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On the derived category of a finite-dimensional algebra

DlETER HAPPEL

Let A be a finite-dimensional associative algebra with 1 over a field k (which
we suppose to be algebraically closed throughout this article). The thread of this
work is the investigation of the derived category Db(A) of bounded complexes
over the category mod A of finite-dimensional left v4-modules.

The construction of Db(sd) for an arbitrary abelian category M goes back to
the inspiration of Grothendieck. The formulation in terms of triangulated
catégories was developed by Verdier [V].

Our main results describe Db(A) if A has finite global dimension. In section 1

we show that Db(A) is suitable for studying tilting processes. Indeed, we prove
that for a tilting triple (A, AMB&gt; B) (compare 1.7) the derived catégories Db{A)
and Db{B) are équivalent as triangulated catégories. Since our intuition is

géométrie it is useful to détermine the quiver of an additive category (compare
3.7). In section 4 we compute the quiver of Db(A) for a hereditary finite-
dimensional k-algebra A.

If Â is a Dynkin-quiver (i.e. the underlying graph of Â is a Dynkin diagram of
type An, Drt, E6, E7 or E8) we dérive a description of the finite-dimensional
fc-algebras A such that Db{A) and Db(kÂ) are équivalent as triangulated
catégories (compare section 5).

In section 10 we associate with A an infinite-dimensional fc-algebra Â without
1 called the répétitive algebra. If follows from gênerai considérations on
Frobenius catégories (section 9) that the stable category mod Â (10.1) is a

triangulated category. Our main theorem asserts that mod Â and Db{A) are

équivalent as triangulated catégories if A has finite global dimension.
Thèse results were announced at the Conférence on Représentations of

Algebras in Ottawa 1984.

My spécial thanks go to C. M. Ringel who introduced me to représentation
theory. His ideas written or unwritten influenced this work quite considerably. I
am indebted to P. Gabriel for his valuable efforts during the préparation of this

manuscript. Also I thank him for pointing out a false argument in the proof of
Theorem 10.10.
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340 DIETER HAPPEL

0. Notation and terminology

In this preliminary section we présent the main notions used throughout this
work and give some guidance to basis texts we need to refer to.

0.1 Given any category 3if the composition of morphisms f:X-+Y and

g : Y-* Z in 3if is denoted by fg.
We usually adopt the categorical language of [ML]. In particular, our additive

catégories hâve finite direct sums. Unless otherwise stated, we assume that they
are Krull-Schmidt catégories (see [Ri6]).

Let a be an additive category. A path in a is a séquence of indécomposable
objects Xt (O^i^ r) and non-zero morphisms ft : Xt -* Xl+1 (0 ^ i &lt; r) lying in the
radical 9tïïom(Xu X^x) [Ri6]. If r&gt;0 and X0 Xr, the path is called a cycle.
We call a directed if it does not contain any cycle.

0.2 A differential complex or simply a complex X&apos; {X\ dlx)ieZ over a is by
définition a collection of objects X1 and morphisms dl dlx:Xl-*Xl+l such that
dldl+1 0. A complex X&apos; (X\ dl) is bounded below if X1 0 for ail but finitely
many i &lt; 0 and bounded above if X&apos; 0 for ail but finitely many i &gt; 0. It is

bounded if it is bounded above and below. A complex X&apos; (X\ dl) is a stalk
complex if there exists i0 such that Xl° =é 0 and X1 0 for ail i ^ i0. The object Xl°
is then called the stalk.

Suppose that X1 0 for i &lt; r and s &lt; i and Xr * 0 ¥* Xs. Then the width w(X&apos;)

of JT is by définition equal to s - r + 1. If s ^ 0, s is called the déviation of X&apos; and
is denoted by d(X&apos;).

Dénote by C(a) the category of complexes over a, by C*(a) (resp. C~(a),
resp. Cb(a)) the full subcategories of complexes bounded below (resp. above,

resp. above and below). If X&apos; {X\ dlx) and Y&apos; (Y1, dlY) are two complexes, a

morphism f&apos;:X&apos;-*Y&apos; is a séquence of morphisms f&apos;.X-^Y of a such that
d&apos;xf*1 —fdlY for ail i 6 Z. Thèse morphisms are composed in an obvious way.

There is a full embedding of a into C(a) which sends each object X of a into
the stalk complex X&apos; Ç/C, dl) with X° X. We will identify this complex with
X.

The shift functor T is defined by (TXJ Xl+\ (dTX)1 -(dx)l+1 and
(7]f )f =/I+1 if /* is a morphism of C(a). It is an automorphism of C(a). We
dénote the inverse by T&quot;.

The mapping cône C} of a morphism f&apos;:X&apos;-*Y&apos; is the complex Cf
)&apos; 0 Y1, rf&apos;C/) with &quot;differential&quot;

\ 0 d&apos;y)



On the derived category of a finite-dimensional algebra 341

For instance if Z&apos;eC(a) satisfies Z&apos; 0 for i&lt;0, and if Z&quot; is the associated
truncated complex (Z&quot; 0 for i^O and dlz=dz for i^l), d°z induces a

morphism from T~Z° to Z&quot; whose mapping cône is Z&apos;.

If a is a full subcategory of an abelian category si then the cohomology objects
Hl{X&apos;) are defined for X&apos; e Cb(a). And a morphism u : Jf-&gt; y of C*(a) is called
a quasi-isomorphism if the induced morphisms Hi(u&apos;):Hi(X&apos;)-+H(Y&apos;) are
isomorphisms for ail L

0.3 Let ^ be an additive category and T an automorphism of &lt;€, which will
be called the translation functor. A sextuple (X, Y, Z, w, u, h&gt;) in &lt;ë is given by
objects X, Y, Z and morphisms X-^Y-^Z-^TX. A morphism of sextuples
from (X, Y, Z, m, t/, w) to (Z&apos;, Y&apos;, Z&apos;, u\ vf, w&apos;) is a triple (/, g, A) of morphisms

such that the following diagram commutes:

A A ..i
y\ ———t £ £^ £ j\

Following Verdier [V], we call a set ST of sextuples in ^ a triangulation of &lt;£ if the

following conditions are satisfied. The éléments of 3~ are then called triangles.

(TRI) Every sextuple isomorphic to a triangle is a triangle. Every morphism
u\X-+Y can be embedded into a triangle (X,Y,Z,u,v,w). The

sextuple (X, X, 0, lx, 0, 0) is a triangle.
(TR2) (X, Y, Z, m, v, w) is a triangle if and only if (Y, Z, TX, v, w, -Tu) is a

triangle.
(TR3) Given two triangles (X, Y, Z, u, v, w) and (Xf, Y&apos;, Z&apos;, w&apos;, v&apos;, w&apos;), and

morphisms f:X-+X&apos;, g:Y-+Y&apos; such that fu&apos;-ug, there exists a

morphism (f, g, h) from the first triangle to the second.

(TR4) (The octahedral axiom). Consider triangles (X, Y, Z&apos;, u, i, V),
(Y, Z, Z&apos;, u, ;, /&apos;) and (Xf Z, Y&apos;, mu, ifc, fc&apos;). Then there exists morphisms
f:Z&apos;-+Y&apos;, g:Y&apos;-*X&apos; such that the following diagram commutes and the
third row is a triangle.

T~Y&apos;
T k

&gt; X l*
&gt; X

T-x&lt; rU Y -z-* Z —U A&quot; -^ TY

\ \ Y I&quot;

?ta:
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(Compare with [V]; our &quot;non-octohedral&quot; présentation is best suited for section

3.)
The additive category % together with a translation functor T and a

triangulation ïï is called a triangulated category.
Let %, c€t be triangulated catégories. An additive functor F: &lt;€-* c€t is called

exact if it commutes up to isomorphism with the translation functors and sends

triangles to triangles.
If an exact functor F:^—*^&apos; is an équivalence of catégories, we call it a

triangle-équivalence. % and &lt;€&apos; are then called triangle-équivalent. For the basic

properties of triangulated catégories we refer the reader to [V], [Ha] and [BBD].

0.4 Examples of triangulated catégories are the hornotopy catégories K(a),
K*(a), K~(a) and Kb(a) associated with the catégories of complexes defined in
0.2 or the derived catégories D(si), D+(s$), D~(sî)f Db(M) if si is an abelian

category [Ha, chapter 1]. The localization functor from Kb{sd) to Db(si) will be

denoted by Qb. Note that si becomes a full subcategory of Db(si) by sending
each object of si into the corresponding stalk complex.

0.5 We will mainly deal with finite-dimensional algebras (associative with 1)

over k. By modA we dénote the category of finite-dimensional left A-modules.
Its derived category (of bounded complexes) is denoted by Db{A). Certain full
subcategories of modA are of interest to us. By A9&gt;&gt; A3 we dénote the full
subcategories of modA having as objects the projective A -modules and the

injective A-modules respectively. For an A-module M we dénote by addM the
full subcategory of mod A having as objects the direct sums of summands of M.

For the basic properties in représentation theory we refer the reader to [G2]
and [Ri6].

0.6 In section 10 we will consider infinite-dimensional /c-algebras (without
1). The information on covering techniques needed in sections 5, 7, 10 can be

found in [BG] and [G3].

1. Invariance under tilting functors

Let A be a finite-dimensional fc-algebra which we suppose to be of finite

global dimension throughout this section. Let M be an A-module. Then we obtain

a natural functor &lt;p:X6(addM)-»Dfe(A) which is the composition of the

embedding functor Kb(addM) into Kb(modA) and the localization functor
Qb ;Kb(moA A)-»Db(A).
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1.1 LEMMA. // Ext^ (M, M) 0 for ail i &gt; 0, then &lt;p is full and faithful

Proof. Let M\, M&apos;2e Kb(addM). Applying T if necessary, we may assume
that M2 0 for i &lt; 0 and M2 M2 =é 0. We proceed by double induction on the
widths of M\ and M2. If w(M\) vt&gt;(Af2) 1, then there exists i e Z such that

M[ TMX for some Mx e addM. If 1 0, then Hom^(addAf)(M;, M2)
M2). Otherwise Hom^6(addAf)(Mi, M2) 0 and

i, M2) 0 for i &gt; 0 and Ext^1 (Mlf M2) for i &lt; 0, and the assertion
follows by assumption.

If w(M\) l and w(M&apos;2)=:rf then we consider the triangle T~~M2-+M2-+
NT2-+M2 where M2 is the truncated complex (0.2). We apply the cohomological
functors Hom/c/&gt;(addAf)(AfJ, —) and HomDb(A)(M\y —) to this triangle. Using
induction and the 5-lemma we infer that HomKbiaddM)(M\, M2)2$,

HomDb{A)(M\, M&apos;2) under q&gt;.

The remaining part of the proof is dual.

1.2 We say that an ^4-module X has finite M-codimension (Af-codim (X) &lt;

00) if there exists an exact séquence 0—&gt;X—&gt;Af°~»M1—?• • --+Ms-*0 with
M1 e addM for 0^/ ^s.

LEMMA. Let M be an A-module such that Ext^ (M, M) 0 for i &gt; 0 and

suppose that AA has finite M-codimension. Then proj. dim M ^ r implies that there
is an exact séquence 0-»/4A-&gt;M°-&gt;M1- ?M5&quot;1—?M5—?() such that s^r.

Proof. By assumption there exists an exact séquence 0—^A—?M°-&gt;Af1-»

• • •-»Àf5-1-^*Àf5-»0. We choose such an exact séquence with s minimal.
Assume s&gt;r and set Ks-l kerds~\ It follows that Exti (M, Ks~l) 0.

Therefore d5&apos;1 is a retraction. This contradicts the minimality of s. So s ^ r.

