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The cyclic groups and the free loop space

G. E. Carlsson and R. L. Cohen

Let A(X) dénote the space of unbased (or free) loops on a spaçe X,
A(X) Maps (S1, X). Notice that the circle group S1 acts on A(X) by rotating
the loops. The topology of A(X) as an S^equivariant space has been of interest
to topologists and geometers for over sixty years, primarily because of its

applications to the problem of finding closed geodesics on a Riemannian
manifold. In particular the topology of the homotopy orbit space

0(X) ES1xs*A(X)

where ES1 is a contractible, free S^equivariant space, has been used extensively
to study this problem. Also in récent years, with the invention of A. Connes&apos;

&quot;Cyclic Homology theory&quot; [Con] and its generalization by J. Loday and D.
Quillen [L-Q], there has been much work trying to understand the relationship
between 0(X), algebraic #-theory, and, via the theory of Waldhausen, the space
of pseudo-isotopies of a manifold [B, G, W].

In this paper we study the homotopy type of the space @{2X)
ES1 xsiA(2X)f where &quot;X&quot; dénotes reduced suspension. In particular, if we let
©(Y) dénote the quotient

@(Y) ®(F)/@(point) ES1 xsi A(Y)/BSl ESi a5i A(Y)f

we then describe a simple combinatorial model Z(X) for 0(2X). We then use

this model to prove that stably, 0(IX) splits as a wedge of spaces of the form
EZn+AZnX(n\ where the subscript &quot;+&quot; dénotes a disjoint basepoint, Xin)
dénotes the n-fold smash product of X with itself, and Zn is the cyclic group of
order n&gt; which acts on X(n) by cyclically permuting coordinates.

We now state our theorems more precisely. Let F(/Î3C, n) be the configuration

Both authors are partially supported by N.S.F. grants. The first author is also partialiy supported
by a Sloan Foundation fellowship and the second author by an N.S.F.-P.Y.I. award.
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424 G E CARLSSON AND R L COHEN

space

F(R~)n) {(tu...ftn)eRxx.--xR~:ti*tJ if

F(RX, n) is a contractible space that is acted upon freely by the symmetric group
Sn and hence by the cyclic subgroup Zn. We define the space Z(X) as follows.

where the équivalence relation &quot;~&quot; is generated by setting

(tu • • •, tn) xZn (xlf... t xn-u *) ~ (tu t rn_0 xZni (xu xn-x)

where * e X is the basepoint. In the statements of the foliowing theorems we
assume that X is a connected, based space of the homotopy type of a based C.W.
complex.

THEOREM A. There is a homology équivalence

h : Z(X)~* 0(IX) ES\ a si AÇSX).

Remark. Let C(Z)= LIrt F(J?°°, n) xSnXn/-. Thus C(Z) is the same com-
binatorial construction as Z(X) except with the symmetric groups replacing the

cyclic groups. Recall that C(X) is the Dyer-Lashof model for the homotopy type
of Q(X) QT2rx (see [M].) Theorem A can therefore be thought of as an

analogue of the Dyer-Lashof construction for the cyclic groups. More will be said
about this analogy later.

Now observe that Z(X) is a naturally filtered space, with Fm(Z(Ar))
11^=1 F(UX, n)xZnXnl~. Notice that the subquotients

Fm(Z(X))IFm.x(Z(X)) F(/?°°, m)+ AZm*&lt;m&gt; EZm+ AZmX&lt;m\

Our next theorem states that stably Z(X) splits as a wedge of thèse subquotients:

THEOREM B. There is a splitting of suspension spectra

Combining Theorems A and B we then hâve the following.
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COROLLARY C. There is a splitting of infinité loop spaces

Q0(ZX) QiES1 XS. A(ZX)) Yl Q(EZn+ aZ/, *&lt;&quot;&gt;) x QCP~,

where

q(y) œs^Y.

Corollary C has an interesting application to Waldhausen&apos;s notion of algebraic
^-theory of spaces. Let A(X) be the space defined by Waldhausen in [W]. The
homotopy groups of A(X) are the ^-groups of the space X. If X is a manifold
thèse groups contain the homotopy groups of the stable pseudo-isotopy space,
P(X) lim* P(X x /*) where P(Y) Diff (y x /, dY x / U Y x {0}), as a direct
summand. By combining results of Dwyer, Hsiang, and Staffeldt [DHS] and
Goodwillie [G], Burghelea [B] proved that there is an isomorphism between the
rational homology groups of Q0(X) and QÀ(X), where À(X) is the homotopy
fiber of the projection map A(X)-*A(point). Using the fact that the rational
homotopy type of an infinité loop space is determined by its homology groups,
Corollary C then implies the following:

COROLLARY D. There is a rational homotopy équivalence

QASX - iM(point) x f] Q(EZn+ AZn X^n)).

We remark that Goodwillie has conjectured that the rational équivalence of
Corollary D is in fact an intégral homotopy équivalence.

The organization of this paper is as follows. In Section 1 we describe the map
h:Z(X)-&gt; 0(ZX) of Theorem A. In Section 2 we prove Theorem B. The point
of proving Theorem B before we complète the proof of Theorem A is that
Theorem B allows us to make an easy calculation of the homology of Z(X). In
Section 3 we prove Theorem A by Computing the homomorphism h induces in
homology. In Section 4 we investigate in more détail the relation between
Theorem A and the Dyer-Lashof approximation of Q(X).

Much of the work represented in this paper was doné while both authors were
visiting Princeton University during the académie year 1983-84. The authors
would like to thank the mathematics department at Princeton for its hospitality
and stimulating environment. The authors would also like to thank T. Goodwillie,

N. Kuhn, S. Mitchell, and R. Staffeldt for helpful conversations concerning
this material. They would especially like to thank Wu-chung Hsiang for
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introducing them to the cyclic homology theory, and for sharing his insights in

many hours of vigorous mathematical conversation.

