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Un théorème de densité analytique pour les groupes semisimples

David Wigner

§1. Introduction

Soient Go un groupe semi-simple linéaire connexe sans facteur compact,
(V, Jt) une représentation continue de Go dans un espace vectoriel topologique
localement convexe séparé V, F un sous-groupe cocompact de Go, v un vecteur
de V invariant par tout élément de F. Ces notations seront en vigueur jusqu&apos;à la
fin de l&apos;article. On a alors

THÉORÈME Q. Si V est de dimension finie, v est invariant par tout élément

deG0.

Remarque. L&apos;histoire du théorème Q est assez compliquée. Dans le cas où F
est discret, mais où l&apos;on suppose plus généralement que Go/F admet une mesure
Go-invariante finie, ce théorème est dû à A. Borel [2]. Dans [32], A. Weil donne

une démonstration simple du théorème Q, mais comme son but était de fournir
une démonstration rapide d&apos;un cas particulier du théorème de Borel, dans son
énoncé il suppose F discret et (V, jz) la représentation adjointe. Dans son livre
[24], Raghunathan remarque que la démonstration de Weil est valable avec les

hypothèses ci-dessus.

On note go l&apos;algèbre de Lie de Go; une notation analogue sera utilisée pour les

autres groupes et algèbres qui seront introduits ultérieurement. Rappelons que le

vecteur v de V est dit analytique si pour tout X e go, on a un développement en
série entière:

jr(exp {tX))v vo(X) + tvx(X) + t2v2(X) + • • • (t)

qui converge pour |f| suffisamment petit. Ici les Vj sont des vecteurs de V, qui
dépendent de v et sont forcément des fonctions polynomiales de X.

Nous proposons ici de remplacer l&apos;hypothèse que V est de dimension finie
dans le théorème Q par l&apos;hypothèse que v est un vecteur analytique; hypothèse
qui est toujours satisfaite si V est de dimension finie. Notre résultat principal est
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donc:

THÉORÈME 1. Gardons les notations ci-dessus. Si v est un vecteur
analytique, alors v est invariant par tout élément de Go.

Quitte à remplacer Go par un revêtement fini, on peut supposer Go plongé
dans son complexifié simplement connexe, qu&apos;on notera G. Comme Go opère
continûment sur le complété de V, on peut supposer V complet. On fera
désormais ces hypothèses.

Comme le rapport de certaines propositions intermédiares avec le théorème
visé n&apos;est pas évident à premier vue, nous avons cru bon de fournir les

raisonnements préliminaires dans cette introduction.
Notons d&apos;abord le simple

LEMME 1. Si v est analytique et y e Go, alors n(y)v est analytique.

Démonstration. On a

^(exp (tX))jt(y)v *(y)*(exp (t Ad (y)(X)))v
Jt(y)(vo(Ad (y)(X)) + tv^Ad (y)(X))
+ t2v2(Ad(y)(X)) + -..).

Comme n(y) est un isomorphisme topologique de V, la série est convergente
pour \t\ suffisament petit.

Comme (t) est convergente pour X e g go ® C, l&apos;algèbre de Lie de G, et
teC avec \t\ suffisament petit, la fonction nv(X) jr(exp{X))v admet un
prolongement analytique à un voisinage de l&apos;origine de g. Soit â l&apos;ouvert étoile
maximal de g où la fonction kv admet un prolongement holomorphe.

LEMME 2. Si geGQet n(g)v t/, alors â Ad (g)(2t).

Démonstration. Si n(g)v v on a

^(Ad (g)(X)) ;r(exp (Ad (g)(X)))v ^(g)^(exp (tX)n(g~l)v

jt(g)jt(cxp (tX)v 7t{g)

pour X suffisamment petit. Le lemme est alors un conséquence de l&apos;unicité du

prolongement analytique.
Rappelons que le voisinage de Harish-Chandra de g est un ouvert Ad (G)-
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invariant de g, étoile par rapport à l&apos;origine dans lequel l&apos;application exponentielle

de G est un diffémorphisme. Soit % l&apos;intersection de â avec le voisinage de

Harish-Chandra. Par conséquent °U est un ouvert Ad (F)-invariant contenant
l&apos;élément neutre de g sur lequel la fonction Jtv admet un prolongement
analytique. Soit V un compact de Go tel que VF= Go. Considérons l&apos;intersection

W Od€V Ad (&lt;/)(%). Elle vérifie:
1) W est un ouvert de g parce que V est compact.
2) kv admet un prolongement holomorphe à W.

3) W est Ad (Go)-invariant.
4) W est étoile par rapport à l&apos;origine.

5) W est contenu dans le voisinage de Harish-Chandra.
Soient 6 une involution de Cartan de g0 et g0 ko © p0 la décomposition de

Cartan correspondante. On note p le complexifié de p0. On note également 0 les

involutions de Go, G, et g induites par 0. On note K le complexifié de Ko; une
notation analogue sera utilisée pour les autres groupes qui seront introduits
ultérieurement. L&apos;hypothèse que G est simplement connexe entraine que K est
l&apos;ensemble de points invariants de 0 dans G (cf. [30]). On choisit un sous-espace
abélien maximal ao de p0 et no sera la somme des espaces radiciels correspondants
aux racines positives pour un ordre de ao. Soit M le centralisateur de A dans K;
avec ces notations P MAN sera le normalisateur de N dans G.

Fixons un élément X de n; si Y est un élément de la chambre de Weyl
positive de ao, suffisamment loin des faces, Ad (exp (Y))(X) sera dans W.
Comme W est invariant pour Ad (Go), W contient n, ainsi que tout ses conjugués
par des éléments de Go.

On définit les sous-ensembles ^ et ^r de g;

«= U Ad(x)(n)
xeG

&lt;«r= U Ad(jt)(n)
xeGo

D&apos;après ce qui précède, ^R est contenu dans W. On a la désingularisation de

Springer,

2) {(m, xP) € g x G/P | w € Ad (jc)(h)}

et l&apos;application s : B -* % de désingularisation, e(uf xP) u. Notons W : 3) —» G/P
la projection; ainsi W((uf xP)) xP. Posons 2&apos; V\KPIP). Noter que
W:2)-+G/P et V:3)&apos;^&gt;KP/P sont des fibres vectoriels holomorphes, et que

V-l(G0/P0) U {(0r xP) | x e G} c e-\&lt;€*) s e&apos;\W H «).
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THÉORÈME L. Soient y:E-*G/P un fibre vectoriel holomorphe, et V un
ouvert connexe de E contenant ^/&quot;^(Go/Po) et la section nulle. Une fonction
analytique q&gt; à valeurs dans un espace vectoriel topologique localement convexe
complet, définie sur Y, admet un prolongement analytique à E tout entier.

Ce théorème est dû à F. Lescure (cf. [20]). Le théorème L nous permet de

considérer par la suite l&apos;application y : 3) —&gt; V, prolongement holomorphe de

jîv o s à 3).

Pour le commodité du lecteur, nous donnons une démonstration rapide du
théorème L dans le §2. Cette démonstration a été trouvée en collaboration avec
C. Laurent; je tiens à exprimer ma reconnaissance de sa permission de la

reproduire ici.
On aura besoin d&apos;une forme faible du théorème de Peter-Weyl qui sera

valable dans les espaces localement convexes complets généraux.

