 — z+1) "' AG = 1(041)- &)
Furthermore,

I'(0,-1) =1'(0) + X(0)(1 — z,4+1)’PAG =I'(0)
by (2): since X(0)(1 — z, 1)’ =f((1 — 24,)") and

(1-241)"=(1—-28,1)=0€ A/p[G/H,]. (z§+1€H,).

We thus have a filtration

I(0) =1(o0) 21(01) 2 - - 21(0,-1) 21'(0,-1) =I'(0); (6)

and I(0;))=1'(0;_;) for 1=i=p-1.

Step 2B. For shortness in notation, we now write K;(I), K,(I) for K,(R, I),
K,5(R, I): R is always a quotient ring of AG. We are assuming that (3) holds for
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the o;; i.e., that
Ky(I(0)/1I'(0,)) = ({8, 1 — X(0:)Ah}:[g, h] € Hiv1, A€ A) (7)

for each 0<i=<p —1. Let {A,, ..., A} be a Z,-basis for A. Let hy,...,h,eG
be conjugacy class representatives (mod H,.,) for those elements such that
(g1, 1] € zi 41 H, for some g, € G; fix also such g;. Then (7) takes the form

Ky (I(o)/I'(0))) =M; + ({g, 1 — X(0)Ah}:1=j=s,1=]=t); (8)
where
M,-=({g,1—AX(a,-)h}:[g, h]EHk:AEA>- (9)

Step 2C. Now assume that i <p — 1; and consider the relative exact sequence
Ky(I(0)/1'(0:41)) = Ko(I1(0))/1'(07)) 2> K1 (I(0;.1)/I'(0;.41))
(recall that I'(0;) = I(0;4,)). By (2) (and [24, Corollary 2.6]):

K1(1(0i+1)/1'(0i+1)) = HO(G; A/p[G/HIH-l])r (10)
where G acts by conjugation. Furthermore, for 1sj=<s5, 1=1=y,

a({gl’ 1 - X(UI)})‘JhI)= [gl; 1 - X(O,‘)ﬂ:jh(] = 1 - X(ai)li(glhlgl_‘l —_ hl)
=1+ X(0)(1 = zee DAl =1+ X(0,0)Ah,  (mod I'(0;41))

(recall that (g, h] € zx1H,). By (10), these elements are all independent in
K(1(0:41)/1'(0;+1)). So by (8) and (9),

Im [Kx(I(0;)/1'(0))— Kx(I(0)I'(0))]
=Im [Kx(1(0:)/1'(0i41)) = Ky(I(0))/1'(0)))]
=M;=({g, 1-AX(0))h}:[g, hle H,Ae A): (11)

all elements in M, lift (using (2)) to K,(I(0;)/I'(0)) c K,(I(0)/1'(0)).
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Step 2D. By (8) and (11) (and (6)),

K,(1(0)/I'(0)) =M + ({g, 1 = AX(0)(1 — zx+1)’"'h}:[8, h] € zcs1 Hi, A € A)
(12)

where

M={{g, 1-AX(0)(1 — 2z )h}:0<i<p—1,[g, h]e H, A A)
= ({g, 1 —AX(0)h}:[g, h]e H, A A).

(Note that X(0)*>=0 in I(0)/I'(0).) We want to show that K,(I(0)/I'(0)) =M.
Fix A € A and g, h € G such that [g, h] € z; ., H,, and set u =1 — X(o)Ah. Then

p—1 -1
1= X(0)A( =z P =[] (1 — X(0)Azisih) = pﬂ gug e AG/I'(0)
i=0

i=0
by (2) (I(0)/I'(0) = A/p[G/H,]). So by Lemma 1.2,
{8, 1—-x(0)A(1 — zesr)'h} ={g, u-gug™" - - - g" 'ug' ™"}

= (g%, u} + (0 — ){u, u) +2 (glug™, u).

By definition, {g”, u} e M. For any 0<j=<p —1:

{glug™, u} = {1 - X(0)Azk,1h, 1 — X(0)Ah}
X :
= {1 -—(1-2),1- X(o)—l—-(;gglzz’“lhz} eM
(see [17, Lemma 2.2] for the last step). So from (12) we now get that
K,(I(0)/1'(0)) = M; and this finishes the proof of (3).

Step 3. Now fix some i =1. For any 0=r=m — 1, (3) applied to o =(0;r, i)
says that

K, (p'(1 - 2YAG/{p"*'(1-2)', 1 —2)™"))
=({g, 1-Ap"(1—2)h}:[g, h]le(z), A A).
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For any such g, A, and A, note that (in AG)

g, 1-Ap"(1—2)h]=0;1-Ap"(1-z)h=(1—-A(1 - 2)'h)”
(mod (1 — 2)"'AG).

It follows that
K,((1-zYAG/(1-2)*'AG)=({g, 1-A(1 —2)'h}:[g, h]e (z), Ae A). (13)
Step 4. The rest of the proof is analogous to Step 2B and 2C. Let 4, ..., A,
be a Z,,-basis for A, and let h,, . .., h, € G be conjugacy class representatives for

G/z. For 1=l=<t, choose g,€ G so that g, hj]=2z7% and 1=¢q,=p™ =]|z| is
minimal. Then by (13),

K,((1 - 2YAG/(1 - 2)*'AG)
=N+ ({g, 1-A4(Q-2Yh}:1=l=t1=sj=s), (14)
where
N;=({g, 1-A1-2z)h}:[g, h]=1, A€ A).

Consider the exact sequence

(15)

K iae)~ Ko —riae) > K gmae)

For any j, I:
0({gn 1 =41 —2)h}) =g, 1 - A,(1 = 2)Yh] =1+ qA;(1 — 2)* A,
By Lemma 1.3, these elements are independent in

Ki((1-2)*""AG/(1 - 2)"*AG) = Hy(G; A/p™[G))

and have order p™/q, (q, is a power of p). Furthermore, for each j and [,
[g8™%, k] =1, and so

pP"lq {8, 1—A(1— z)h;} € N,.
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So by (14), and the exactness of (15),

Im [K2<(§1—-—z;")j?AGG) - Kz((il-—;:)!"):f‘lAGGﬂ =Ker (9)=N.

Every element of N, lifts to K,((1 - 2z)'AG) c K5((1 — 2)AG). Thus, for any

i=1,

Ky((1-2YAG)=K,((1-2)""'AG)+ ({g, 1 - A(1 —2)Yh}:gh=hg, A€ A).
(16)

By induction, for any N >1,

Kx((1-2)AG) = Kx((1 - 2)"AG)
+({g,1-A(1—2)h}:gh=hg,AeA,1<si<N). (17)

Let p* = exp (G), and recall that |z| = p™. Then p(1-2)|(1—2z)"", and so
14+ (1=2)**P"AG c1+p** (1 - 2)AG c {(1 + (1 —2)E)* :E€ AG).
Thus, for any commuting h, g € G, any A€ A, and any i = (k + 1)p™:

{8 1-A1-z)r}={g, (1-(1-2)EF'} ={g"”, 1- (1 -z)E} =0.
(some & € AG).

By (16), for any N > (k + 1)p™, K,((1 — 2)**YP"AG) = K,((1 - z2)YAG); and so
Ka((1 = 2)®*9P7) = lim K((1 - 2)**"AG/(1 - 2)"AG) =0 (18)
N

Equation (17) now takes the form
Ky ((1-2)AG)=({g,1—A(1—z)Yh}:gh=hg, Ae A, 1<i<(k+1)p™).
Furthermore, it suffices to take A belonging to some Z,-basis for A. This shows

that K,((1 — 2)AG) is generated by a finite set of elements of finite order, and is
hence finite. [

With some more work, one can in fact show that K,(AG, (1 —2)AG) is
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generated by symbols {g, 1 —A(1—2z)h}, where gh =hg in G and A lies in any
fixed Z,-basis for A.
One easy consequence of Theorem 1.4 is:

THEOREM 1.5. For any prime p, any unramified p-ring A, and any p-group
G, K>(AGQG) is finite.