SI. The map h : Z{X)~» 0(IX)

The purpose of this section is to define the map h:Z(X)-^&gt; 0(IX) used to

prove Theorem A. In Section 3 we will prove that h is a homotopy équivalence.
Let al:X-*QIX be the adjoint of the identity map of IX. Thus for each

x € X the formula for ocx(x) :Sl-*IX is given by at(x)(t) t a x e S1 a X IX.
For each n we define the map

ocn:Xn-*QIX

as follows.
Let Kn:Sl-*\JnS1 be the pinch map defined by identifying the nth roots of

unity to the basepoint. Then for each (xlf... ,xn)eXn define a map
an(xlt..., xn): SX-^&gt;IX to be the composition

an(xlt... ,^M):51~^V^ &gt;SX- (1-0)
n

This defines a map an :Xn-»QIX&lt;-&gt;AIX. Notice that Xn is acted upon by the

cyclic group Zn by cyclically permuting the coordinates and A(IX) is acted upon
by S1 by rotation of loops. Consider the inclusion homomorphism in\Zn-*Sl
defined by sending the generator to e2mln. One can easily check that ocn\Xn—»

AÇSX) is equivariant with respect to the homomorphism in. Thus ccn extends in a

unique manner (up to homotopy) to an equivariant map

F(R°°, n)xr-^ES1 x AIX.

and hence to a map of the orbit spaces

hn:F(Rœ, n) xinXn^ESl x

THEOREM 1.1. There exists a map h:Z(X)-+ESl+ asiA(IX) so that each

composition

~, n) xZnXn^Z(X)J^ES\ a5i A(IX)

is homotopic to hn.
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Proof of 1.1. The proof of this theorem will necessarily be somewhat
technical for the foliowing reasons. The maps hn hâve so far only been defined up
to homotopy, but in order to insure they be sufficiently compatible to induce a

map on Z(X) we need to construct a particular combinatorial model for each of
the maps hn and the space ES1. (Actually we define combinatorially a free
S^space A(S1) and an equivariant map A(S1)-^ES1.) Unfortunately after doing
this the maps hn still will not préserve the équivalence relations necessary to
induce a map Z{X)-^&gt;E(Sl) xsi A(IX). However, they will préserve thèse
relations up to homotopy. In order to keep track of the homotopies we will make
use of the notion of &quot;whiskered basepoints&quot;. We begin by constructing a space
A(Sl) which is S^free and maps jn:F(Ract n)^A(Sl) that are equivariant with
respect to the homomorphisms *„ : Zn &lt;-&gt; S1.

We identify S1 with the group RIZ. Given m points /,,. tm in RIZ we call
a map g : S1 —? Rx affine with respect to tx, tm if the restrictions of g to the arcs
between tt and f/+1 for i 1,. m - 1 and to the arc between tm and tu are ail
affine maps. Thus a map that is affine with respect to tlf..., tm is completely
determined by its values on thèse points. The f,&apos;s will be referred to as the
vertices of the map g.

Define the space Â(Sl) to be the space of such affine maps together with their
vertices. More precisely,

À(Sl) {(g;tu fm):each tteR/Z and g.S^R*
is affine with respect to tx • • • tm}/~

where the équivalence relation &quot;~&quot; is given by (g; tu tm) ~ (/; sx,. sn) if
g=f:S1-*Rco and the tuples tx- - -tm and sx • • • sn represent the same set of
distinct points in RIZ. So for example (g; 0, 1/3, 2/3) ~ (g; 2/3, 0, 1/3) and

(g; 1/4, 1/2, 1/2, 3/4) ~ (g; 1/4, 1/2, 3/4).
Let aeSl RIZ, and (g;tx,..., tm)eÂ(Sl). Define a(g\h • • • tm) to be

(ag; a + tlf... a + tm) eÂ(Sl), where ag(x) g(jc - a). Notice that ocg is the

unique map that is affine with respect to oc 4- tïf. a 4- tm and has the property
that ag(a -h tJi)=g(tJ).

This defines an 5x-action on Â(Sl). Observe that the only fixed points under
this action are points of the form (s; 0, 1/n, 2/n,...,«- Un) where n &gt; 1 and

e : S1-» R°° is a constant map. Note that such a point is fixed by oc 1/n € RIZ
S1.

Define A(SX) to be the complément of this fixed point set in ^(S1). Notice
that A(Sl) is an SMnvariant subspace of À(Sl) and hence is a free S^space. Thus

if ES1 is any contractible free S^space, we can construct an S^equivariant map
e:A(S1)-^E(S1), and hence an induced map

&gt; ES+ A s* A(SX).
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Our map h;Z(X)-+ES+ as*A(2X) will factor through this map e*. First we
show how each map hn factors through e*.

Consider the map jn:F(K*,n)-*A(Sl) defined as follows. Let 5
(sOf. s»-!) € F(/?°°, n - 1). Let jn(S):Sl-*Rœ be the affine map with vertices
0, 1/n, 2/n,... ,n-l/n determined by jn(S)(i/n) ste R°°.

We then define

by jn(so, • •, ^n-i) (Jn(S); 0, l//i, 2/n,..., n - Un).
It is apparent that jn is equivariant with respect to the inclusion in:Zn-*Sl.

Thus we can form the map

K =/„ x an :F(R~, n) xZnXn-*A(Sl) x

and by définition, the composition e*°hn:F(R°°, n) xZnXn-*A(Sl) xsiA(2X)-+
EiS1) xsiA(ZX) is homotopic to hn.