THÉORÈME P-W. Soit (U, p) une représentation d&apos;un groupe compact L
dans un espace localement convexe complet U. Pour chaque représentation
irréductible % (de dimension finie) de L, il existe un sous-espace isotypique Ux,
ainsi qu&apos;une projection L-equivariante Px de U sur Ux. De plus, l&apos;intersection des

noyaux des Px, quand % parcourt toutes les classes d&apos;isomorphie des

représentations de L, est réduite à 0v.

La première application qu&apos;on fera de ce théorème sera pour énoncer une
formulation équivalente du théorème Q, formulation qu&apos;on utilisera pour la
démonstration du théorème 1. La même démonstration sera valable dans le cas

ou GIF admet une mesure G-invariante finie, et conduira à une formulation
équivalente du théorème de densité de Borel.

THÉORÈME W. Soit f:G-*V une fonction holomorphe sur G, à valeurs
dans un espace vectoriel topologique localement convexe complet, invariante par
translation à droite par tout élément de F. Alors f est constante.

Démonstration. Comme les éléments du dual V* de V séparent les points de

V, on peut supposer que V C.
On choisit pour L un sous-groupe compact maximal de G, et pour U l&apos;espace

de fonctions holomorphes sur G, muni de la topologie de la convergence
compacte. Le groupe L opère par translation à gauche. Les sous-espaces
isotypiques Ux sont alors de dimension finie, parce que L est une forme réelle de
G. Le groupe Go opère par translation à droite sur chaque Ux, et le sous-groupe F
laisse chaque Px(f) invariant. D&apos;après le théorème Q, chaque Px(f) est invariant
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par Go. Il en résulte, d&apos;après le théorème P-W, que / est invariant par Go. D&apos;où

le théorème.
L&apos;autre application qu&apos;on fera du théorème P-W est avec U V et L Ko.

L&apos;opération de KQ sur Vx peut alors être prolongée à K. On va noter

mx : K x Vx —? Vx ce prolongement. On va considérer la fonction A^ : K x 2)
&apos; -* V^

qu&apos;on obtient en composant crx avec /rfK x (Px © y) c&apos;est-à-dire A^ mx ° (/d* x

On considère aussi l&apos;application ju:J£xâ&gt;&apos;—»G définie par la formule

PROPOSITION 1. U image fi(K x2&apos;) contient un ouvert de Zariski non vide

% de G.

Démonstration. D&apos;après un théorème de Kostant [17], Go K0N0K0, donc

pour geGOf on a g k1nk2z= klk2(k21nk2) et Go est contenu dans l&apos;image

(i(K x S&apos;). Or cette image est un ensemble constructible. Soit elle est rare pour
la topologie de Zariski, soit elle contient un ouvert de Zariski non vide. Comme
Go est dense dans G pour la topologie de Zariski, la proposition en résulte.

Bien entendu, on peut remplacer 2)&apos; par 3) dans l&apos;énoncé.

Convention. Si f:X-*Y est un morphisme algébrique de l&apos;ensemble

algébrique X dans la variété algébrique Y, dominant (f(X) contient un ouvert de

Zariski non vide de Y), et pour tout y dans un ouvert de Zariski non vide de Y,

f~\{y}) a la propriété * on dira que la fibre générique de /a la propriété *

THÉORÈME 2. Supposons Go simple. Si dim (Go) &gt; 3, la fibre générique de

\i est irréductible.

Le théorème 2 sera démontré dans les §4 et §5. On va donc supposer dans ces

§ que Go est simple.
Comme W est contenu dans le voisinage de Harish-Chandra, on peut définir

une fonction holomorphe ft:exp(W)-+V par la formule A(exp(X)) jïv(X).
Posons jtx~Px° k.

Soient ïf et ÏÏ sont des ouverts connexes de K et 3)&apos; respectivement tels que
1*6 5^, que la section zéro de 3)&apos; soit contenue dans J~, et que ju(5^ x ïï) soit
contenu dans W. Si k € Sf et (m, xP) eJ,ona

(m, xP)) mx(k, Px(jtv(u))) Px(A(k exp (u))) **•*!(*, (m, xP))

Par conséquent A% est constante sur l&apos;intersection des fibres de \x avec Sf x ÏÏ.
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Considérons alors le produit fibre

&lt;P (Kx3)f)xG(Kx2)&apos;)

et notons pu p2.&lt;P-*Kx 3)&apos; les projections de # sur les deux facteurs

Kx3)f. Les fonctions analytiques \°P\ et Ax°p2 coïncident sur l&apos;ouvert

(y x £T) xG (5^ x ZT). Si &lt;P0 est une composante irréductible de 0 qui rencontre

(?xf)xc(^xy), Ac°Pi et Ac°P2 coïncident sur 4&gt;0 par l&apos;unicité du

prolongement analytique.

PROPOSITION 15. Toute composante irréductible de 0 qui domine G

rencontre (^x3&quot;)xG(^xy). Par conséquent, il existe un ouvert de Zariski
% œ% de G tel que pour tout y e %, \ soit constante sur \i~\y).

Remarquons d&apos;abord que l&apos;assertion de la proposition 15 pour un produit de

groupes Go simples est un conséquence de la même assertion pour les facteurs.
Pour Go simple avec dim (Go) &gt; 3 le théorème 2 implique qu&apos;il n&apos;existe qu&apos;une

composante irréductible de 4&gt; qui domine G. La proposition sera un conséquence
du théorème 2 et l&apos;étude des groupes de dimension 3 faite dans le §2.

La proposition 15 implique que kx admet un prolongement holomorphe à un
ouvert de Zariski non vide de G qui vérifie

Le lemme 1 permet alors de déduire que nx admet un prolongement à G tout
entier. Le théorème W montrera alors que nx est constante, et le théorème P-W
montrera qu&apos;il en est de même de k, d&apos;où le théorème 1. Cette déduction du
théorème 1 de la proposition 15 sera faite dans le §6.

§2 Etude de 5(7(1,1). Démonstration du théorème L.

Dans la proposition 2 et les lemmes 3 et 4 on spécialise au groupe

On choisit 6(g) &apos;g&quot;&quot;&quot;*, de sorte que Ko est le sous groupe des matrices diagonales
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de SU(l, 1). Le complexifié

Jx + iy

Avec cet écriture un élément de G est unipotent si et seulement si x 1.

PROPOSITION 2. Si Go 5(7(1, 1), la fibre générique de ju consiste en

deux points et &lt;P a exactement deux composantes irréductibles qui dominent G.

Chacune d&apos;elles rencontre tout voisinage de {{lK} x {(0g, xP) \ x e G}) x ({1*} x
{(Og,xP)|*eG}).

Démonstration. Pour déterminer la fibre ^^({g}) on aura à résoudre
l&apos;équation

(u 0\/l-a b Wgn gn\
\0 m&quot;V\ c 1+0/ \g21 g22)

avec bc —a2. On trouve alors

a V(l - gng22)

&amp; gi2gn(l - V(l - giig22)) gi2g22(l + V(l - gng^))&quot;1

C g2lgM(l + V(l - gllg22)) glig2l(l ~ V(l &quot; gllg22))&quot;X

u=g£(\+V(i - gng22))=gn(i - va -
et comme l&apos;expression sous le radical tend vers zéro lorsque gn et g22 tendent
vers 1, la proposition 2 en résulte.