1.3 LEMMA. Lé* M be an A-module such that Ext^ (M, M) 0 /or 1 &gt; 0.

Let P be an indécomposable projective A-module. If M-codim (AA) &lt; &lt;», then

M-codim (P) &lt; 00.

Proof Let B End M. Then proj. dim MB &lt; ». In fact, apply Hom^ (—, M)
to the exact séquence 0-^i4A-»M°-»M1-^ &gt;Ms-+0. This give a finite
projective resolution of MB. Let P be an indécomposable projective &gt;4-module.

Then P Ae for some primitive idempotent eeA. Let 0-+Qt-*- • --^Qo^^
eM—&gt;0 be a projective resolution of eM considered as right B-module. This
implies that Af-codim (P) &lt; ».

1.4 For later référence we include hère also



344 DIETER HAPPEL

LEMMA. Let A and B be finite dimensional k-algebras such that Db{A) and
Db(B) are triangle-équivalent. Then A is of finite global dimension if and only if
so is B.

Proof Suppose that gl. dimv4&lt;oo and let F be a triangle-équivalence from
Db(B) to Db(A). Let Slf S, be simple B-modules. It is enough to show that there
exists an r0 e M, independent of Sn Sjy such that Ext^(5l, S;) 0 for ail r ^ r0. As
ExtrB(SnSJ) HomDh(B)(SltTrSJ)^HomDHA)(F(Sl)fTrF(SJ)) there exists rMJ e N
with HomDbiA)(F(St), Tr(Sj)) for r^rir Then the assertion follows for ro

maxi; rir

1.5 LEMMA Let M be an A-module such that Ext^ (M, M) 0 for i &gt; 0. If
M-codim (AA) &lt; », then the functor &lt;p : Kb(addM)-» Db{A) is dense.

Proof Since A has finite global dimension, Db(A) is triangle-équivalent
to Kb(A9&gt;) by Proposition II, 1.4 of [V]. As M-codim (AA) &lt; », also

Af-codim (P) &lt; » for a projective ^4-module P by 1.3 above. Since cp is exact we
infer that &lt;p is dense.

1.6 THEOREM. Let M be an A-module such that Ext^ (M, M) 0 for i &gt; 0

and suppose that AA has finite M-codimension. Let B End M and suppose that
gl. dimB&lt;°°. Then the functor F Hom,4 (M, -):modA—»niodfi induces a

triangle-équivalence F : Db{A)^&gt; Db(B).

Proof. Clearly F induces a triangle-équivalence F:Kb(addM)-+ Kb(B&lt;3&gt;). By
1.1 and 1.5 the resuit follows since Kb(B9&gt;) and Db(B) are triangle-équivalent
again by Proposition II, 1.4 of [V].

1.7 The interest for us in studying thèse properties of A-modules cornes from
tilting theory [HR], see also [BB]. An &gt;l-module M is called a tilting module if the

following conditions are satisfied: (i) proj. dim M ^ 1, (ii) Ext^ (M, M) 0, (iii)
M-codim (^A) ^ 1. We call the triple (A, AMB, B) a tilting triple if AM is a tilting
module and B End M.

COROLLARY. Let (A, AMB, B) be a tilting triple. Then Db(A) and Db(B)
are triangle-équivalent.

Proof This follows from 1.6 above using Corollary 1.7.1 of [Bol].

Hère we refrain from deriving the fundamental results in tilting theory
(compare [HR] and [Bol]). But we hope to corne back to this in a subséquent

publication.
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We say that two-finite-dimensional À&gt;algebras A and B are tilting-equivalent if
there exists a séquence (An AMlA At+1) of tilting triples for 0^i&lt;m such that

A-Ao and B =Am.

2. Isometry of Grothendieck groups

2.1 The material discussed hère is quite classical (compare [Gr]). We leave

out the proofs, for they are straightforward from the définitions. Let &amp; be the
free abelian group generated by représentatives of the isomorphism classes of
objects in Db(A), where A is a basic finite-dimensional fc-algebra. We dénote by
[X&apos;] such a représentative. Let % be the subgroup generated by [X] - [Y&apos;] +
[Z] for ail triangles X&apos;-+Y&apos;-*Z&apos;-+ TX&apos; in Db(A). The Grothendieck group
K0(Db(A)) is by définition the factor group 9I9O.

A Z-valued function a defined on the objects of Db{A) is called additive if
a(X&apos;)-a(Y&apos;) + a(Z&apos;) 0 for ail triangles X*-&gt; Ym-+Zm-+TXm in Db{A). The
condition implies that a(X&apos;) -a(TX&apos;). It is shown in [Gr] that K0(A) and

K0(Db(A)) are isomorphic, where KQ(A) is the Grothendieck group of A (see

[GR], [Ri6]). Indeed, the embedding of modA into Db(A) (0.4) induces an

isomorphism.

2.2 Let P(l),..., P{n) be a complète set of représentatives of the

isomorphism classes of indécomposable projective .4-modules. For an A-module X
the dimension vector is defined by dim X (dim^ Hom^ (P(i), X)). The map
Z~»dimAT induces an isomorphism of K0(A) with Zw. Using 2.1 this
can be extended to Db(A). If X&apos; (X1, dl) € Db(A), we obtain dimZ^
Ei6z(-l)ldim X1. Since X&apos; is bounded, the sum is finite.

2.3 Remark. This shows that each component dim7 of dim is an additive
function on the objects of Db(A).

2.4 For the rest of this section we assume that A has finite global dimension.
The Grothendieck group K0(A) is endowed with a bilinear form. We recall the
relevant définitions, refernng to 2.4 of [Ri6] for a more thoroughful treatment.

Let C CA be the Cartan matrix of A. This is an n x n integer-valued matrix
with entries CtJ dim* Hom^ (P(i), PQ)) (1 ^ i, ; ^ n). Thus the jth column of C
is (dim P(j)ï&gt; where t dénotes the transpose. By a classical resuit C Q is

invertible. (See [Ri6]).
The matrix C~&apos; (C&quot;1)r defines a bilinear form (-, -)A on K0(A) ln by
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(x, y)A=xC~y. The corresponding quadratic forai Xa(x) (x, x)A is called the
Euler characteristic of A.

The introduced bilinear form has the following homological interprétation
(compare with 2.4 of [Ri6]). Let X, Y be A-modules, then

(dim X, dim Y)A £ (-1)1 dim* Ext^ (X, Y)
13=0

2.5 Using 2.1 and (*) we obtain:

LEMMA. LetX\ Y&apos;eDb(A). Then

&lt;dim X\ dim Ym)A S (-1)1 dim^ HomD»(i4)(J!f, T&apos;Y&quot;).

2.6 Let i4 and B be basic finite-dimensional &amp;-algebras. We say that K0(A)
and K0(B) are isometric if there exists an isometry f :K0(A)-*K0(B) i.e. a linear
bijection such that (jc, y)a— (xf, yf)B for ail jc, y e K0(A). The use of (-, -)
instead of x will prove to be essential in section 5.

PROPOSITION. Let A and B be basic finite-dimensional k-algebras and
assume that A has finite global dimension. If F:Db(A)-*Db(B) is a triangle-
équivalence, there exists an isometry f:K0(A)-+K0(B) such that dim F(X&apos;)

(dim X&apos;)ffor X&apos; e Db(A). In particular, A and B hâve the same number of simple
modules up to isomorphism.

Note that for a traingle-equivalence induced by a tilting triple (A, AMB, B)
(1.7) this is 3.2 of [HR].

3. Auslander-Reiten triangles

3.1 Let f be a triangulated category such that Hom^ (X, Y) is a finite-
dimensional fc-vector space for ail Xf Y e % and assume that the endomorphism
ring of an indécomposable object is local. This assumption ensures that ^ is a

Krull-Schmidt category (compare 2.2 of [Ri6]).
A triangle X^ Y A Z ^ TX in &lt;€ is called an Auslander-Reiten triangle if the

following conditions are satisfied:

(AR1) X, Z are indécomposable
(AR2)
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(AR3) If /: W-&gt; Z is not a retraction, then there exists /&apos; : W-» Y such that
f&apos;v =/•

We will say that % has Auslander-Reiten triangles if for ail indécomposable
objects Ze^ there is a triangle satisfying the conditions above. Our motivation
cornes from Auslander-Reiten séquences, which are by définition non-split exact

séquences Q-*X~* y—»Z--&gt;0 of finite-dimensional modules satisfying (AR1)
and (AR3).

Hère we présent some of the properties which carry over to Auslander-
Reiten triangles. We will provide full proofs but acknowledge the influence of
[AR] and [G2].

3.2 REMARK. The following are équivalent for a triangle as above: (i)
(AR2); (ii) u is not a section; (iii) v is not a retraction.

Proof. In fact, if w 0 consider the following morphism of traingles. The
existence of w&apos; is guaranteed by (TR3) (compare 0.3):

xAyJUz —^ TX

This shows that m is a section. The converse is also proved using the diagram
above. In the same way one can show that (i) and (iii) are équivalent.

3.3 REMARK. The following are équivalent for a triangle as above: (i)
(AR3); (ii) If /: W-&gt; Z is not a retraction, then fw 0.

Proof. The resuit follows since Hom^ (W, -) is a cohomological functor by

I.lof [Ha].

3.4 LEMMA (Selfduality for Auslander-Reiten triangles). Let X±&gt;Y^&gt;

Z ^ TX be an Auslander-Reiten triangle. If f\X-+ W is not a section, then there

exists f : 7-* W with uf =/.

Proof: By (TRI) (compare 0.3) the morphism f:X~-» W can be embedded

into a triangle X1* W**W&apos;*»TX. Using (TR2) we see that T~W ^ X1*
&apos; is again a triangle. We apply the octahedral axiom (TR4) to the

composition (-T&apos;h)u and obtain the following diagram of triangles.
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lT&apos;h lThU
Y u V v Z w

&gt; TX

1-

w —*—* w
If ^2 is a retraction, then ^ is a section by 3.2. So there exists t[ with txt[ 1^.
Now define /&apos; rt[. Then uf urt[ =ftxt[ =/.

So assume that t2 is not a retraction. Then there exists t&apos;2 :Y&apos;^&gt;Y with t&apos;2v r2

by (AR3).
Consider the following morphisms of triangles (f exists by (TR3)):

X -=^
1&apos;

h

i&apos;

K^-^Z

;; {
y —^ z + TX

Since / is not a section and A!&apos; is indécomposable, we infer that // is nilpotent.
Hence there exists n e N such that (ff)n 0. Therefore

x -JU Y —^ Z -^ TX
lo Kr&apos;i)&quot; M P

u

^
« -

is a morphism of triangles. But then w 0 gives the required contradiction.

3.5 A morphism h between Zv and Z^ of an arbitrary additive category is

called irreducible if h is neither a section, nor a retraction but for any
factorization h hxh2 either hx is a section or h2 is a retraction. For définitions
using the radical of the category we direct the reader to [G2] or [Ri6].

PROPOSITION. LetX** Y^Z^TXbean Awlander-Reiten triangle.

(i) Given Z it is unique up to isomorphism of triangles.
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(ii) u and v are irreducible morphisms.
(iii) ///: Zx-* Z is irreducible, there is a section g:Zx^*Y with f gv.
(iv) /// : X—» Xx is irreducible, there is a retraction g : Y-» Xx with f wg.