In order to produce a map h : Z(X)-* E(Sl) xsi A(IX) we need to extend the

maps hn in a particular way to the space EZnxZn(X&apos;)n, where X&apos; is a space
containing Zasa strong déformation retract. Thèse extended maps will respect
the necessary équivalence relations to produce a map Z(X&apos;)-*A(Sl) xs\A(ZX).
The retraction X&apos;-*X will induce a homotopy équivalence Z(X&apos;)-^&gt;Z(X) by
which we construct the map h:Z{X)-+ES\ asiA(ZX).

We define X&apos; to be X with a &quot;whiskered basepoint.&quot; That is, if 1 is the unit
interval [0,1] we define

X&apos;=XUI/*~0

where * €X is the basepoint. The basepoint of X&apos; is taken to be le/cl&apos;. By
identifying / to a point we get a natural basepoint preserving retraction

r:X&apos;-&gt;X

which is a homotopy équivalence since * e X is a nondegenerate basepoint. r
induces a homotopy équivalence r*:Z(X&apos;)-*Z(X). (Observe that Z( is a

homotopy functor because each of the functors F(/?°°, n) xz{ )n is.) Thus it is

sufficient to construct a map

h&apos;\Z(X&apos;)-+A{Sl)+ A

so that the compositions
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n) xZnXn^F{FC, n)x^ X

equal the maps hn constructed above.

Our next step therefore is to extend hn =/„ x an to a map h&apos;n:F(R°°, n) xZn

1)* a5i A(SX). We first extend an to a map &lt;*; :(*&apos;)&quot;-* A(2X).

To do this consider the map

defined by 4&gt;(jc0, xn-x) (t0, Tn-\), where

Ijt, if xt e/c X&apos;.

&lt;P is clearly a well defined continuous map. Notice that the restriction of &lt;P to
Xn œ {X&apos;)n is the constant map at (0,0,. 0) € F. Now let /
l(xOy xn-x) To + • • • + Tn_x and consider the n points z0,... zn-\ in RIZ,
defined as follows. Let z0 0 e RIZ, and inductively define z/+i to be z; + r7 where

0, if / n

(Note: l n iff each xl is the basepoint le/cZ&apos;.) Observe that if
(jc0,. xn.x) eXnc: (X&apos;)n, then (z0,.. zn.x) (0, 1/n, 2/n,... n - l/«).
Moreover, note that if any jc; 1 e I c AT&apos;, then t; 1 and hence z;+i zr

Let 5j be a circle of circumference r and let

^(jc0,. .,*„.!):S1 K/Z-» S*, v • • • vSt,

be the map defined by identifying the points z0,... zn-x 6 RIZ to the basepoint.
Now define the map ir : Sj-» 5} to be the linear stretching map, induced by the

map of intervais [0, r]-&gt; [0, 1] given by multiplication by 1/r if r &gt; 0, and defined
to be the inclusion of the basepoint if r 0. Finally, define the map
a&apos;n(x0 • • • xn-i) : S1-* IX to be the composition



430 G E CARLSSON AND R L COHEN

where r:X&apos; —*Xis the retraction defined earlier, and where oci&apos;.X—»QHX is the

adjoint of the identity. A check of the définitions of the maps in formula (1.2)
shows that it induces a well defined continuous map

a&apos;H:(X&apos;)H-*A2X.

Moreover by comparing it to formula (1.0) one sees that oc&apos;n extends an: Xn-^&gt;

We now extend a&apos;n to a continuous map h&apos;n:F(Rœ, n) xZn(X&apos;)n-*A(Sl)+ a5i
AÇSX) that extends hn.

Consider a point (J, x) (s0,..., j«_i) x (x0 • • • xn.x) e F(R°°, n) xZn (X&apos;)n.

Let Zo&apos;-&apos;Zn-x be the n points in R/Z^S1 defined above. (So zJ+1 Zj + rr)
Define /„(?, x):S1-*R°° to be the affine map with vertices at z0,. zrt_i with
the property that

where jn(s):S1-+R°° is the map described earlier. Notice that jn(s, x) and jn(s)
are not equal maps since they are affine maps with respect to différent sets of
vertices. (The vertices of ;„(?, je) are z0,..., zn-\ and the vertices of jn(s) are
0, 1/n,..., n - 1/rt.) Indeed jn(s, x) and jn(s) are equal if and only if
(26 • • • z«-i) (0, 1/n, n - 1/w).

We now define

hn:F(K*y n) x {X&apos;)n-^A(Sl) x A(SX) (1.5)

by hn(so,. •., 5n_0 x (x0&gt;..., xn.x) (/„(?, f); z0,..., zrt_0 x a;(x0 • • • *w-i).
Observe that Ân is not equivariant with respect to the inclusion in\Zn&lt;-*Sl.