On considère l&apos;opération de G SL(2, C) sur la sphère de Riemann P^C) qui
est isomorphe kG/P; on a:

821Z+822

Dans cette identification Go/Po correspond au grand cercle {z | \z\ 1}.

LEMME 3. Soient i^E-^
ouvert connexe de E contenant

un fibre vectoriel holomorphe, et V un
\ \z\ 1}) et la section nulle. Une fonction
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analytique cp à valeurs dans un espace vectoriel topologique localement convexe
complet, définie sur V admet un prolongement analytique à E tout entier.

Démonstration. Comme PX(C)\{&lt;»} C, la restriction du fibre ^-.JE-^P^C)
à P1(C)\{«&gt;} est un fibre trivial. Sur ^^(P^C^X{&lt;*&gt;}) on peut écrire &lt;p &lt;p(£, e)
où £ est la variable dans P1(C)\{c»} et e est la variable dans la fibre de E. La
fonction &lt;p est définie comme fonction de £ et e dans un voisinage de |£| 1,

e e C et e 0, £ e C.

Le théorème de la marmite de Hartogs (cf. [1] Ch. 4 ou [12] p. 164) implique
maintenant que &lt;p admet un prolongement analytique à |£| &lt; 1, e e C, donné par
la formule

où le chemin d&apos;intégration est le cercle |z| l. La démonstration usuelle du
théorème de la marmite est valable pour les fonctions aux valeurs dans un espace
vectoriel topologique localement convexe complet parce que l&apos;intégrale définit
une fonction holomorphe.

Un raisonnement analogue montre que &lt;p admet un prolongement analytique

pour les autres valeurs de £.

LEMME 4. Soient ip:E—&gt;P1(C) un fibre vectoriel holomorphe, °U un ouvert
non vide de P*(C) et Y un ouvert connexe de E contenant ^-1(%) et la section
nulle. Une fonction analytique &lt;p à valeurs dans un espace vectoriel topologique
localement convexe complet, définie sur V admet un prolongement analytique à E
tout entier.

Démonstration. On peut supposer sans perte de généralité que °° e °U. Quitte
à remplacer dans l&apos;intégrale le chemin \z\ 1 par le chemin \z\ =/? pour R
suffisament grand, la démonstration sera alors la même que pour le lemme 3.

PROPOSITION 3. Soient ip:E-+Xun fibre vectoriel holomorphe, et&lt;p:E-+
V une fonction à valeurs dans un espace vectoriel topologique localement convexe
complet. Si &lt;p est holomorphe dans un voisinage de la section nulle, et la restriction
de &lt;p à chaque fibre de \\&gt; est holomorphe, alors q?:E-*V est une fonction globale
holomorphe.

Démonstration. D&apos;après [12] corollaire 11.3, q&gt; est holomorphe si/&lt;&gt;ç? est

holomorphe pour tout feV*. On peut donc supposer que V C. Comme la
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conclusion de la proposition est une propriété locale, on peut supposer que X est

un ouvert de Cn et que \j&gt; est un fibre trivial. La proposition devient alors le

lemme de Hartogs&apos; (cf. [1] p. 139 théorème 2).

Convention. Soient \p:E-+X un fibre vectoriel holomorphe, et cp une
fonction holomorphe dans un voisinage de la section nulle de y. On dira que
x 6 X est un point entier de q&gt;

s&apos;il existe une fonction globale holomorphe sur
V&quot;1^*}) qui coincide avec cp Iv/-K{*» dans un voisinage de zéro.

PROPOSITION 4. Soient Q un sous-groupe parabolique de G, V -E-&gt; G/Q
un fibre vectoriel holomorphe, °U un ouvert non vide de G/Q et V un ouvert
connexe de E contenant ty&apos;1^) et la section nulle. Une fonction analytique q&gt; à

valeurs dans un espace vectoriel topologique localement convexe complet, définie
sur V admet un prolongement analytique à E tout entier.

Démonstration. D&apos;après la proposition 3, il suffira de démontrer que tout
point de G/Q est un point entier de &lt;p.

Supposons d&apos;abord que Q B est un sous-groupe de Borel de G. Il suffira de

démontrer que \GB est un point entier de &lt;p. Soit co0 l&apos;élément le plus long du

groupe de Weyl de G. Comme BcooB est dense dans G/B, il existe xB e °UC\

Bco0Bf d&apos;où h Ad (x)(b) H b est une sous-algèbre de Cartan de g. Des résultats
de Kostant (cf. [16] ou [6] Chapitre 8 §11) montrent qu&apos;il existe e eb,
f e Ad (x)(b), et h e h vérifiant

1) (h, e, f) est un 5/2-triplet dans g.
2) Chacun des éléments e et / est contenu dans une seule sous-algèbre de

Borel de g.
Soit / le sous-groupe analytique correspondant au s/2-triplet (/*, eff); il existe

y e J vérifiant Ad (y){e) /. On a / € Ad (y)(b) et Ad (y)(b) Ad (jc)(b) à cause
de 2). Comme e, h e j H b, la /-orbite R sur G/B contenant \GB est isomorphe à

P1(C). On peut alors appliquer le lemme 4 au fibre \p~l(R)-+ R et conclure que
tout point de R est un point entier de q&gt;. En particulier 1GB est un point entier de

(p.

Soient maintenant Q un sous-groupe parabolique quelconque de G et fi un

sous-groupe de Borel contenu dans Q. Soient D-+G/B le fibre induit par
l&apos;application G/B-+G/Q, et §:D-&gt;£ la projection. D&apos;après ce qui précède, la
fonction &lt;p°| admet un prolongement analytique à G/B, qu&apos;on notera k. Soient

qt et q2 les deux projections de DxED sur D; alors les fonctions analytiques

K°qt et K°q2 coïncident sur l&apos;ouvert non vide V de E et sont donc égales. Il en
résulte que k : D —» V passe au quotient E et définit un prolongement holomorphe
global de cp.
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THÉORÈME L. Soient ip:E-+ G/P un fibre vectoriel holomorphe, et V un
ouvert connexe de E contenant tl&gt;~l(G0/P0) et la section nulle. Une fonction
analytique &lt;p à valeurs dans un espace vectoriel topologique localement convexe
complet, définie sur V admet un prolongement analytique à E tout entier.

Démonstration. On considère, avec Kostant-Rallis [18], un s/2-triplet principal

normal standard de G, c&apos;est à dire un ^/2-triplet (h, e, /) tel que h e k,
e,fep et e + / w, où w est l&apos;élément de la chambre de Weyl positive de a()

vérifiant a(w) 2 pour tout élément a d&apos;une base des racines restreintes positives
(cf. [18] proposition 13). Soient j0 la sous-algèbre de Go engendré par (h, e,f), j
son complexifié, et / le sous-groupe analytique de G correspondant à j; il existe

y eJ tel que Ad (y)(h) w et Ad {y2) Idj. D&apos;après le théorème 5 de [18], ou
directement, on voit qu&apos;on peut choisir (h,e,f) de façon que Ad(y)(e) et
Ad (y)(f) soient dans go.

Considérons la /-orbite R de 1GP dans G/P. Comme u j H p contient w et

Ad(y)(e), l&apos;isomorphisme R—J/U induit RnG0/P0 — J0/U0. On peut donc

appliquer le lemme 3 au fibre i//&quot;^/?)-*/? et conclure que les points de R, dont
yPy sont des points entiers de &lt;p.