Proof. (i) Let A^&apos;-^ y ±+z^ TX&apos; be an Auslander-Reiten triangle.
Since v&apos; is not a retraction there exists g with v&apos; -gv. By (TR3) we obtain a

morphism of triangles:

X&apos;
u

&gt; y &quot; 7 w&gt;

TX&apos;

1&apos; I- I&apos; h

If / is not an isomorphism we obtain a morphism /&apos; with u&apos;f =f by 3.4. But
w w&apos;Tf=w&apos;Tu&apos;Tf&apos; 0 gives a contradiction. Thus/ is an isomorphism and so

isgbyl.lof [Ha].
(ii) We will show that u is irreducible. In fact, consider a factorization

u hxh2. If hv is not a section, there exists AJ with uh\-hx. By (TR3) we obtain
a morphism of triangles:

x -^ y —^ z --% r*
If h is not an isomorphism, then w hw 0by 3.3, a contradiction. Thus h[h2 is

an isomorphism. Therefore h2 is a retraction.
(iii) Let f\Zx-+Z be irreducible. Since / is not a retraction we obtain

g:Z1^Y with / gv. As v is not a retraction, g is a section.

(iv) This is dual to (iii).

3.6 Let A be a finite-dimensional fc-algebra of finite global dimension.

THEOREM. The derived category Db(A) has Auslander-Reiten triangles.

Proof. It is well-known that A&amp; and A3&gt; (compare 0.5) are équivalent under
the Nakayama functor v DHomA(-, AA), where D dénotes the duality on
mod A with respect to the base field k. There is an invertible natural transformation

ocp.D Hom(P, -)-»Hom(-, vP). Equivalently, for each XemodA, there
is a vectorspace duality Hom(P, X) xHom(Z, vP)-*k, (§, rç)-»(§ | r\) such
that (£/* | f/) (| | jurj) and (^| 11]) (| | rçv(;r)) for ail morphisms fi in mod A
and ail jï in A0^.
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The Nakayama functor v induces an équivalence of triangulated catégories
again denoted by v between Kb(A9&gt;) and Kb(AS) and an invertible natural
transformation ocP- : D Hom (P&apos;, —)-*Hom (-, vP). In fact, if X&apos; is an object of
Â*(mod A), the associated duality Hom (P*, X&apos;) x Hom (X&apos;, vP&apos;)-*k,

(!&apos;, n&apos;)-&gt; (f I T) is defined by (g- 1i,&apos;) Enez (-l)&quot;(r I V*)-
Since j4 has finite global dimension Db(A) is triangle-équivalent to Kb(/$P)

and to K^^). Thus an object in Db(A) can be written in the form P&apos;, where P&apos;

is contained in Kb(A9&gt;).

Now asume that P&apos; is indécomposable in Db(A). Let çp e D Hom (P&quot;, P&apos;) be
the linear form on End(P) which vanishes on the radical radEnd(P&apos;) and
satisfies &lt;p(lj&gt;-) 1. We consider the image aP(q&gt;); it is a non-zero linear map
from P&apos; to vP&apos; such that/arP ((p) 0 whenever the morphism/of Db(A) is not a

retraction. This implies that

satisfies the axiom (AR3) by 3.3. Therefore this triangle is an Auslander-Reiten
triangle.

3.7 By définition, the vertices of the quiver r=F{a) of a Krull-Schmidt
category a are the isomorphism classes [X] of the indécomposable objects X of a.

The quiver has an arrow [AT]-* [Y] if there is an irreducible morphism from X to
y in a.

COROLLARY. Let A be a finite-dimensional k-algebra of finite global
dimension. Then F(Db(A)) has the structure of a stable translation quiver (see

[R]).

Proof Observe that Db(A)^ Kb{A&amp;) is a Krull-Schmidt category and let P&apos;

be as in 3.6. We define xP&apos; := T~vP\ It follows from 3.5 that (r(Db(A), r) is a

stable translation quiver (stable means the translation x is defined for ail vertices).
Note that in our situation r is induced by an équivalence on ind Db(A).

3.8 PROPOSITION. Let A be a finite-dimensional k-algebra of finite global
dimension and X\ Y* e Db(A). Then

DHomi?iA)(T*-lX\Ym)~HomiïiA)(Y\TT2lXm) for ail L

Proof Let P\^X&apos; and P2^Y&apos; with Pi, P2e Kb(A&amp;). Clearly T commutes
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with t. So xT2lX&apos; rT2lP[ vl2&apos;&quot;1?;. And the isomorphism is induced by the
invertible natural transformation aT2,-iPî (compare 3.6).

4. The quiver of Db{kÂ))

4.1. Let A be a hereditary, basic finite dimensional fc-algebra (i.e. the path
algebra kÂ of a finite quiver without oriented cycle). We détermine F(Db(kÂ))
which we know to be isomorphic to r(Db(B)) whenever B is tilting-equivalent to
kÂ (compare 1.7). Our results will be applied to indécomposable fi-modules in
section 7.

LEMMA. Let X&apos; be an indécomposable object in Db(kÂ). Then X&apos; is

isomorphic to a stalk complex with indécomposable stalk.

Proof. Since Db(kÂ) is équivalent to Kb{k^)y it is enough to show
that each indécomposable object of Kb(k£&amp;) is isomorphic to some

• • • 0—» V -^-&gt; r*1-* 0 • • • where d1 is surjective.
Let /&apos; be indécomposable in Kb{k^3). Applying T if necessary, we may

assume that /* has the form:

with

Consider a factorization P-^X^+I1 of d° in modkÂ with g surjective and h

injective. Then X is an injective fcii-module, h is a section and we hâve an

isomorphism X © C -^^ 71 in mod kÂ. Since hdl 0 we obtain an isomorphism
of complexes.

•0

Since /&apos; is indécomposable we conclude that • • • 0-»/°-** X-+0 • • • or • • • 0-»
C-&gt;/2^/3-&gt;- • • is zéro in Kb(kz#) (i.e. acyclic). In the second case /&quot; is

isomorphic to • • •0-*/°^X-»0- • • in Kb(k^.) In the first case, we are
reduced to a complex of smaller width.

4.2. COROLLARY. Let X&apos;Q-^&gt; X{-+ &gt;X;.t^ X&apos;o be a cycle in
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Db(kÂ) (compare 0.1). Then each Xt is isomorphic to TnXt for some
Xt 6 mod kA and some fixed neZ.

4.3 The computation of Auslander-Reiten triangles in Db(kÂ) is divided
into two steps.

First let Z&quot; TlZ for some i e Z and some indécomposable non-projective
kA -module Z. Then we hâve the Auslander-Reiten séquence 0—» X^ Y-^Z-^O.
Let w e Extii (Z, X) HomDfr(*4) (Z, TX) be the corresponding élément. Then
we obtain a triangle

&gt; TlJtlX.

It is straightforward that the properties (AR1), (AR2) and (AR3) of 3.1 are
satisfied.

Let us now turn to the case Z&apos; TlP(a), i e Z, where P(a) is the indécomposable

projective kA -module associated with the point a of A; for simplicity, we
will assume that i 0. Dénote by E the following fc^ï-module (considered as a

contravariant représentation of A): E(x) is the vector space freely generated by
the paths of the form p :x —&gt;a or q :a —&gt;x (so we hâve E(x) 0 if x is not
comparable with a in the order defined by the arrows of A); if x -^y is an arrow
and x &lt; a, E(a) : E(y )—&gt; E(x) maps p onto the composed path cep ; if x ^ a, E(a)
maps q onto q&apos; or 0 according as q has the form q &apos;a or not.

The paths (resp. the non-trivial paths) stopping at a generate a submodule of
E which is identified with P(a) (resp. with the radical P(a) of P(a)). The quotient
E/P(a) (resp. E/P(a)) is identified with the indécomposable injective I(a)
attached to a (resp. with the quotient î(a) of I(a) by its socle).

By w we dénote the composition P(a)-^E^I(a)y by r\ eExt^ (î(a), P{a))
— WomDb{k^){î{a), TP{a)) and rjf eExt^ (I(a), P(a)) the extensions associated
with the exact séquences 0—»P(a)-L&gt;£-£»/(fl)—&gt;0 and 0-* Pfa}1* E *+ I(a)-+0
(i dénotes an inclusion, p a projection).

LEMMA. The sextuple associated with the séquence

(*) T~I(a)
[T&apos;p&apos;~T&apos;v&apos;]y T~I(a) 0 P(a)^l P(a) ^I(a)

is an Auslander-Reiten triangle.
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Proof. Clearly, I(a) vP(a). By the proof of Theorem 3.6, the Auslander-
Reiten triangle starting at rP(a) T~I(a) has w as last morphism. So it suffices

to verify that the sextuple of our lemma is a triangle. This directly follows from
the diagram below, where E dénotes an arbitrary module, P c P two submodules

of E&gt; I and / the quotients E/P and E/P respectively; by [X-^* Y] we dénote a

complex vanishing in degrees ^0, 1 which has X as 0-component, Y as

1-component. For the other notation, see the particular case above.

By construction, the first Une is a triangle, and the vertical morphisms are

quasi-isomorphims of Kb(modkÂ). Since [P(BP-*E] is quasi-isomorphic to
TP®Î, the first line is isomorphic in Db(kÂ) to the following séquence:

The assertion now follows from (TR2).
The triangle (*) will be called a Connecting triangle. We point out the analogy

to Connecting séquences in the theory of tilting modules [HR].

4.4 Using the results of 3.5 it is now easy to dérive the structure of
r(Db(kÂ)). Let r rkz be the Auslander-Reiten quiver of kÂ. Dénote by 17 a

copy of F for i e Z, by t the quiver obtained from the disjoint union OI6ZI] by
adding an arrow from the injective module I(a) in 17 to the projective module

P(b) in 17+i for each arrow from b to a in Â.

PROPOSITION. The quiver r(Db(kÂ)) is f.

4.5 From the structure of T ([G2], [Ri2], [Ri3]) it now follows:

COROLLARY.

(i) If Â is a Dynkin diagram then r(Db(kÂ))^ZÂ.
(ii) If Â is a tame quiver {Le. kÂ is representation-tame) then the components

of r(Db(kÂ)) are of the form TA and JAJr for some reN.
(iii) If Â is a wild quiver (Le. kÂ is representation-wild) then the components

ofr(Db(kÂ)) are of the form IÂ and
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4.6 Let Â be a Dynkin quiver and dénote by k(ZÂ) the mesh category ofZÂ
(see [G2], [R]).

PROPOSITION, ind Db(kÂ) is équivalent to k(ZÂ).

Proof By 4.5, both catégories hâve the &quot;same&quot; quiver. Using 4.3 it is easy to
see that we can represent the arrows of ZÂ by irreducible morphisms of
ind Db(kÂ) which satisfy the mesh relations and are globally stable under t. This

provides us with a full and dense functor F :k(ZÂ)-+ ind Db{kÂ). Let x, y e

k(ZÂ). Since F commutes with t, we may assume that F(x) TP for some i e Z
and some indécomposable projective kÂ-module P. Under thèse assumptions,
Hom^(Z^) (x, y)JzO implies F(y) T&apos;Y for some indécomposable kA -module Y.

But then [R] implies that

i) (x, y) - Hom*i (P, Y) - HomD»(*i) (F(x), F(y)).

Thus F is faithful.

4.7 If Â is a Dynkin quiver, the Euler characteristic XkÂ is positive definite
and the set of roots 31 {jc eZn \ XkÂ(x) 1} is finite. A non-zero élément

x (xl9. xn) e Zn is positive if jc, ^= 0 for ail i. Then dim induces a bijection
between ind £4 and @l+ {x e $1 \ x positive} [BGP], [Gl].

COROLLARY. Let À be a Dynkin quiver. Then dim induces a bijection
between ind Db(kÂ)/T2 and 3?.

Proof. By 4.1 and the previous remark XkÂJdimX&apos;) 1 for X&apos; e ind Db(kÂ).
Therefore dim is a map from ind Db(kÂ) to 01. As for x e 01 either x or -x is

positive dim is a surjective map. The définition of dim shows that dim&quot;1 (x) is a
T2-orbit for x e 0t. Hence we jobtain a bijective map from ind Db(kA)/T2 to 0t.