Proof. Fix some 1+ z € Z(G). Then K,(AG, (1 —z)AG) is finite by Theorem
1.4. We may assume inductively that K,(A[G/z]) is finite; and so K,(AG) is also
finite. O

In fact, using the results in [17], this can be extended to arbitrary finite G.
Whether it is true for arbitrary Z,-orders, we do not know.

Section 2

Theorem 1.4 gives a set of generators for Ker (K,(Aa)), when a:G » G is a
central extension of p-groups with cyclic kernel. In this section, we study
Coker (K,(Aa)) when Ker(a)<c Z(G). This problem was studied in [19]:
Coker (K;(Aa)) is described there for an arbitrary surjection «, but only up to a
mysterious contribution by H;(G). What we show here is that the H;(G)
contribution vanishes when « is a central extension.

PROPOSITION 2.1. Let p be any prime, let A be an umramified p-ring, and

let a:G -G be any central extension of p-groups (i.e., Ker (a) c Z(G)). Then
there is an exact sequence

0— Coker (Hy(@)) —= Coker [Kx(A@): Ko(AG)— KA(AG)]

IF(a)

—— H\(G; AG)/{(g ® Ah:[a"'g, @ 'h] =1).

Here, T, is included by the usual inclusion H,(G)— K,(AG)/{—1, G}, and I'; (&)
is induced by the homomorphism

I'3(G):Ky(AG)—> H,(G; AG)/(g®1ig":ge G, AeA,neZ)

of [19, Theorem 3.6). In particular, for any ge G, H=2Z:(g), and any
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ue(AH)*,
I3(a)({g u}) =g ® Iy(u) e Hi(G; AG)/{(g ® Ah:[a'g, a 'h] =1).

Proof. Define the group G and the order U to be the pullbacks:

G -5 6 N — AG
r a l;z 1.4«
G —>G AG 2% AG.

Set

L=Ker[AG5 AG], L=Ker[AGZ3>AG], I=Ker[AG45 AG].
Then A = AG/(I, N L); and so by Lemma 2.4 in [16],

A=AG/LL.

Step 1. By [26, Theorem 4.1],

tors (K1(AG)) = uy x G x SK,(AG); 1)

where u, denotes the group of roots of unity in A. We first claim that
G - K,(AG/1L L) = K,(Y) ()

is injective. To see this, let I(AG) denote the augmentation ideal of AG. Then
I(AG)? 2 I, and by [19, Proposition 2.2]:

AG/I(AG)Y? =A x (A® G*®).
The isomorphism identifies g e G with (1,1®g), and so GPcK 1(AG /

I(AG)?).
Now set K = Ker (&) = Ker (r;), and consider the following diagram:

Hy(G) — Hy(G) 2o K —> G2, G —5 0

l 1,,2(,,) l,d lu,@ l

Hy(G) 2 H(G) 25 K — G — G — 0.

The rows are the five-term exact sequences for the extensions 7,: G -» G and
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a:G » G (see [8, Corollary VI. 8.2]). It follows that

Ker [Hi(r, X 1,): G*® = G*® x G*®] = Coker (Hx(a)). (3)
Furthermore, 6" = %> Hy(a) =0, so Ker (r,) N [G, G] =1, and

SK.(Ar):SK,(AG)— SK,(AG) 4)
is injective by [15, Proposition 7].

Step 2. Now define

Li:K(AG)—> Hy(G; AG);  Ia:K(AG)— Hy(G; AG)

as in [20, Theorem 2.7], and recall that they are isomorphisms modulo torsion.
By Theorem 1.1 in [19],

Lis(1+ L) =1Im [, — Hy(G; AG)]. (5)
So I, ¢ induces a homomorphism
Fn: Ki(%)— Hy(G; ).

Consider the following diagram:

Ty

0 — usaXG*xSK(AG) — K,(N) —5 H(G;N)

lf, lKl(r, X 15) v1[1.,0, X 1y) (6)

0 — [ X G* X SK\(AG)F — [K\(AG)] —%> [H\(G; AG)]
The bottom row is exact since Ker (I, 5) = tors (K,(AG)). The top row is exact at
K,(¥) since by (5), Ker(I,5)— Ker (Iy) is onto. By (3) and (4), G o

Ker (f) = Coker (H,(«)), and this injects into K,() by (2). So the top row in (6)
is exact, and there is an exact sequence

0— Coker (Hy(a))— Ker (K,(r; X r,))— Ker (Hy(r, X 1,)). @)
By the Mayer—Victoris sequence for a pullback square,

Ker (K,(r, X ry)) = Coker [K,(Aa): K,(AG)— K,(AG)]. (8)
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Step 3. The extension 0—I— A>AG—0 is G-equivariantly split by the
diagonal map. Thus,

Ker [f14: Ho(G; A)— Hy(G; AG)] = Hy(G; I);
and so

Ker (Ho(r, X 1)) =Ker [Hy(G; )= Hy(G; AG)] ©)
= Coker [H,(G; AG)— H,(G; AG)]
=H,(G;AG)/{g ®Ah:AeA, [a'g, a h]=1).

Upon substituting (8) and (9) into (7), we get the exact sequence

3 («)

0— Coker (Hy(e)) —=> Coker (K,(A®)) —= Hy(G; AG)/
(g®Arh:[a"'g, a '] =1).
That I'j(a) is the reduction of the map I';(G) of [19] follows since the

constructions are identical. By diagram chasing, T, is seen to be the reduction of
the standard inclusion H,(G)— K,(AG)/{—-1, G}. O

In fact, in the above situation, Im (I'7(«)) can be described precisely with the
help of Theorem 3.6 in [19].

Proposition 2.1 will be applied directly in Section 3, when describing Cl,(ZG)
for odd p-groups G. But we first note one consequence of particular interest. The
next theorem is useful when constructing maps

I;: Ky (AG)— H\(G; AG)/ (g ® Ag)
for non-abelian p-groups G (compare with [21]).

THEOREM 2.2. Let a:G—»G be any surjection of p-groups such that
Ker (o) N[G, G] = 1. Then for any unramified p-ring A, the map

K,(Aa):K,(AG)— K,(AG)

is onto, and its kernel is generated by elements of the form {g, 1+ (1 —z)h} for
zeKer (@), i =1, and commuting g, h € G.
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Proof. Note first that
[Ker (a), G]lcKer (o) N[G, G]=1;
so that Ker (a) ¢ Z(G). The exact sequence

Hy(a)

Hy)(G)— Hy(G) 275 Ker (@) > G —> G*—0

(see [8, Corollary VI. 8.2]) shows that H,(«) is onto. By hypothesis,
H(G;AG)/{(g®@Ah:[a"'g, a”'h]=1)=0:

commuting elements in G lift to commuting elements in G. So K,(A«) is onto by

Proposition 2.1.
Now write « as a composite

= ay ay o
@:G=Gy—» G—» G,—» - - —» G, =G;

and so that Ker (&;) is cyclic for all j. By Theorem 1.4,
Ker (Kx(Aa;))=({g, 1+ (1 —2)h}:zeKer(a)),i=1,g heG,_,, gh=hg)

for each j. But all such symbols lift to K,(AG); and so Ker (K,(A«a)) is generated
as described. O

Section 3

We can now derive algorithms for computing the groups C/,(ZG)[3] and
SK(ZG)[3] for finite G. The key extra tool when working with odd torsion is the
standard involution on K,,(ZG) and K,,(Z,,G); for example, this is what was used
in [17] to construct natural splittings

SK,(ZG)3]1=Cl(Zg)31® 2 SKi(2,G).

