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Free Q/Z Actions

SHMUEL WEINBERGER

This paper begins a study of the type of object that a manifold with a free Q/Z
action is. This group is a dense subgroup of S' and is locally finite, and hence is a
natural place for studying the relation between actions of continuous and discrete
groups. Here we shall mainly focus on the aspects of the theory that stem from
the locally finite nature of the group; connections with S actions will be the topic
of another paper. The type of result we shall be concerned with is the following:

THEOREM. Let M be a closed even dimensional simply connected manifold.
Suppose that for each n, the cyclic group Z,, acts freely on M. Then the group Q/Z
also does.

Note that we do not assert that the Q/Z action restricts to any of the original
Z, actions. That may not be true. It is also possible to study other locally finite
groups, such as Z[1/p]/Z. (This group is the “p-Sylow subgroup” of Q/Z.) The
natural analogue of the above theorem holds for this group. In odd dimensions
we produce an obstruction to the existence of (J/Z actions. This we apply to
prove:

COROLLARY. If X is a simply connected Z, homology S**', k =2, then =
admits a free PL Z[1/p]/Z action. If X is smooth and p is odd the action can be
taken smooth iff an invariant (related to the smooth structure of X, and which can
be killed by taking the connected sum with an appropriate homotopy sphere) in

Rak+1(G/ O) ) lies in the image of [CP*: G /0],

This corollary is clearly saying something about an §' action, since CP* =
§2+1/81, Observe that [CP*: G /O], is the localization of the normal invariants
of CP*, and S' actions correspond to those elements with a vanishing surgery
obstruction. This only begins the story of the connections between Q/Z and S°.
As I mentioned above, another paper will develop these ideas further.

This paper is organized as follows. The first section will deal with some
homotopy theory necessary for the present work, and prove the analogues of
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these theorems for finite dimensional CW complexes. The next section studies the
relevant finiteness obstruction, proves theorems for Hilbert cube manifolds. The
obstruction lies in a lim' group of Whitehead groups. (It is interesting that here
finiteness is largely a K; phenomenon.) Section three is devoted to finite
dimensional manifolds. The following section gives a method for computing the
obstruction from the type of homotopy data given in section one, and, for
example, proves the above results. The final section is devoted to remarks and
problems.

I would like to thank (in alphabetical order) Sylvain Cappell, Jim Davis, Dena
Hamburger, Peter May, Kent Orr, Mel Rothenberg, and Julius Shaneson for all
of their supports. 1 also acknowledge the support of the National Science
Foundation’s Postdoctoral Fellowship program.

§1. Constructing homotopy towers

It is clear that in setting up the basic homotopy theory it is important to have
the notion of a homotopy type possessing free Z, actions for each n. For various
reasons, we shall assume that all spaces are simply connected. (Of course, we do
not mean to include spaces that arise by construction, such as quotient spaces and
the like.) One difficulty we wish to avoid is the possibility of allowing products
with the universal contractible Z,-space, since this would permit construction of
actions on all homotopy types. This we do by positing that all spaces are finite
dimensional or, occasionally, Hilbert cube manifolds (which are ‘“morally” finite
dimensional in view of triangulation [C]). The second difficulty is more serious:
should we mean that there is a fixed space of the given homotopy type that has all
the Z, actions, or should we mean that for each n there is a space of the given
homotopy type that has a free Z, action? In the Hilbert cube context there is
clearly no difference between these notions since simple homotopy equivalent
Hilbert cube manifolds are homeomorphic [C] (and since we are in a simply
connected context, simplicity of the homotopy equivalence is guaranteed). We
now show that this is also the case for finite (dimensional) complexes.

THEOREM 1. Let X be a simply connected finite complex. If for each n there
is a finite dimensional complex X, homotopy equivalent to X admitting a free Z,
action, then there is a finite dimensional complex X* homotopy equivalent to X
admitting free Z, actions for each n. If each X, can be chosen to be a finite
complex, then so can X*.
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The relation to Q/Z actions is given by the following result:

THEOREM 2. Let X be a simply connected finite complex. If for each n there
is a finite dimensional complex X,, homotopy equivalent to X admitting a free Z,,
action, then there is a finite dimensional complex X* homotopy equivalent to X
admitting a free Q/Z action.