Comme p est la somme des espaces propres de ad(vv) correspondants aux
valeurs propres non-negatives, Ad (y)(p) est la somme des espaces propres de

ad(/ï) correspondants aux valeurs propres non-negatives. Par conséquent
Ad 0&gt;)(p) contient une sous algèbre de Borel de k, la tf-orbite T de yP est

compact, et Ko opère transitivement sur T. Il résulte alors de [21] corollaire p.
357 ou [22] corollaire 2 p. 317 que la G0-orbite 5 de yP est ouverte dans G/P. Les

hypothèses du théorème L étant stables pour l&apos;opération de Go sur G/P, on peut
déduire que tous les points de 5 sont des points entiers. Une application de la

proposition 4 achève la démonstration.

§3 Représentations sphériques et fonctions rondes

Nous rassemblons ici plusieurs résultats, pour le plupart bien connus, qui
seront utiles pour la suite. Fixons d&apos;abord quelques notations. Soit t une

sous-algèbre de Cartan de m, par suite h t © a est une sous-algèbre de Cartan
0-stable de g. On choisit un ordre de h compatible avec l&apos;ordre de a, par exemple
l&apos;ordre lexicographique par rapport à une base xx,...,xr de h telle que

xx,..., Xi soit une base de a. On note la forme de Killing de g, ainsi que sa

restriction à h et la forme induite sur la duale h* de h.

DÉFINITION. Une représentation (W, a) irréductible de dimension finie de

G est dite sphérique s&apos;il existe dans W un vecteur w, K-invariant et non nul.
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Pour les représentations sphériques, on a le théorème de Cartan-Helgason
(cf. [10], [11]). Soient (W, o) une représentation irréductible; on notera rj son
plus haut poids, u son plus haut vecteur. Pour tout h e H on posera Âa(/i)

d&apos;où o(h)u ka(h)u.

THÉORÈME C-H. Les conditions suivantes sont équivalentes:
1) (W, a) est sphérique;
2) dim(W*) l;
3) u est M-invariant;
4) Àa(Xn/J) l.
5) rj vérifie

r|(hnk) 0 et ^^&lt;ûf, a)

pour toutes les racines restreintes positives a.
Si (W, a) est sphérique, et w son vecteur K~invarianty il existe une forme

bilinéaire non-dégénérée B sur W vérifiant B(uy w) =£ 0 et

B(a(x)vu v2) B(vlf o(d(x)-l)v2) (t)

pour tout Vi, v2 e W.

Soit (W, a) une représentation sphérique; la fonction pa(x) B{o{x)u, w)
vérifie alors, pour tout keK&gt; g e G, me M, aeA, neN,

paikxman) B(o(kxman)u, w)

B(a(x)o(man)uf a(d(k)~l)w)

ka(a)B(o(x)u, w)

po{kxman) ko(a)pa(x). (%)

Le théorème de Cartan-Helgason et la structure connue de l&apos;algèbre des

fonctions polynomiaies sur G impliquent que les po quand a parcourt les

représentations sphériques de G forment une base d&apos;espace vectoriel de l&apos;algèbre

2ft des fonctions poiynomiales sur G, invariantes à gauche par K et à droite par N.
Comme rç(h n k) 0, on a î] ° B -rç, et (t) montre que u est orthogonal à

tous les autres espaces de poids de W. Donc B(u, u)=É0, sinon u serait

orthogonal à W tout entier. On va supposer désormais que w et w sont normalisés
de façon que B(w, u) 1 et B(u, w) 1, de sorte que po |//= Âa.

Fixons une base (ai,..., at) des racines restreintes positives, et soit
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(ôi,..., ai) une base du système des racines dual dans a*. Comme le cône

engendré par les â; est le même que celui engendré par les ocp on peut supposer
que ôcj est un multiple scalaire de a) pour tout j. Soit a] la racine restreinte qui
vérifie â; 2ar;7(ar;&apos;, oc&apos;j). On considère un système basique de représentations
sphériques de G, (Wlf ox),... (Wh ot) où le plus haut poids rç; de (WJf ay)

vérifie

On note u} son plus haut vecteur, vvy son vecteur ^-invariant, 2?; la forme
bilinéaire non-dégénérée vérifiant (t), p;(x) Bj(Oj(x)up w,) la fonction poly-
nomiale K - iV-biinvariante correspondante, et A; p, |H.

Si (W, a) est une représentation sphèrique, de plus haut poids rç, on a

V E;=i cyr/;, où les c; sont des entiers positifs. Comme l&apos;espace propre pour
l&apos;opération de A sur 91 associé à la valeur propre Aa est de dimension un, on a

po — \Mj=\ p]1. Les monômes en les p} forment une base de l&apos;espace vectoriel 9t.

On a donc le

COROLLAIRE. L&apos;algèbre 9t des fonctions polynomiales sur G, invariantes à

gauche par K et à droite par N est l&apos;algèbre des polynômes engendrée par
plf. ph

On a ainsi une application polynomiale p : G -» Cl invariante à gauche par K
et à droite par MN. La restriction de p à A est un homomorphisme de A dans C*1

et le théorème de Cartan-Helgason implique que son noyau est égal kACiK.

DÉFINITION. Dans la suite, on appellera fonctions rondes sur G les
fonctions polynomiales sur G, invariantes à gauche par K et à droite par N,
fonctions propres pour l&apos;opération à droite de A.

LEMME 5. Pour x e G, les conditions suivantes sont équivalentes:
1) d{x)~xx 6 NG(H), normalisateur de H dans G.

2) xHx~l est un sous-groupe de Carton 8-stable de G. De plus, chaque double
classe KyN de G contient un élément vérifiant 1) et 2).

Démonstration. Si 1) est vérifiée, on a

6{xHx~l) d{x)Hd(xYl xx-le{x)H6{x)-lxx-1 « xHx&apos;K
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Si 2) est vérifiée, on a

xHx~l 6(xHx-1) d(x)Hd(xYl

et

eixy^Hx^eix) h.

Pour la deuxième assertion voir [21] ou [25].

LEMME 6. pj{xf B,(o,(x)uJ9 Oj{x)u}).

Démonstration. Il est clair que x*-*B,(o,(jc)ur &lt;?,(*)!*,) est une fonction ronde
et que Bj(Oj(xa)uJt Oj{xà)Uj) Xj(a)2Bj(o,{x)up Oj(x)Uj). L&apos;égalité résulte du fait
qu&apos;il n&apos;existe qu&apos;une fonction ronde, aux scalaires près, qui transforme suivant le

caractère kf de a, et des normalisations qu&apos;on a faites.

PROPOSITION 5. Soit KxP une double classe telle que xHx&apos;1 soit 0-
invariant. Alors ou bien pj ne s&apos;annule pas sur KxP, ou bien py est identiquement
nulle sur KxP. Les conditions suivantes sont équivalentes.

1) Pj ne s&apos;annule pas sur KxP;
2) Ker(A;) 3,4 PU^/Ct;
3) J^^
Démonstration: La première assertion est une conséquence immédiate de la

formule (%).
L&apos;équivalence de 2) et 3) est une conséquence du théorème de Cartan-

Helgason.
1) implique 3): Si h eHC\x~lKx, on a

parce que xh~~lx~l e K. Si A;(A) # 1, on a Pj(x)= 0.