2<p | |G|

Recall that for any group G and any commutative ring R, an antiinvolution
x—> % on RG is defined by setting

s ——

2 rg=2rg" (neR, geG).
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This extends to an antiinvolution on GL(RG) - defined by setting (a_,-,-) =(a;) -
and hence an involution on K,(RG). Similarly, an antiinvolution on St(RG) is
induced by setting x;(a) = x;;(a@) (a € RG); and this restricts to an involution on
K>(RG).

LEMMA 3.1. For any group ring RG as above, and any commuting units, u,
v € (RG)*, {u, v} ={v, a}. In particular, for any g € G, and u € (RG)* such that
gu=ug, {g u}={g, a}.

Proof. Recall that {u, v} =[X, Y], where X, Y € St(RG) are arbitrary liftings
of diag (u, u~', 1) and diag (v, 1, v™"). Then

v} =X, Y[=P"'X'7X={p"", 0"} = {3, ).
The last statement follows since g =g~'. O

The importance of the involution for simplifying the computation of C/,(ZG)
follows from:

LEMMA 3.2. For any odd prime p and any p-group G, the involution on
Ky (Q,[G)) ) is the identity.

Proof. By [22, Section 2 and 3], for any p-group G and any irreducible
QG-module V, there are subgroups K<{Hc G and a faithful Q[H/K]-
representation W such that V = Ind§j (W), Endgy (W) =Endgg (V), and H/K is
cyclic. Let AcQH and B c QG denote the corresponding simple summands.
Then the induction map restricts to a Morita equivalence from A to B, and hence
induces an isomorphism of K,(Q, ®¢ A) to K,(Q, ®qg B). Thus, if

S={(H, K):K <Hc G,H/K cyclic},

then the map

> IndGk: D KiQ,[H/K])»Q,[G] (1)

(H,K)eS

is onto. Here, Ing§x is the composite

IndG,c: Ka(Q, [H/K]) = Ko(Q, H) 25 K, G):;
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where the first map is induced by the inclusion of Q,[H/K] as a direct summand
of Q,H.

The Ind§,;,; commute with the involution, and so by (1) it suffices to prove the
lemma when G is cyclic. If G = C,., write Q,G =[]~ F, where F,=Q,[¢,] (a
field). For each i, the involution inverts elements in ug. So from the isomorphism
K (F) = ur, and its naturality with respect to automorphisms of F,, we get that
{a, 0} = —{u, v} = {v, u} for u, v e F{. But {1, 0} ={v, u} by Lemma 3.1, and
so the involution on K,(F), and hence on KZ(Q,,G), is trivial. O

In fact, Lemma 3.2 also holds for 2-groups, and for arbitrary finite G if
K5(Q,G),,) is replaced by C,(QG) (see the definition in the introduction).

The main problem when describing Cl,(ZG) for a p-group G is computing the
image of KZ(Z,,G) in K,(Q,G). Lemma 3.2 shows that when p is odd, it is
enough to concentrate attention on Kz(Z,,G)"; and (recall the formula {g, u} =
{g’ a}) on Kl(ZpG)+‘

PROPOSITION 3.3. For any odd prime p, any unramified p-ring A, and any
p-group G, I, restricts to an isomorphism

T'ic:Ki(AG)*— Hy(G; AG)".

Proof. By [20, Theorem 2.7], there is an exact sequence

0— G* x SK,(AG)— K,(AG) =% Hy(G; AG)> G®—0 1)
where (X A,g;) =11g*). These maps all commute with the involution; and
(G*)* =0 by definition. That SK,;(AG)* =0 follows from the definition of the
isomorphism

GAG s SKI(AG)“") Hz(G)/Hgb(G)

in [15, diagram on p. 215]. So (1) restricts to an isomorphism

[io:K(AG)* = Hy(G; AG)*. O

If A is an unramified p-ring, and G is an abelian p-group, we can now define
for any A€ A and ge G a unit u(Ag) e (AG)** =K,(AG)" to be the unique
element such that I't(u(Ag))=3A(g +g~ ). If G is an arbitrary p-group and
g € G, we let u(Ag) € (AG)* be the image of u(Ag) e (AH)*, when H = (g).
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The results of Sections 1 and 2 can now be used to describe KZ(Z,,G)*‘:

PROPOSITION 3.4. For any odd prime p, any unramified p-ring A, and any
p-group G,

Ky, (AG)" = ({g, u(Ah)}:Ae€A, g, hegG,|[g h]=1).

Proof. For any G, define an involution on H;(G; AG) by setting g ® Ah =
g ® Ah~'. Define

AL:H(G; AG)T - K,(AG)™

by setting A&(g @ 1A(h + h™Y))={g, u(Ah)} for any Ae A and commuting g,
heG.

Fix some G, choose z € Z(G) of order p, set H=G/z, and let «: G > H be

the projection. Assume inductively that Ay is surjective, and consider the
following diagram:

Hy(Aa)

0 — Ker (H,(Ax))* — H,(G; AG)"=——> H,(H; AH)"— Coker (Hi(Aa))*— 0

o’
T

0 — Ker (Kx(Aa)) " — K,(AG)® 5 Ky(AH)* — Coker (Ky(A@))"— 0
(1)

Here, f; and f, are induced by A5 and Aj, and I'; is the restriction of the
homomorphism of Proposition 2.1. For any A € A and commuting g, & € G,

I3 of(8 ®3A(h+h™)) =T5({g, u(h)}) =g ® Lic(u(h)) =g @ 3A(h + h7");
and so f; is injective. By Theorem 1.4,

Ker (K, (Aa))™*
=({g, A—AQ-2YR) (A -AQ-z"YYr"Y)}:Ae€A,i=1,gh=hg);

and so by Proposition 3.3 (applied to the K,(A[Zs(g)])*):
Ker (Ky(Aa))* = ({g, u(Ah)}:A e A, [g, h] =1) =Im (Af).

By diagram chasing in (1), A is now seen to be onto. O
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It seems quite likely that the homomorphisms A& defined above actually
induce isomorphisms

HC\(AG)" =[H\(G; AG)/(g ®Ag)]" = Ky(AG)".

This is the case at least for abelian p-groups [21, Theorem 3.9].

It remains only to find a description of the image of any {g, u(h)} in
K»(Q,G), when p>2 and G is a p-group. Recall that K,(Q,G) is described in
terms of norm residue symbol isomorphisms

(:)FiKz(F)i’NF

defined for any finite extension F of Q, [12, Theorem A.14].

LEMMA 3.5. Fix an odd prime p and a p-group G; and let u(g) € (Z,,G)* for
g € G be defined as above. Write

k
Q,G=][B; B.=M,(F),
i=1
where for each i, F,=Q,¢,~ (a field) for some m =0 (see [22]). Let
k
Ac 3K2(QpG)_’ [—-[1 (4r)p
be the product of the norm residue symbol homomorphisms

AG: Ko(B) = Ko(M,(F)) = Ky(F) XL (ug),.
For‘each i, let V, be the irreducible B;-representation. Then, for any commuting g,
heG,

Ac({g, u(h)}) = [dets, (g, VN1 (VI={xeV;:hx=x}).