4.8 Let A be a finite graph and Âlf Â2 be quivers without oriented cycles
and underlying graph equal to A. If Àt can be obtained from Â2 by a séquence of
&quot;reflections&quot; [BGP], [G2] and a quiver isomorphism we write ÂX~Â2.

The following lemma is straightforward.

LEMMA. ZÂt and ZÂ2 are isomorphic as translation quivers if and only if
Âl~Â2.

COROLLARY. If Db(kÂl) is triangle-équivalent to Db(kÂ2), then Âx - Â2.

Proof By 4.5 the components of r(Db(kÂ)) not isomorphic to ZA» or Z/Wr
are isomorphic to ZÂ. Thus ZÂt and ZÂ2 are isomorphic as translation quivers.



On the denved category of a fimte-dimensional algebra 355

This corollary allows us to introduce the notion of type for the finite-
dimensional /c-algebras investigated in section 7.

5. Dynkin algebras

5.1 Let A be a finite quiver without oriented cycle having n vertices. The

square of the translation functor T is an automorphism on Db{kÂ). The root
categrory &amp;1{Â) is by définition the quotient category of ind Db(kÂ) by T2. The
canonical functor n : ind Db(kÂ)-+ &amp;(Â) is a Galois covering in the sensé of
Gabriel [G3].

If A is a Dynkin quiver, the root category $1{Â) coincides with the cylinder
introduced in [H2].

In the following we will use the same notation for 9l(Â) and its quiver.
Observe that 9t(Â) is not necessarily connected. We call a vertex x e 0l(Â)
regular if x is contained in a component of the form ZAœ or Z/Wr (compare 4.5).
Ail the other vertices are called transjective vertices. Note that this does not
coincide with the définition of [R] since rnx is defined for each n e Z if x is

transjective in our sensé.

5.2 In 2.2 we hâve defined the dimension vector dimX* for X&apos; eDb(kÂ).
Let x e 9i(Â) and X\ Ym e jï~\x). Then clearly dim X&apos; dim y*. Thus dimx
dim JT does not dépend on the choice of Xm in jf&quot;1^). It will be called the
dimension vector of jc.

This définition allows us to consider two subcategories of 0t(Â). Let @t*(Â)
and 0l~(A) be the full subcategories of 9t{Â) consisting of those x e 0t(Â) such

that dim jc is positive and négative respectively. Then T9l*(Â) @Â

5.3 For ail x e 9t(Â) we define a fonction fx:9l(Â)-*Z by £(y)
^) (x, y) - dim^ Hom^) (y, tx).

LEMMA. fx(y) (çUmx, dimy).

Proof. Let X\ Y&apos; e ind Db(kÂ) such that n{X&apos;) x and n(Y&apos;) =y. Since n is

a covering functor we obtain:

fxiy) E dim^ HomD*(^) {T2tX\ Y) - 2 dim* Hom^^) (Y&apos;, rT2tX&apos;)

2 dim, Hom^^) (TT, T) - 2 dim, Hom^^ (T2&apos;&quot;^, T)
teZ teZ

(3.8)
(dim-Y&apos;, dim Y&quot;) (dimjt, dim y).
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5.4 A subset ST {tu tn} of vertices of 01{Â) is called a tilting set if the

following two conditions are satisfied:

(i) Hom^(i) (tn xtj) 0 for ail i, j
(ii) dim*!,..., dim^w form a Z-basis of Z&quot;.

In [H2] we gave a différent définition in the case of Dynkin quivers. But it is easy

to see that both are équivalent.

5.5 Let ^= {*!,. tn) be a tilting set of 9i{Â). the coefficients of the

Cartan matrix C^ of the fc-algebra End ST formed by ail n x «-matrices / (ftJ)

such that ftJ e Homgl(^) (tiy t}) are given by (Q-)v) dim* Hom^) (tn t;)
(dim tu dimf,).

A finite-dimensional /c-algebra of the form End ïï is called a A-root algebra.

5.6 LEMMA. Lef A be a tame quiver and ST {tly... tn} be a tilting set of
Â. Then ?T contains a transjective vertex.

Proof. If tlt..., tn are regular vertices of @l(Â), then dim^,.. dim^ are

linearly dépendent, for they lie in the hyperplane of vectors of defect zéro [DR].

5.7 We call a tilting set ÏÏ of 91{Â) cycle-free if the quiver of End SF contains
no oriented cycle. The tilting set formed by the marked vertices of the following
picture is not cycle-free (A D4 and identification is along the dotted Unes).

5.8 Let A be a finite-dimensional fc-algebra, (A, AMB, B) a tilting triple
(compare 1.7), X and &lt;3/ the full subcategories {Yemod5 \M &lt;8&gt;B 7 0} and

{YemodB |Torf (M, Y) 0} of modB respectively. In [HR] it is shown that
(âf, &lt;30 is a torsion theory on mod B. If every indécomposable 5-modules lies
either in âf or in ^, we say that the torsion theory splits. Following [AH], a

finite-dimensional fc-algebra A is called an iterated tilted algebra if there exists a

finite quiver A without oriented cycle and a séquence of tilting triples
A&gt; A,MlAt+l&gt; A+i)o*Km such that the associated torsion théories (8fl+1, %+i) on
modAt+t split and that Ao kA, Am =^4. This quiver A is uniquely determined

up to the relation ~ introduced in 4.8 and will be called the type ofA.



On the derived category of a finite-dimensional algebra 357

5.9 Of spécial interest to us are iterated tilted algebras of type Â, where Â is

a Dynkin quiver. This we assume for the rest of this section. It was shown in

[AH] that thèse algebras are simply connectée! (for a définition see [BG] or
[BLS]). By 2.6 we infer that K0(A) and K0(kÂ) are isometric if A is an iterated
tilted algebra of type Â.

5.10 THEOREM. Let A be a simply connectée! À-root algebra (5.5). Then A
is an iterated tilted algebra of type A.

For a proof of this theorem we refer to the appendix.

5.11 Let us give an example of the embedding of ind A into ind Db(kÂ) for
an iterated tilted algebra of type Â. We consider the algebra A defined by the

bounded quiver

This is an iterated tilted algebra of type A4: With the notation of 5.8, we hâve

m 2; Ao is the algebra of the quiver

and Ai the algebra of the bounden quiver

-Of-

M1 is the direct sum of the A0-niodules with dimension vectors [1000], [1111],
[0011] and [0001]; M2 is the direct sum of the ^-modules with dimension
vectors [1000], [1100], [0111] and [0001]. The Auslander-Reiten quiver FA

has the following form. The dotted Unes indicate the Auslander-Reiten
translation.

Up to translation of T there are ten isomorphism classes of indécomposable
objects in Db(A) (compare 5.13). The embedding of ind A into ZA4 is illustrated
in the following figure. The vertices marked by * correspond to indécomposable
&gt;l-modules.
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5.12 A finite-dimensional /c-algebra A is called a Dynkin algebra of type Â if
A is simply connectée and there exists a Dynkin quiver Â such that K0(A) and
K0(kÂ) are isometric.

THEOREM. Let A be a basic finite-dimensional k-algebra and Â a Dynkin
quiver. Then the following are équivalent.

(i) Db(A) is triangle-équivalent to Db(kÂ).
(ii) A is a Dynkin algebra of type Â.

(iii) A is a simply connectée A-root algebra.

(iv) A is an iterated tilted algebra of type Â.

(v) A and kÂ are tilting-equivalent.

Pwof (i)i»(iv)By3.2a)of [H3].
(ii) z^&gt; (iii) This follows from 8.8.

(iii) =&gt; (iv) By5.10.
(iv) =&gt; (ii) By the remark in 5.9.

(iv)=&gt;(v) trivial.
(v)=&gt;(i) Byl.7.

COROLLARY. Let A be a Dynkin algebra of type Â and set SlA

{xeZn\ Xa(x) 1}. Then dim induces a bijection between indDb(A)/T2 and 9tA.

Proof By 5.12 there is an équivalence F of triangulated catégories from
Db{A) to Db{kÂ). By 2.6 we obtain an isometry f:K0(A)-»K0(kÂ) such that
dimF(Ar&apos;) (dimAr#)/ for X&apos;eDb(A). It follows that / induces a bijection
between 9tA and 0tk^. By 4.7 the assertion follows.

5.13 At this stage we want to point out why we used the bilinear form on the

Grothendieck group to define isometries instead of using the quadratic form x
which might appear more natural.

Consider the algebra A given by the bounden quiver

Then mod A is directed as FA shows:
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Since FA is not simply connected, we immediately see that K0(A) is not isometric
to K0(kÂ) for a Dynkin quiver Â (5.12).

But Xa is congruent to Xbs as the following calculation shows. The matrix
representing Xa is

Xa

I 2

-1
1

-1
0

-1
2

-1
0

1

1

-1
2

0

-1

We choose

1 0

l 0 -1
8= [-1 0 1

0 0

L 0 0

Then g e GL5(Z) and

-1
0

0

2

-1

0

0

-1
1

0

o\
1

-1
-1

2

o\
-1

0

0

0

gXAg&apos;

2

-1
0

0

0

-1
2

-1
0

0

0

-1
2

-1
-1

0

0

-1
2

0

o\
0

This is the matrix representing Xd5-
The preceding calculation shows that %A is positive definite. We infer that A is

not even an iterated tilted algebra of type Â, where Â, is an arbitrary quiver
without oriented cycle.
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6. Cycles in mod kÂ

Throughout this section let A kÂ for some finite quiver Â without oriented
cycle.

6.1 LEMMA. Let Xu X2y X3 be A-modules. Suppose that f\Xx-*X2 is

surjective and g\X2-*X3 injective. Then there exists a module Y and linear maps
hx:Xx-&gt;Y andh2:Y-*X3 such that

0-+Xx —l-+ X2 © y -zfi2-&gt; X3-+0 is exact.

Proof Consider the following exact séquence

(*) 0-*X2**X3-+X3/X2-+0.

Since A is hereditary, Exti (X3/X2ff) is surjective. Let 0—» J^—^ Y-*X3/X2-*0

be a preimage of (*) in Ext\(X3/X2, Xx). Then we obtain the following
commutative diagram of exact séquences

with hx injective and h2 surjective. By construction we hâve that

lX2@Y^*X3^&gt;0 isexact.

6.2 THEOREM. Let % be afull subcategory ofmoàA which is closed under
extensions and direct summands. If % contains a cycle (0.1), % also contains an
indécomposable Z such that End Z ¥= k.

The proof results from the following steps:
1) If X, Y € « and / € Hom^ (X, Y), then im/ e « (apply 6.1).
2) If % contains a cycle, it contains an even cycle, i.e. a cycle of the form
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X\ X-\ X2n -1

y h y
o X2 X4 X2n =:

where ail ^ are injective and all/^+x surjective.
In the sequel, we suppose that among ail even cycles the given one has

minimal length 2n. We also assume that End Xt k for ail i. This implies n ^ 2.

3) HomA(X0fXl) 0if2^i&lt;2n.
Suppose there exists 0¥zfeHomA(XOfXt). By 1) ail indécomposable sum-

mands of im/belong to %. So there exists an indécomposable A -module Y in %

and linear maps Xq-^-* Y~f-+ Xt with /&apos; surjective and f injective. This yields a

cycle of length less than 2n in &lt;€, contradicting the minimality of the given cycle.
In the sequel, we suppose that dim A^ + dim Hom^ (Xx&gt; X3) is smaller or

equal to the corresponding sum of any other even cycle of length 2n.

4) Each non-zero / e Hom^ (Xo, Xt) is injective.
In fact, suppose that there exists 0=É/e Hom^ (Xo, Xx) which is not injective.