3) implique 1): Supposons p;(x) 0. Soient i/7 ry(0), rj(1),...., ry(m) les poids
extrémaux distincts de (W, a;) pour H; ils sont forcément de multiplicité un.
Soient u} u{0\ w(1),..., w(m) les vecteurs correspondants, et A(l)(/i)
exp(^(l)(log(h))) pour l&lt;i&lt;m. La restriction de la forme bilinéaire B au
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sous-espace E de W, engendré par les «(l) est non-dégénérée. On a

0 p,{xf B,(a,(*)u,, a,(*)«,) BfaMxT^u,, u,)

et ol(d(x)~1x)u, e E parce que 6(x)~lx normalise H. Par conséquent il existe un

q # 0 tel que

B,(o,(x)u(Q\ o,(x)u™) B,(o,(d(x)-lx)um, u

et, pour tout h e H:

parce que x~l6{x) normalise H 6(H). Par conséquent

où on a posé cy(g) ygy&quot;1 pour tout y,geG. L&apos;involution Bx de G qui fixe
x~lKx vérifie

donc

et

parce que les A(l) sont distincts. Par conséquent A n&apos;est pas identiquement 1 sur
Hnx~lKx.

LEMME 7. Le normalisateur NG{A) de A dans G est contenu dans KA.
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Démonstration. Soit x e NG(A). Alors x normalise a et le centralisateur m © a

de a dans g. Quitte à multiplier x à gauche par un élément de M, on peut

supposer que x normalise t et h. Comme chaque élément du groupe de Weyl
restreint a un représentant dans K, on peut supposer que x centralise A et
normalise t. Il en résulte (cf. l&apos;appendice de [26]) que x e KA.

PROPOSITION 6.

KAN p-\C*1).

Démonstration. Si g kan, on a p,(g) Xj(a) =é 0 pour 1 &lt;/ &lt; / donc KAN ç
p&quot;1^*&apos;). Pour montrer la réciproque, soit KxN une double classe dans p~x(C*1).
On peut supposer que x vérifie les deux conditions équivalentes du lemme 5. La
proposition 5 implique alors Ad (x~l)(k) nhct, d&apos;où k H Ad (x)(h) c Ad (x)(t).
Mais comme Ad(jc)(h) est 0-stable, dim (Ad (jt)(h) nk)&gt;dim(t), et kn
Ad(*)(h) Ad(jt)(t). Mais pflAd(jc)(h) est contenu dans l&apos;orthogonal

Ad (x)(a) pour la forme de Killing de Ad (x)(t) dans Ad (*)(h). Comme ces deux

espaces ont la même dimension, ils se confondent. Il résulte alors de [18],
théorème 1 qu&apos;il existe k e K tel que Ad (fot)(a) a, c&apos;est à dire que kx normalise
a. Mais d&apos;après le lemme 7 le normalisateur de a est contenu dans KA.

Soit A {/?!,... fir} le système de racines simples de h. On note ô la
demi-somme des racines positives de h; c&apos;est aussi la somme des poids
fondamentaux de h. Posons

Al A\A0.

On a alors le lemme suivant (cf. Satake [26], p. 80, lemme 1):

LEMME 8. Pour tout PeAu il existe pdeAt tel que -0(j8) fi6 + s, où s est

une somme d&apos;éléments de Ao.

COROLLAIRE 8.1. Toute racine restreinte simple a) est la restriction à a
d&apos;une racine simple fik e Ax. Il existe au plus deux racines simples dont la

restriction à a est égale à at. La restriction d&apos;une racine simple à a est soit 0, soit
une racine restreinte simple.

Démonstration du corollaire 8.1. On a
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où les ck sont des entiers positifs et où chaque fik e At. Comme chaque j}k \m est

une racine restreinte positive, et oc} est une racine restreinte fondamentale, on a

(Xj j8 |a pour un j8 e Ax convenable, et a, (j8 + j80 4- s)/2, où oc} est prolongée à

h en posant at |t 0. Cette représentation est unique, d&apos;où la deuxième assertion
du corollaire.

Soit maintenant fi une racine simple, et supposons P\m—Hctan d&apos;où

P + /Î0 s + E c,(A + $f), où s est une somme d&apos;éléments de Ao, comme
précédemment. Or l&apos;unicité de la représentation implique la troisième assertion
du corollaire.

COROLLAIRE 8.2. Les plus hauts poids r\]y l&lt;y&lt;/ des représentations
sphériques basiques sont soit égaux à deux fois un poids fondamental, soit égaux à

la somme de deux poids fondamentaux, soit égaux à deux fois la somme de deux

poids fondamentaux distincts. Si Go admet une structure complexe, chaque r\j est la

somme de deux poids fondamentaux. Les poids qui interviennent dans les

représentations des rjj distincts comme somme des poids fondamentaux, sont
distincts.

Démonstration. On a vu que la base du système dual consiste en multiples
scalaires d&apos;éléments de la base du système de racines restreintes. Supposons que
(Xj soit la restriction de A à a. Les rj; vérifient alors 0(fy) — rjy et (rj;, A) 0 si

A #)3;, fif. On étend les éléments a de a* à h en posant ce |t 0, de sorte que

(1p P?) il,* A) (Vn *j&gt; c{ot,, &lt;x})

où c vérifie ce&apos; coc donc c 1 ou 2. Comme 6 conserve la forme de Killing, ceci

équivaut à

cl-
Comme A + ^(A) n&apos;est jamais une racine, soit A ~^(A)&gt; soit 2«A&gt; e(P,))f
(Pp A)) est un entier non-négatif, forcément 0 ou 1, parce que si 2((A&gt; Q(Pj))l
(A, A» 2, on a A 0(A) et &lt;*! °- si A -^(A)&gt; on a A % et rj; est 2c
fois un poids fondamental. Mais dans ce cas, on a forcément c 1. Or si tp est

une racine dont la restriction à a est 2aJf on a 2((A&gt; H*)/(Pj9 Pj)) — 4&gt; ce qui est

impossible pour un système de racines réduit.
Si 2«A&gt;0(A)&gt;/&lt;A&gt;A» 1&gt; c est P^r, donc c 2, d&apos;où 2«!&amp;,#)/

(A, A))= 1 et ^ est la somme des poids fondamentaux associés à A et A0- Si

A 1 0(A)&gt; on a 2(^i&gt; Pi)/(Pp A))= c- Dans ce cas? ^ est c fois la somme des

poids fondamentaux associés à A et fif.
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réduit, donc c 1. De plus, on a toujours /J; 1 0(/?y), donc chaque rjj est la

somme des poids fondamentaux associés à fy et fif.
Comme les ensembles {)8;, fif} sont disjoints, le corollaire est démontré.
Notons Pj le stabilisateur dans G de la droite Cw7 dans Wr C&apos;est un

sous-groupe parabolique de G qui contient P, et laisse le lieu de zéros de py

invariant. Le corollaire 8.2 implique que P} correspond au sous-ensemble

A\{fip fif} de A.

DÉFINITION. On dira qu&apos;un poids est singulier s&apos;il est orthogonal à une
racine.