Proof. Fix some i, set B=B;,, V=V, F=F, r=r,; and let

a:Q,G » B =End; (V) =M,(F)
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be the projection. Let m be such that F = Q,,C,,m. Set p™ = exp (G), and let
.f :B = A/[r(F)_> Mr(apgp")

be an inclusion. Note that taking norm residue symbols commutes (p is odd) with

inclusions of cyclotomic fields: this follows, for example, from the formulas in [2].
Fix commuting g, # € G. Then (g, h) is an abelian group of exponent dividing

p"; and so fa(g) and fa(h) are conjugate (simultaneously) to diagonal matrices:

fa(g) ~diag (uy, . . ., u,), fa(h) ~diag (vy, ..., v,) (4, vie ()

with
u(th) =2 LW, (A €2,)
j
so that

Kafo)((g. u)) = [T {w. 2 Aot}

By the formulas of Artin and Hasse [2],
o8 uth)) =T (w,  401) =TT ult
I=1 j F I=1
where

N, =;},,-Tr (log (; Ajv{)). (Tr:Q,¢,-—Q,)

Recall that I;(u(h))=3(h+h'), where I;=(1-(1/p)®)clog, and
¢(Z A’igi) - Z A,’g‘?. ThllS,

log () = (1-2 @) (30s + ™)

S
.|~a
- |-
NIH

[(h+h‘ -—2)+ (h* +h~P - 2)+~-].
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Hence, for1<l=<r,

M=plnTr(p€1 2[(v,+v, —2)+ (v +v,? 2)+---]>

_{1 if v1=1

1o if u#l (v (&pr))

It follows that

o({g, u(h)}) = Huz detr (g, V"). O

The main result can now be shown.
THEOREM 3.6. Let p be an odd prime, and let G be a p-group. Write

QG =11, B;, where each B; is a matrix algebra over a field F, with irreducible
representation V;. Define

k
Yo :H\(G; ZG)— I;[l (uF;)p

by setting, for any commuting g, h € G,
Vol ® h) = [detr (g, VL.
Then Cl,(ZG) = Coker () and
SK,(ZG) = Coker (yg) ® (H,G)/H5(G)).

More precisely, there is a commutative square

K@, Gy~ [I (1),

al 1pr0j

ClL(ZG) =5 Coker (Y,);

where Ag is induced by the norm residue symbol, and 3 is the boundary map in the
localization sequence.
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Proof. By [20, Theorem 2.1 and 2.2], there is an exact sequence

K»(2,G)=> Coker [KZ(ZE;][G]) — K,_(Q,G)] 3 ClL(ZG)—0

and an isomorphism

Coker | k(2] ]161) = K(@,6) ] = Kt @, G)p 25 [T ()

(note that Z[1/p][G] is a maximal order). Consider the diagram

N
¥

k .
H(G;2G)* = [ (ue), £ Coker (yg) — 0
i=1

, ’
oo e @
KA2,G)* 5 KyAQ,G)py—>> CL(ZG) — 0.
By Lemma 3.2, Im (¢¢&) = Im (@g); and Im (¢ &) =Im () since Ys(g ®h) =
Ys(g ® h™') by definition. So the rows above are exact. The map A&, defined by

setting A5(g ® h) = {g, u(h)}, is onto by Proposition 3.4, and (1) commutes by
Lemma 3.5. So there is a unique isomorphism

AG . Cll(ZG) - Coker (wG)

which makes (2) commute.
The exact sequence

0— Cl,(ZG)— SK,(ZG)— SK,(2,G)— 0
is naturally split by [17, Theorem 4.8], and

SK,(2,G) = Hy(G)/H%(G) = H)(G)/(g Ah:g, he G, gh=hg)
by [15, Theorem 3]. So

SK,(ZG) = Coker (y) ® (H,(G)/H$*(G)). O

In [17, Theorem 4.8}, the computation of CI,(ZG),,, for odd p and arbitrary
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finite G was reduced to the case of a p-group. More precisely, if Cy, ..., C; are
conjugacy class representatives for cyclic subgroups in G of order prime to p, and
N;=Ng(C), Z; = Z5(C;), and B(Z) is the set of p-subgroups, then

k
czl(zc)(p)_z_zyo(m/z,.; lim Cll(ZH)). (3.7)
i=1

HeB(Z;

Here, the limits are taken with respect to inclusion and conjugation among
subgroups.

This direct sum decomposition is somewhat awkward, and hence a more direct
description of Cl;(ZG),), seems also desirable. In fact, one can define
homomorphisms

I

vo: (G ZG)~ [ (). (@G =]]B, E=2(5))

for arbitrary finite G, such that Cl,(ZG)[3]= Coker (y)[3]. But alone the
definition of y; become quite complicated as soon as we start working with
non-p-groups; and the most efficient way of describing CI,(ZG)[3] for concrete G
does seem to be by means of (3.7) above, together with Theorem 3.6. Some
techniques for calculating with the help of (3.7) are presented in [17, Section 5].

Section 4

Theorem 3.6 reduces the calculation of CI,(ZG), for an odd order p-group G,
to a straightforward combinatorial algorithm. We now give some examples to
illustrate how this works in practice. Examples of calculations for abelian G are
presented in [1]; and for non-abelian G of order p>, Cl,(ZG) is calculated in [19,
Theorem 7.5] using a weaker form of the theorem. So here we take some
non-abelian groups of order p* to give a sample of some of the techniques which
can be used. Throughout this section, p denotes a fixed odd prime.

Note first that for any p-group G and any commuting g, & € G,

Vo ®g)=0; Ys(®h")=vs(g®h) (ifp 1 n);

and

Ye(aga ' @aha™") = ys(g ®h) (any a e G).
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Thus, when describing Im (), it suffices to consider ys(g ® h) as h runs
through a set of Q-conjugacy class representatives in G, and g a set of generators
for Zg(h)/h.

An irreducible representation V of G will be described by listing eigenvalues
for the actions of various group elements on V —or, when necessary, by
describing the irreducible components of V' | H for some appropriate H c G.

Finally, note that when |G| =p*, then SK,(Z,G) =0 by [15, Proposition 23].
So SK,(ZG) = Cl,(ZG) in this case.

PROPOSITION 4.1. Assume G = H x C,, where H is non-abelian, |H|=p>,
and exp (H) = p. Then

SK.(ZG) = (Z/p)(P2+3p—6)/2.

Proof. Fix generators a, b € H and c € C,; and set z =[a, b]. Then Z(G) =
(z, c), and for any g € G\Z(G), Zs(g) = (Z(G), g). Set { = ,, and note that

pi+p+1

alG1=ax I1 ort1x1M@it).

The following table describes y = ys. Here, (H*®)* denotes the set of irreducible
complex characters of H*®, and (*) for eigenvalues means that all powers of {
occur.

Representation U=Q¢ V,,=Q¢f W,=Q¢ X, =(Q¢)y
Indexed by — 0=m<p x € (H®)* O=m<p
E'val(a,b,c,z) (¢, 1,1,1) (£™ & 1, 1) (x(a), x(b), &, 1) (* * &7 8)
Yla®cz™) ¢ ¢ 1 1
Y(bDcz™") 1 ¢ 1 1
Y@®(1-c)) 1 1 x(a) 1
Y(b®(1—-c)) 1 1 x(b) 1
Y(c®1) 1 1 ¢ 1
PG ®(1-2)) 1 1 1 1
Y(z @ ge™) 1 1 1 'Y
Y(c ®gc“l) 1 1 C(if X(g) = C‘) em
(8 e H\(z)) 1Gf x(g) # )
Y(c®E) 1 1 1 &
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Here, in the last line, E=a(l1+b+---+b*")—b(c+c*+---+cP!). By
inspection,

SK,(ZG) = Coker (y) = (Z/p)*~' & (Z/p[C, x C,)/I) ® (Z/p)y*?, (1)

where I1cZ/p[C, X C,] is the ideal generated by elements (X,.xg) for
subgroups K c C, X C, of order p.

