Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 62 (1987)

Artikel: Un théoreme de densité analytique pour les groupes semisimples.
Autor: Wigner, David

DOl: https://doi.org/10.5169/seals-47353

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.02.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-47353
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helvetici 62 (1987) 390-416 0010-2571/87/030390-27$01.50 + 0.20/0
© 1987 Birkhiuser Verlag, Basel

Un théoréme de densité analytique pour les groupes semisimples

DAviD WIGNER

§1. Introduction

Soient G, un groupe semi-simple linéaire connexe sans facteur compact,
(V, 7) une représentation continue de G, dans un espace vectoriel topologique
localement convexe séparé V, I' un sous-groupe cocompact de Gy, v un vecteur
de V invariant par tout élément de I. Ces notations seront en vigueur jusqu’a la
fin de P’article. On a alors

THEOREME Q. Si V est de dimension finie, v est invariant par tout élément
de G.

Remarque. L’histoire du théoréme £ est assez compliquée. Dans le cas ou I’
est discret, mais ou ’on suppose plus généralement que G,/I" admet une mesure
G,-invariante finie, ce théoréme est dG a A. Borel [2]. Dans [32], A. Weil donne
une démonstration simple du théoréme £, mais comme son but était de fournir
une démonstration rapide d’un cas particulier du théoréme de Borel, dans son
énoncé il suppose I discret et (V, w) la représentation adjointe. Dans son livre
[24], Raghunathan remarque que la démonstration de Weil est valable avec les
hypothéses ci-dessus. '

On note g, I’algebre de Lie de Gy; une notation analogue sera utilisée pour les
autres groupes et algebres qui seront introduits ultérieurement. Rappelons que le
vecteur v de V est dit analytique si pour tout X € g;, on a un développement en
série entiére:

a(exp (tX))v = vo(X) + vy (X) + vy (X) + - - - ()

qui converge pour |¢| suffisamment petit. Ici les v; sont des vecteurs de V, qui
dépendent de v et sont forcément des fonctions polynomiales de X.

Nous proposons ici de remplacer ’hypothése que V est de dimension finie
dans le théoréme £ par ’hypothése que v est un vecteur analytique; hypothese
qui est toujours satisfaite si V est de dimension finie. Notre résultat principal est
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donc:

THEOREME 1. Gardons les notations ci-dessus. Si v est un vecteur
analytique, alors v est invariant par tout élément de G,.

Quitte a remplacer G, par un rev€tement fini, on peut supposer G, plongé
dans son complexifié simplement connexe, qu’on notera G. Comme G, opére
continlment sur le complété de V, on peut supposer V complet. On fera
désormais ces hypothéses.

Comme le rapport de certaines propositions intermédiares avec le théoréme
visé n’est pas évident a premier vue, nous avons cru bon de fournir les
raisonnements préliminaires dans cette introduction.

Notons d’abord le simple

LEMME 1. Si v est analytique et y € Gy, alors n(y)v est analytique.

Démonstration. On a

i(exp (tX))7(y)v = w(y)z(exp (t Ad (y)(X)))v
= 7(y)(vo(Ad (y)(X)) + tvi(Ad (y)(X))
+vy(Ad (P)(X) + - - ).

Comme n(y) est un isomorphisme topologique de V, la série est convergente
pour |¢| suffisament petit.

Comme (}) est convergente pour X e g =g, ® C, I'algebre de Lie de G, et
teC avec [tf| suffisament petit, la fonction x,(X)=a(exp(X))v admet un
prolongement analytique a un voisinage de I'origine de g. Soit 2 I'ouvert étoilé
maximal de g ou la fonction &, admet un prolongement holomorphe.

LEMME 2. Si g € Gy et n(g)v =v, alors 2= Ad (g)(2).

Démonstration. Si n(g)v=von a

m,(Ad (g)(X)) = m(exp (Ad (8)(X)))v = m(g)m(exp (tX)x(g™ v
= n1(g)7(exp ((X)v = 7(g)m, (X).
pour X suffisamment petit. Le lemme est alors un conséquence de I'unicité du

prolongement analytique.
Rappelons que le voisinage de Harish—Chandra de g est un ouvert Ad (G)-
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invariant de g, étoilé par rapport a 'origine dans lequel I’application exponen-
tielle de G est un diffémorphisme. Soit % I'intersection de 2 avec le voisinage de
Harish—Chandra. Par conséquent % est un ouvert Ad (I')-invariant contenant
I’élément neutre de g sur lequel la fonction x, admet un prolongement
analytique. Soit V un compact de Gy tel que VI' = G,. Considérons l'intersection
W = aev Ad (d)(U). Elle vérifie:

1) W est un ouvert de g parce que V est compact.

2) m, admet un prolongement holomorphe a W'

3) W est Ad (Gp)-invariant.

4) W est étoilé par rapport a I'origine.

5) W est contenu dans le voisinage de Harish—Chandra.

Soient 6 une involution de Cartan de g, et g, =k, D p, la décomposition de
Cartan correspondante. On note p le complexifi€é de py,. On note également 0 les
involutions de Gy, G, et g induites par 8. On note K le complexifié de K,; une
notation analogue sera utilisée pour les autres groupes qui seront introduits
ultérieurement. L’hypothése que G est simplement connexe entraine que K est
I’ensemble de points invariants de 8 dans G (c.f. [30]). On choisit un sous-espace
abélien maximal a, de p, et n, sera la somme des espaces radiciels correspondants
aux racines positives pour un ordre de a,. Soit M le centralisateur de A dans K
avec ces notations P = MAN sera le normalisateur de N dans G.

Fixons un €élément X de m; si Y est un élément de la chambre de Weyl
positive de a,, suffisamment loin des faces, Ad(exp(Y))(X) sera dans %.
Comme W est invariant pour Ad (G,), # contient n, ainsi que tout ses conjugués
par des €éléments de G,.

On définit les sous-ensembles € et € de g;

€ = L%; Ad (x)(n)
Yr= U Ad(x)(n)
x€Gyp

D’apreés ce qui précede, €g est contenu dans %#. On a la désingularisation de
Springer,

P = {(u, xP) eg X G/P | u € Ad (x)(n)}
et I'application €:% — € de désingularisation, £(u, xP) = u. Notons ¥:9— G/P
la projection; ainsi ¥W((u, xP))=xP. Posons @' = W~'(KP/P). Noter que
Y:9—>G/Pet ¥:9'— KP/P sont des fibrés vectoriels holomorphes, et que

WY (Go/Po) U {(0g, xP) | x e G} c €™ (6r) c e~ 1(W N 6).
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THEOREME L. Soient v : E—> G/P un fibré vectoriel holomorphe, et V' un
ouvert connexe de E contenant vy (Go/P,) et la section nulle. Une fonction
analytique @ a valeurs dans un espace vectoriel topologique localement convexe
complet, définie sur V', admet un prolongement analytique a E tout entier.

Ce théoréme est di a F. Lescure (c.f. [20]). Le théoréme L nous permet de
considérer par la suite I’application y:%— V, prolongement holomorphe de
mT,oea Y.

Pour le commodité du lecteur, nous donnons une démonstration rapide du
théoreme L dans le §2. Cette démonstration a été trouvée en collaboration avec
C. Laurent; je tiens a exprimer ma reconnaissance de sa permission de la
reproduire ici.