COROLLAIRE 8.3. Supposons Gosimple. SiS c {1, /} et à - Ey€s yjn&apos;est

pas un poids singulier, on a soit S 4&gt; et ô — Eyes ty à&gt; s°it 5 {1, ...,/} et

ô-YljeSrij -ô.
Démonstration. D&apos;après le corollaire 8.2, ô - E/es rjj est une somme de poids

fondamentaux, chaque poids fondamental ayant un coefficient égal à 1, 0, ou —1.

Si un poids a un coefficient 0, ô - £i r/; est orthogonal à la racine correspondante,
donc singulier. Si Go admet une structure complexe, le seul cas qui reste est S &lt;p

et la proposition est démontré.
Si deux poids fondamentaux qui sont liés dans le diagramme de Dynkin ont

des coefficients ±1, alors la somme des racines simples correspondantes est une
racine orthogonale à ô - E/e.s r\Jf qui est donc encore singulier. Si Go n&apos;admet pas
de structure complexe, alors G est simple et le seul cas restant est ô — E/es fy
±ô. Si ô — E/€5 Vj &quot;~ô&gt; on a forcément 5 {1,...,/}. La démonstration est
achevée.

§4 L&apos;espace ©

Dans ce § et le prochain on suppose que Go est simple.
On aura à considérer le produit fibre F GxpG, c&apos;est à dire le sous-espace

{(gi&gt; 82) € G x G | p(gt) p(g2)} de GxG. On notera Pd l&apos;image de P par
l&apos;application diagonale d:G-*G x G. L&apos;opération à droite du sous-groupe Pd de

G xG laisse F invariant, et on va noter 0 F/Pd le quotient.
Définissons l&apos;application t : AT x 2&gt; -&gt; (G xp G)/Pd 0 par la formule

x(kt (X, gP)) (*(exp*)g, g)Pd (kg(g-\GxpX)g), g)Pd

où g~l(exp X)g € N, d&apos;où (it(exp X)g, g) e F. Ainsi

*(k, (u, gpP)) (*(exp X)gpf gp)Pd (*(exp X)g, g)Pdf

et t est bien définie.
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Soit v : 0-* G, v((gj, g2)Pd) gigj1. On a alors \i v°x \ K x 2&gt;&apos;. Comme

0 est fermé dans G x G/Pd, et G/F est une variété projective, v est un
morphisme projectif.

Remarque. On montre facilement que l&apos;image de x est le sous-espace
GXf(\G,NG de GxpG et que les fibres de x sont isomorphes à des espaces
affines. On peut aussi vérifier que le principe d&apos;unicité de prolongement
analytique implique que A^ est constante le long des fibres de r.

Remarque. La topologie quotient de la topologie classique de G fait de

K\G/N un espace accessible, d&apos;après un théorème de Kostant-Rosenlicht (cf.
[29] p. 120), mais non séparée. Par conséquent le produit fibre G ^k\g/nG n&apos;est

pas localement compact, sauf dans le cas dim (Go) 3.

LEMME9. Soient

Ff KANxpKANaF

Alors F&apos; est un ouvert de Zariski non vide de F, et &amp; est un ouvert de Zariski non
vide de 0. De plus, la restriction de x à K x 2&apos; est un isomorphisme de Kx &amp;&apos;

sur &amp;.

Démonstration. D&apos;après la proposition 6, l&apos;image réciproque de C*&apos; dans F est

égale à F&apos;, d&apos;où la première assertion du lemme. La deuxième assertion est une
conséquence immédiate de la première.

Montrons que la restriction deTà#x2&gt;&apos; A:x W~\KP) est injective. Si

xik^X, kP)) x(k2, (Y, k3P))y

on a

(^(expX)*, k)Pd (A:2(exp Y)k3, k3)Pd

et kslk € F. D&apos;où

(*t(exp X)k, k) (fc2(exp Y)k, k)

et on peut écrire expX^knk&apos;1 et expF fcn1fc~1 avec n et nx dans N. Il en
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résulte que

kxkn k2knl

Comme KHN {1G}&gt; on a kt k2, nx n et r\Kx3)&apos; est injective.
Soient maintenant (ktanlf k2an2)Pd e &amp;. On a

T(kxkz\ (Ad(M)0og(n1n2-1)), k2P)) {kxanxn2xa~\ k2)Pd (kxanly k2an2)Pd

et le lemme est démontré.

PROPOSITION 7. Soit (pt, pp) un ensemble de fonctions rondes
basiques sur G. Alors Vensemble algébrique des zéros communs X V{px&gt; pp)
des Pj est de codimension p dans G.

Démonstration. Si p 1, la proposition est évidente. On raisonne par
récurrence en p. Supposons alors que la proposition est vérifiée pour q&lt;p et que
Y est une composante irréductible de X de codimension strictement plus petit que
p. Soit Xj V(plt. p;_x, p/+1,. pp) pour 1 &lt;;&apos;&lt;/?. Par l&apos;hypothèse de

récurrence, les X} sont de codimension p - 1 dans G. Posons Q; Pi H • • • fi
PrlnPi+1ri&quot;-nPp. Chaque composante irréductible de X} est alors invariant

par Qr Comme Y est aussi une composante irréductible de chaque Xp Y est

invariant par chaque Qv Mais le corollaire 8.2 implique que les QJf l&lt;/&lt;/?

engendrent G tout entier, d&apos;où la contradiction Y G. La démonstration est
achevée.

PROPOSITION 8. Toutes les fibres de p sont de codimension l dim (A)
dans G, et dim (F) 2 dim (G) - /.

Démonstration. On sait d&apos;après la proposition 6 que la proposition est vraie

pour les fibres au-dessus de C*&apos;. Soit (z1}.. z{)eCl. On peut supposer, sans

perte de généralité, que zu zp 0 et que zp+1,. z, =£ 0. Alors p~l(z) c
F(pj,..., pp). Comme les Ap+1,... À, sont des caractères indépendants de A,
p~l(z) est de codimension / -p dans V(plf. pp). La proposition est donc une
conséquence de la proposition 7.

PROPOSITION 9. F et 0 sont irréductibles. De plus, F est une intersection

complète dans G x G, et © est une intersection complète locale dans G x G/Pd.

Démonstration. On a

F {(gi&gt; gi) € G x G | p^gO p!(g2),.. p,(gi) p/(g2)}.
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Comme F est le produit fibre G xp G et l&apos;algèbre de fonctions polynomiales sur
C&apos; est isomorphe à C[zlf..., z,], l&apos;idéal de fonctions qui s&apos;annulent sur F est

engendré par ces / équations. Par conséquent toutes les composantes irréductibles
de F sont de codimension / dans G x G et F est une intersection complète.
Comme &amp;&apos; est isomorphe à KxQ)&apos;, 0&apos; et F&apos; sont irréductibles. Comme F\F&apos;

est de codimension strictement supérieur à / dans G xG, F est irréductible, donc

0 est irréductible. Comme le fibre algébrique GxG-^Gx G/Pd est localement
trivial pour la topologie de Zariski, 0 est une intersection complète locale.

PROPOSITION 10. La fibre générique de v est une intersection complète
locale dans G x G/Pd.