Write C, X C,=(g) X (h), and let J=(1-g,1-h) cZ/p[C, X C,] den-
ote the Jacobson radical. Then

I=(1-gP ™, A-hy 5 (A-ghyp:1=i=p-1).
Furthermore, for any 1=i=p—1:

Q-gh)=1-[1-A-g)I[1-(A-h)]=i(1-g)+(1—h) (modJ?)

and so
i —1_['“1 p—1\., k -
1-ghny =k2~0 L (1-g)*(1—-hy

=';§_::0(—i)"(1 — gl (1= hyP~'* (modJ?).

The determinant of [(—i)*}’%x2, is invertible over Z/p (a van der Monde
determinant), and so

[+JP=((1—g)(1—hyY- "% 0=<k=p—1) =Jr L.
But J#~! =0, and hence this implies that I =J?~!, So as a group,

Z/p[C, x C,}/I=(Z/p)"*®~V with basis
{(1-g)Y(A—-hY:i,j=0,i+j<p—1}.

The result now follows from (1). O

In the above example, the fact that [G, G] was central helped to keep the
description of s simple. The next example illustrates additional complexities
which can arise when this is no longer the case. First, a lemma is needed.

LEMMA 4.2. Let G be cyclic of order p"(n=1) with generator g € G.
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Then, for any

pr-1

0#a= ) ag'eZ/p[G] (a €Z/p);

i=0

Z/p[G)/(a)=(Z/p)* (as groups), where
i
k = min {m =0: ZO (’;)ai #0in Z/p}.

Proof. By direct calculation,

0 (e

Recall that Z/p[G] is a local ring with maximal ideal generated by (g —1). So if
k is defined as above, then a = (g — 1)*u for some unit u in Z/p[G], and

rk[Z/p[G)/(@)] = rk[Z/p[G)/(g —1)*]=k. O

PROPOSITION 4.3. Set H=(a) X (b) x{(c)=C), K=(x)=C,, and let
G be any extension of the form

1- H->G—->K—-1
such that

xax~ ' = ab, xbx~! = bc, xcx l=c.
Then

SK(ZG) = Cl,(ZG) = (Z/p)**~ V"2,
Proof. The action of x on QH fixes Q[H/(b, c)], and permutes the other
p*+ p summands freely. Thus,

p+1

QG =Q[G*] x [[ M,(Q[E));
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where {={,. The following table presents y;, where the nonabelian repre-
sentations are described by their restrictions to H:

Representation U=Q¢ V.=Q¢ W=(Q¢y X,, = (Q¢&y
Indexed by — 0=m<p — O=m<p
Eval(a, b,c;x) (1,1, 18 (&1L, 15E") (8,861 (™00, 8,0
(I=r=p) (1=r=p)
Y(@®c) 1 ¢ 1 1
Y(xdc) 4 & 1 1
Y(@®(1-c)) 1 1 1 <
Y(x®(1-c)) 1 1 1 E“(x” = c¥)
Y(@®(b-c)) 1 1 1 gm
Y(c ® b) 1 1 1 4
p(b ®ac™) 1 1 4 ERG=m)
Y(c®ac™) 1 1 1 g SG=m)
& ((gx)y=1)
Y ®gr)geH) 1 1 1 i,

Here, T =Y?_, ir(r — 1);
R(@)=X {r:1=r=p, ir(r—1)=i(modp)};
S@)=#{r:1=r=p, ir(r —1)=i (mod p)}.

Note that solutions to 3r(r —1)=i come in pairs {r,p+1—r} (unless
r = (p + 1)/2). This shows that for all i,

p+1

R@)="75—S()=125¢) (modp).

Identify [1x, ({) with Z/p[C,], by identifying X, with g™ for some generator g of
C,. Then

SK1(ZG) = Coker (yg)
=@py~ @ (2/plC,1 /(S 6 S mg™, S 56~ myg™ (any )

=(Z/py~' ® Z/p[C,)/1,
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where [ is the ideal generated by

p
o= 2 S(m)g—m = zlg—lﬂk(k—l)'

By Lemma 4.2, we will be done upon showing that

0 for 05n<pm1

$(FE=DY T (nodp) 2 1)
< " ) 0 for n=p;1

But the sum is a polynomial in k (over Z/p) of degree exactly 2n; and (1) follows
since

4
p—1=min {mZO:Ek’"EFO (modp)}. O
k=1 k

The groups covered above turn out to be the most difficult cases for
computing SK,(ZG) when |G|=p*. In fact, all other groups of order p* are
covered by the following proposition (this can easily be checked directly, but also
follows from the classificastion in [9, section I11.12]).

PROPOSITION 4.4. Assume that G is non-abelian of order p*, and that there
is a subgroup H <\ G such that H=Cp or H=C,: X C,. Then

SK.(ZG) = CLZG) = ZIpy~" if G*=C,xC,
=(Z/p)**~"V if G*=C,xC,
= (Z/p)P*+»e-D72 if G*=C,xC,XC,.

Proof. Write
QG =Q[G®]xM and QH=Q[H/[G, G]]xM';

where M is a product of rank p matrix algebras over fields. Then the inclusion
M' = M is a sum of inclusions of the form

ﬁ QL e M,(Qy);  QLmeM,(QLy) (r=1,2)
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In particular, K,(Q, ®¢ M'),, surjects onto K,(Q, ®q M )y Since Cl,(ZH) =0
[10, Theorems 4.4.1 and 5.1.1], this shows that

K»(Q, ®g M), cIm @5 : Ko(Z,G)— K»(Q,G) )]

In other words, if Q[G*’]=[I, F, then
k
SK,(ZG) = Cl,(ZG) = Coker [proj oys: Hi(G;ZG)— [ ] (ypl)p].
i=1

If G =C, x C,, with basis {a, b}, then Im (projc ys) is generated by the
images of a®1 and b ®1, and so SK,(ZG) hs rank (p+1)—-2=p—1. If
G* =C,, then there are generators a, b, c¢ such that ce Z(G), and the
computation follows from the table in the proof of Proposition 5.1. The proof
when G* = C,2 X C,, is similar. [

It is interesting to note that for each of these classes of p-groups, the rank of
Cl,(ZG) is a polynomial in p. This has already been remarked in the case of
abelian p-groups (see [1, Conjecture 5.8]); but is harder to formulate as a precise
conjecture in the non-abelian case.

Section §

As another application of Theorem 1.4, we now study the relationship
between the complex Artin cokernel '

Ac(G) = Coker [2 {Re(H): H = G cyclic) 12 RC(G)]

of a finite group G, and CI,(RG) for large R.
First, epimorphisms

Iro : A(G) » CL(RG)

are constructed, for G any finite group and R the ring of integers in any number
field K < C (the identiification of K as a subfield of C is needed when defining
IrG). The Iz; are shown to be natural with respect to homomorphisms and
transfer maps, and then shown to be isomorphisms for sufficiently large R.

The following lemma on norm residue symbols will be needed.
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LEMMA 5.1. Fix a prime p, fix extensions EoF 2Q,, and let i c E* and
pu < F* N i be groups of roots of unity. Then the diagram

KoE) =2 4
1trf§ llﬁ: H] 1)

(D
Ky(F) —u

commutes; where (,); and (,), are the norm residue symbol homomorphisms.