On aura besoin d’une forme faible du théoréme de Peter—Weyl qui sera
valable dans les espaces localement convexes complets généraux.

THEOREME P-W. Soit (U, p) une représentation d’un groupe compact L
dans un espace localement convexe complet U. Pour chaque représentation
irréductible y (de dimension finie) de L, il existe un sous-espace isotypique U,,
ainsi qu’une projection L-equivariante P, de U sur U,. De plus, Uintersection des
noyaux des P, quand x parcourt toutes les classes d’isomorphie des
représentations de L, est réduite a Q.

La premiére application qu’on fera de ce théoréme sera pour énoncer une
formulation équivalente du théoréme £, formulation qu’on utilisera pour la
démonstration du théoréme 1. La méme démonstration sera valable dans le cas
ou G/I' admet une mesure G-invariante finie, et conduira a2 une formulation
équivalente du théoréme de densité de Borel.

THEOREME W. Soit f:G— V une fonction holomorphe sur G, a valeurs
dans un espace vectoriel topologique localement convexe complet, invariante par
translation a droite par tout élément de I'. Alors f est constante.

Démonstration. Comme les éléments du dual V* de V séparent les points de
V, on peut supposer que V =C. ‘

On choisit pour L un sous-groupe compact maximal de G, et pour U I’espace
de fonctions holomorphes sur G, muni de la topologie de la convergence
compacte. Le groupe L opére par translation a gauche. Les sous-espaces
isotypiques U, sont alors de dimension finie, parce que L est une forme réelle de
G. Le groupe G, opere par translation a droite sur chaque U,, et le sous-groupe I'
laisse chaque P,(f) invariant. D’apres le théoréme Q, chaque P,(f) est invariant
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par Gy. Il en résulte, d’apres le théoreme P-W, que f est invariant par G,. D’ou
le théoréeme.

L’autre application qu’on fera du théoréme P-W est avec U=V et L =K,.
L’opération de K, sur V, peut alors €tre prolongée a K. On va noter
w, : K X V, — V, ce prolongement. On va considérer la fonction A, : K X @'—>V,
qu’on obtient en composant @, avec Idx X (P, °y) c’est-a-dire A, = w, o (ldg X
(P 7))

On considére aussi 'application u:K X @'— G définie par la formule
u(k, (u, xP)) = k exp (u).

PROPOSITION 1. L’image u(K X 9') contient un ouvert de Zariski non vide
qyl de G.

Démonstration. D’aprés un théoréme de Kostant [17], Gy = K,NyK,, donc
pour g € Gy, on a g =k nk,=k,k,(k;'nk,) et G, est contenu dans I'image
p(K x 2'). Or cette image est un ensemble constructible. Soit elle est rare pour
la topologie de Zariski, soit elle contient un ouvert de Zariski non vide. Comme
G, est dense dans G pour la topologie de Zariski, la proposition en résulte.
Bien entendu, on peut remplacer ' par 9 dans ’énoncé.

Convention. Si f:X—Y est un morphisme algébrique de I’ensemble
algébrique X dans la variété algébrique Y, dominant (f(X) contient un ouvert de
Zariski non vide de Y), et pour tout y dans un ouvert de Zariski non vide de Y,
f'({y}) a la propriété (*), on dira que la fibre générique de f a la propriété (*).

THEOREME 2. Supposons G, simple. Si dim (G,) >3, la fibre générique de
u est irréductible.

Le théoréme 2 sera démontré dans les §4 et §5. On va donc supposer dans ces
§ que G est simple.

Comme % est contenu dans le voisinage de Harish—Chandra, on peut définir
une fonction holomorphe #:exp (¥)— V par la formule #(exp (X)) = 7, (X).
Posons n* =P, o f.

Soient & et I sont des ouverts connexes de K et @' respectivement tels que
1x € &, que la section zéro de 9’ soit contenue dans 7, et que u(¥ X J) soit
contenu dans W. Sike Pet (u,xP)e J, on a

Ay (k, (u, xP)) = @, (k, P, (7, (1)) = P, (&(k exp (1)) = 2% u(k, (4, xP))

Par conséquent A, est constante sur 'intersection des fibres de u avec ¥ X J.
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Considérons alors le produit fibré
P=(KXD)Xs(KXD"

et notons py, p,: P—K X D' les projections de @ sur les deux facteurs
K x9'. Les fonctions analytiques A,°p, et A, °p, coincident sur I'ouvert
(X T)XG(FXT). Si P, est une composante irréductible de & qui rencontre
(FXT)Xc(LXT), A,op; et A,°p, coincident sur P, par lunicité du
prolongement analytique.

PROPOSITION 15. Toute composante irréductible de ® qui domine G
rencontre (¥ X T)Xs(F X T). Par conséquent, il existe un ouvert de Zariski
Y= W, de G tel que pour tout y € %, A, soit constante sur = '(y).

Remarquons d’abord que I’assertion de la proposition 15 pour un produit de
groupes G, simples est un conséquence de la méme assertion pour les facteurs.
Pour G, simple avec dim (Gy) >3 le théoréme 2 implique qu’il n’existe qu’une
composante irréductible de @ qui domine G. La proposition sera un conséquence
du théoré¢me 2 et I’étude des groupes de dimension 3 faite dans le §2.

La proposition 15 implique que w* admet un prolongement holomorphe a un
ouvert de Zariski non vide de G qui vérifie

][xouzAx

Le lemme 1 permet alors de déduire que m* admet un prolongement a G tout
entier. Le théoreme W montrera alors que n* est constante, et le théoréme P-W
montrera qu’il en est de méme de &, d’ou le théoréme 1. Cette déduction du
théoréme 1 de la proposition 15 sera faite dans le §6.

§2 Etude de SU(1, 1). Démonstration du théoréme L.

Dans la proposition 2 et les lemmes 3 et 4 on spécialise au groupe

x—iy w—&)
w+iz x+iy

G,=SU(, 1)={( X, Y, w,zeR,x2+y2—w2—zz=1}.

On choisit 8(g) = g™, de sorte que K, est le sous groupe des matrices diagonales
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de SU(1, 1). Le complexifié

G =SL(2, c)={(x—iy w—iZ)

w+iz x+iy

X, ¥, w,zeC,x2+y2—w2—zz=1.}.

Avec cet écriture un élément de G est unipotent si et seulement si x = 1.

PROPOSITION 2. Si Go=SU(1,1), la fibre générique de u consiste en
deux points et @ a exactement deux composantes irréductibles qui dominent G.

Chacune d’elles rencontre tout voisinage de ({15} X {(0g, xP) | x € G}) X ({1x} X
{(0g, xP) | x € G}).

Démonstration. Pour déterminer la fibre u~'({g}) on aura a résoudre
I’équation

6200 L) 0
0 u! c 1+a 821 822
avec bc = —a?. On trouve alors

a=V(1-gngz)

b=ggi'(1 - V(1 - g1182)) = 81282(1 + V(1 ~ g11822)) "
¢ =gngn 1+ V(1 - gngxn) =guga(1- V(1 - gugxn))™"
u=gx1+V(1-gugr)=gul-V(Q1-gugn)™

et comme I’expression sous le radical tend vers zéro lorsque g;; et g,, tendent
vers 1, la proposition 2 en résulte.