As Hom^ (Xq, X2) 0 by 3) / is not surjective. By 1) there exists an indécomposable

A-module Y&apos; e&lt;€ and linear maps Xo-£~* Y1 •£-* Xt with /&apos; surjective and

f injective. Consider the exact séquence 0—? K^Xq-^-* Y&apos;-*0. As/0 is injective
its restriction to K is non-zero. Therefore Hom^ (i, Xx) =é 0. In particular,
dim Hom^ (F&apos;, Xx) &lt; dim Hom^ (Xo, Xx) and dim Y&apos; ^ dim XOt contradicting the

minimality of dim Xo + dim Hom^ (Xx, X3).

By 6.1, there is a diagram

Y

y x

such that (+) 0-+Xl^Y@X2-^X3-^&gt;0 is exact. Let Y=(Brl=lYt be a

décomposition of Y into indécomposables. Let gt and h, be the corresponding
components of g and h.

5) r 2* 2. In particular ht # 0 for ail i.

The first foliows from the minimality of the given cycle. Suppose ht 0 for
one i. Then Yt a ker (£) im (g/i). Thus Yt is a direct summand of im (gfx). But
A*! 3 im (gfi) is indécomposable. Hence the séquence splits, contradicting again
the minimality of the given cycle.
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6) Each non-zero / e Hom^ (Xo&gt; Yt) is injective.
In fact, apply Hoirie (Xo, -) to (+). By 3) it follows that Hom^ (Xo,

Hom^ (Xo, Y) ©f=1 Honu (Xo, 1^). Let u e Hom^ (Aq, Xx) be the preimage of
/. Thus u # 0 and injective by 4). Therefore we hâve that / wg is injective.

Choose some i such that fogt =£ 0. Then
7) Since 2n is minimal, ht is neither surjective nor injective.
8) Exi\(X3,X3)±0
Otherwise, (+) induces an exact séquence

0-&gt;Honu (Aa, X3)^&gt;Hom(X2®Y, ^-^Hom^ (XU

Denoting dim^ Hom^ (M, N) by (M, N), we infer that

i, X3) É (Yp X3) + (X2, X3) -
7 1

&gt;(YltX3) since (YpX3)*0 for ail y by 5).

It follows that the cycle

Y,

where Z&apos; is an indécomposable direct summand of im ht is a contradiction to the
minimality of dim Xo -h (Ai, X3).

9) If 0-»A3—?£—»Ar3-»0 does not split, End/s is isomorphic to the algebra
of dual numbers.

This is a straightforward computation.

7. Piecewise hereditary algebras

7.1 We call a finite-dimensional A:-algebra A piecewise hereditary if Db(A) is

triangle-équivalent to Db(kÂ) for some finite quiver Â (which is uniquely
determined up to the relation ~ introduced in 4.8). By 1.4 it follows that A has

finite global dimension.
A finite-dimensional fc-algebra is piecewise hereditary if it is tilting-equivalent

to some kà (compare 1.7). Note that in 5.12 we hâve shown the converse for
Dynkin algebras.
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7.2 LEMMA. Let A, Y be indécomposable modules over a piecewise

hereditary algebra A. Then:

(a) ExtlA(X,X) 0 for i&gt;l.

(b) // X, Y occur in a cycle (0.1) of mod A, Ext^ (X, Y) 0fori&gt;l.

Proof (a) Dénote by F a triangle-équivalence from Db(A) to Db{kÂ). By
4.1, F(A) —FA&apos; for an indécomposable kÂ-module X&apos; and some /eZ. Then

Ext;* (A, X) Hom^M) (A, T&apos;X) 2» Hom^^) (F(A), FF(A))

tii (*&apos;, X&apos;) 0 for i &gt; 1.

(b) If X, Y occur in a cycle of mod A, it follows from 4.2 that F(X) and F(Y)
are isomorphic to FJf &apos; and T&apos;Y&apos; for some indécomposable fcZ-modules X&apos; and

y and some j e Z. Thus

^ (X, Y) HomD*w (Z, F7) 2» Hom^, (X&apos;f TY&apos;)

(Xr, y&apos;) 0forî&gt;l.

7.3 LEMMA. A piecewise hereditary algebra A is a factor algebra of a

finite-dimensional hereditary k-algebra.

Proof Assume Po -U Pt -^ • &gt; Pr Po is a cycle of indécomposable pro-
jective ^-modules. Dénote by F a triangle-équivalence from Db(A) to Db(kÂ).
Using 4.2 and F we obtain a cycle Aq-»Xx-* • &gt;Xr Xq of indécomposable
fc4-modules, satisfying Exti^ (Ai, JÇ) 0 and EndAi^fc. But this contradicts
Corollary 4.2 of [HR] (or Theorem 6.2 above).

7.4 The following theorem is a generalization of a resuit due to Ringel [Ri5].
We closely follow his proof and recall that an .A-module Z is called a brick if

THEOREM. Let A be a piecewise hereditary algebra and M be an indécomposable

A-module which is not a brick. Then M contains a brick Z such that

Exti(Z,Z)*0.
Proof It is enough to produce an indécomposable proper submodule X of M

such that Ext^ (A, A) ¥= 0. Let 0 #/ e End M be such that im/ 5 has minimal
length. Then S is indécomposable. If Ext^(5, S)#=0, we set A S. Otherwise,
we choose an indécomposable XcN-kerf of minimal length such that
Hom^ (5, A)=É0=ÉExt3i (S, A). Such an A exists by 1) below. We will show in

2)thatExti(A,A)#0.
1) Let iV=©?=1Nf with Nt indécomposable. Dénote by pt the canonical
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projection from N to Nr Consider the following diagram of exact séquences:

0 &gt; N &gt;M-t~&gt;S &gt;0

0 &gt; Nt &gt; £ &gt; S &gt; 0

The lower séquence does not split. Otherwise, Nt would be a direct summand of
M. Therefore Exti (5, Nt) * 0 for ail i and S c ker/implies that HomA (5, Nt) * 0

for at least one i.
2) Let 0 =£ g e Hom^ (5, X). Since S has minimal length we infer that g is

injective. Exti (S, S) 0 implies that g is not bijective. Consider the exact

séquence (*) 0-» S ¦*» X ¦*» g -* 0. The exact séquence Exti (5, 5) -?
Exti (5, X)-+ Exti (5, g) yields Exti (5, g) #0. So there is a non-split extension

0-*g-»£-»S-»0. This induces a séquence Q^E&apos;^S^X^Q for each

indécomposable summand E&apos; of £. Since g is indécomposable by 3) below, u and
t&gt; are non-zero and non-invertible. We infer that Ext^ (g, X) 0 by 7.2, and the
exact séquence Exti {X, X)-&gt; Exti (5, X)-&gt;Ex&amp; (g, Z) yields Exti (X, X) * 0.

3) Suppose g ©;=! gt with g, indécomposable and r &gt; 1. We may assume
that Exti (5, gi)^=0. Dénote by ix the inclusion from QX to g. Consider the
induced séquence:

(**) o &gt;S &gt;Y &gt;Q{ &gt;0

« i i-
(•) 0 &gt;S &gt;X &gt;Q &gt;0

The upper séquence does not split, for X is indécomposable. Since ExtJ (5, 5) 0

by 7.2 the exact séquence Exti (5, S)-*Exti (S, 7)-»Exti (5, gO^Ext^ (S, 5)
yields Exti (5, Y)*0. Let Y=©[mlY; with Yt indécomposable. As (*?) does

not split, Hom^S, Yt)^0 for ail /. So there exists y with Exti (S, ^)^0 and
HomA(SfYj)¥&quot;0. But this contradicts the choice of X. Hence g is

indécomposable.

7.5 COROLLARY. Let A be a piecewise hereditary algebra. Then the

following are équivalent.
(i) A is representation-finite.
(ii) For ail bricks Z, Exti (2, Z) 0.

(iii) Every indécomposable A-module is a brick.

Proof. For the convenience of the reader we copy the proof from [Ri5].
Assume there exists a brick Z, with Exti(Z, Z)=#0. By 7.2 the
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brick Z satisfies ExtJ (Z, Z) 0. Thus, we can construct indécomposable
A-modules of arbitrary length, using the process of simplification (see [Ril] or 3.1

of [Ri6]).
(ii)=&gt;(iii) This follows from 7.4.

(iii) =&gt; (i) This is true in gênerai for finite-dimensional A&gt;algebras. It follows
directly from the représentation theory of Schurian vector-space catégories (for a

survey, see [Ri3]). In our situation, where A is a factor algebra of a

finite-dimensional hereditary fc-algebra, one considers the category of v4-modules

as the category of représentations of a bimodule of the form BMk, with B a

proper factor algebra of A (see [Ri3] or 2.5 of [Ri6]), and uses induction.

7.6 COROLLARY. Let A be a representation-finite piecewise hereditary
algebra. Then mod A is directed.

Proof. Let Xq-+Xx-+• • --+XH Xq be a cycle of indécomposable A-
modules. Dénote by F a triangle-équivalence from Db(A) to Db(kA). It follows
from 4.2 that F(X0)-+ F(Xl) —&gt; • • • —&gt; F(Xn) F(X0) may be considered as a cycle
of indécomposable fcii-modules. Let &lt;# be the smallest full subcategory of
modkÂ closed under extensions and direct summands containing F(Xt) for
0^/^n. Then for Fe« there exists an A-module Y&apos; with F(Y&apos;)^Y. In
fact let Y,, Y2e(€ and (*) 0-*Yl^Y^&gt;Y2-»0 be exact in modA:4. We may
assume that Yl F(Zl) and Y2 F{Zq) for some A-modules Zx, Zz. We hâve

Extii (Y2, Y,) - Hom^^i) (Y2, TY,) * Hom^^) (Z,, TZ{) - Ext^ (Z2, Z,). Let
w € Homo^^^) (Y2, 71^) be the élément corresponding to (*). Then
w F(w&apos;) for some w&apos;eHom0/&gt;(/4)(Z2, TZ{). Let 0-^ZlL&gt;YfJL&gt;Z2-*0 be the

corresponding élément in Ext^ (Z2, Zx). So we obtain the triangle ZX^Y{&apos;•*?

Z2^ TZX in Dfe(A). Thus also F(Z1)-£10^F(Y/)-^UF(Z2)-^:^F(rZ1) is a

triangle isomorphic to Yx^ Y A Y2 ^ TY^ In particular F(Y;) =* Y. The assertion

now follows from 6.2 and 7.5.

7.7 COROLLARY. Let A be a representation-finite piecewise hereidtary
algebra. Then the indécomposable A-modules are uniquely (up to isomorphism)
determined by their composition factors.

Proof. This follows from [Hl] using 7.6.

7.8 THEOREM. Let A be a piecewise hereditary algebra of type A Then A
is a cycle-free A-root algebra.

Proof Let P(l),..., P(n) be a complète list of représentatives from the
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isomorphism classes of indécomposable projective A-modules. Let F be a

triangle-équivalence from Db(A) to Db(kÂ). Let Xt F(P(i)) for l^i^n. Then
A =« End 0r=i XI. In 5.1 we have introduced the covering functor n : ind Db(kÂ)
-+ 9t{Â). Let tt Jt(X&apos;t) for l^i^n. We claim that ïï {^,. tn) is a tilting
set of $(4). Using 2.6 and 5.2 we see that dim^,. Aimtn form a Z-basis of
Zw. Since n is a covering functor (see [BG] or [G3]) we obtain:

i) (tn rtj)

/eZ

U Hom^^) (r2&apos;-1*;, a;) (by 3.8)

0.

Using again that n is a covering functor we infer that A — End ST and obviously is

cycle-free.