Proof. Set n=|ii| and m = |u|. Fix u € F* and v € E*, and let E(a«)/E be an
extension such that " = u. The diagram

§

E* — Gal (E(a)/E)

lN,_,, lrcs

F* — Gal (F(a™™)/F)

commutes by [23, Section XI.3]; where § and s are the reciprocity maps and res is
induced by restriction. By [23, Proposition XIV.6],

(4, Neip(v))y = s(Ngip(v)) (@) a™™
= [S-‘(v)(a)/a,]n/m = ((u, v)ﬁ)n/m. (2)

Since trfE({u, c}) = {u, Ng,r(v)} for u € F* and v € E*, this shows that (1)
commutes on the subgroup {F*, E*} c K,(FE). Furthermore,

trfZ({F*, E*}) = {F*, Ng/r(E*)} = Ky(F):

the last equality is shown in [14, Lemma] when Gal (E/F) is cyclic, and follows
from [6, Chapter VI, §2.2] (Ngr is onto) when Gal (E/F) is non-abelian simple.
Since K,(E) = ug and K,(F)= ur are cyclic [12, Theorem A.14], it follows that
{F*, E*} 2 K;(E)(, for any prime p ||K(F)|, and hence any p ||u|. So (1)
commutes. [

Now fix a finite group G, and let K < C be any splitting field for G: i.e., KG is
a product of matrix algebras over K. As in [20, Section 2], we define for each
prime p:

C,(KG) = Coker [Kz(zm[-;-]) Kz(KPG)] R, =Q, ®a K)

= Coker [K,(IR)— K,(M,)] (M, =2,®, M)
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where I < KG is any maximal order. Then C,(KG) is a p-group for all p (since
KZ(Emp) is a p-group). Finally, set

C(KG) =2, C,(KG).

Write KG =115, B;, where B, =End, (V,) for each i, and V,, . . ., V, are the
irreducible KG-modules. By results going back to Bass, Milnor, and Serre [5],
C(KG) =0 if K has a real embedding. If K is purely imaginary, then there is an
isomorphism

Akc:C(KG)=> 1;11 (1k)

such that for any prime p c R, and any units u € K* and v € (K,[G])*,
Axa({, v}y) = [(, dety(v, V))ly
Here, {u, v} denotes the image of
{u, v} € Kx(R,[G])— C(KG);
and
(Dot (Rp)* X (Kp)* = px
denotes the norm residue symbol with values in ug. See [20, Theorem 2.2] for
more details.
Thus, when K c C is a splitting field for G and has no real embedding and

KG =[I%, B; as above, an isomorphism Ix; from Rc(G) to C(KG) can be
defined as the composite

k k
7 —exp (2i/m Ak
Io:Re(G) = [1 2 =l [T g 25 C(KG) (= lux).

In other words, for each 1 <i <k, we set

Ixc([Vi]) = Axe([exp (27i/m)];);

where [V;] € Rc(G) denotes the class of C ® 4 V,.
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If K is a splitting field for G but has a real embedding, we set Iy =0
(C(KG) =0). If K c C is a number field which does not split G, set n = exp (G)
and L = K({,), and define

iKG = trfllz(c’;OiLG Rc(G)_> C(LG)_> C(KG).

(Note that L is a splitting field for G by [S, Theorem 4.1.1].) This definition of the
Ix seems rather artificial; but the following proposition shows that these maps do
have all desired naturality properties.

PROPOSITION 5.2. For any number field K = C and any finite group G, Ixg
is surjective. The I are natural in that for any homomorphism « : G— G of finite
groups, for any H < G, and for any pair K c L < C of number fields, the followng
diagrams all commute:

R.(G) R (G) “D R, (G) X5, R, (H)
/ (1) \ 11—:«. (2) l’m.’ (3) lll\ll
~ C(Ka) ufk
C(LG) ™ c(kG) C(KG) — C(KG) =5 C(KH)

Proof. The proposition will be proven in four steps. For finite G and arbitrary
K c C, we regard K((KG) = Rx(G) as a subring of Rc(G) in the usual fashion
(identifying [V] € Rx(G) with [C R, V]eRe(G)).

Step 1. By construction, Ixg is surjective if K splits G. To see that I is
surjective in general, we must show for any G, and any number fields K c L, that
the transfer map

trfk%: Ko(L,G)— KA(K,G)

is onto for each prime p (£, =Q, ®¢ L, etc.).

Write KPG =%, M, (D;), where the D, are division algebras. For each i, set
F,=Z(D;), the center, and let E; c D; be a maximal subfield. By [3, Corollary
4.15], K,(D;) is generated by symbols {F;, D}}; and hence K,(E,)— K,(D)) is
onto by [14, Proposition].

Consider the following square, for each 1 =i <k:

K(L®KE) 5 Ky(L®xD))

F

KZ(EI) —>» KQ(D,)
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Here ¢; and ¢; are the transfer maps. The square commutes since the two sides are
induced by tensoring with the bimodules

Di®Ei (L ®KE,)—=‘:L®KD

The map ¢; is the product of the transfer homomorphisms for the field summands
of L ® x E;, each of which is onto by [12, Corollary A.15]. So ¢ is also onto. But
trf%Z is isomorphic to the sum of the ¢;, and is hence surjective.

Step 2. Fix K and G such that K is a totally imaginary splitting field for G. In
particular, Ko(KG) = Re(G). For any finite dimensional (left) KG-module V,
define

fv:C(K)— C(KG)
to be the homomorphism induced by the functor
V@ :K-mod— KG-mod.

If V is irredicible, then f;, is just the Morita equivalence identifying C(B) with
C(K), where B c KG is the simple summand with irreducible representation V.
So by definition,

I([VD) =fv(Ak'(exp (2mi/m)));  (m = |ukl) (4)

where Ag: C(K)= uy is induced by the norm residue symbol. Both sides of (4)
are additive (fyew =fv + fw), so (4) holds for arbitrary V.

Step 3. We can now show the commutativity of triangle (1) above: that
IKG =trf£&o [, ; for any G and any number fields K = L = C. It suffices to do this
when K and L both are totally imaginary splitting fields for G. In particular,
Ko(KG) = Rc(G).

By (4), for any finite dimensional KG-module V,

iKG([VD = fv(Ax'(exp (27i/m))), (m = |ul)
ReUc(VD) = tfiGof Lo AAL (exp 27i/n)));  (n=|u.l)
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and it remains to check the commutativity of the following diagram:

frev

25 C(L) 225 C(LG)
lnlm (5) 1"{’1'( (6) ltl’fkg
up =5 C(K) 25 C(KG).

But (5) commutes by Lemma 5.1, while (6) commutes since the two composites
are induced by tensoring with the bimodules

KGLG ®LG (L ®KV)L=KGV ®KLL'

Step 4. Now fix a homomorphism a: G — G of finite groups, and a subgroup
H = G. We must show that (2) and (3) commute for any number field K <C. If
L o K is any pair of number fields, then the squares

C(La) trfk

c(LG) % c(LG) ", c(LH)
ltrfk‘é ltrfk% lmkg

_ ™ KG
C(KG) == C(KG) =¥ C(KH)

commute (just compare bimodules). So by (1) (Step 3), it suffices to prove the
commutativity of (2) and (3) when K is a splitting field for G, G and H (and
totally imaginary).

Fix such a K; in particular, Ko(KG) = Rc(G) and Ko(KG) = Rc(G). Fix finite
dimensional modules V over KG and W over KG. Set

x = Ax'(exp (27i/|ui|)) € C(K).
Then, by (4),

iKG(RC(a’)([V])) =fKG®K(';V(x))
C(Ka)oIxe([V]) = C(Ka)fy(x);

I-KH(RCSS([W])) = fwiu (%),

and

trfX5° Ixo ([W]) = trf X5 fw (x).
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So we will be done upon showing that the following triangles commute:

C(KG) C(KG)

C(K) ((Ka) C(K)\ kG
fkc ®xkéV N

\ C(KG) C(KH)

But they are induced by the following pairs of isomorphic bimodules:
k6(KG®keV)k =xcKG®ksVk and gyWx=yKG ® g Wk;

and we are done. 0O

Again fix a finite group G and a number field K c C, and let R c K be the ring
of integers. Then CIl;(RG) is described by a localization sequence

9rG

>, Kx(R,G)— C(KG)—> CL(RG)—0
p
(see [20, Theorem 2.1] for details). We now consider the composite

Re(G) %> C(KG) 22> CIL(RG).
Both maps are natural with respect to induction from subgroups of G. Hence,
since Cl,(RH) = SK,(RH) = 0 for any cyclic H c G by [1, Theorem 3.3}, 9rg° Ixc

vanishes on any element of Rc(G) induced up from a cyclic subgroup. Thus,
3rac ° Ixg factors through a homomorphism

Irc 1 Ac(G)— CL(RG),
where A¢(G) is the Artin cokernel.