A Q/Z action is understood to be with the discrete topology on Q/Z. Such an
action is free if the fixed sets of all elements other than the identity are empty.
We shall take up the issue of finiteness for Theorem 2 and the compact Hilbert
cube manifold case of it in the next section.

We require a lemma:

LEMMA 1. If X is a k-dimensional simply connected CW complex, and Il is a
finite group acting freely on a finite dimensional complex X* homotopy equivalent
to X, then X/II is homotopy equivalent to a complex K of dimension at most
k + 1. If X* is finite, then K can also be taken finite.

(If X is a Poincaré space, then one can see that X™*/II is in fact a
k-dimensional Poincaré space by a rather different argument. This would also
suffice for the applications to manifolds.)

Proof (Jim Davis). We use Wall’s finiteness obstruction theory [Wal] to see
that the result is equivalent to showing that the cellular chain complex of X*/IT is
chain equivalent to a k +1 dimensional one. Consider the dual chain complex
C"™* (n = dim X). It has no homology for n — * <n — k since it is chain equivalent
as a Z-chain complex to the dual complex of X and X is k-dimensional. Since all
the chain groups are projective (in fact, free) we can inductively “roll up” the
complex, up to chain equivalence, to obtain one with vanishing groups in low
dimensions. (That is, inductively assume that the complex has vanishing groups
through some dimension; since it is acyclic through some larger dimension,
projectivity implies that the final nontrivial map splits, and one can remove the
lowest nonzero group and part of the preceding one.) Now dualize to get the
chain equivalence to a k + 1 dimensional chain complex.

The second statement also follows from Wall’s theory. 0O

Proof of Theorem 1. We shall first give our proof for the second case where
the X,’s are assumed to be finite complexes. We shall establish the stronger
statement that the actions on the constructed finite complex can be chosen
equivariantly homotopy equivalent to the actions on the X, ’s. Since all of the X,,’s
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are homotopy equivalent to X, we can, by virtue of the lemma, assume that they
are all of some uniform dimension, at most dim X + 1. One can embed the
quotients in a high dimensional (say, 2 - dim X + 3) Euclidean space. Consider
the regular neighborhoods of these complexes. Standard PL topology shows that
the universal covers of these complexes are all PL homeomorphic to the regular
neighborhood of X. Consequently, this is a finite complex homotopy equivalent
to X admitting free actions of Z, for all n.

Even if the X,’s are not all finite, the quotients are easily seen to be finitely
dominated, so that one can cross with a S* and then be in the first case, and then
unwrap. O

To prove Theorem 2, we require a few lemmas:

LEMMA 2. In the above situation, we can assume that the actions of Z,, on
H,.(X; Z) are trivial.

Proof. Aut H,(X; Z) is virtually torsion free since X is finite. As a result the
homomorphisms Z,— Aut H,(X; Z) have arbitrarily large kernels as n ranges
over all of the natural numbers. Consequently, by restricting the actions to these
subgroups, we obtain enough homologically trivial actions O

LEMMA 3. If the actions of Z, on X, are homologically trivial, then the
quotient spaces are nilpotent complexes.

This is well known. A proof can be found in [Wel]. Note that all of the
Sullivan’s theorems [Su] on rational homotopy theory hold for the category of
nilpotent complexes, not just the simply connected case studied there (with the
same proofs, since Postnikov systems exist for nilpotent spaces).

LEMMA 4. X, /Z, has the same rational homotopy type as X.
Proof. The cohomology of the quotient is the invariant cohomology, away
from primes dividing n, so the projection is an isomorphism by homological

triviality. 0O

LEMMA 5. There is a bound on the torsion in the homology of X, /Z, in terms
of that of X and n.

Proof. This follows from the Serre spectral sequence and Lemma 1. O
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We now recall a very well known fact:

LEMMA 6 (Koenig’s Lemma). Let T be a based infinite tree with all vertices
having finite valence, then there are non-self-intersecting paths from the base point
of infinite length.