8. Directed root algebras

8.1 In 2.4 we gave the définition of the Cartan matrix CA for a basic

finite-dimensional fc-algebra A. For the formulation of our results we need some
additional terminology. A matrix C e MS(N) is called schurian if Cl} ^ 1 and

Cu 1 for 1 ^ i, j ^ 5. We say that C € MS(N) is directed if C is an upper triangular
matrix up to conjugation by permutation matrices. A basic finite-dimensional
fc-algebra A is called schurian if CA is schurian and directed if CA is directed. Let
A be a basic finite-dimensional A&gt;algebra. Then A is given by a bounden quiver
(Â,I) [G2]. This will be abbreviated by A k(Â,I). We say that (Â,I) is

semi-commutative if A is schurian, directed and for ail vertices i, y of 4 and paths

h\, Wi from i to y in Â either both paths are contained in / or both paths are not
contained in /.

Let A(A) be the fc-category associated with A in the following way [BG]. Let

eït..., en be a complète set of primitive orthogonal idempotents of A. Then

eif..., en are the objects of A(A) and HomA(/4) (el9 e,) e,Aer The composition
of morphisms is the multiplication of A. We say that A(A) is Â-free [Bo2] if
A{A) does not contain a full subcategory isomorphic to A{kÊ) with £ Âr for
some r € N.
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8.2 In this subsection we assume that À is either a Dynkin or a tame quiver.
We want to show how certain tilting sets arise quite naturally. Let A be a

schurian, directed, basic finite-dimensional /c-algebra such that K0(A) and
K0(kÂ) are isometric. Let/be an isometry and P(l),..., P(n) a complète set of
représentatives of the isomorphism classes of indécomposable projective A-
modules. There exist uniquely determined vertices tx,..., tn of 0l(Â) (5.1) such

that dim tt =/(dim P(i)), for ^^(f(dim P(i))) 1.

LEMMA. ÏÏ {tlf. ,tn} is a cycle-free tilting set o

Proof. By construction dim^,. dim tn form a Z-basis. If J&quot; is a tilting set
it is clearly cycle-free, for Q- CA. So it remains to check the conditions

Since A is schurian we hâve 0 ^ (dim tn dim 0^1 for 1 ^ i, j ^ n. Let
tj e 5; We want to show that Hom^) (tJf rtt) 0. If Hom^i) (r,, (;) 0 then

i) (^y, r^) 0, for (dim tn dim t}) ^ 0. So assume Hom^(^) (^, f;) #0.
We distinguish the following cases:

(1) t, is a transjective vertex.
Applying T and t if necessary, we may assume that tt belongs to 0t~*&quot;(Â) and is

projective as foï-module. Then Hom^)^, r;)^=0 implies tj€@l*(Â) and

(2) /; is a transjective vertex.
This is dual to (1).
This finishes the proof if A is a Dynkin quiver.
(3) tn tj are regular vertices.

(i) tn tt e 3T(i).
By 5.6, ST contains a transjective vertex t. Applying t if necessary, we may

assume that t is a projective fc4-module. Since Hom^ (tt, ^)#0, tt and t} belong
to one component % of the Auslander-Reiten quiver of kÂ. Set M add % and

suppose that ExtjU (rf, r;) Ext^(tn t})^0. Since si is a sériai abelian category,
the conditions Hom^ (tn tt) # 0 # Ext^ (f,, r;) imply that each simple object of M
occurs as a Jordan-Hôlder factor of tt © r,, or equivalently of rtt © r^;. It follows
that each vertex of Â belongs to the support of xtt © xtp hence that
0 =é Hom (f, % © rf,): contradiction.

(ii) t,e$l+(Â), tte9T(Â).
Suppose that Hom^(i) {tn rt,) Hom^(i) (r,, Tt}) * 0. Set r;; Tt} e 0l+(Â).

As in (i) above, the assumptions Hom*i (tn t&apos;f) =^0^Extii (tn t])
Hom^(^) (/,, tj) lead to a contradiction.

It would be interesting to know if the previous lemma still holds when Â is a

wild quiver. The proof does not generalize, for 5.6 is false in this situation.
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8.3 For the next auxiliary results let A be a hereditary basic finite-
dimensional k-algebra.

LEMMA. Let X, Y be indécomposable A-modules such that Exti (Y, X) 0.

Then every non-zero map f:X-+ Y is either injective or surjective.

For a proof we refer to [HR], 4.1.

8.4 LEMMA. Let Xx&gt; X2 be indécomposable A-modules such that

Exti (Xlf Xt) 0 for 1 ^ i&apos;^ 2 and Ext^ (X2, Xx) 0. // Hom^ (Ai, X2) ±0 then

Ext1A(X1,X2) 0.

Proof. Since Ext^ (X2, Xx) 0 a non-zero map / e Hom^ (Xlt X2) is either
injective or surjective by 8.3. If / is surjective, / induces a surjection
Exti (Xu Xx)-* Ex^ ÇXU X2). So Exti (Xlf Xx) 0 implies Exti (Xl9 X2) 0. If/
is injective, /induces a surjection Exti (X2) Z2)-»Ext3i (Xu X2).

8.5 LEMMA. Let Xlt X2 be A-modules such that Ext^ (Xn Xt) 0,

End Xt k for 1 ^ î ^ 2. Hom^ (Xu X2) Hom^ (X2, Xx) 0, Ext^ (X2, Xx) 0

and dim* Ext^ (Xlf X2) 1. // (*) O-^Ai-^E-^^-^O is a non-split extension
then EndE~k and Ext^ (£, E) 0. /nparticular, E is indécomposable.

Proof It follows from [Ri4], 2.1 that End E k. The exact séquence (*)
yields Exti (Xlt E) 0 Ext1A (X2, E). Applying ExtlA(-fE) gives now the
assertion.

8.6 Let A be a finite quiver without oriented cycle.

PROPOSITION. Let ïï € 31{Â) be a cycle-free tilting set and suppose that C^
is schurian. Let tï,t2tt3e3&apos;. If there exist O^/eHom^)^, t2) and 0=Ége
Hom^i) (t2, t3) such that fg 0 then Hom^) (tlf t3) 0.

Proof. Applying T if necessary, we may assume that tx e 91+{Â). We
distinguish the following cases:

(i) t2,t3e®+(Â).
In this case we are dealing with kA-modules. As /g 0 and 3~ is a tilting set / is

injective and g is surjective. The exact séquence (*) 0—?#—?f2-£&gt;&apos;3-»0 yields
exact séquences

u t2) ^-* Hom*(ii (tlf t3) -&gt; Ext^ (tlf K)-»0
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and Hom^ (t2t t2)^Homk£ (t2, t3)-*ExtlkA (t2, K)-+0 using that 5&quot; is a tilting
set. By assumption Hom^ (tu g) 0. So we hâve Hom (tx, t3) r^Ext1 (tlf K) and
Ext1 (t2, K) 0. Since/is injective, the induced map Ext1 (f2, /0-^Ext1 (tu K) is

surjective. Hence 0 Ext1 (tlf K) Hom (tlt t3).

(ii) t2eM-{Â),he9l+{Â).
Let f&apos;.tx^&gt;t3 be non-zero. If / is injective, the induced map Ext1^, Tt2)—&gt;

Ext1 (tl9 Tt2) is surjective; this contradicts the assumption that Hom (t3t t2) 0. If
/is surjective, so is Ext1 (Tt2f ^)—^Ext1 (Tt2, t3); this contradicts the assumption
that Hom (t2, tx) 0.

(iii) t2yt3e3l-{Â).
Since O^Hom^^)^, t2)=: Exila (h y Tt2) we obtain a non-split extension of
kÂ-modules (*) 0—» Tt2-+E-^tx-+0. E is indécomposable and Ext^ (E, E) 0

by 8.5. Applying Hom^ (—, Tt3) yields:

(**) O^Hom (tu rr3)^Hom (£, rr3)^Hom (Tt2t TtJ-^Ext1 (tu Tt3)-+
Ext^E, Tt3)-*0.

By assumption Hom(7ï2, Tt3)¥^0 and 3 0. So Hom(£, Tt3)*0. As ST is a

cycle-free tilting set (*) yields that Ext1 (Tt3, E) 0. By 8.4, applied to Tt3, E, we
conclude Ext1 (E, Tt3) 0. Therefore 0 Ext1 (tu Tt3) Hom^(i) (r,, r3) from

(**).
(iv) r2eâ?+(i), f3er(4).

This is dual to (ii).

8.7 THEOREM. Le* A £(£, /), w/iere (Ê, I) is semi-commutative and
A(A) is Â-free. If K0(A) is isometric to K0(kÂ) for some quiver Â which is either
Dynkin or tame, then A is a cycle-free Â-root algebra.

Proof Since A(A) is A-free, H2(A, k*) {1} by [Bo2], 2.3. So every
directed schurian algebra B which has the same simplicial frame as A [BrG] is

isomorphic to A.
Now let Sf e &amp;l(Â) be the tilting set constructed in 8.2 and B End ST. Then

CB C&lt;r CA :C, and B is schurian and directed. So it remains to show that
S^B^S^A simplicial frame of A). For this, we identify 3~ with the set of
vertices of the quivers of B and A. Let t (tl{)&gt;... tln)cz 3~n+l be a strictly
increasing séquence (Clplp+Ï 1 for ail p). It follows from 8.6 that t e SnB if and

only if ClQln 1 (use induction on n, Proposition 8.6 being the case n 2).

Similarly, t e SnA if and only if ClQln 1 (because (£, /) is semi-commutative). So

8.8 COROLLARY. Let A k(Ê,I) be a finite-dimensional k-algebra,
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where modi4 is directed. If K0(A) is isometric to K0(kA) for some quiver A which
is either Dynkin or tame, then A is a cycle-free A-root algebra.

Proof It follows from [Ri6], 2.4(9&apos;) that A is representation-finite, whence

A(A) is Â-free. Moreover [BrG] 3.1 and 3.3b and [Bo2], 2.3 imply that (Ê, I) is

semi-commutative. The assertion now follows from 8.7.

9. Frobenius catégories

9.1 Let si be an abelian category and let 38 be a full subcategory of si which
is closed under extensions. Let 5^ be the set of exact séquences in si with terms in
the subcategory 38. Following [Q] we call the pair (38, Sf) an exact category. An
object X of 38 is called &lt;f-injective if ail exact séquences 0-» X^&gt; Y-* Z-» 0 in îf
are split. Dually an object Z of 38 is called ïf-projective if ail exact séquences
0-&gt;X-* Y-+ Z-&gt; 0 in 9&gt; are split.

We say that the exact category (38, Sf) has sufficiently many £f-injectives if for
ail Xe 38 there is 0-» JT-» Y-+Z-+0 in Sf such that Y is 5^-injective. Dually we

say that (38, Sf) has sufficiently many Sf-projectives if for ail Z e 38 there is

0-+X-+ y-&gt; Z-&gt; 0 in y such that y is 5^-projective.
An exact category (38, Sf) with sufficiently many 5^-injectives and sufficiently

many y-projectives such that the 5^-projectives and the 5^-injectives coincide is

called a Frobenius category [He].
We are mainly interested in the associated stable category. This is a category

38 with the same objects as 38. For a pair X, Y e 38 dénote by I(X, Y) the set of
morphisms from X to Y which factor over an 5^-injective. Then the morphisms in
m from X to Y are given by Hom(*, Y) Homm(X, Y)/I(X, Y) (compare

[AB], [He]). The residue class of a morphism u:X-^&gt; Y is denoted by u.

Following [He], the suspension functor fi&quot;1 is a self-equivalence on 38, where

(38, if) is a Frobenius category. We assume that T Q~l is an automorphism on
S- This is possible if for ail X e 38 the isomorphism classes of X and Q~lX hâve

the same cardinality (compare [He]).