On considere ’opération de G = SL(2, C) sur la sphere de Riemann P'(C) qui
est isomorphe & G/P; on a:

(Z) =gllz +g12 ‘
8212 + 82

Dans cette identification Gy/P, correspond au grand cercle {z | |z| = 1}.

LEMME 3. Soient ¢ :E—PY(C) un fibré vectoriel holomorphe, et V' un
ouvert connexe de E contenant ¢~ '({z | |z| = 1}) et la section nulle. Une fonction
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analytique @ a valeurs dans un espace vectoriel topologique localement convexe
complet, définie sur V' admet un prolongement analytique a E tout entier.

Démonstration. Comme P!(C)\ {=} = C, la restriction du fibré y: E— P!(C)
a P}(C)\{«} est un fibré trivial. Sur y~'(P'(C)\{>}) on peut écrire ¢ = @(E, €)
ol { est la variable dans P'(C)\{«} et e est la variable dans la fibre de E. La
fonction @ est définie comme fonction de ¢ et e dans un voisinage de [{| =1,
ecCete=0, {eC.

Le théoréme de la marmite de Hartogs (c.f. [1] Ch. 4 ou [12] p. 164) implique
maintenant que @ admet un prolongement analytique a |{| <1, e € C, donné par
la formule

#(z 0= LEOE )

ou le chemin d’intégration est le cercle |z|=1. La démonstration usuelle du
théoréme de la marmite est valable pour les fonctions aux valeurs dans un espace
vectoriel topologique localement convexe complet parce que I'intégrale (!) définit
une fonction holomorphe.

Un raisonnement analogue montre que ¢ admet un prolongement analytique
pour les autres valeurs de ¢.

LEMME 4. Soient v : E— P'(C) un fibré vectoriel holomorphe, AU un ouvert
non vide de P'(C) et V' un ouvert connexe de E contenant y~'(U) et la section
nulle. Une fonction analytique @ a valeurs dans un espace vectoriel topologique
localement convexe complet, définie sur V' admet un prolongement analytique a E
tout entier.

Démonstration. On peut supposer sans perte de généralité que « € %U. Quitte
a remplacer dans I'intégrale (!) le chemin |z| =1 par le chemin |z] =R pour R
suffisament grand, la démonstration sera alors la méme que pour le lemme 3.

PROPOSITION 3. Soient vy : E— X un fibré vectoriel holomorphe, et ¢ : E—
V une fonction a valeurs dans un espace vectoriel topologique localement convexe
complet. Si @ est holomorphe dans un voisinage de la section nulle, et la restriction
de @ a chaque fibre de 1 est holomorphe, alors @ : E— V est une fonction globale
holomorphe.

Démonstration. D’apreés [12] corollaire 11.3, @ est holomorphe si feq@ est
holomorphe pour tout fe V*. On peut donc supposer que V =C. Comme la
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conclusion de la proposition est une propriété locale, on peut supposer que X est
un ouvert de C" et que y est un fibré trivial. La proposition devient alors le
‘lemme de Hartogs’ (c.f. [1] p. 139 théoréme 2).

Convention. Soient Yy :E— X un fibré vectoriel holomorphe, et @ une
fonction holomorphe dans un voisinage de la section nulle de y. On dira que
x € X est un point entier de @ s’il existe une fonction globale holomorphe sur
¥~ '({x}) qui coincide avec @ |,-1(x)) dans un voisinage de zéro.

PROPOSITION 4. Soient Q un sous-groupe parabolique de G, y:E— G/Q
un fibré vectoriel holomorphe, AU un ouvert non vide de G/Q et V' un ouvert
connexe de E contenant ¥~ '(U) et la section nulle. Une fonction analytique ¢ a
valeurs dans un espace vectoriel topologique localement convexe complet, définie
sur V' admet un prolongement analytique a E tout entier.

Démonstration. D’aprés la proposition 3, il suffira de démontrer que tout
point de G/Q est un point entier de .

Supposons d’abord que Q = B est un sous-groupe de Borel de G. 1l suffira de
démontrer que 1B est un point entier de @. Soit w, ’élément le plus long du
groupe de Weyl de G. Comme Bw,B est dense dans G/B, il existe xB e UN
BwyB, d’ou h= Ad (x)(b) N b est une sous-algébre de Cartan de g. Des résultats
de Kostant (c.f. [16] ou [6] Chapitre 8 §11) montrent qu’il existe e €b,
f € Ad (x)(b), et h € h vérifiant

1) (h, e, f) est un si,-triplet dans g.

2) Chacun des éléments e et f est contenu dans une seule sous-algebre de

Borel de g.
Soit J le sous-groupe analytique correspondant au sl,-triplet (4, e, f); il existe
y €J vérifiant Ad (y)(e)=f. On a f € Ad (y)(b) et Ad (y)(b) = Ad (x)(b) a cause
de 2). Comme e, h € jN b, la J-orbite R sur G/B contenant 1;B est isomorphe a
P!(C). On peut alors appliquer le lemme 4 au fibré ¥ ~(R)— R et conclure que
tout point de R est un point entier de @. En particulier 1B est un point entier de
®.

Soient maintenant Q un sous-groupe parabolique quelconque de G et B un
sous-groupe de Borel contenu dans Q. Soient D— G/B le fibré induit par
I'application G/B— G/Q, et §:D— E la projection. D’aprés ce qui précede, la
fonction @ °& admet un prolongement analytique 8 G/B, qu’on notera k. Soient
q: et g, les deux projections de D Xz D sur D; alors les fonctions analytiques
K°q, et k°q, coincident sur ’ouvert non vide 7" de E et sont donc égales. Il en
résulte que x: D — V passe au quotient E et définit un prolongement holomorphe
global de ¢.
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THEOREME L. Soient y:E— G/P un fibré vectoriel holomorphe, et V' un
ouvert connexe de E contenant Y~ (Go/P,) et la section nulle. Une fonction
analytique @ a valeurs dans un espace vectoriel topologique localement convexe
complet, définie sur V' admet un prolongement analytique a E tout entier.

Démonstration. On considére, avec Kostant—Rallis [18], un si,-triplet prin-
cipal normal standard de G, c’est a dire un sl,-triplet (h, e, f) tel que h €k,
e,fepete+f=w, ou w est I’élément de la chambre de Weyl positive de a,
vérifiant a(w) = 2 pour tout élément a d’'une base des racines restreintes positives
(c.f. [18] proposition 13). Soient j, la sous-algebre de G, engendré par (4, e, f), j
son complexifié, et J le sous-groupe analytique de G correspondant a j; il existe
y €J tel que Ad(y)(h)=w et Ad(y?)=1d;. D’apres le théoreme 5 de [18], ou
directement, on voit qu’'on peut choisir (A4, e, f) de facon que Ad(y)(e) et
Ad (y)(f) soient dans g.

Considérons la J-orbite R de 1;P dans G/P. Comme u=j N p contient w et
Ad (y)(e), l'isomorphisme R =J/U induit R N Gy/Py=Jy/Uy. On peut donc
appliquer le lemme 3 au fibré ¥ ~'(R)— R et conclure que les points de R, dont
yP, sont des points entiers de .