THEOREM 5.3. For any finite group G, and any number field K < C with
ring of integers R,

IRG :Ac(G)—> Cll(RG)

is surjective. The Iz are natural in that for any homomorphism «: G — G of finite
groups, any H c G, and any pair R c S of rings of integers in number fields, the
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following diagrams all commute:

= a Rcsf;'
A(G) Ac(G) s A (G) A, (H)
/’s(,‘ \I,:(' llk(’ l”"” l’ku
kG = 1(Aa R
CL(SG) —> CI,(RG) CIL(RG) <2 1 (RG) —*, 1 ,(RH).

Proof. For any R and G, Irs is surjective since [y and 9grg both are
surjective. The naturality properties follow from the corresponding properties for
the Iy (Proposition 5.2), and the naturality of the boundary maps g in the
localization sequences. [

Now that the Ir; have been constructed, we can finally apply Theorem 1.4 to
show that they are isomorphisms for sufficiently large R. For any finite G, ac(G)
will denote the complex Artin exponent: the order of 1€ Re(G) in Ac(G). By
Frobenius reciprocity,

ac(G) = exp (Ac(G));

i.e., ac(G) - x is induced from cyclic subgroups for any x € R¢(G). By the Artin
induction theorem [7, Theorem 39.1], ac(G) | |G].

THEOREM 5.4. Let G be any finite group, and set n = ac(G) - exp (G). Let
K be any number field such that §, € K, and let R c K be the ring of integers. Then
Irc is an isomorphism: Cl,(RG) = A(G).

Proof. This will be shown first for p-groups, then for p-elementary groups,
and finally for arbitrary finite groups.

Step 1. Let G be a p-group, and set p* =a(G), p™ = exp (G), and g = p**™.
By Theorem 5.3(1), it will suffice to show that Ig; is an isomorphism when
K=Qf,and R=27(,.

Let C, be a (multiplicative) cyclic group of order g with generator z. Consider
the pullback square

Zp[cq X G] — Zqu[G]

| | g

Z,[(C,/z""™") X G]-E> Z/p[(C,/2"""") X G];
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where « is induced by: a(z)={,. Then K,(B) is onto by [17, Lemma 1.7] if

p >2; or if p =2 since the only torsion in K;(Z,[(C,/zP""") x G], 2) is (—1) (see

[15, Proposition 2]). So by the Mayer—Vietoris sequence for (1), K,(«) is onto.
Now consider the following commutative diagram:

KA(Z,[C,x G)) —> C(Q[C,x Gy RA(G)®Z/q

(2) 1K2(“) ‘7:1 ine, 1.301',‘—(, (2)
Kx2,5,[G])) —> C,(QL,[G]) — CL(RG), —> 0

where the bottom row is exact [20, Theorem 2.1]. By Theorem 1.4,

KZ(Zp[Cq X G]) = K2(ZPG) @ KZ(ZP[.Cq X G]: (1 - Z))
= Kz(ZpG) @ ((h’ 1- (1 - Z)ig}’ {Z’ 1- (1 - Z)ig}:
heG,geC,x G, hg=gh,i=1).

It follows that

Ky(2,5,[G))=KxZ,G) + X + Y;
where with £ =(,:

X=({h1-(1-8)tg}:h,geG, hg=gh,i=1,jeZ)
and

Y=({61-(1-0)tlg}:8€G,i=1,jeZ).

Recall that p™ = exp (G). Then

exp (X) |p™ and exp (¢ra(KAZ,G))) | exp (C(QG)(,) | p™.
Fur"thermore, by definition,

Pro(¥) < Im | 3 (C(@L[H]): H £ G eyclic) > C(@E,[G) |
So by diagram (2) (recalling that g = p**™):

Ker (8°Iyg) < p*Rc(G) + Im [2 {Rc(H): H c G cyclic}— RC(G)]
= p“Rc(G) + Ker [Rc(G)— Ac(G)].
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Since p* = ac(G) = exp (Ac(G)),
Ker [Izg: Ac(G) » Cli(RG)] c p*Ac(G) = 0;
and so Ipg is an isomorphism.

Step 2. Now assume that G is p-elementary: G = C,, X H where p { m and H
is a p-group. Set n = ac(G) - exp (G), fix a number field K c C containing £, and
let R be the ring of integers of K. Then

Ac(G) = Coker [Z {Rc(C,,) ® R(Hy): Hy < H cyclic} = R(C,,) @ RC(H)]

= Rc(C,,) ® Ac(H) = ﬁ Ac(H).

On the other hand, the identification K[G]=[]" K[H] (each factor correspond-
ing to a character of C,,) induces an inclusion RG ¢ [I” R[H] of index prime to
p; and hence an isomorphism

Cll(RG)(p) = ﬁ CI}(RH)(p) = ﬁ Ac(H) = Ac(G).

(see [17, Proposition 1.2]). Since Ig¢ is onto, it must be an isomorphism.

Step 3. Now let G be an arbitrary finite group, set n = ac(G) - exp (G), and
let R be any ring of integers containing {. Let € be the set of elementary
subgroups of G. For any H € 4, exp (H) | exp (G) and ac(H) | ac(G), so Iy is an
isomorphism by Step 2. Consider the following square, which commutes by
Theorem 5.3:

1

Ac(G) —5 CL(RG)
lzkcsﬁ lztrfﬁ

S AdH) =2 S CI(RH)

Hee Hees

In the language of [10], Ac(—) is a module over the Frobenius functor Re(—),
and hence is detected by restriction to elementary subgroups. So ¥ Resf is
injective in the above square, and Irg is an isomorphism. [

By [4, Theorem XI.4.7], for any finite G,

ac(G) = [] ac(G,),

p G|
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where G, is a p-Sylow subgroup. Thus, the description of

ac(G) = exp (Ac(G)) = max (exp (CL(RG)))

reduces immediately to the p-group case.

If G is a non-cyclic p-group, then there is a surjection G » C, X C, and an
induced surjection of Ac(G) onto Ac(C, X C,). This last group is easily checked
to be non-zero (see [1, Lemma 5.5] for details). Thus, for any finite G, Ac(G) is
p-torsion free if and only if G, is cyclic, Ac(G) = 0 if and only if G is metacyclic,
and these in turn imply similar statements about the Cl;(RG) (and SK;(RG)). In
fact, for fixed p and R such that {,eR (or {,eR if p=2), and any G,
Cl,(RG)) =0 if and only if G, is cyclic (see [1, Theorem 3.5]).

A general description of ac(G) has been given by Gluck [27]. The formula is
much more complicated than that for the rational Artin exponent ag(G) given by
Lam [11]. If G is non-cyclic, and abelian or of exponent p, then ac(G)=
ag(G) = (1/p) |G]. On the other hand, if G is a semidihedral 2-group, then
ac(G) =2 (ag(G) =4); and if p is odd and G a non-abelian group of order p> and
exponent p?, then ac(G) =p (ag(G) = p?).

To end, we note that Theorem 5.3 allows a new interpretation of the following
result in [13] (Theorem 1).