However we claim that hn does induce a map on orbit spaces

h&apos;H:F(Rm, n) xZn(X&apos;)n-+A{Sl)+ as&gt;A(ZX)

(which necessarily extends hn since hn extends jn x^.)To see this it is enough to
observe that if teZn represents the generator, so that in(t) l/n eR/Z Sl,
then

where j8(£) € S1 RIZ is given by f}(x) 1 - zn_!, where zn-x is as above.
Now notice that by the définitions of jn(s,x):Sl-^&gt;Rx and a&apos;n:(X&apos;)n
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A(ZX), if the yth coordinate x, of (x0 - - xn-t) e (X&apos;)n is the basepoint
(i.e., jc/ l6lcZU//*~0 X&apos;), then hfn(s0&quot;&apos;Sn^xx0&apos;&quot;Xn^)

(jn(s, x); 2q, zn_i) x a&apos;n(x0,. *w-i) 6.4(S1)+ asi A(ZX), is equal to
fc»-i(so &apos; * &apos; Sj-u s,+i, • • &gt; sn-i x x0,..., xy_i, xy+1 • • • xn^). This is essentially
because if jcy 1 then unless x0 xx • • • xn-x 1&gt; we would hâve z/+1 zr If,
however, jto Xi • • =xM_! 1, then a&apos;n(l,. 1) is the basepoint in AÇEX)
and hence the images of both h&apos;n(s0 - • • sn-t x jc0 • • • xw_i) and

* &quot;

^/-i&gt; ^y+i&gt; • • • &gt; */i-i) are the basepoint in

Now this is precisely the relation needed so that the disjoint union of maps

U h&apos;H: UF(R°°f n) xZn(X&apos;)n-*A(Sl)+ asiA(ZX)
n n&gt;\

factors through a map

h&apos;\Z(X&apos;)-+A(S\ a5i A(230.

Now as argued above, since each h&apos;n extends hn, the existence of h&apos; implies the
truth of Theorem 1.1.

§2. The stable spiitting of Z(X); the proof of Theorem B

The goal of this section is to prove Theorem B, which we now restate:

THEOREM B. There is a spiitting of suspension spectra

irzvo~V2&quot;(Ezl,.AZmxi*&gt;).
n&gt;\

Now recall that Z(X) is a naturally filtered space, with mth filtration given by

Fm(Z(X)) Û F{R&apos;, n) xZn X&quot;/~ &lt;-* Z(X)
n \

Notice that the subquotients are given by

Fm{Z(X))IFm^{Z{X)) F(JT, m)+ AZmX™ EZm+ AZmX^m\

Thus Theorem B will follow from the following spiitting theorem.
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THEOREM 2.1. For each m there exists stable &quot;retraction&quot; map
rm :Z~Fm(Z(X))-* I^F^^X)) with the property that the composition

is homotopic to the identity. Hère i is the inclusion of the m — lst filtration into the
mth filtration.

Proof. We begin by recalling now Fm(Z(X)) is built out of Fm-1(Z(X)).
Let Xm&lt;-*Xm be the subspace consisting of m-tuples (xlf. ,xm) with at

least one of the jr/s equal to the basepoint * eX. Xm is a Zm-invariant subspace of
X™ and so we may define the map

fm:F(R~, m) xZmJr^F(R&quot;, m) xZmXm

to be induced by the inclusion Xm &lt;-*Xm. Now define a map gm:F(Rac&gt; m)xZm
Xm-* Fm.x{Z{X)) as follows.

Consider a point (tlf..., tm) xZm (xlf..., xm) e FiR00, m) xZm X&quot;1. Suppose
that k of the points in the n-tuple (jci,... xn) are the basepoint. Say

Xl xlk * € X. (By the définition of Xm, k &gt; 1.) Consider the projection
map that sends (tlf. tn) xZn (xx,. xn) to the point in F(/?°°, m- k) xZm_k
X&quot;1&apos;* given by deleting the iu ik coordinates in both (tlf... tm) and in
(xlt. xm). By the identifications in the définition of Fm_t(Z(X)) one sees that
thèse projections induce a well defined, continuous map

Notice furthermore that Fm(Z(X)) is the equalizer (or strict pushout) of the

maps fm:F(Rœ,m)xZmXm--&gt;F(Rco,m)xZmXm and gm:F(R0D&gt; m)xZmXm-^
Fm.1(Z(Z)). That is, Fm(Z(X)) Fm-i(Z(X))UF(R°°,m)xZmXm/~ where for
z eF(Rœ, mjx^XT we set fm(z) gm(z).

Now since the basepoint * € X is nondegenerate, the inclusion Xm e Xm is a

Zm-equivariant cofibration, thus fm:F(R°°, m) xZmXm-*F(R°°, m) xZmXm is a

cofibration.
This implies that Fm(Z(X)) is homotopy équivalent to the homotopy equali-

zer. Fm(Z(X)) of the maps fm and gm.
That is, Fm(Z(X)) is the double mapping cylinder,

Fm(Z(X)) (Fm^(Z(X))UF(R-f m) xZmXm)U(F(R~, m) xZmJT) x //-
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where for (z, /) c (F(R°°, m) xZmXm) x / we identify (z, 0) ~/m(z) and (z, 1)~
gm(z). Thus the following diagram is a homotopy pushout diagram:

m)xZmXm -^ F(R~, m) xZmXm

4 I (2-2)

where the two unnamed maps are the obvious inclusions.
Now the suspension functor 2f0C( that associâtes to a space its suspension

spectrum, is a functor that préserves homotopy pushout squares. Hence the

following is a homotopy pushout diagram of spectra.

Z~(F(R~, m) xZmîr) -^* Z~(F(R~, m) xZmXm)

2r(Fm_,(Z(J0) &gt; Z~(Fm(Z(X))

Thus by standard properties of homotopy pushout diagrams, to prove that
there is a retraction map rm:2&apos;O0Fm(Z(Z))-»i:0O(Fm_1(Z(Z)) it is sufficient to
prove that there is a retraction

m) xZm jr)-^2T(F(l?-, m) xZm

of the inclusion fm. That is, we hâve reduced the proof of Theorem 2.1 (and
hence Theorem B) to the following.

LEMMA 2.4. There existe a stable map pm:Zco(F(R0Oym)xZmXm)-*
Sao(F(Raot m) x^JT1) so that the composition pm°fm is homotopic to the idenûty.