Comme p est la somme des espaces propres de ad (w) correspondants aux
valeurs propres non-negatives, Ad (y)(p) est la somme des espaces propres de
ad (h) correspondants aux valeurs propres non-negatives. Par conséquent
Ad (y)(p) contient une sous algebre de Borel de k, la K-orbite T de yP est
compact, et K, opére transitivement sur 7. Il résulte alors de [21] corollaire p.
357 ou [22] corollaire 2 p. 317 que la Gy-orbite S de yP est ouverte dans G/P. Les
hypothéses du théoréme L étant stables pour I'opération de G, sur G/P, on peut
déduire que tous les points de S sont des points entiers. Une application de la
proposition 4 achéve la démonstration.

§3 Représentations sphériques et fonctions rondes

Nous rassemblons ici plusieurs résultats, pour le plupart bien connus, qui
seront utiles pour la suite. Fixons d’abord quelques notations. Soit t une
sous-algébre de Cartan de m, par suite h=t® a est une sous-algebre de Cartan
0-stable de g. On choisit un ordre de h compatible avec I'ordre de a, par exemple
I'ordre lexicographique par rapport a une base x,,...,x, de h telle que
X1, . .., X; soit une base de a. On note ( , ) la forme de Killing de g, ainsi que sa
restriction a h et la forme induite sur la duale h* de h.

DEFINITION. Une représentation (W, o) irréductible de dimension finie de
G est dite sphérique s’il existe dans W un vecteur w, K-invariant et non nul.
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Pour les représentations sphériques, on a le théoréme de Cartan—Helgason
(cf. [10], [11]). Soient (W, o) une représentation irréductible; on notera n son
plus haut poids, u son plus haut vecteur. Pour tout 4 € H on posera A,(h)=
exp (n(log (h))), d’ot o(h)u = A,(h)u.

THEOREME C-H. Les conditions suivantes sont équivalentes:
1) (W, 0) est sphérique;

2) dim (W¥)=1;

3) u est M-invariant;

4) A(KNH)=1.

5) n vérifie

n(hNk)=0 et <<Z Z;er

pour toutes les racines restreintes positives «.
Si (W, o) est sphérique, et w son vecteur K-invariant, il existe une forme
bilinéaire non-dégénérée B (, ) sur W vérifiant B(u, w) #0 et

B(o(x)vy, v;) = B(vy, 0(0(x) ™ )vy) (1)
pour tout v, v, € W.

Soit (W, o) une représentation sphérique; la fonction p,(x) = B(o(x)u, w)
vérifie alors, pourtout ke K, ge G, me M, ae€ A, neN,

po(kxman) = B(o(kxman)u, w)
= B(o(x)o(man)u, o(6(k)"")w)
= A,(a)B(o(x)u, w)
po(kxman) = A,(a)ps(x). (%)

Le théoréme de Cartan-Helgason et la structure connue de I’algébre des
fonctions polynomiales sur G impliquent que les p, quand o parcourt les
représentations sphériques de G forment une base d’espace vectoriel de I’algébre
R des fonctions polynomiales sur G, invariantes a gauche par K et a droite par N.

Comme n(hNk)=0, on a n°8 =-—n, et (t) montre que u est orthogonal a
tous les autres espaces de poids de W. Donc B(u, u)+#0, sinon u serait
orthogonal a W tout entier. On va supposer désormais que u et w sont normalisés
de fagon que B(u, u) =1 et B(u, w) =1, de sorte que p, |z = A,.

Fixons une base (a;,..., @) des racines restreintes positives, et soit
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(@, ..., &) une base du systtme des racines dual dans a*. Comme le cOne
engendré par les &; est le méme que celui engendré par les a;, on peut supposer
que &; est un multiple scalaire de a; pour tout j. Soit a; la racine restreinte qui
vérifie &; =2¢a;/(«;, aj). On considére un systéme basique de représentations
sphériques de G, (W;, 0,), ..., (W, 0;) ou le plus haut poids n; de (W, o))
vérifie

- (”" w:)
Hm 60 =y, oy =

On note u; son plus haut vecteur, w; son vecteur K-invariant, B; la forme
bilinéaire non-dégénérée vérifiant (1), p;(x)= B;j(oj(x)u;, w;) la fonction poly-
nomiale K — N-biinvariante correspondante, et A; = p; |.

Si (W, o) est une représentation sphérique, de plus haut poids 7, on a
n=2Yj-1¢m;, ou les ¢; sont des entiers positifs. Comme I’espace propre pour
I'opération de A sur R associé€ a la valeur propre A, est de dimension un, on a
po =II}—; pf. Les mondmes en les p, forment une base de I’espace vectoriel 3.
On a donc le

COROLLAIRE. L’algebre R des fonctions polynomiales sur G, invariantes a
gauche par K et a droite par N est algébre des polynomes engendrée par

P, ..., Pr

On a ainsi une application polynomiale p : G— C' invariante a gauche par K
et 4 droite par MN. La restriction de p 3 A est un homomorphisme de A dans C*'
et le théoréme de Cartan-Helgason implique que son noyau est égal 2 A N K.

DEFINITION. Dans la suite, on appellera fonctions rondes sur G les

fonctions polynomiales sur G, invariantes a gauche par K et a droite par N,
fonctions propres pour 'opération a droite de A.

LEMME 5. Pour x € G, les conditions suivantes sont équivalentes:

1) 6(x)"'x € Ng(H), normalisateur de H dans G.

2) xHx™! est un sous-groupe de Cartan 6-stable de G. De plus, chaque double
classe KyN de G contient un élément vérifiant 1) et 2).

Démonstration. Si 1) est vérifiée, on a

O(xHx™ 1) = 0(x)HO(x) ' =xx"'0(x)HO(x) 'xx~' = xHx 1.
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Si 2) est vérifiée, on a
xHx™'= 0(xHx™ ') = 6(x)HO(x)™!
et
O(x) 'xHx'6(x) = H.
Pour la deuxiéme assertion voir [21] ou [25].
LEMME 6. p,(x)*= B,(0j(x)y;, 0;(x)u;).

Démonstration. 11 est clair que x — B;(0;(x)u;, oj(x)u;) est une fonction ronde
et que Bj(oj(xa)u;, oj(xa)u;) = A;(a)’B;(0;(x)u;, 0;(x)u;). L’égalité résulte du fait
qu’il n’existe qu’une fonction ronde, aux scalaires prés, qui transforme suivant le
caractére A,? de a, et des normalisations qu’on a faites.

PROPOSITION 5. Soit KxP une double classe telle que xHx™' soit 6-
invariant. Alors ou bien p; ne s’annule pas sur KxP, ou bien p; est identiquement
nulle sur KxP. Les conditions suivantes sont équivalentes.

1) p; ne s’annule pas sur KxP;

2) Ker ()2 ANx~'Kx;

3) Ker(4;)2 HNx"'Kx.

Démonstration: La premiére assertion est une conséquence immédiate de la
formule (%).

L’équivalence de 2) et 3) est une conséquence du théoreme de Cartan-
Helgason.