Proof. We describe the path. In a tree there is a unique path from the base
point to any other vertex, and all edges are part of such a path. This orients all
edges. Of the finitely many edges emanating from the basepoint, at least one
leads to infinitely many other points. Now move in that direction and remove the
part of the tree that is not accessible to this point in an orientation preserving
way. Then start again with this tree and this point as basepoint. [J

Proof of Theorem 2. Consider the following tree: Vertices will be certain
homotopy types of spaces, and will be connected by edges if certain homotopy
conditions are fulfilled. The basepoint is the homotopy type of X. All other
vertices are the homotopy types of the finitely dominated nilpotent complexes
with 7, =Z,, and the universal cover of the homotopy type of X. A pair of
vertices v and w is connected by an edge if for some k, m,(X(v))=2Z,, and
w1 (X(W)) =Z 41y, and there is a map from one to the other that induces the
inclusion on sr; and is an isomorphism of higher homotopy groups.

We assert that Koenig’s lemma is applicable. All that must be checked is finite
valence. This is true since a vertex is only connected to other vertices with
fundamental group slightly larger or smaller, and by Lemmas 3-5, and Sullivan’s
theorem [Su] on finiteness of integral homotopy types of given rational type and
torsion bound, there are only finitely many of these. This produces for us a path,
X=v,>»v;—---—v,— - where each v; corresponds to a space with =, =7,
and the arrows can be interpreted as maps homotopic to covering projection. By
Lemma 1 we can assume that the dimensions of these spaces are uniformly
bounded. Let £ be the infinite mapping telescope of these maps. £ is one
dimension higher and x,(¥) = Q/Z. Finally, X is homotopy equivalent to £, the
universal cover of &, which has, by covering space theory, a free proper Q/Z
action and is the space required by the theorem. [

It is an amusing exercise to draw a picture of £ and the Q/Z action on it.

§2. Finitising Q/Z actions

In this section we study the homotopy theory of free Q/Z actions and their
finiteness properties. An annoyance for our purposes is the fact that equivariant
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maps that are unequivariant homotopy equivalences of free Q/Z spaces need not
be invertible. (The domain action can be properly discontinuous and the range
action can have dense orbits.) There are two equivalent ways around this
problem: to formally invert such maps or to deal with unequivariant homotopy
classes that as equivariant as possible.

PROPOSITION 1. For a pair of free Q/Z spaces, X and Y, the following are
equivalent: a) there is a map f: X — Y that is a homotopy equivalence and for each
n is homotopic to an f, that commutes with the given Z,, actions. b) there is a chain

of free Q/Z spaces X, and equivariant maps that are homotopy equivalences
X X2 X, -->Y.

Proof. By considering the actions of Z,, and covering space theory it readily
follows that b) implies a). For the reverse direction one can consider the
construction £ for the given collection of Z, actions. £(X)— X is an equivariant
map that is a homotopy equivalence, and the action is properly discontinuous on
Z(X). The constructions of §1 yield a family of maps from the partial quotients
that are compatible with respect to covering maps, so that one can construct a
map, using the homotopy extension principle, £(X)— £(Y) which is a chain of
length 2. (3

We shall say that two free Q/Z spaces are h-equivalent if either of these
equivalent conditions hold.
Now we can formulate our next theorem:

THEOREM 3. A finitely dominated simply connected complex with a free
Q/Z action is h-equivalent to a finite complex iff for each n, the Z, action is
equivariantly homotopy equivalent to an action on a finite complex and an
obstruction in lim' Wh (Z,,) vanishes.

Here Wh(Z,) is viewed as an inverse system with an arrow given by each

divisibility relation and the induced map on groups being induced by transfer.
This system has as a cofinal system:

Wh (Z,) < Wh (Z,) < Wh (Z¢) < Wh (Z,) < -
For a general linearly ordered inverse limit system of abelian groups:

A=A A, A3 <Ay« -
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one can form the inverse limit, which we shall denote lim°, and the first derived
functor lim!. A convenient way to describe these is as follows: Consider IIA;, the
product of the A;’s. Let d: ITA;— IIA; be the map that shifts A;,, to A;. Then
there is an exact sequence (this can be taken as a definition):

0— 1lim°® (A)— ITA; L2514, — lim' (A)— 0,

i.e., lim®=ker (1 — d) and lim' = cok (1 — d). lim' is a measure of the failure of
the Mittag—Leffler condition, i.e., measures the failure of the images of successive
stages of the sequence to stabilize. In particular, if infinitely many of the A; are
finite, lim' = 0.