Démonstration. Il suffira de démontrer que la fibre générique de v est une
intersection complète locale dans 0. Si x e 0, soit Rx l&apos;anneau local de 0 en x.
Comme 0 est une intersection complète locale dans la variété non-singulière
G x G/Pd, tous les anneaux locaux Rx sont des anneaux locaux de Cohen-
Macaulay. On peut trouver un ouvert de Zariski non vide ^ de G tel que pour
tout ge^, dim (v~l({g})) dim (G/P) - /. Il en résulte que le morphisme

vlv-i^rv-1^)-»^ est un morphisme plat (cf. [9], p. 276, Ex. 10.9). Soient
alors g e &lt;3/ et zx,.. zdim(G) un système de coordonnées locales en g. Si / est un
idéal d&apos;un anneau, on va noter V/ le radical de /; c&apos;est l&apos;intersection des idéaux

premiers qui contiennent /. Si v(x) g e Y, l&apos;anneau local de v~l({g}) en x est

alors isomorphe au quotient de Rx par le radical V/ de l&apos;idéal / engendré par les

Zj ° v, d&apos;après le théorème des zéros de Hilbert.
Or on aura / yjj si et seulement si la fibre v~\{g}) est réduite au sens des

schémas. Comme tout ouvert de Zariski de G est réduit, et v est propre, on peut
appliquer le théorème 12.2.4 (iv) de [8], p. 183 et conclure que la fibre générique
de v est réduite. Il en résulte que, pour g dans un ouvert de Zariski de G, l&apos;idéal

de définition de v&quot;1({g}) dans Rx est engendré par dim (G) éléments pour tout
x e v-1({g}), donc v&quot;1({g}) est une intersection complète locale.

§5 Les fibres vectoriels liés aux représentations sphériques

Considérons le fibre en droites holomorphe §;:G xA&apos;C-»G/P où A, est

prolongé à un caractère de P en posant À;(MN) 1. On note |:S-^G/P la

somme directe des fibres en droites £r Les §; et § sont des fibres vectoriels
homogènes, et les représentations sphériques basiques sont réalisées par
l&apos;opération de G sur les espaces de sections des £r

La fonction ronde basique p} correspond à une section ^-invariante de §y
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qu&apos;on notera Ç;, et la somme des £, est une section JC-invariante de £ qu&apos;on

notera Ç. La fibre v~x({g}) de v au-dessus de g e G est alors isomorphe à

l&apos;intersection gÇ H Ç dans S, La projection §(g£ n Ç) est égale à la projection de

cF/Pd dans G/P.

PROPOSITION 11. Si dim Go &gt; 3, la fibre générique de v est connexe.

Démonstration. |(gÇ n Ç) est le lieu des zéros communs des sections g£y - £y

de §r Notons Z; ce lieu des zéros, et È, le diviseur associé. Si S c {1,.. /}, on
note Z&gt;s -Eyes2r Pour un espace quelconque X, on note Ox le faisceau de

germes des fonctions holomorphes sur X. Pour un diviseur D dans X, on note
OX(D) le faisceau des germes des fonctions méromorphes sur X qui sont multiples
deD.

Posons Yj-dZ,. Pour tout /, 1 &lt;/ &lt; / et tout 5 c {/ -f 1,...,/}, on a des

suites extractes:

D&apos;où les suites exactes en cohomologie:

• ¦ ^H^XDsV^H^ÛytDs^H&apos;^ey^Ds-Z,))-*-. • (I,)

Spécialisons au cas i |5|. La suite exacte (k)) va nous permettre de

démontrer par récurrence en j que

/fl((?y/(D5)) 0 si î«|S|&gt;0

et

H&apos;(€Yj(Ds)) H°(ayf) C si i |S|=0 (b)

au moins pour g dans un ouvert de Zariski non vide de G.
On peut appliquer le raisonnement utilisé dans la démonstration de la

proposition 10 au morphisme v/:GxpG/Pd-*G, v;(g1,g2)Pd=gig^1 et
conclure que la fibre générique de y, est réduite. On peut donc supposer que g£; - £;
n&apos;est tangent à la section nulle le long d&apos;aucune composante irréductible de Zr
On a alors Oa^-È,) =* CG/p(%Ï), où €gip{^) est le faisceau des germes de
sections de f;*, fibre en droites inverse de %n et €G/P(DS) - GG/p(®jes §/).
D&apos;après le théorème de Bott-Borel-Weil (cf. [4]), si ô - E,6s V/ est un poids
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singulier, la cohomologie du faisceau OG/P(®l€s £*) est nulle en toute dimension.
Si ô — Ei 65 tfj est un poids non-singulier, le théorème de Bott-Borel-Weil affirme

que la cohomologie Hl(ûG/P(®teS^*)) est nulle si i&amp;q, où q est le nombre de

racines positives oc telles que (&lt;5--E,€s *?/&gt;&lt;*) &lt;0- Si S 0, on a q 0; si

à - Eies rij -ô, toute racine positive vérifie {ô - E,es %&gt; a) &lt;0 et q est égale

au nombre p de racines positives. Si Go # 5L(2, R), on a p &gt; / et donc d&apos;après le
corollaire 8.3, on a (#) pour/ 0. On en déduit de (fc|) par récurrence que (#)
est vérifiée pour tout ;.

On a évidemment H°(€G/P) C. On montre alors par récurrence à partir de

(#) et ft) que

dim (H°(6Y)) &lt; 1

pour tout ;. Mais d&apos;après la proposition 1, la fibre générique de v est non vide et
on peut supposer que dim (H°(€Y))) ^ 1 pour tout /. On a donc (b) pour tout /,
0 &lt;/ &lt; /. En particulier on a H°(ÛYl) C et Yt pli Z, §(gt H £) est connexe.

PROPOSITION 12. Uintersection p;\{0}) de £; avec la section nulle de §; est
le réunion d&apos;un nombre fini de K-orbites dans G /P. Vensemble des points où £;

est tangent à la section nulle est un ensemble algébrique de dimension strictement
inférieure à la dimension de pJ~x({0}). Il est donc rare pour la topologie de Zariski
dep;\{Q}).

Démonstration. D&apos;après Matsuki [21] ou Rossman [25], il n&apos;y a qu&apos;un nombre
fini d&apos;orbites de K dans G/P. Il faut alors démontrer que p; n&apos;a pas de facteur
carré dans l&apos;anneau R(G) des fonctions polynomiales sur G. Comme Â; n&apos;est pas
un produit de deux caractères de A non-triviaux qui sont associés aux fonctions
rondes, le théorème de Cartan-Helgason implique que p; n&apos;est pas un produit des

fonctions non-constantes invariantes à gauche par K et à droite par N. Or, R(G)
est un anneau factoriel (cf. [14], [23], ou [31]). Soit p; =/i • • -ft la factorisation de

pj dans R(G). Comme R(G) est factoriel, on a

Mgn) Xl(k)x;(n)f(g)

pour 1 &lt; i &lt; f, où Xi est un caractère de K et %[ est un caractère de N, Or N n&apos;a

pas de caractère rationnel non-trivial. Si K est semi-simple K n&apos;en pas non plus,

pj est indécomposable, et la démonstration est achevée. Le cas contraire se

produit si et seulement si Go/Ko est un espace Hermitien symmetrique. Dans ce

cas, il existe une involution k (cf. Flensted-Jensen [7], où l&apos;involution en
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question est notée ay, ou [26], p. 86-87) de G ayant les propriétés suivantes:
1) k stabilise K et N et centralise A.
2) k(z) z&quot;1 pour z dans le centre de K.
Pour / e R(G) notons fK le composé de / et k. On a alors

i &quot; &quot;/r-P/-P/ -/i # Vf

Si fx =/f alors /i est invariant a gauche par K et à droite par N, t 1 et p; =/î. Si

/i =£/*, comme /?(G) est factoriel, /i/î divise pr Mais /i/f est une fonction
non-constante invariante à gauche par G et à droite par N. Il en résulte que fc/*
est un multiple scalaire de p;, et la proposition est démontrée.