1) implique 3): Sihe HNx 'Kx, on a

Ai(h)pj(x) = A;(h)B;(0;(x)u;, w;) = B;(0;(x)0;(h)u;, w))
= B;(g;(xhx~")0;(x)u;, w;) = B;j(0i(x)u;, 0;(0(xh~'x"1))w)
= Bj(aj(x)up W) = p;(x)

parce que xh~'x e K. Si Aj(h) #1, on a p;(x) =0.

3) implique 1): Supposons p;(x) = 0. Soient 1, =n@, n@, . ..., n™ les poids
extrémaux distincts de (W, 0;) pour H; ils sont forcément de multiplicité un.
Soient w;=u®, u®, ..., u" les vecteurs correspondants, et AY(h)=
exp (n”(log (h))) pour 1=<i=<m. La restriction de la forme bilinéaire B au
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sous-espace E de W, engendré par les u'”? est non-dégénérée. On a
0= p;(x)* = Bi(0;(x)u;, 0j(x)w;) = B,(0,(0(x)~"x)u;, u)

et 0,(6(x)"'x)u; € E parce que 6(x) 'x normalise H. Par conséquent il existe un
g #0 tel que

B(0;(x)u®, 0;(x)u?) = B,(0;(8(x)'x)u®, u®)#£0
et, pour tout h € H:

AO(h)B,(0;(x)u®, 0;(x)u?) = Bj(oj(xh)u®, oj(x)u?)
= B,(0;(xhx~'x)u®, 0;(x)u'?)
= By(0;(x)u‘®, o(08(xh~'x™x)u®)
= B{(0;(x)u”, 0;(xx~'0(x)0(h )0 (x) " 'x)u'®)
=A@(x~'0(x)0(h~")0(x)'x)B;(0;(x)u®, g;(x)u'?)

parce que x~'6(x) normalise H = 8(H). Par conséquent
A Do, 19308 =207,

ol on a posé c,(g)=ygy ' pour tout y, g € G. L’involution 6, de G qui fixe
x " 'Kx vérifie

0, =c,1000Cc, =C,-19()° 0
donc

A@og =207
et

A@og, #2107

parce que les A) sont distincts. Par conséquent A n’est pas identiquement 1 sur
HNx 'Kx.

LEMME 7. Le normalisateur Ng(A) de A dans G est contenu dans KA.
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Démonstration. Soit x € Ng(A). Alors x normalise a et le centralisateur m © a
de a dans g. Quitte & multiplier x a gauche par un élément de M, on peut
supposer que x normalise t et h. Comme chaque élément du groupe de Weyl
restreint a un représentant dans K, on peut supposer que x centralise A et
normalise t. Il en résulte (c.f. ’appendice de [26]) que x € KA.

PROPOSITION 6.
KAN =p~(C*).

Démonstration. Si g = kan, on a p;(g) = A;(a) #0 pour 1=j =<1 donc KAN ¢
p~'(C*"). Pour montrer la réciproque, soit KxN une double classe dans p~!(C*").
On peut supposer que x vérifie les deux conditions équivalentes du lemme 5. La
proposition 5 implique alors Ad (x !)(k) Nhct, d’ou kN Ad (x)(h) c Ad (x)(¢).
Mais comme Ad(x)(h) est 6O-stable, dim (Ad (x)(h)Nk)=dim(t), et kN
Ad (x)(h) = Ad (x)(t). Mais pNAd(x)(h) est contenu dans I’orthogonal
Ad (x)(a) pour la forme de Killing de Ad (x)(t) dans Ad (x)(h). Comme ces deux
espaces ont la méme dimension, ils se confondent. Il résulte alors de [18],
théoreme 1 qu’il existe k € K tel que Ad (kx)(a) = a, c’est a dire que kx normalise
a. Mais d’aprés le lemme 7 le normalisateur de a est contenu dans KA.

Soit A={f;,...,B,} le systtme de racines simples de h. On note § la
demi-somme des racines positives de h; c’est aussi la somme des poids
fondamentaux de h. Posons

A0= {ﬁ €A Iﬁlazo}
A1 = A\AO
On a alors le lemme suivant (c.f. Satake [26], p. 80, lemme 1):

LEMME 8. Pour tout B € Ay, il existe B° € A, tel que —0(B)=B°+s, oir s est
une somme d’éléments de A,.

COROLLAIRE 8.1. Toute racine restreinte simple «; est la restriction a a
d’une racine simple B, € A,. Il existe au plus deux racines simples dont la
restriction a a est égale a «;. La restriction d’une racine simple a a est soit 0, soit

une racine restreinte simple.

Démonstration du corollaire 8.1. On a

;= 2 CiBk las



Un théoréme de densité analytique pour les groupes semisimples 405

ol les ¢, sont des entiers positifs et ot chaque B, € A;. Comme chaque B |, est
une racine restreinte positive, et a; est une racine restreinte fondamentale, on a
;= f8 |, pour un f € A, convenable, et a; = (8 + B° +5)/2, ou a; est prolongée a
h en posant a; |, =0. Cette représentation est unique, d’ol la deuxiéme assertion
du corollaire.

Soit maintenant B une racine simple, et supposons B |.= L c;a;, d’ou
B+B=s+Xc(B;+ B, ou s est une somme d’éléments de A,, comme
précédemment. Or l'unicité de la représentation implique la troisi€me assertion
du corollaire.

COROLLAIRE 8.2. Les plus hauts poids n;, 1<j=<I des représentations
sphériques basiques sont soit égaux a deux fois un poids fondamental, soit égaux a
la somme de deux poids fondamentaux, soit égaux a deux fois la somme de deux
poids fondamentaux distincts. Si G, admet une structure complexe, chaque 1; est la
somme de deux poids fondamentaux. Les poids qui interviennent dans les

représentations des n; distincts comme somme des poids fondamentaux, sont
distincts.

Démonstration. On a vu que la base du systtme dual consiste en multiples
scalaires d’éléments de la base du systéme de racines restreintes. Supposons que
a; soit la restriction de §; a a. Les ), vérifient alors 6(7;) = —n; et (n;, B;) =0si
B:# B;, B;. On étend les éléments a de a* a h en posant « | =0, de sorte que
@ =1(B;~ 6(8)). On a

(n;, BY) = (m;, B;) = (mj» ;) =c(a;, ;)

ol ¢ vérifie &’ = ca donc ¢ =1 ou 2. Comme 0 conserve la forme de Killing, ceci
équivaut a

_ (B, 6(B))) (n> B;)
(1= 85) =268

Comme f; + 6(B;) n’est jamais une racine, soit §; = —6(8;), soit 2({B;, 0(B;))/
(B;, B;)) est un entier non-négatif, forcément 0 ou 1, parce que si 2({8;, 6(B;))/
(B, B;))=2, on a B;=0(B;) et &;=0. Si B;=—06(B;), on a B;=a; et 7, est 2c
fois un poids fondamental. Mais dans ce cas, on a forcément c =1. Or si ¥ est
une racine dont la restriction 2 a est 2a;, on a 2({B;, ¥)/{(B;, B;)) =4, ce qui est
impossible pour un systéme de racines réduit.