Remarks. One can redo this theorem for other locally finite groups besides
Q/Z. S. Cappell and J. Shaneson have shown (in unpublished work) that the lim'
relevant for finitising Z[1/2]/Z actions is a sum of infinitely many copies of 2,/Z,
where 7, is the additive group of 2-adic integers. There are also nonsimply
connected versions using the inverse limit system 7,(X/Z,). We do not pursue
this here since the proof is a routine rewriting of the one given here, and the
methods of section one only produce Q/Z actions for nilpotent spaces, and this is
rarely the case for nonsimply connected spaces. (It does seem possible, however,
that an appropriate notion of relative nilpotence is possible so that for an
appropriate class of actions on nonsimply connected spaces, one would be able to
redo §1.) Finally we note that the condition of finiteness of the Z, actions is
equivalent to an obstruction in lim® (Ky(Z,)) vanishing by Wall’s finiteness theory
[W1].

Definition of the obstruction: Let K; be finite complexes with free Z;, actions
that are equivariantly homotopy equivalent to the action of Z; on X. Such exist
by hypothesis. Moreover, there is a canonical homotopy equivalence k;:
Ki/Z,y— K, +1/Z;. We shall call the k;’s the bonding maps of the homotopy tower.
Consider the product of the torsions of the bonding maps, ITr(k;) € ITWh (Z,).
This is not well defined, since one can, for example, change any number of
components using the realization theorem for Whitehead torsion. Nonetheless,
the image of this element in lim', which we’ll denote by 0(X), is well defined and
is the obstruction 'in the statement of Theorem 3.

PROPOSITION 2. o(X) is independent of the choices of finite complexes used
in its definition, and only depends on the h-type of X. Moreover, if X is
h-equivalent to a finite free Q/Z complex, o(X) = 0.

Proof. The second statement follows from the first, since one could then
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choose all the A;’s to be homeomorphisms, whose torsions vanish. To prove the
first, consider two choices K and L of approximating sequences of finite
complexes with k; and /; their bonding maps. Let f;:K;/Z,,— L;/Z;, be the given
homotopy equivalences. Then we have the commutativity fk; = I,f;.,. This leads
to the relation, in the obvious notation, that:

(1) — 7(k) = (1 — d)(f).

In particular modulo the image of 1 —d the torsion is independent of sequence,
which is precisely what it means to define an element of lim'. [

Proof of Theorem 3. Proposition 2 justifies the necessity statement. To prove
sufficiency, we adopt the strategy of proof of Theorem 1. Suppose o(X) = 0. This
means that for any finite approximating tower the torsion of the bonding maps
lies in im (1 — d). Using a preimage and the realization theorem for torsions, we
can find an approximating tower, say K, with bonding maps simple homotopy
equivalences. It is no loss of generality to assume that all the complexes of K are
of some uniformly bounded dimension. Embed in high dimensional Euclidean
space and take regular neighborhoods. Standard PL topological arguments
(spines, simple homotopy theory, expansions and collapses, and their relationship
to shelling) allow one to homotop the bonding maps to PL homeomorphisms.
This shows that the action of Z;,y on the common universal cover induced from
K;., is conjugate upon restriction to Z;;, by a homeomorphism k;, to the action
induced from K;. By conjugating the generator of Z.;, by k;' one can
inductively extend the action of Z; to Z.,y, which produces the desired Q/Z
action. [

We leave it to the reader to deduce the relevant corollaries about Q/Z actions
on Hilbert cube manifolds.
§3. Applications to closed manifolds

We now prove:

THEOREM 4. A simply connected manifold M which possesses homotopy
compatible free Z, actions for all n admits a free h-equivalent Q/Z action iff

o(M)=0.

The hypothesis means that the X/Z,’s have the usual homotopy equivalence
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properties. Certainly the condition is necessary. Before proving sufficiency, we
note a consequence mentioned in the introduction:

COROLLARY 1. Let M be a closed even dimensional simply connected
manifold. Suppose that for each n, the cyclic group Z, acts freely on M. Then the
group Q/Z also does.