9.2 We include some examples to which thèse concepts may be applied. Let
38&apos; be an additive category with splitting idempotents and 38 the category of
bounded complexes over 38&apos;. The set 5^ of exact séquences is given by pointwise
split exact séquences over 38&apos;. Then it is easily seen that (38, y) is an exact
category. It is even a Frobenius category where the 5^-projective complexes are
built from complexes • • • 0-» X-4 X-» 0 • • • with Z e 38&apos; by forming direct sums.
The stable category g&gt; is the homotopy category of 38. And the automorphism T
is just the shift functor on ®.
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The category of finite-dimensional modules over a finite-dimensional selfin-
jective fc-algebra is a Frobenius category. This example includes the case of a

group algebra of a finite group over a field. A third kind of example is the

category of graded modules over the exterior algebra (see [BGG]).

9.3 Let (38, &amp;) be a Frobenius category and Ë9 the stable category. We
define a set 3~ of sextuples in @.

Let X, Y e 38 and u e Hom^ (X, Y). Consider the following diagram in 38:

X -ï-* Y

\
^ Cu

1 1-

TX TX

where 0-+X±&gt;I(X)-î* TX-+0 is in Sf and I(X) is 5^-injective. Cu is the pushout
of u and x.

Since 38 is closed under extensions in some abelian category si the pushout Cu

in 98 coincides with the pushout in si. A sextuple of the form X1^ Y^ Cu ^ TX
and its image in ® will be called standard. A sextuple X^Y^Z^YX oi
objects and morphisms in 38 lies in 3~ if it is isomorphic in 38 to a standard

sextuple.

9.4 THEOREM. The set 5 is a triangulation of 38

Proof. We check the axioms from 0.3.

(TRI). By définition S&quot; is closed under isomorphisms and every morphism can

be embedded into a triangle. Clearly the sextuple X-^X-^0-2* TX lies in ST.

(TR3) It is easily seen that it suffices to consider the case of standard

triangles.
Consider the following two standard sextuples.

X

i
(X)

¦I

TX

&gt; Y

1&apos;

i-
TA&quot;

A&quot; -*-»

¦1

and I(X&apos;) »

&apos;I

TX&apos; *

Y&apos;

I&quot;

TA&quot;

and two morphisms / and g such that fu^ wg in 38.
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There exists a morphism a:I(X)-*Y&apos; such that ug=fu&apos;+xa. We hâve

morphisms If:I(X)-+I(X&apos;) such that fxf=xlf and Tf:TX-*TXf such that
Ifx&apos;=xTf. We obtain morphisms gv&apos;\Y-*Cu. and Ifù&apos; + avf:I(X)-+CU.. This
yields a morphism h : CU-*CU&gt; such that vh =gvr and û/î Ifû&apos; + au&apos;, for Cu is a

pushout.
We daim that hw&apos; h&gt;7/. For this it is enough to show that vhw&apos; vwTf and

ûhw&apos; û&gt;v7y. For the first observe that vwTf 0 and vhw1 gv&apos;w&apos; 0. For the
second we hâve ûwTf =xTf Ifx&apos; Ifù&apos;w&apos; Ifû&apos;wf + av&apos;wr (Ifû&apos; + av&apos;)w&apos;

ù/w&apos;.

Thus (/, g, 6) is a morphism of triangles.

Before proving (TR2) let us state the following two remarks.
1) lf0-+XJL&gt;YJL&gt;Z—*0i$a. short exact séquence in 5^, we will say that m is a

proper monomorphism and v a proper epimorphism. We claim that every
morphism of 38 is isomorphic to the residue class u of a proper monomorphism u.

Indeed, given a morphism X^&gt; V of ââ and a proper monomorphism X -^7 of
Jf into an 5^-injective 7, / is clearly isomorphic to the residue class of (/&quot;, x). On
the other hand, îP contains the short exact séquence

where C is the pushout occuring in the following commutative diagram with rows
in ^

0 V -*-*C * TX 0

2) Consider two exact séquences 0-&gt;Z^yAZ-»0 and 0-^Y-1»
jjL+ TY-^0 of 5^, where 7 is 5^-injective. They induce the commutative diagram
with exact rows

0 » X-±+Y -^ Z &gt;0

ii i- i-
0 &gt;X-^&gt; 1-2-+TX *0

We claim that X^-*Y-^Z-^&gt;TX belongs to &amp;. Indeed, this follows from the
diagram:
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0 0

1 I
o—*x -!U y -ï-* z—&gt;o

Ul\ («0
II

0 —„ / i!m» IâL o

i
TX TX

1 i
0 0

It follows from (TR3) that it suffices to prove (TR2) and (TR4) for triangles
constructed in 2) above.

Let us now turn to the proof of the sufficiency in (TR2). With the notation

of 2), it suffices to prove that Y-^Z^ TX:^ TY, or equivalently
y4&gt; Z^TX^TY belongs to J&quot;. But this follows from the last two columns of
the diagram

X^-+Y-±+ Z

II 4 h
h ^

i h
TY=TY

The necessity in (TR2) is superfluous, since it follows from the other axioms:

Indeed, suppose that B-^C^TA ^» TB lies in 3~. By the first part of

(TR2), TA ^&gt; TB^ TC ^** T2A lies in ^. By (TRI), ÏÏ contains a triangle

A^B-^C&apos;-^TA, hence theinduced triangle TA ^» TB^ TC ^^ T2A.

By ((TR3) and conséquences) there is an isomorphism

* * -,

T2A
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which induces the wanted isomorphism

TR4). Let (X, Y, Z&apos;, u,j,ï), (Y, Z, X1 f v,j,jj and (Xf Z, Y&apos;, mv, fc £&apos;) be

triangles. By a previous remark, it is enough to consider the case where u and v
are proper monomorphisms. In order to simplify our notations, we write B/A
instead of coker m whenever m is a proper monomorphism and no confusion is

possible. We also choose a proper monomorphism Z^/, and a proper
monomorphism I/X-^J, where / and / are 5^-injective. This yields proper

monomorphisms X uvm&gt; I and Y-^&gt; /.
Axiom (TR4) now follows from the obvious commutativity of the following

diagram, where ult u2, vlt v2, /, /i dénote the morphisms &quot;naturally&quot; induced by
u, v, m and n.

X X

i \uv

Y -JL* Z -^-»Z/Y—:^—&gt; I/Y

i h II h
y/jr -U z/* -*U z/y ^^H. j/(y/x)
-4 h h
//x //x -su //y

9.5 Let (38, 5^) be an exact category. Let 9 be the free abelian group
generated by the isomorphism classes of objects in 38 and 90 the subgroup
generated by [Z]-[y] + [2] for ail exact séquences 0^*X-&gt;Y-&gt;Z-*0 in Sf.

The Grothendieck group KO(8I) K0((9&amp;, S?)) is by définition the factor group

Let (38, ïf) be a Frobenius category and dénote by &amp; the subgroup of K0(3&amp;)

generated by [P] for ail 5^-projectives P in 38. The following corollary is an
immédiate conséquence of the remarks 1) and 2) above.

COROLLARY. The Grothendieck group Ko(®) of the triangulated category
$ is the factor group



On the derived category of a finite-dimensional algebra 375

10. Répétitive algebras

10.1 Let A be a finite-dimensional A&gt;algebra and Q Hom* (A, k) the

minimal injective cogenerator. Q carries a canonical A-bimodule structure. The

répétitive algebra associated with A is by définition the doubly infinité matrix

algebra, without identity,

o\
Gn-1 An

Qn An+l
0 &apos;•/

in which matrices hâve only finitely many non-zero entries, An= A is placed on
the main diagonal, Qn Q for ail n € Z, ail the remaining entries are zéro, and
the multiplication is induced from the canonical maps A ®A Q-+Q, Q ®A A-*Q
and the zéro map Q ®A Q —&gt; 0.

This algebra was introduced in [HW] in connection with trivial extension
algebras.

We define an A-module A&quot; as a séquence X (Xn,fn) of A-modules Xn and
A-linear maps /„ :Xn-*Hom^ (Q, Xn+t) satisfying fn_x • Hom^ (Q, fn) 0 for ail
n e Z. Instead of (Xn, fn) we also write

f-\

or simply

—2

if we do not want to specify the maps fr A morphism h:X- (Xn,fn)-*Y
(Yn,gn) is a séquence h-(hn) of A-linear maps hn:Xn-+YH such that the

following diagrams commute for ail n € Z

Xn -JL* Hom^ (Q, Xn+X)

y*-£u HomM(e,n+I)

The category of A-modules is équivalent to the category of modules over some

locally bounded fc-category [BG].
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We dénote by Mod^4 the category of ail Â-modules X (Xn, fn) such that
dim* Xn &lt; oo for ail n e Z, by mod Â the category of ail A-modules X (Xnf fn)
such that dim* (0rt Xn) &lt; ».

An alternative description of mod Â will be given at the end of this section.
We hâve a canonical embedding of mod A into mod Â which sends X e mod .4

onto (Xnf fn) where Xq X and Xn 0 for n * 0.

It is quite easy to see that mod A is a Frobenius category and that the

suspension functor can be chosen so as to be an automorphism (9.1, compare
[HW]). The indécomposable projective-injective A-modules are given by

• • • 0 ~ Xt ~ Xl+X ~ 0 • • •

where Xl+1 is an indécomposable v4-injective module, Xt Hom^ (g, Xl+Î) and

Using 9.4 we see that the stable category mod Â is a triangulated category.

10.2 There is a rather useful notion in the theory of triangulated catégories
which was introduced in [BBD]. We recall the définition. A t-category is a

triangulated category 3) endowed with two full sub-categories 2^° and ®^° which

are closed under isomorphisms and such that for 3)^n T~n(9)&quot;*°) and 2^n
T~n(3)^°) the following three conditions are satisfied:

(1) For X e 2^° and Y e S^1 we hâve that Hom (X, Y) 0.

(2) 2*° a B^1 and 2&gt;^ c 2^°.
(3) For Xe 3) there is a traingle B&apos;-*X^&gt;R&quot;-+ TB&apos; such that Br e 3)^° and

Bne3&gt;9&gt;1.

Under thèse conditions, we say that the pair (25^°, 2^°) is a t-structure on 2).

The derived category Db(si) of an abelian category si has a natural
/-structure (see [BBD]).

Dénote by $? the full subcategory 2^° H 2&gt;SB° of 3). X is called the heart of the

/-structure. It is shown in [BBD] that %t is an abelian category.

PROPOSITION. Let A be a finite-dimensional k-algebra. Then the triangu-
lated category mod Â has a natural t-structure (JC*°, M^°) with heart équivalent to
mod A.

Proof, Consider the full subcategory M^° (resp. M^°) of mod A formed by
the objects which admit a décomposition Y®Z in mod Â such that Z is

projective-injective and Yn 0 for n &lt; 0 (resp. for n &gt; 0). We claim that
M*1 T~-l(M*°) is the full subcategory of M*0 formed by the objects Y (Yn9 /„)
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such that the induced séquence

is exact in modA Indeed, this subcategory is obviously closed in modA under
isomorphisms. Therefore, in order to prove that T~lV belongs to it if V e M3*0, it
is enough to consider the case where Vn 0 for n &lt; 0. In this case V has a

projective cover P (Pn,gn) in modA such that Pn is zéro for n&lt;0 and

P0-^*HomA(Q, PO is injective. Thèse two conditions are shared by ail sub-

objects of P, in particular by the kernel of P—&gt; V in modA, which is isomorphic
to T~lV in modA. Conversely, suppose that YeJC*0 and that the séquence
above is exact. In order to prove that YeM*1, we may replace Y by an

isomorphic object of modA, hence restrict to the case where Yn 0 for n &lt; 0. We
then choose an injective hull /„ of Yn in modA and set Pn HomA (Q, In) for

/o
The injection Yo—&gt; Hom^ {Q, Yi)-»Hom^ (Q, IJ Pr obviously extends to

the monomorphism e below, so that Y is isomorphic to T&apos;^cokere), where
coker e e M**0.