Si 2((B, 0(8))/(B;, B))=1, ¢ est pair, donc c=2, dod 2((n;, B;)/
(Bj, B;))=1 et 7, est la somme des poids fondamentaux associés a B; et 7. Si

B; L 6(B;), on a 2({m;, B:)/{B;, B;)) = c. Dans ce cas, n; est ¢ fois la somme des
poids fondamentaux associés a §; et ;.
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réduit, donc ¢ =1. De plus, on a toujours B; L 6(B;), donc chaque n; est la
somme des poids fondamentaux associés a §; et 8.
Comme les ensembles {f;, 8/} sont disjoints, le corollaire est démontré.
Notons P, le stabilisateur dans G de la droite Cu; dans W,. Cest un
sous-groupe parabolique de G qui contient P, et laisse le lieu de zéros de p;
invariant. Le corollaire 8.2 implique que P, correspond au sous-ensemble
A\{B,, Bf} de A.

DEFINITION. On dira qu’un poids est singulier s’il est orthogonal a une
racine.

COROLLAIRE8.3. Supposons Gysimple. SiSc{1,...,1}etd — ¥,.snin’est
pas un poids singulier, on a soit S=¢ et 6 — Ycsn; =9, soit S={1,...,1} et
6 = Ljesm; = —0.

Démonstration. D’apres le corollaire 8.2, 6 — ¥,.s n; est une somme de poids
fondamentaux, chaque poids fondamental ayant un coefficient égal a 1, 0, ou —1.
Si un poids a un coefficient 0,  — ¥} 7; est orthogonal 2 la racine correspondante,
donc singulier. Si G, admet une structure complexe, le seul cas qui reste est S = ¢
et la proposition est démontré.

Si deux poids fondamentaux qui sont liés dans le diagramme de Dynkin ont
des coefficients +1, alors la somme des racines simples correspondantes est une
racine orthogonale & 6 — ¥;.s 7;, qui est donc encore singulier. Si G, n’admet pas
de structure complexe, alors G est simple et le seul cas restant est § — Y50, =
6. Si 6 —Yesm;=—96, on a forcément S={1,...,[/}. La démonstration est
achevée.

§4 L’espace ©

Dans ce § et le prochain on suppose que G, est simple.

On aura a considérer le produit fibré F = G X, G, c’est a dire le sous-espace
{(81,82)€ G X G| p(g1)=p(g2)} d¢ GxG. On notera P? I'image de P par
I’application diagonale d: G— G X G. L’opération 2 droite du sous-groupe P¢ de
G X G laisse F invariant, et on va noter © = F/P? le quotient.

Définissons P'application 7: K X @ — (G X, G)/P? = © par la formule

t(k, (X, gP)) = (k(exp X)g, g)P* = (kg(g~"(exp X)g), §)P*
o g (exp X)g € N, d’on (k(exp X)g, g) € F. Ainsi

t(k, (u, gpP)) = (k(exp X)gp, gp)P* = (k(exp X)g, g)P*,
et 7 est bien définie.
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Soit v:@— G, v((g1, g82)PY)=g:85". On a alors p=vet| K x 9'. Comme
O est fermé dans G X G/P?, et G/P est une variété projective, v est un
morphisme projectif.

Remarque. On montre facilement que I'image de t est le sous-espace
G XoinG de GX,G et que les fibres de 7 sont isomorphes a des espaces
affines. On peut aussi vérifier que le principe d’unicité de prolongement
analytique implique que A, est constante le long des fibres de 7.

Remarque. La topologie quotient de la topologie classique de G fait de
K\G/N un espace accessible, d’aprés un théoréme de Kostant—Rosenlicht (c.f.
[29] p. 120), mais non séparée. Par conséquent le produit fibré G X j\g,n G nest
pas localement compact, sauf dans le cas dim (G,) = 3.

LEMME 9. Soient

F'=KANX,KANcF
@' =F'|P¢
Alors F' est un ouvert de Zariski non vide de F, et @' est un ouvert de Zariski non

vide de ©. De plus, la restriction de T a K X &' est un isomorphisme de K X 9'
sur ©'.

Démonstration. D’aprés la proposition 6, I'image réciproque de C*' dans F est
égale a F', d’ou la premiere assertion du lemme. La deuxiéme assertion est une
conséquence immédiate de la premiére.

Montrons que la restriction de 72 K X @' = K X W~'(KP) est injective. Si

t(ki(X, kP)) = 1(k2, (Y, k3P)),
on a

(k. (exp X)k, k)P? = (k,(exp Y)ks, k3)P?
et k3'k e P. D’ou

(ki(exp X)k, k) = (k,(exp Y)k, k)

et on peut écrire exp X =knk™' et exp Y =kn,k™! avec n et n, dans N. Il en
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résulte que
k 1 kn=k 2kn 1

Comme K NN = {15}, on a k, =k,, n; =n et T|x.o est injective.
Soient maintenant (k,an,, k,an,)P* € ©'. On a

t(ki1k3 ', (Ad (koa)(log (nyn3")), ko P)) = (kianinz'a™", ky)P? = (kiany, kyany)P?

et le lemme est démontré.

PROPOSITION 7. Soit (py, ..., p,) un ensemble de fonctions rondes ba-
siques sur G. Alors ’ensemble algébrique des zéros communs X =V (p,, ..., p,)
des p; est de codimension p dans G.

Démonstration. Si p =1, la proposition est évidente. On raisonne par
récurrence en p. Supposons alors que la proposition est vérifiée pour g <p et que
Y est une composante irréductible de X de codimension strictement plus petit que
p. Soit X;=V(py, ..., Pj-1, Pj+1,--.,Pp) pour 1=<j=p. Par I'’hypothése de
récurrence, les X; sont de codimension p —1 dans G. Posons Q;=P,N---N
P_ NP, N---NP, Chaque composante irréductible de X; est alors invariant
par Q;,, Comme Y est aussi une composante irréductible de chaque X;, Y est
invariant par chaque Q,. Mais le corollaire 8.2 implique que les Q;, 1=j=p
engendrent G tout entier, d’ou la contradiction Y = G. La démonstration est
achevée.

PROPOSITION 8. Toutes les fibres de p sont de codimension | =dim (A)
dans G, et dim (F) =2dim (G) — .

Démonstration. On sait d’apres la proposition 6 que la proposition est vraie
pour les fibres au-dessus de C*. Soit (zy, ..., z) € C. On peut supposer, sans
perte de généralité, que z;,...,z,=0 et que z,,4,...,z#0. Alors p~'(z) c
V(P1,...,pp). Comme les A,.,, ..., A; sont des caractéres indépendants de A,
p~'(z) est.de codimension / — p dans V(p;, . . ., p,). La proposition est donc une
conséquence de la proposition 7.

PROPOSITION 9. F et O sont irréductibles. De plus, F est une intersection
complete dans G X G, et © est une intersection compléte locale dans G x G/P“.

Démonstration. On a

F={(g,8)eGXGC | p1(g1) =pi1(82), - - . » pi(81) = pi(g2)}.
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Comme F est le produit fibré G X, G et 'algebre de fonctions polynomiales sur
C' est isomorphe a Clzy, ..., z], 'idéal de fonctions qui s’annulent sur F est
engendré par ces [ équations. Par conséquent toutes les composantes irréductibles
de F sont de codimension / dans G X G et F est une intersection compléte.
Comme O’ est isomorphe & K X @', ©' et F' sont irréductibles. Comme F\F'
est de codimension strictement supérieur a / dans G X G, F est irréductible, donc
© est irréductible. Comme le fibré algebrique G X G— G X G/P* est localement
trivial pour la topologie de Zariski, © est une intersection compléte locale.