Proof of Corollary 1. Theorem 2 provides a collection of homotopy com-
patible actions. Theorem 4 will apply once we show that o(M)=0. It follows
from the duality conditions on the torsions of homotopy equivalences between
closed manifolds (see proof of claim 1 below) and the even dimensionality of M
that the torsions of all the bonding maps are zero, so the result follows. 0O

Proof of Sufficiency. In dimension three one can show using invariant knots
that no simply connected manifolds other than S* have free cyclic group actions
arbitrary orders. In dimension four, it is an easy Lefshetz fixed point theorem
argument to show that no simply connected closed manifold at all has free cyclic
group actions of arbitrary orders. We thus assume that dim M =5. Suppose
0(X) =0, so that by Theorem 3, one has a simple homotopy tower of finite
complexes.

CLAIM 1. All of the spaces in this tower can be taken to be simple Poincaré
spaces.

Proof. Since each space is a finite complex and finitely covered by a Poincaré
space, they are each finite Poincaré spaces. The torsion 7 of the Poincaré duality
map of a k-dimensional finite Poincaré space satisfies (Milnor’s) duality t* =
(=1)*t € Wh (s;). All of the relevant Poincaré spaces have cyclic fundamental
groups so their Whitehead groups are torsion free abelian groups and the
involution * is trivial. Consequently, in odd dimensions, simplicity is automatic.
In even dimensions, all of spaces given by the proof of Theorem 2 are quotients
of M by free actions, so that they are automatically simple duality spaces. We
now have to consider the torsions of the bonding maps. These satisfy t* = —1, so
their torsion is automatically zero. [

Now we will try to use surgery theory. Notice that each space has a normal
invariant that agrees with the normal invariant M — K,,. Moreover, there are only
finitely many of these (since M and the K; have the same rational homotopy
type). Applying Koenig’s lemma again, we can construct a tower of normal
invariants for the K;’s that are compatible with respect to covers, that is, in this
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tower, all the Spivak normal fibrations can be lifted to smooth vector bundles and
these lifts can be chosen compatible with covering projections.

CLAIM 2. We can complete surgery on such a tower of normal invariants.

Proof of claim. If dimM =1mod4, then L°(Z,)=0, and there is no
difficulty. If dim M is even, then all of the targets are closed manifolds, so that
only the signature and arf invariants can arise as obstructions. Transfer
calculations show that only zero obstructions can come from a tower of normal
invariants. Finally if dim M =3 mod 4, there is a codimension one arf invariant
(an element of Z,) that might occur. However the trick of taking the connected
sum along an S' of the original problem with S' X Kervaire problem changes the
normal invariants of the tower in a transfer invariant way, and after this process,
we can complete the surgery. [

We now have a tower of manifolds M,, with M, simple homotopy equivalent
to K,/Z,,, M;=M, and M, normally cobordant to M,,,. If we are in an even
dimension, the vanishing of the odd dimensional L-groups (except for the Z, in
L, that we’ve discussed) shows that each M, can be taken homeomorphic to M, ,
This produces, as in the proof of Theorem 3, a Q/Z action on M. If the
dimension is odd, then the obstructions to getting these manifolds homeomorphic
lie in the reduced group L2,..(Z,). An argument similar to the proof of Theorem
3, using the action of the L-groups on structure sets to replace the realization of
Whitehead torsions, shows that the obstruction to obtaining a ‘‘normally
cobordant” Q/Z action lies in lim' L%,.,(Z,). This lim' =0 since all the bonding
maps can be readily checked to be onto, so the Mittag—Leffler condition
holds. O

COROLLARY 2. Every simply connected four-manifold has a semi-free
topological locally linear Z4,/Z action on it.

Proof. Edmonds [E] has shown that all such manifolds have semi-free
topological locally linear Z, actions on them for all odd k not divisible by 3. One
applies a relative version of Corollary 1 to obtain the result. O

In §5, we shall discuss noncompact manifolds and some simplifications that
occur in their theory.
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§4. Computation of the obstruction

Now we shall try to give some information on computing the obstruction in
cases where the bonding maps are not simple homotopy equivalences for trivial
reasons.