Note. This lemma also implies that the cofiber of fm EZm+ AZmX^m) is a

stable wedge summand of £ZmxZmZm. Indeed the reader can verify that the

proof below actually proves that EG+ AGXim) is a stable wedge summand of
EG xGXm, where G is any subgroup of Sm acting by permuting coordinates.

Proof of 2.4. We study the stable homotopy type of F(R°°, m)xZmXm in
some détail. First notice that the homeomorphism X+ a X+ (X x X)+ gênerai-
izes to give a homeomorphism

m) AZm
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Thus we hâve an équivalence of spectra

m) x
&quot;&gt;

(2.5)

where the second équivalence is a spécial case of the well known observation that
an extended power of a suspension spectrum is équivalent to the suspension

spectrum of the extended power of the corresponding space. This follows directly
from the définition of extended power spectra for which we refer the reader to
[Br].

Now the spaces X+ and X v 5° are homeomorphic, although their basepoints
are in différent components. Once we suspend them they are (based) homotopy
équivalent and hence the resulting équivalence of spectra

induces an équivalence of spectra

F(/T, m)+ AZmr°(*+)(m) - F(R°°, m)+ AZm Z°°(Z v S°)&lt;&quot;&gt;

-2œ(F(R°°, m) azJIv 5°)(m)) (2.6)

But this last spectrum clearly splits as

&quot;, m)+ Azjlv 5°)(w)) - 5° v I^R00, m)+ AZm X™ v 0 (2.7)

where 0 is used to dénote the remaining wedge component.
Now let

be the composite Zœ(F(Rx, m) xZmZm)&lt;-»Z00(F(/r, m) xZmXm)+-^&gt; 0 where

Rm is induced by the équivalences in 2.5 and 2.6 and by the obvious projection
onto the component given in the splitting in 2.7.

Now it is clear to see what effect the équivalence in (2.5)-(2.7) hâve on
homology groups. Using this it is an easy exercise that we leave to the reader to
check that the composition

m) Xz^^S^FiR00, ™)
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induces an isomorphism in homology, and is therefore an équivalence of spectra.
The existence of the retraction pm:X0C(F(/?0C, m) xZmXm)^r°(F(Rœ, m)xZm
Xm) of fm necessary to prove 2.4 is now clear.

Remark. Notice the similarity between the above proof of the splitting of
Z(X) (Theorem B) and the second author&apos;s proof of the Snaith splitting of
ÇTSnX (and in particular of the Dyer-Lashof model C(X)) given in [Coh]. In
[Coh], however, much use was made of the existence of natural homomorphisms
between the symmetric groups, Im.t and 2m&lt; Since no analogous homomorphisms

exist between the cyclic groups, the above modifications of the argument
were necessary. We leave it to the reader to check that the above argument also

works to give a proof of Snaith&apos;s splittings.
We end this section by using Theorem B to make a calculation of H*{Z{X)).

We first need the following calculational resuit.

LEMMA 2.8. Let G be a subgroup ofthe symmetric group ofZn. Let G act on
Xn by permuting coordinates. We then hâve

Proof. This is a classical resuit of Steenrod.

COROLLARY 2.9. H*(Z(X))= 0«i H*(Zn; {H*(Xin))}) where //*(_)
dénotes reduced homology.

Proof. Consider the cofibration séquence

£ZwxZnJT &lt;j» EZn xZnXn-»EZÏ az/w).

Since the inclusion H*(Jtn) &lt;-» H*(Xn) is a monomorphism, then by 2.8, the Serre

spectral séquence of the fibration Xn*-^EZn xZnJ£n-*BZn also collapses, and

fn^H*{EZnxZnXn)&apos;-»H*{EZnxZnXn) is therefore a monomorphism. Thus

Ë*(EZÎ A^xî^^cokeïfn^HtiZ^lH*^)}). 2.9 now follows from the

splitting in Theorem B.

§3. Proof of Theorem A

In this section we prove Theorem A by proving that any map h;Z(X)-*
ES\as\A(HX) satisfying Theorem 1.1 induces an isomorphism in homology.
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Observe that since the identification map

UEZnxZnXn-*Z(X)
n

induces a surjection in homology (2.8 and 2.9), then ail maps h :Z(X)-±ES\ a5i
A(SX) satisfying 1.1 (i.e., that extend the map Uhn: UEZnxZnXn-+ES\ a5i
A(SX)) induce the same homomorphism in homology. Thus we are essentially
reduced to Computing the homomorphism,

rln*. ri ^\LjZun /\z A. )—* n ^.yiittj + A51 /\y^j\j).

Our first step is to prove that Z(X) and ESl+ a5i AÇEX) hâve the same homology
groups.

PROPOSITION 3.1. H*(ES\ a5» A(IX)) @n&gt;l H*(Zn\ {H*X(n)}).

Proof. This proposition will follow by combining several calculations of
Loday and Quillen [L-Q] of certain &quot;cyclic homology&quot; groups, with results of
Burghelea [B] and Goodwillie [G] concerning how thèse calculations are related
to free (unbased) loop spaces. We therefore begin by collecting some basic facts
about cyclic homology theory.

Let A be an associative (differential graded) algbra with identity over a

commutative ring k. As in [L-Q] we write An for the n-fold tensor product A®n

of A over k. Define

b&apos; :AnJhl-*An by the formula

n-l
b&apos;(aQt. an) 2 (-l)&apos;(ao,. atai+ïf an)

1=0

and define b(a0,..., an) b&apos;\aQ&gt;..., an) + (-l)n(ana0, au an).