PROPOSITION 10. La fibre générique de v est une intersection compléte
locale dans G x G/P“.

Démonstration. 11 suffira de démontrer que la fibre générique de v est une
intersection compléte locale dans ©. Si x € ©, soit R, 'anneau local de © en x.
Comme © est une intersection complete locale dans la variété non-singuliére
G X G/P% tous les anneaux locaux R, sont des anneaux locaux de Cohen-—
Macaulay. On peut trouver un ouvert de Zariski non vide % de G tel que pour
tout ge %, dim(v~'({g}))=dim (G/P)—1L 11 en résulte que le morphisme
Vly-1@y: v (¥)— ¥ est un morphisme plat (c.f. [9], p. 276, Ex. 10.9). Soient
alorsge¥etz, ..., Zgam ) un systetme de coordonnées locales en g. Si I est un
idéal d’'un anneau, on va noter VI le radical de I; c’est I'intersection des idéaux
premiers qui contiennent . Si v(x) =g € Y, ’anneau local de v~'({g}) en x est
alors isomorphe au quotient de R, par le radical VJ de I'ideal J engendré par les
z;o v, d’apres le théoréme des zéros de Hilbert.

Or on aura J = VJ si et seulement si la fibre v~({g}) est réduite au sens des
schémas. Comme tout ouvert de Zariski de G est réduit, et v est propre, on peut
appliquer le théoréme 12.2.4 (iv) de [8], p. 183 et conclure que la fibre générique
de v est réduite. Il en résulte que, pour g dans un ouvert de Zariski de G, I'idéal
de définition de v~'({g}) dans R, est engendré par dim (G) éléments pour tout
x € v''({g}), donc v"'({g}) est une intersection complete locale.

§5 Les fibrés vectoriels liés aux représentations sphériques

Considérons le fibré en droites holomorphe &;:G x*C— G/P ou A; est
prolongé a un caractére de P en posant A(MN)=1. On note §:E— G/P la
somme directe des fibrés en droites §;. Les §; et & sont des fibrés vectoriels
homogenes, et les représentations sphériques basiques sont réalisées par
I'opération de G sur les espaces de sections des &;.

La fonction ronde basique p; correspond a une section K-invariante de §;
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qu’on notera §;, et la somme des {; est une section K-invariante de § qu’on
notera {. La fibre v™'({g}) de v au-dessus de ge G est alors isomorphe a
Iintersection g€ N § dans =. La projection §(g& N ) est égale a la projection de
v_({g}) < F/P? dans G/P.

PROPOSITION 11. Si dim G, > 3, la fibre générique de v est connexe.

Démonstration. §(g€ N {) est le lieu des zéros communs des sections g&; — &;
de £, Notons Z; ce lieu des zéros, et Z; le diviseur associé. Si Sc{1,..., 1}, on
note Dg=—};cs Z, Pour un espace quelconque X, on note Oy le faisceau de
germes des fonctions holomorphes sur X. Pour un diviseur D dans X, on note

Ox(D) le faisceau des germes des fonctions méromorphes sur X qui sont multiples
de D.

Posons Y, =("Y Z. Pour tout j, 1<j=<lettout Sc{j+1,...,!}, on a des
suites extractes:

0—Oy_(Ds - Z;)“’ Oy,_,(Ds)— Oy/(Ds)—0
D’ou les suites exactes en cohomologie:
-+ +=> H'(Oy,_(Ds))— H'(Oy(Ds))—> H"'(Oy,_(Ds ~ Z))— - - - (R)

Spécialisons au cas i=|S|. La suite exacte (§) va nous permettre de
démontrer par récurrence en j que

H(Oy(Ds))=0 si i=|S|>0 (#)

et

H'(0y(Ds)) = H(6y)=C si i=|$|=0 (b)
au moins pour g dans un ouvert de Zariski non vide de G.

On peut appliquer le raisonnement utilisé dans la démonstration de la
proposition 10 au morphisme v;:G X, G/P*— G, v,(g;, 8,)P* =g.85" et con-
clure que la fibre générique de v; est réduite. On peut donc supposer que g&; — &;
n’est tangent a la section nulle le long d’aucune composante irréductible de Z;.
On a alors Ogp(—Z;) = Og,p(E}), ot Og,p(EF) est le faisceau des germes de
sections de &, fibré en droites inverse de &;, et Ocip(Ds) = Ogp(Djes EF).
D’apres le théoréme de Bott—-Borel-Weil (c.f. [4]), si 6 — X,.s7; est un poids
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singulier, la cohomologie du faisceau Og,p(®;es &) est nulle en toute dimension.
Si 6 — X5 1; est un poids non-singulier, le théoréme de Bott—Borel-Weil affirme
que la cohomologie H'(Og,p(®;cs E)) est nulle si i #q, ou g est le nombre de
racines positives a telles que (6 —Y;sm;, @) <0. Si S=¢, on a ¢=0; si
8 — Lies m; = — 90, toute racine positive vérifie (6 — s 1), a) <0 et g est égale
au nombre p de racines positives. Si Gy # SL(2, R), on a p > et donc d’apres le
corollaire 8.3, on a (#) pour j=0. On en déduit de (k) par récurrence que (#)
est vérifi€e pour tout j.

On a évidemment H°(Og,p) = C. On montre alors par récurrence a partir de

(#) et (k) que

dim (H%(0y)) =<1

pour tout j. Mais d’aprés la proposition 1, la fibre générique de v est non vide et
on peut supposer que dim (HO(Oyl )) =1 pour tout j. On a donc (b) pour tout j,
0=j =</ En particulier on a H(0y)=C et Y, =} Z; = E(g{ N §) est connexe.

PROPOSITION 12. L’intersection p; '({0}) de &; avec la section nulle de &; est
le réunion d’un nombre fini de K-orbites dans G/P. L’ensemble des points oi §;
est tangent a la section nulle est un ensemble algébrique de dimension strictement
inférieure a la dimension de p;'({0}). 1l est donc rare pour la topologie de Zariski

de pi_l({o})'

Démonstration. D’aprés Matsuki [21] ou Rossman [25], il n’y a qu’un nombre
fini d’orbites de K dans G/P. Il faut alors démontrer que p; n’a pas de facteur
carré dans I’anneau R(G) des fonctions polynomiales sur G. Comme A, n’est pas
un produit de deux caractéres de A non-triviaux qui sont associ€s aux fonctions
rondes, le théoréme de Cartan—Helgason implique que p; n’est pas un produit des
fonctions non-constantes invariantes & gauche par K et a droite par N. Or, R(G)
est un anneau factoriel (cf. [14], [23], ou [31]). Soit p; =f; - - - f; la factorisation de
p; dans R(G). Comme R(G) est factoriel, on a

filkgn) = xi(k)xi(n)f(g)

pour 1 =<i=¢, ou x; est un caractére de K et x; est un caractére de N. Or N n’a
pas de caractére rationnel non-trivial. Si K est semi-simple K n’en pas non plus,
p; est indécomposable, et la démonstration est achévée. Le cas contraire se
produit si et seulement si Gy/K, est un espace Hermitien symmetrique. Dans ce
cas, il existe une involution x (c.f. Flensted—Jensen [7], ot l'involution en
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question est notée oy, ou [26], p. 86—-87) de G ayant les propriétés suivantes:
1) k stabilise K et N et centralise A.
2) k(z) =z~ pour z dans le centre de K.
Pour f € R(G) notons f* le composé de f et x. On a alors

oo f=p=pf=fi o fr

Si f; = f7 alors f; est invariant a gauche par K et a droite par N, t=1et p;=f;. Si
fi#fi, comme R(G) est factoriel, f;f1 divise p;. Mais f;fi est une fonction
non-constante invariante a gauche par G et a droite par N. 1l en résulte que f; f1
est un multiple scalaire de p;, et la proposition est démontrée.