Let R be a commutative ring, and K,(R) be H;(GL(R)), its first algebraic
K-group. Via the determinant we obtain a splitting

Ki(R) =R’ ® SKy(R),

where R denotes the units of R. If § is a multiplicative subset of R, then we have
the Bass localization sequence,

K:(R)— Ki(S7'R)— K (R, §) >K,(R)— K«(S~'R),

where K (R, S) is the Grothendieck group of S-torsion R-modules of finite
projective dimension, and the boundary & given by Euler characteristic of the
projective resolution in K,. Now, if R = Znx for x finite, and S = Z-{0}, the kernel
of the first map is SK;(R) which is also the torsion of the Whitehead group. (The
last map in the exact sequence is trivial.) For & cyclic, the theorem of [BMS]
implies that SK; vanishes. This leads to an exact sequence:

0— Wh (Zn)— Wh (#)—Ker 3,,/im Q" — 0,

where Wh ($) = K (#)/ £ & and ¥ is the augmentation ideal of Qz. Now let us
replace each term in the exact sequence by the inverse limit systems obtained by
letting 7 range over cyclic groups and the maps being induced by restriction
(geometrically, transfer). Any short exact sequence of inverse limit systems:

0—-A—->B—->C—-0

gives rise to an exact sequence of derived functors (see §2, and view a derived
functor as a homology group of a complex):

0= 1lim°A—-lim° B— lim’ C—lim! A—lim' B—lim! C— 0.

Denote the connecting homomorphism lim° C— lim' A by 6. Now let A, B, and
C be Wh (Zx), Wh (#), and Ker 3, /im Q" respectively.

From a tower of finite complexes one obtains an element of lim® Ker 3,/
im @Q°. This is because each space of the tower has a homologically trivial action
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on it (i.e. is a special space in the sense of Milnor’s paper [M]) and one can take
the homotopy invariant part of the Reidemeister torsion Rt. These are natural
with respect to transfer and hence define an element of lim°Ker 3, /im Q" as
advertised.

THEOREM 5. o(X) = 8(Rt(X/Z,)).

Proof. This is a standard sort of fact. (See e.g. [DW].) The image of o(X) in
lim' Wh (#) vanishes since the torsion of the bonding maps is precisely (1 — d)
applied to the (usual, i.e. nonhomotopy invariant) Reidemeister torsion of the
torsion by standard formulae. As a result, the difficulty lies in the deviation of
these elements from lying in the image of Wh (Zx), i.e. it lies in the cokernel of
the natural map, i.e. in the inverse limit of the homotopy invariant part of the
Reidemeister torsion. An easy analysis of the snake map & shows that it is
essentially this correspondence. O

The advantage of this description is that Rt(X/Z,) can be directly computed
in many cases. The homology groups of X/Z, with # coefficients are exactly the
sorts of modules used in the definition of K;(R, S). We shall now apply this to a
certain natural class of examples of towers.

In [CW] a general method for transferring homologically trivial group actions
from one manifold to another is developed. The setting is this: One has a free n
action on a manifold M and a map f:N—M which is a Z; homology
equivalence where P is the order of x. The problem is to construct a free & action
on N so that f can be homotoped to an equivariant map. For = an odd order
group the result is that this is possible iff the local normal invariant of f lies in the
image of [M/n: F/Catp)]. Now we study the question for Q/Z, or, for wider
range of application, Z4,/Z actions.

THEOREM 6. Let M and N be simply connected manifolds, Z,/Z acting
freely on M, f:N—>M a Zp, homology equivalence, P the set of primes
complementary to Q. Then there is a free Z(o)/Z on N such that fp, is a (p-local)
h-equivalence iff v(f) € [M : F/Catp)] lies in the image of [£(M): F/Catp)].

Proof. Everything is the same as in [CW] till we reach the obstruction o(X).
That can be computed using Theorem 5 by the same method used there for
computing the Wall finiteness obstruction for a propagation. Thus we only have
to compute for (k) i.e. the trivial module with k elements viewed as an element of
all of the relative K-groups, where k is the alternating product of the orders of
the homology groups of f. This can be computed directly, or by using the obvious
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Z0y/Z actions on S' and the k-th power map, which is a geometric example
where the obstruction is manifestly zero. O

Remark. In another paper we will show that if the Z,,/Z action on N is part
of an S' action then £(N) and N/S' have the same P-adic completions, which
greatly facilitates calculation. On the other hand, #(N) and N have the same
rational homotopy type.