The complex CH*(A):- • .£+An*l^&gt;An^+ • -A is the acyclic Hochschild
resolution of A as a module over A ® A0p. By considering the tensor product
complex CH&apos;*(A)®A&lt;g&gt;AopA we get a chain complex CH*(A):- • •-*
An •£* An~&quot;1-* - - --^A called the Hochschild complex for i4. (Note: this is a
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bigraded complex if A is a D.G.A. Its homology, called the Hoschild homology
oiAy we dénote by HH*(A).

Loday and Quillen hâve studied the following double complex, the analogue
of which when A is a differential graded algebra was studied by Burghelea,
Staffeldt, and Goodwillie [B, S, G].

An
1 + (~1

An~l&lt;

ï
I1

!*¦ I*

So the even degree columns are the Hochschild complexes and the odd degree
columns are the acyclic Hochschild resolutions. In the nth row the symbol t is the

automorphism of An given by

t(alf ,an) (an,au. an.x)

and Af 1 +1 + • • • + tn~l is the corresponding norm operator on An. Notice that
the nth row is a complex whose homology is H*(Zn; {An}) where Zn acts on An
via the operator t.

In [L-Q] it was shown that CC*{A) is in fact a double complex whose

homology, which we dénote HC*{A) is called the cyclic homology of A. In the
case when the ring A: is a field of characteristic zéro it is shown that this définition

agrées with that of Connes in [Con]. If A is an augmented algbra with
augmentation idéal Â, so that A=Â(Bk as algebras, the reduced cyclic
homology, HC*(A) is defined by HC*{A) HC*(À).

Several calculations of HH*(A) and HC*(A) were done in [L-Q]. The ones
that concern us hère are the following:

PROPOSITION 3.2. HCq{k) Hq(CPx; k).
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PROPOSITION 3.3. Let V be a k-module and let A T(V) ©ma0 Vm be

the tensor algebra on V. We then hâve

a. HHJA)

®Vm/l-t if g 0

© (Vm)&apos; ifq l

0 if q &gt; 1

is the cyclic permutation of Vm defined above, and where (Vm)&apos; and
Vm/1 -1 are the invariants and coinvariants of t respectively.

b. HCn(T(V))= @Hn{Zm;{Vm})
m&gt;0

Remark. In part a the isomorphism ©m (Vm)&apos;-+HHi(A) is induced by the

map Vm Vm~l ® V1 ^A ® ^l C/^04) (see [L-Q, §5])

Burghelea in [B] and Goodwillie in [G] described in détail certain algebraic
relationships between the free loop space A(X) and Hochschild and cyclic homology
theory. Their studies involve the differential graded algebra y^(M(X); k), the

singular chain complex on the Moore-loop space of X, M(X), with coefficients in
a field k. This is an algebra via the usual multiplication of Moore loops. (N.B. the
Moore loop space M(X) is used instead of the usual based loop space QX
because the singular chains 5^(Af(JQ) is strictly associative, where y*(QX) is

only chain homotopy associative.)
In [G, §V] Goodwillie constructed a map of chain complexes from the

Hochschild complex of 5^(3/(X)) to the singular complex of A(X),

defined via the compositions

where 0 is the shuffle map (that induces the Eilenberg-Zilber isomorphism), An
is the standard n-simplex, A(X)âp is the space of maps from An to A(X), (i is the
standard juxtaposition map, and Â is induced by the map

âP
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defined by

A(/o • • -fn)(s0 • • • sn)(t) (/o fJiÇE \ft\) - 2 st \fÀ

Hère ft e M(X), f0 fne M(X) is their product, (s0 • • • sn) e An, \f\ dénotes
the length of a Moore loop, and t is an élément of S1 parameterized by the
interval [0, -27 |fm|]. (see [G] for détails of thèse maps. Note our notation is

somewhat différent than his.) In [G] the following was proved.

PROPOSITION 3.4. The map xpiCH^^MiX^^^^AiX)) induces an

isomorphism in homology,

Now in [G] Goodwillie proved that ^ is actually an isomorphism of cyclic
objects in the sensé of Connes [Con] and used this to prove the following.

PROPOSITION 3.5. There is an isomorphism

as* A(X); k).

Remark. The isomorphism tp% in 3.5 is induced by ip in an explicit way
described in détail in [G].

From now on we will assume that ail chain complexes will be over a field k
and ail homology will be taken with ^-coefficients. Now consider the map of
singular chains (over k)

a* : S

induced by the map a^iX-* QIX described above.
Let 9+iX) dénote the reduced chains on X and let T(&amp;*(X)) dénote the

tensor algebra. Consider the chain map

induced by the compositions
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where 0 is the shuffle map and the last map is induced by the multiplication in
M(IX). The following is well known.

LEMMA 3.6. ju* : T(&amp;JJC))-* ¥*(M2X) is a chain homotopy équivalence of
differential graded algebras.

Finally, let r+\ &amp;JJT)-^ HJJX) be any chain homotopy équivalence, where

H*(X) is viewed as a chain complex with trivial boundary map. r* exists because

we are working over a field k. Then we get an induced chain homotopy
équivalence of D.G.A.&apos;s.

r.:T{9.{X))^T{fim{X)). (3.7)

Now since both Hochschild homology and cyclic homology are invariants of the
chain homotopy type of a D.G.A., then, by combining 3.3a, 3.4, 3.6, and 3.7 we
obtain a calculation of H^

PROPOSITION 3.8. There exist isomorphisms

e H,(x)m/i -1 e e (H*(x)my.
m&gt;0 msl

Similarly, by combining 3.3b, 3.5, 3.6, and 3.7 we obtain the following
calculation of H*(ESl+ asiA(2(X)), which shows, by comparison to 2.9 that it is

isomorphic to

PROPOSITION 3.9. There exist isomorphisms

We now proceed to show that the map h : Z{X)-^&gt; ES\ a5i A(2X) constructed
in the last section induces a homology équivalence. Now as observed in the

beginning of this section, the projection map
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induces a surjection in homology and so the map h*:H*(Z(X))-+H*(ES\ a5i
A(IX)) is determined by the fact that it extends each hn^:Hi,(EZnxZnXn)^
H*(ESl+ a5i A(SX)). We notice furthermore that by 2.8 and 2.9 the kernel of the

is given by the sum of the kernels of the réduction maps

induced by the natural réduction Hit((X)-^Hitt(X). Hence in view of 2.9 and 3.9,
to prove that h*:H*(Z(X))-*H*(ES*+ asiA(IX)) is an isomorphism, it is

sufficient to prove the following.