Nous avons besoin du théorème suivant de Kleiman [15].

THÉORÈME K. Soient X un espace homogène sous le groupe algébrique G,
Y et Z deux sous-variétés lisses de X. Il existe alors un ouvert de Zariski non vide
^ de G tel que pour tout ge®, l&apos;intersection gYC\Z est transverse, non-
singulière, et équidimensionelle de codimension codim(Y) + codim(Z).

L&apos;espace total S est réunion de 2l G-orbites, correspondant aux 2l sous-
ensembles 5 de (Wi, ai),.. (Wh ot). Les points qui ont un représentant de la
forme {g\zu zt) où z} =0 si et seulement si j eS, forment une G-orbite
qu&apos;on note Qs.

PROPOSITION 13. La fibre générique de v est non-singulière en codimension
un.

Démonstration. Comme G/P n&apos;a qu&apos;un nombre fini de ^-orbites, Ç n&apos;a qu&apos;un

nombre fini de if-orbites, qui sont les images réciproques suivant | des ^-orbites
de G/P. On considère la stratification de £ par ses tf-orbites co1,..., o)t. Chaque

cjj est une sous-variété lisse d&apos;une Qs qui la contient. Si cOj et cot sont inclus dans

Qs, le théorème de Kleiman implique qu&apos;il existe un ouvert de Zariski &lt;3/ tel que
pour tout ge® l&apos;intersection gœl n eo; est transverse et la formule

codims (gcût n cûj) \S\ + codim0s (eu,) + codimûs (cy;) (t)

est valable. Par conséquent il existe un ouvert de Zariski non vide &lt;3/ tel que la
formule (t) est vraie pour tout i et j pour tout ge%. Si ge® on a

codims (g£fl£) 21. On a

H £) « {gP € G/P | pj(g) 0 si et seulement si / e S}
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donc codimç (Qs H t) \S\ et codim^s (Qs H £) /, d&apos;après la proposition 7. Par

conséquent

codims (g(ot H o)j) &gt; |5| -f 2/

et pour démontrer la proposition on n&apos;a qu&apos;à considérer les Qs avec \S\ 1, et les

(Oj de codimension / dans Qs. Cela équivaut à dire que ct&gt;; est une ^-orbite
ouverte dans la variété Ç fl fl5. Désormais on suppose que a&gt;7 et cok sont des

^-orbites de codimension / dans Qs, et que |5| 1. Soient g e % et x € g(w; H co*..

Comme wfc respectivement gco, est un voisinage de x dans £ fl i25 respectivement
g£ fl i25, on a les égalités des espaces tangents Tx((ok) 7^(£ H Qs) et T^gcOj)

H £2$). Mais comme gco; fl o&gt;^ est transverse et non-singulier dans Qs,

Tx(gt; n qs) n r,(ç n fî5) Tx(gœ,) n r,(^) Tx(gù&gt;, n

et

dim (Tx(gç n q5) n rx(C n qs)) dim (S) - 2/ -1

Mais d&apos;après la proposition 12, 7^.(£ H û5) est de codimension un dans TX(Ç) d&apos;où

Donc gt H Ç est non-singulier en x, et la proposition est démontrée.

PROPOSITION 14. 5/ Go est simple et dim Go &gt; 3, la fibre générique de v est

irréductible.

Démonstration. On sait par les propositions 10 et 13 que la fibre générique de

v est une intersection complète locale et non-singulier en codimension un. Il en
résulte, d&apos;après un critère dû à Serre (cf. [9], proposition 8.23, p. 186), qu&apos;elle

est normale. D&apos;après la proposition 11, elle est connexe. La proposition résulte
du fait qu&apos;un ensemble algébrique normal et connexe est irréductible.

THÉORÈME 2. Supposons Go simple. Si dim(G0)&gt;3, la fibre générique de

ju est irréductible.

Démonstration. C&apos;est une conséquence immédiate de la proposition 14 et le
lemme 9.
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§6. Conclusion

PROPOSITION 15. Toute composante irréductible de 0 qui domine G
rencontre (ffx Sr)xG(&amp;x 2T). Par conséquent, il existe un ouvert de Zariski
%c,%de G tel que pour tout y e%, Ax soit constante sur ii~l(y).

Démonstration. Si Go est simple et dim (Go) &gt; 3, le théorème 2 implique qu&apos;il

n&apos;y a qu&apos;une composante irréductible de &lt;P qui domine G, celle qui contient la

diagonale de (Kx3)&apos;)x(Kx 3)&apos;). Si dim (Go) 3, la proposition 2 montre que
chacune des deux composantes irréductibles de (K x 3)&apos;)xG(K x 3)&apos;) qui dominent

G rencontre tout voisinage de ({lK} x {(0g, xP) \ x e G}) x ({1K} x
{(0g,xP) |x e G}). Si Go est un produit de groupes simples, (Kx3)&apos;)xG(Kx
3)&apos;) est un produit de facteurs correspondants aux facteurs simples de Go. Il en
résulte que toute composante irréductible qui domine G rencontre tout voisinage
de ({1K} x {(0,,xP) |x e G}) x ({1K} x {(0g,xP)\xe G}).

Comme les compositions Axopx et Ax°p2 coïncident sur ($f x ZT) xG(5^x
J&quot;), ils sont égales sur toute composante de (K x 3)&apos;) xG (K x 3)&apos;) qui domine G,
d&apos;où le théorème.

PROPOSITION 16. La fonction Jïx PxoJt admet un prolongement
analytique à un ouvert de Zariski % non vide de G.

Démonstration. Il existe un ouvert de Zariski %^%ât G tel que pour tout
y e %, il existe x e pt~\{y}) tel que la différentielle de pi soit de rang maximal en

x. Donc pour tout y e %, il existe un inverse à gauche holomorphe jy à \i défini
dans un voisinage de y et fy A^ °jy est donc une fonction analytique définie dans

un voisinage de y. Deux telles fonctions fyi et fyi coincident en tous points où elles

sont définies. Les^, induisent donc une fonction globale holomorphe %-+ Vx qui
prolonge nx, et qui sera notée également nx.

On peut maintenant achever la démonstration du théorème 1. Soit geG0.
Comme le vecteur n{g)v e V est vecteur analytique invariant par gFg&apos;1, on peut
prolonger la fonction n*(x) Px(n(x)(jt(g)v)) de Go à l&apos;ouvert de Zariski %.
Comme %g n % est un ouvert de Zariski non vide de G, il est connexe, et on a

l&apos;égalité nx(x) ri^xg&apos;1) sur %g D %. Cela étant le cas pour tout g e Go, et Go

étant dense dans G pour la topologie de Zariski, on déduit que la fonction
n% — p^ o jt peut être prolongée à G tout entier. Comme nx est invariant à droite

par F, elle est constante d&apos;après le théorème W. Le théorème P-W implique
maintenant que A est constante, ce qui achève la démonstration du théorème 1.
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