If we apply Theorem 6 to a simply connected odd dimensional Z,, homology
sphere and the degree one map to the sphere we obtain the corollary mentioned
in the introduction. (For the finite subgroups, these actions were first constructed
by Peter Loffler [L] and, later using propagation, by the author [Wel].)

§5. Final remarks

Our first remarks concern the study of noncompact manifolds. We shall study
simply connected manifolds with finitely many tame simply connected ends (i.e. if
the dimension is greater than five, the interiors of compact simply connected
manifolds with boundary with all boundary components simply connected). The
main point is that formally much of the set up is the same because one has a
simple homotopy theory [Si] and a surgery theory [Ma][Ta] for noncompact
manifolds with tame ends, but that many of the obstruction groups are easier to
analyse because the relevant groups for the finite subgroups are finite, which
leads to vanishing lim' groups. We state the results:

THEOREM (1-3)'. Let X be a noncompact locally finite finite dimensional
simply connected CW complex with finitely many simply connected ends. Suppose
that for each n, there is an X, of the same (sort and) proper homotopy type as X
admitting a free Z, action, then there is such an X homotopy equivalent to X
admitting a free Q/Z action.

Proof. Same as for Theorems 1-3 but making use of Siebenmann’s exact
sequence [Si] for the proper Whitehead groups to see they’re copies of K, and,
hence, finite. Thus the lim' group vanishes, so there is no obstruction. O

THEOREM 4'. Let M be a simply connected noncompact manifold with
finitely many tame simply connected ends, then if M has free Z,, actions for each n,

then M has a free Q/Z action.

Proof. Same as Theorem 4 but with different surgery calculations. The new
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ingredient, given the relation between proper simple surgery and L” is the
following:

LEMMA. lim' L?,..(Z,) =0.
Proof. We use the exact Rothenberg sequence:
0— Liven(Zic) = Léven(Zi) = H®*"(Zy; Wh (Z,))— 0,

and the associated exact sequence of inverse limit systems to deduce the result
from the vanishing of the inverse limit systems corresponding to L3...(Z;)
(verified in §3) and HV*"(Z,; Wh (Z,)) (because of the finiteness of these groups)
using the exact sequence of §4. [

The analogue of the homology propagation Theorem 6 is left to the reader.
Now we prove an ‘“‘inductive’ result:

THEOREM 7. Let M be a simply connected noncompact manifold with
finitely many tame simply connected ends, then if for each prime p, M has free
Z[1/p)/Z actions, then M has a free Q/Z action.

Proof. This follows from Theorem 4’ and the following finite group result;
results similar to this have also been noticed by Amir Assadi:

THEOREM 8. Let M be a simply connected noncompact manifold with
finitely many tame simply connected ends, then if M admits free Z-homologically
trivial actions of Z,, and Z,, for relatively prime m and n, then M admits a free
homologically Z,,, action.

Proof. We Zabrodsky mix: that is take the (proper) homotopy pullback of
M/Z,ny and M/Z,[1/m] over M, (see [Wel][CW][DW] for more details of this
and what follows). This is a proper Poincaré space in the appropriate sense. It has
a normal invariant that agrees with the normal invariants on Z, and Z,,. The
obstruction to doing surgery is determined by L” obstructions at the ends. When
these are in even groups, multisignature detects, and can be computed to be zero;
when in odd groups, the two-sylow subgroup detects, and the geometric
hypothesis implies the obstruction is zero.

This produces an action on a manifold properly homotopy equivalent and
normally cobordant to M, but an additional transfer argument enables one to get
the actionon M. O
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We close with several obviously open questions:

PROBLEM 1. Is there an example where o(X) # 0?

PROBLEM 2. Which of the positive noncompact results extend to compact
manifolds?

PROBLEM 3. Are there natural examples of towers of actions? It seems
possible that algebraic geometry via p-adically equivalent nonisomorphic varieties
should lead to these.

PROBLEM 4. How necessary was the restriction to free actions in all of the
theory?

PROBLEM 5. How critical is simple connectivity?
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