THEOREM 3.10. The kernel of ®n hn. : @n H*(Zn; {H*(X)n}) H*{EZn xZn
Xn)-^Hitl(ES\. asiA(IX)) is equal to the kernel of the réduction map
0rt H,(

Proof Consider the circle bundle over ES1 xsi A(IX) classified by the

projection map n:ESl xsiA(ZX)-*ES1 xsi* S51. The total space of this
bundle is ES1 x A(IX) which is homotopy équivalent to A(ZX).

Similarly, consider 5^bundle over EZn xZn Xn classified by the composite

EZn xZnXn-T^ ES1 xsi A(-SAT)-&gt;BS\

which, by the définition of hn is homotopic to the composition

EZn xZnXn-*EZn xZn* BZn -tf BS1

where Bin is induced by the homomorphism /„ : Zn &lt;-» S1. The total space of this
bundle is easily seen to be S1 xZwZ*. Moreover, hn induces a map of associated

circle bundles, which on the total space level can be seen to be homotopic to the

map

defined to be the composition

hn:Sl xZnX» jzg S1 xZnA(IX)-^ A(EX) (3.11)

where /à is given by the S1 action on A(2X).
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The main step in proving 3.10 will be calculating the homomorphism

One can observe that for dimensional considérations, the Serre spectral
séquence for the homology of the fibration séquence

Xn-+S1xZmX&quot;-+S1

collapses at the f^r-level. Thus we hâve

where Z-jïx{S1) acts on H^X&quot;) through the projection Z-*Zn by cyclically
permuting coordinates.

To compute this group, consider the following resolution of Z as a module
over the group ring Z[Z] Z[x, x~1].

0-+Z[x,x-1]1g&gt;Z[x,x-l]-?Z

where e(m-jcrt) mZ and where dx(m *xn) m(xn ~xn+1)eZ[x, x~1]. Taking
the tensor product of this resolution (over Z[Z]) with H*(Xn), one sees that we

get the following chain complex C+(Sl; {H*(Xn)})f whose homology is

H .(S1; {Hm(Xn)}^H,(S1 x^X&quot;).

C*(ShH&gt;(Xn)):0-+Hi»(Xn)T^H*(X»)-&gt;0 (3.12)

where t € Zln is the generator which acts by cyclically permuting coordinates. We
therefore hâve the following

COROLLARY 3.13. H#(S* xZn Xn) H*(Sl; {H*(Xn)}) and

&gt; otherwise

Compare this calculation with the calculation of H+(ASX) given in 3.8. By
comparing the Gysin séquences for the S1 5O(2) bundles ES1 x (S1 xZnXn)-~»

and ESlx(AZX)-+ES1xsiAIX and by using the calculation of
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HJJESlxs\A2X) given in 3.9, it is easily seen that Theorem 3.10 is a

conséquence of the following.

PROPOSITION 3.14. The kernel of hn:H*(Sl xZnXn)-+Hm(A2X) is equal
to the kernel to the réduction map

H.(Sl;(H.{X)&quot;}) &gt; H,(S1; {#,(
1- 1=

xn)i\-u®h,(x&quot;) —&gt; ù,{xrn-u®(//,(xyy

Proof of 3.14. Consider the bigraded chain complex

C(Sl; ïf(X&quot;)) : 0-* ^*(Z&quot;) -j^ y(JT)-» 0

The homology of this double complex is, by the above arguments, equal to
H^S1; H+(X&quot;)). Consider the map of (double) chain complexes

y» : C.iS1; y.(*&quot;))-&gt; CH.(T(?,(X)))

defined as follows:

is defined by the map

where c is the usual component map and p is the réduction. Define

Yt : QiS1; y*{Xn))^CHx(T{9*{X)) by the composition

y, : S%(X) ^ SP,(JQ ^(X) ® 5P,W 75?

c r(^»(X)) &lt;8&gt; T(Sm(X))

Notice that by the formula given for the Hochschild differential
b : n?*{X)?-* T(Sf,(X)) we hâve that for (vu v^) ®vne 9.{

then

vn) (vu..., vn) - (vn, vuv2--- wB_,)

c
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Thus by the above formula for y0 and 7i we hâve that

b ° n yo° (1 - U) : CCS1; ^(JT))^ CH&amp;

Thus y* is a map of chain complexes.

LEMMA 3.15. The map hn/.H,(Sl xZrtX&quot;)^&gt;Hm(AZX) is given by the

composition

H,(S1 xZnXn) H,(S1; {H.(X&quot;))) ^ HH0(T(9.(X)))Â Hm(ASX),

where y* is induced by the chain map described above, and tp is the composite

t* HH.(T{H.(X))) j&gt;

Notice that with respect to the isomorphism H*(Sl xZnX&quot;)

f,e//»(;r)&apos;- given in (3.13) and the isomorphism H*(a(zX))=
l-t@®m&gt;1(H*(X)m)&apos; of (3.8), then the remark following 3.3 and 3.15 imply
that hnj. H*(Sl xZnX&quot;)-&gt;H,(AÇî:X)) is given by the composition

h,(*»)/i -1* - e H,(xny p

m&gt;0 m&gt;l

Hence proposition 3.14 (and hence Theorem 3.10) would clearly follow from
3.15.