Nous avons besoin du théoré¢me suivant de Kleiman [15].

THEOREME K. Soient X un espace homogeéne sous le groupe algébrique G,
Y et Z deux sous-variétés lisses de X. Il existe alors un ouvert de Zariski non vide
% de G tel que pour tout ge ¥, lintersection gY NZ est transverse, non-
singuliére, et équidimensionelle de codimension codim(Y) + codim(Z).

L’espace total = est réunion de 2' G-orbites, correspondant aux 2' sous-
ensembles S de (W, 0y), ..., (W, 0;). Les points qui ont un répresentant de la

forme (g;z;,...,2z) ot z;=0 si et seulement si je€S, forment une G-orbite
qu’on note €.

PROPOSITION 13. La fibre générique de v est non-singuliére en codimension
un.

Démonstration. Comme G/P n’a qu’un nombre fini de K-orbites, { n’a qu’un
nombre fini de K-orbites, qui sont les images réciproques suivant § des K-orbites
de G/P. On considere la stratification de { par ses K-orbites w,, . .., w,. Chaque
w; est une sous-variété lisse d’une €5 qui la contient. Si w; et w; sont inclus dans
€25, le théoréme de Kleiman implique qu’il existe un ouvert de Zariski ¥ tel que
pour tout g € ¥ Pl'intersection gw; N w; est transverse et la formule

codimz (gw; N w;) = |§| + codimg (w;) + codimg, (w;) (1)

est valable. Par conséquent il existe un ouvert de Zariski non vide ¥ tel que la

formule (f) est vraie pour tout i et j pour tout ge%¥. Si ge% on a
codimz (g NE)=2L. On a

E(Q2sNE)={gPeG/P|p,(g)=0 sietseulement sije S}
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donc codim, (25 N &) =S| et codimg, (25 N &) =1, d’apres la proposition 7. Par
conséquent

codimz (gw; N w;) = |S| + 2/

et pour démontrer la proposition on n’a qu’a considerer les Qg avec |S| =1, et les
w; de codimension [/ dans €. Cela équivaut a dire que w; est une K-orbite
ouverte dans la variété { N 5. Désormais on suppose que w; et w, sont des
K-orbites de codimension / dans 2, et que |[S| =1. Soient g € ¥ et x € gw; N w;.
Comme w, respectivement gw; est un voisinage de x dans £ N 5 respectivement
gt N g, on a les égalités des espaces tangents T.(w,) = T.(£ N Q) et T,(gw;) =
T.(g€ N £25). Mais comme gw; N w est transverse et non-singulier dans £,

T.(88 N Q5) N T(E N L) = Tu(gw;) N To(wx) = Ti(gw; N wy)

et
dim (T, (g N )N T(E N Qs))=dim (E)—2[ -1

Mais d’apres la proposition 12, 7,({ N €5) est de codimension un dans T,({) d’ou
dim (T,(g¢ N §)) =dim (&) - 2

Donc g€ N ¢ est non-singulier en x, et la proposition est démontrée.

PROPOSITION 14. Si G, est simple et dim Gy > 3, la fibre générique de v est
irréductible.

Démonstration. On sait par les propositions 10 et 13 que la fibre générique de
v est une intersection complete locale et non-singulier en codimension un. Il en
résulte, d’apres un critere dd a Serre (c.f. [9], proposition 8.23, p. 186), qu’elle
est normale. D’aprés la proposition 11, elle est connexe. La proposition résulte
du fait qu’un ensemble algébrique normal et connexe est irréductible.

THEOREME 2. Supposons G, simple. Si dim (Gy) >3, la fibre générique de
u est irréductible.

Démonstration. C’est une conséquence immédiate de la proposition 14 et le
lemme 9.
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§6. Conclusion

PROPOSITION 15. Toute composante irréductible de @ qui domine G
rencontre (¥ X J) X (¥ X T). Par conséquent, il existe un ouvert de Zariski
Y, <« Y, de G tel que pour tout y € %, A, soit constante sur u~'(y).

Démonstration. Si G, est simple et dim (G,) > 3, le théoréme 2 implique qu’il
n’y a qu’'une composante irréductible de @ qui domine G, celle qui contient la
diagonale de (K X 2') X (K X @"). Si dim (G,) = 3, la proposition 2 montre que
chacune des deux composantes irréductibles de (K X 2') X5 (K X 2') qui domi-
nent G rencontre tout voisinage de ({1x} X {(04, xP)|x € G}) x ({1} X
{(0g, xP) | x € G}). Si G, est un produit de groupes simples, (K X @) X5 (K X
2') est un produit de facteurs correspondants aux facteurs simples de G,. 1l en
résulte que toute composante irréductible qui domine G rencontre tout voisinage
de ({1x} X {(0, xP) | x € G}) X ({1x} X {(0, xP) | x € G}).

Comme les compositions A, °p, et A, °p, coincident sur (¥ X J) X5 (& X
), ils sont égales sur toute composante de (K X 9') X (K X 9") qui domine G,
d’ou le théoreme.

PROPOSITION 16. La fonction n*=P,oft admet un prolongement
analytique a un ouvert de Zariski %; non vide de G.

Démonstration. 11 existe un ouvert de Zariski % c % de G tel que pour tout
y € %, il existe x € u~'({y}) tel que la différentielle de u soit de rang maximal en
x. Donc pour tout y € %, il existe un inverse a gauche holomorphe j, a u défini
dans un voisinage de y et f, = A, ¢j, est donc une fonction analytique definie dans
un voisinage de y. Deux telles fonctions f,, et f,, coincident en tous points ou elles
sont définies. Les f, induisent donc une fonction globale holomorphe % — V, qui
prolonge 7%, et qui sera notée également x*.

On peut maintenant achéver la démonstration du théoréme 1. Soit g € G,.
Comme le vecteur x(g)v € V est vecteur analytique invariant par gIg~', on peut
prolonger la fonction w¥(x) = P, (n(x)(w(g)v)) de G, a I'ouvert de Zariski %.
Comme %g N %, est un ouvert de Zariski non vide de G, il est connexe, et on a
Pégalité n*(x) = n%(xg~") sur Bg N ;. Cela étant le cas pour tout g € Gy, et G
étant dense dans G pour la topologie de Zariski, on déduit que la fonction
n* = P, o ft peut étre prolongée a G tout entier. Comme x* est invariant a droite
par I, elle est constante d’aprés le théoréme W. Le théor¢me P-W implique
maintenant que f est constante, ce qui achéve la démonstration du théoréme 1.
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