COROLLARY 5.5. Let G be a finite group, and let R be the ring of integers in
some number field. Then CI,(RG) is generated by induction from elementary
subgroups of G.

Proof. By the Brauer induction theorem, R¢(G), and hence Ac(G) are
generated in induction from elementary subgroups of G. The result follows since
Irg: Ac(G)— Cl(RG) is natural and surjective. [J

REFERENCES

[1] R. ALPERIN, K. DENNIS, R. OLIVER and M. STEIN, SK, of finite abelian groups: II, Invent. Math.
87 (1987), 253-302.

[2] E. ArRTIN and H. HASSE, Die beiden Erginzungssitze zum Reziprozititsgesetz der |"-ten
Potenzreste im Korper der I"-ten Einheitswurzeln, Abh. Math. Sem. Hamburg 6 (1928), 146-162.

[3] A. BAk and U. REHMANN, The congruence subgroup and metaplectic problems for SL, ., of
division algebras, J. Algebra 78 (1982), 475-547.

[4] H. Bass, Algebraic K-theory, Benjamin (1968).

[5] H. Bass, J. MILNOR and J.-P. SERRE, Solution of the congruence subgroup problem for
SL,(n=3) and Sp,,(n =2), I.LH.E.S., Publications Math. 33 (1967), 59-137.



SK, of finite group rings: V 509

[6] J. W. S. CassiLs and A. FROHLICH, Algebraic number theory, Academic Press (1967).
[7] C. CurTtis and I. REINER, Representation theory of finite groups and associative algebras
(Interscience, London, 1962).
[8] P. HiLTON and U. STAMMBACH, A course in homological algebra, Springer-Verlag (1971).
[9] B. HUPPERT, Endliche Gruppen, Springer-Verlag (1967).
[10] T.-Y. LAM, Induction theorems for Grothendieck groups and Whitehead groups of finite groups,
Ann. Sci. Ecole Norm. Sup. 1 (1968), 91-148.
[11] T. Y. LAM, Artin exponent of finite groups, J. Alg. 9 (1968), 94-119.
[12] J. MILNOR, Introduction to Algebraic K-theory, Princeton Univ. Press (1971).
[13] R. OLIVER, SK| for finite group rings: I, Invent. Math. 57 (1980), 183-204.
[14] R. OLIVER, Correction to: SK, for finite group rings: I, Invent. Math. 64 (1981), 167-169.
[15] R. OLIVER, SK, for finite group rings: II, Math. Scand. 47 (1980), 195-231.
[16] R. OLIVER, SK, for finite group rings: 11, Lecture Notes in Math. vol. 854, Springer-Verlag
(1981), 299-337.
[17] R. OLIVER, SK, for finite group rings: IV, Proc. London Math. Soc. 46 (1983), 1-37.
[18] R. OLIVER, D(Zn)* and the Artin cokernel, Comment. Math. Helv. 58 (1983), 291-311.
[19] R. OLIVER, Lower bounds for K‘z""(an) and K,(Zr), J. Algebra 94 (1985), 425-487.
[20] R. OLIVER, The Whitehead transfer homomorphism for oriented S'-bundles, Math. Scand. 57
(1985), 51-104.
[21] R. OLIVER, K, of p-adic group rings of abelian p-groups Math. Z. (to appear).
[22] P. ROQUETTE, Realisierung von Darstellungen endlicher nilpotenter Gruppen, Arkiv der Math. 9
(1958), 241-250.
[23] J.-P. SERRE, Corps Locaux, Hermann (1968).
[24] R. SwAN, Excision in algebraic K-theory, J. Pure Appl. Alg. 1 (1971), 221-252.
[25] J. SYLVESTER, Introduction to Algebraic K-theory, Chapman and Hall (1981).
[26] C. T. C. WALL, Norms of units in groups rings, Proc. London Math. Soc. 29 (1974), 593-632.
[27] D. GLUCK, Artin exponent for arbitrary characters of cyclic subgroups, J. Algebra 61 (1979),
58-170.

Department of Mathematics
Aarhus University

Ny Munkegade

8000 Aarhus, Denmark

Received May 5, 1985



Buchanzeigen

D. AMIR, Characterizations of Inner Product Spaces. (Operator Theory Vol. 20) Birkhduser
Verlag Basel-Boston-Stuttgart, 1986, 200 pp., SFr. 60.

I. Introduction - II. 2-dimensional Characterization — III. 3-Dimensional Characterizations - I'V.
Tables and references.

I. GOHBERG and M. A. KAASHOEK, Constructive Methods of Wiener—-Hopf Factorization.
(Operator-Theory Vol. 21), Birkhduser-Verlag Basel-Boston-Stuttgart 1986, 409 pp., SFr. 98. Part I:
Canonical and minimal factorization (contributions by J. A. Ball/A.C.M. Ran, H. Bart/I.
Gohberg/M.A. Kaashoek, I. Gohberg/M.A. Kaashoek/L. Lerer/L. Rodman, L. Roozemond, I.
Gohberg/M.A. Kaashoek) — Part II: Non-Canonical Wiener-Hopf Factorization (contributions by H.
Bart/I. Gohberg/M.A. Kaashoek, H. Bart/I. Gohberg/M.A. Kaashoek, M.A. Kaashoek/A.C.M.
Ran. .

V.A. MARCHENKO, Sturm-Liouville Operators and Applications. (Operator-Theory Vol. 22),
translated from the Russian by A. Iacob, Birkhduser-Verlag Basel-Boston—Stuttgart, 1986, 367 pp.,
110.

1. The Sturm-Liouville equation and transformation operators — 2. The Sturm-Liouville bound-
ary value problem on the half line —3. The boundary value problem of scattering theory-4.
Nonlinear equations.

Hyo CHUL MYUNG, Malcev-Admissible Algebras. (Progress in Math. Vol. 64), Birkhduser Verlag
Boston-Basel-Stuttgart, 1986, 353 pp., SFr. 118.

1. Flexible Malcev-admissible algebras—2. Power-associative Malcev-admissible algebras - 3.
Invariant operators in simple Lie algebras and flexible Malcev-admissible algebras with A™ simple - 4.
Malcev-admissible algebras with the solvable radical of A™ nonzero - 5. Malcev-admissible algebras of
low dimension.

G. Gruss, Functional Calculus of Pseudo-Differential Boundary Problems. (Progress in Math.
Vol. 65), Birkhduser Verlag Boston-Basel-Stuttgart, 1986, 511 pp., SFr. 98.

1. Standard pseudo-differential boundary problems and their realizations —2. The calculus of
parameter-dependent operators — 3. Parametrix and resolvent constructions — 4. Some applications —
Appendix: Various prerequisites.

J. Gray, Linear Differential Equations and Group Theory from Riemann to Poincaré.
Birkhéduser-Verlag, Boston—Basel-Stuttgart, 1986, 460 pp. SFr. 98.

1. Hypergeometric equations and modular equations — 2. Lazarus Fuchs - 3. Algebraic Solutions
to a Differential Equation - 4. Modular Equations - 5. Some algebraic Curves - 6. Automorphic
Functions — Appendices: Notes and Bibliography — Riemann, Schottky, and Schwarz on conformal
representation — Riemann’s lectures on differential equations —~ Fuchs’s analysis of the nth order
equation - On the History of non-Euclidean geometry - Notes on Chapters 1 - 6 and Appendix 4.

H.P. Yar, Some Topics in Graph Theory. (London Math. Soc. Lecture Note Series 108),
Cambridge University Press, Cambridge, London etc., 1986, 230 pp., £12.50, $24.95.

1. Basic Terminology — 2. Edge-colourings of Graphs — 3. Symmetries in Graphs — 4. Packing of
Graphs - 5. Computational Complexity of Graph Properties.



	SK1 of finite group rings: V.