Proof of 3.15. Consider the map of chain complexes

F*; CCS1; ?*(Xn))^ ^(S1 xZnXn)

defined as follows.

is induced by the inclusion Xn -» 0 x Xn &lt;-&gt; S1 xZn Xn.
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is defined by the composition

where g(a) e ® a, where the 1-simplex e : A1 /-* S1 is given by e(t) e2*1&apos;. In
the above composition, &lt;p is given by the shuffle map.

The chain map F* is clearly a chain homotopy équivalence.
Now consider the following diagram

A tedious but straightforward exercise using the explicit définitions of the chain

maps given above, shows that this diagram commutes up to sign. Lemma 3.15

now follows.
Now as argued above, Lemma 3.15 was the last step in proving that

induces a homology isomorphism with coefficients in any field, and hence an

intégral homology isomorphism.

Remark. It is easily checked that if X is 1-connected then so are both Z(X)
and ESl+ asiA2X and hence in this case h is a homotopy équivalence.

§4. Z(X) and the Dyer-Lashof construction

As before, let C(X) be the Dyer-Lashof construction,

UJ C(X) U F(RX, n) xx X&quot;l~

«&gt;i
&quot;

where, as in the définition of Z(X), the équivalence relation &quot;~&quot; is generated by

connected C.W. complex there is a homotopy équivalence
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This theorem and its generalizations to the finite loop spaces QnZn(X) are proved
in May&apos;s book [M].

Notice that the inclusion homomorphisms Zn&lt;-*In induce maps
pn:F(R°°, h) Xz^-^FiR™, n) xSnXn which in turn induce a map

p:Z(X)-+C(X).

By means of the homotopy équivalence h:Z(X)-*ES\ asiA(ZX) and

g : C(X)-+ Q{X) we get an induced map, which, by abuse of notation we also call

p:ESl+AsiA(ZX)-*Q(X).

The purpose of this section is to analyze this map.
To ease notation, let B(X) dénote £5+ asi A(ZX). Notice that B(*) * and

so if C is any contractible space and H.C-+C is a contraction (C dénotes the
cône on C) then H induces a contraction

Let u:B(Jt)-+B(2X) and l:B(X)-*B(ZX) dénote the maps induced by the
inclusions of Jt in SX as the upper and lower cônes, respectively. We then hâve
the following homotopy pull-back diagram:

QB(IX) &gt; B(X)

i i-

B{X) —r» B(IX)

By the pull-back property, the inclusions B(X)-*B(X) induced by the
inclusion X eJt lifts to a map

Iterating this procédure we get a stable version, BS(X) lim* QkBZk{X). See

[W] for a more detailed version of this stabilization process.
Note that

BS(X) lim S^ES\ asi A(Zk+lX).
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Now consider the map

ik : Q*2kX-+ QkES\ a5&gt; A(Sk+\X))

defined to be the fc-fold loops of the composite map

(X)) &lt;-&gt; ES\ a5»

Notice that i factors up to homotopy as the composition

ik : &amp;ZkX &amp;Fl{Z{i:kX)) «¦* QkZ(Ik(X)) -g&gt; tfESi a5« A(SmX). (4.0)

Now the inclusion Fl{Z(2kX))&lt;-* Z(2kX) is easily seen to be 2k connected,

essentially since ^/^ F(i?°°, 2)+ AZ2(SkX){2) is 2k -h 1-connected. Thus the

map ik is fc-connected. Hence when we pass to the limit, we hâve the following.

LEMMA 4.1. The induced map i : QX-* BS(X) is a homotopy équivalence.

The following will give us our description of p : B(X) ES\ a5i A(ZX)-+ QX.

THEOREM 4.2. The following diagram homotopy commutes.

Z(X) -4-* ES\ a

C(X) -t+QX -7* B\X)

Remark. The point of this theorem is to say that with respect to the homotopy
équivalences i, g and h above, the natural map p;Z(X)-*C(X) induced by the
inclusions Zn &lt;-*En, is given by the stabilization map

E:B(X)-&gt;BS(X).

Proof of 4.2. The left hand square commutes by the définition of p:ESl+ a$*

A(2X)-»Q(X). Thus, since h and g are équivalences its enough to show the
outside rectangle homotopy commutes.

Let ZS{X) lmu QkZZk(X), then by the observations made above, the map
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t, :£?*&lt;-» STFXITX&apos;-* QTZITX
&apos;

ZS(X) is an équivalence. Now similar to what
was done above, let C(X) lim* QkC(ZkX) and QSX lim* £2kQIkX QX.

Consider the following diagram.

Z(X)

where the superscript &apos;V on the maps hs, gs, ps dénote the maps induced by h,

g, and p respectively on stabilized functors.
Note that quadrilaterals 1,2, and 3 in the above diagram homotopy commute

by the naturality of the stabilization functor E. The fact that triangle 5 homotopy
commutes was verified above (4.0). In triangle 4 we claim that ix : QX-&gt; ZS(X)
and gs°ps :ZS(X)~-*QX are homotopy inverse to each other. To see this, note
that gs °ps°ij : QX-&gt; QX is a map of infinité loop spaces that is homotopic to the
stabilization XczQX when restricted to X. Thus gs°ps°ii is homotopic to the

identity.
Thèse observations put together imply that the outside of the above diagram

homotopy commutes, but this is the same as the outside of the diagram in the
statement of 4.2. This proves Theorem 4.2.
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