•••0~Y0~Yl~Y2--

0 P2 h

Now consider a morphism h:X-*Y, where XeM^° and Ye M^1. In order to

prove that h 0 in modA, we may suppose that Xn 0 for n &gt;0 and Yrt 0 for
n &lt; 0. The diagram below then implies h0 0, hence h 0.

*o Hom^ «2, 0) 0

This proves condition (1). The inclusion M*1 &lt;z JC*0 is clear from the above. The
inclusion M^~1czM^° follows from dual arguments. It implies JC^cM*1.
Finally, if X (Xnf /„) e modA, we construct a triangle B&apos;-+X^&gt;B&quot;-* TB&apos; such
that B&apos; e M*0 and B&quot; e MTl by setting B&apos;n ZM and fl^ 0 for n &lt; 0, B&apos;o * ker/0
and Bq im/0, 5^ 0 and B&quot;n ATrt for n &gt; 0.
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10.3 PROPOSITION. Let A hâve finite global dimension and &lt;€ be a full
triangulated subcategory of modA which contains modA and is closed under
isomorphisms. Then % modA.

Proof. By assumption, Xe&lt;€ implies TXe&lt;€ and T^Xe^; moreover, a

triangle (X, Y, Z, u, v, w) of modA belongs to % if two of its objects do.
First we show that X e % if X e M^0. We proceed by induction on e(X)

min {e 6 N :Xn 0 for n &gt; e}. If e(X) 0, X is isomorphic to an object of mod A
and belongs to &lt;£. So we may suppose that e(X) e ^ 1 and that Y e % if Y e M5*0

and e(Y) &lt; e. We then proceed by induction on the injective dimension id (Xe) of
Xe in modA: A minimal injection i:Xe-+I into an injective A-module / extends

to a morphism j:X—*J of modA, where / dénotes the projective-injective such

that Je /, /,_! HomA (C, I) and /„ 0 if n * e, e - 1. Clearly, / belongs to %
and so does C coker; (e(C) &lt; e if id (Xe) 0 and id (Ce) &lt; id (Xe) if id (Xe) &gt; 0).

It follows that imy e &lt;€. Since e(ker/)&lt;e, we finally hâve that ker/ e ^j hence

Jf 6 ^ By duality, we obtain that M^° cz &lt;€. Our proposition now follows from
axiom (3) of 10.2.

COROLLARY. Let A hâve finite global dimension and % be a full triangulated

subcategory of mod A which is closed under isomorphisms and contains the

full subcategory A$ o/mod A formed by the injectives. Then % =mod A.

Proof. It is enough to show that each X € mod A belongs to %, For this we

use induction on r - id (X) for X e modA. For r 0 there is nothing to show. So

let X 6 mod A with id (X) r ^ 1. Let 0-* X-* /-* Y-» 0 be exact in mod A with

/ e A#. Then id (Y) &lt; r. The above exact séquence yields a triangle X-* /-&gt; Y-*
TX in modA. As / and y belong to &lt;€, we infer that

Note that we hâve a corresponding resuit for the derived category Db(A). If A
has finite global dimension, the smallest full triangulated subcategory of Db(A)
which contains A# and is closed under isomorphisms coincides with Db(A).

10.4 LEMMA. There exist an exact functor I : mod A —? mod A and a mono-
morphism /a : id-» / sac/t f/*af /(AT) is injective for each X e mod A.

Froo/. For each X=(Xn,fn)emodÂ, we define /(Z) (/„, dn) by /„

Hom* (G, Zn+1) © Hom* (A, Xn) and rfn
&quot;), where the left A-module

structure of ln is induced by the right A-module structure of Q and A, and where
ôn :Hom* (Q, A^+x)—?Hom^ (g, Hom* (A, Xn+X)) is the canonical isomorphism
mapping &lt;p onto 9-»(*^&lt;K&lt;^))- We define pl(X):X-*I{X) by
where §„ : ATrt -* Hom* (A, Xn) maps x onto a-*ax.



On the derived category of a finite-dimensional algebra 379

With the notation above, we set S(X) cokcr fi(X) and dénote by

n(X):I(X)-*S(X) the canonical projection. This defines an exact functor
S:modA—?modA mapping injectives onto injectives. The induced functor
modA —&gt;mod A will be denoted by S-

10.5 Let C*°(modA) be the full subcategory of the category C*(mod A) of
bounded complexes which is formed by the complexes vanishing in positive
degrees. The translation functor T is defined on Cas0(mod A), and the mapping
cône Cf. of a morphism/&quot; in Css0(modA) is contained in C^°(modA).

For i ^ 0, dénote by C[-i, 0] the full subcategory of C*°(modA) with objects
X&apos; (Xnf dn) such that Zn 0 for n&lt;-L Identify C[0, 0] with modA. By
induction on i we will construct functors Ft : C[—i, 0]—»modA such that

^i|C[-i+ 1,0] ^î-l-
Let i 0. Using the identification of C[0, 0] with modA, we define Fo to be

the canonical embedding of modA into modA (10.1). Suppose that i^:
C[-f + 1, 0]-»modv4 is already constructed. Let X&apos; (JT, dx) be in C[-i, 0].
Dénote by X&quot; (Xtnf dnx) the complex such that X&apos;n 0 for n ^ 0, Zm Z71 for
n &lt; 0 and d£, d£ for n &lt; -1. Then T~X&quot; is contained in C[-i + 1, 0] and d^1
induces a morphism ex from r&quot;JT&apos;&apos; to Z° whose mapping cône is X\ The functor
/V_i is defined on T~X&quot;, X° and e^. Consider the following pushout diagram in
modA

FUT-X&quot;) F-^ &gt; F,-t(X°)
\lx(F,_,(T-X&apos;

Then we set F((X&apos;) CFi_liexy

Next we show by induction on i that Fi|C[-i+i,o]= JR-i« K l 1

X&apos; e C[0, 0], then T~X&quot; vanishes, and we hâve to consider the following pushout
diagram in modA:

0 &gt; F0(X°)

i
0

1 I

Thus Fi(X&apos;)
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Suppose that the assertion is true for ; &lt; i and let X&apos; eC[ — i + 1, 0]. Then
T~X&quot; € C[-i + 2, 0]. We compute Ft(X&apos;) and F^X) by means of the following
two pushout diagrams in modÂ:

J7 (T~Yt*\ 2\eX&apos;

^
r&gt;

I
pl{F, 2(T X&apos;

&gt;y
1 J** ————&gt; JT |

1

Uc;

~X&quot;)

AT X

By induction F^T&apos;X&apos;^^F^T&apos;X&quot;), /&lt;_2(Z0) ^_1(^0) and Ft.2(ex)
Ft^(ex). Therefore /Ç.,^&apos;) Ft{JC).

LEMMA. The functor F lim, F, : C^°(mod A)-» mod ^ 5a^e5 F|C[_I(O] F,

/or i $5 0 ûrtd iy associated with a canonical isomorphism rj.FT 2&gt; SF.

Proof. The first assertion is clear. So it remains to construct ri:FT-*SF.
Let X&apos;eC^°(modA); then there exists i such that X&apos;eC[-i,0], but Jf *
C[-i + 1, 0]. Clearly X&apos; T&quot;(rjr*)&apos; and er^ 0. Thus we hâve to consider the

following pushout diagram in modÂ:

&gt;0

S(Fl(X&apos;))=S(Fl(X&apos;))

Note that Ft+l(TX&apos;) F(TX) and that S(Ft(X&apos;)) S(F(X&apos;)). We set rj(Z) v.

10.6 The proof of the following two lemmas is clear.
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LEMMA. // reCs0(mod4 the associated séquence

X°)^&gt; F(X&apos;)^* F(X&quot;) is a standard sextuple in modÂ In p
0-&gt; F(X°)^* F(X)^* F(X&apos;-)-*Q is a short exact séquence in mod Â.

Consider C^°(modA) as a full subcategory of the Frobenius category
Cb(modA) (9.2), and dénote by &amp;^° the set of exact séquences with terms in

LEMMA. Let 0-+X&apos; -^ V -^ Z&apos;^&gt; 0 be in &amp;^°. Then

0^ F(X-) ^X F(Y) ^X F(Z)-» 0

is a short séquence in mod Â.

10.7 Let C*&quot;°(A#) be the full subcategory of C^°(mod&gt;l) formed by
complexes with components in A3&gt;. Dénote by G&apos; the restriction of F to C°
by K^°(A$) the residue-category of C^°(A$) modulo homotopy.

LEMMA. G&apos; induces a functor G : K^°(AJ) -» mod Â associated with a
canonical isomorphism !~:GT 2$, SG.

Proof. It is enough to show that a projective-injective object in C^0^^) is

transformed under G&apos; into a projective-injective module in mod Â. Let /* e
C^°(AJ&gt;) be projective-injective. We may assume that /&apos; is indécomposable.
Applying T~ if necessary, we may assume that /&apos; is of the form • • • 0—»/^^*
/°-&gt;0 • • •. But then G&apos;(I&apos;) /(7&quot;1) (with the notations of Lemma 10.4) which is

a projective-injective module in mod Â. Thus G&apos; factors over K^°(A&amp;). Clearly r\
induces a natural transformation §.

10.8 As noted before S induces a functor on the stable category modÂ
denoted by 5. It turns out that S is a selféquivalence. Dénote by 5&apos; a

quasi-inverse of S on mod Â and by ar :S&apos;£-»id an invertible natural transformation.

We also choose an invertible natural transformation /S :id—*§S&apos;.

We inductively construct an invertible natural transformation ar:Sfr$r-*id
for r ^ 1. Let ax oc and suppose that at is constructed for î &lt; r. Then we define

ar(X) S&apos;(ar.l(S(X)))- ocx{X). Clearly ocr is an invertible natural
transformation.

Let a0 id. It follows that for r, r&apos; ** 0 we hâve

(1) ar+r,(X) S&quot;(arm

Later we will need two conséquences of this formula:
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(2) S&apos;r(as-r(Sr(Y))) &lt;xs(Y)-a;l(Y) for j-
(3) S&apos;s(a7}s(Ss(Y)))^as(Y)&apos;a71(Y) for r-s^O.
LEMMA. There exist a k-linear functor G : Kb{A$) —» mod ,4 and an invertible

natural transformation f : GT z&gt;SG such that G\K^\A^ G and f |

Let Z*€*:*t4^). Then there exists t(X)^0 such that r^JT e

Let t{X) be minimal with this property. Then we define G{X&apos;)

Note that for r ^ 0 we hâve isomorphisms

5&apos;w(^r(G(rwX))):5fW+rG(rw+rZ&apos;)

We define G on morphisms as follows:
Let f:Xm-+Ym be a morphism of Kb(A$). If r(y)^/(JQ we

G(^) 5&apos;w(ûrr-1(G(rwX&apos;)))-G(r(y)f) with r r(Y)-r(Z). If f(y
then we define

G(/-) 5&apos;rWG(rw/&apos;)-5^(y)(^(G(r(y)r))) with s t(X)-t(Y).
Observe that for t(X) t(Y) both définitions coincide. Clearly G is fc-linear and

G(id* idô(x &gt;.

Let us show that G préserves the composition of morphisms. For this let
X&apos;, Y\Z&apos; eKb(A^) and f:X&apos;-+Y&apos;, g&apos;:Ym-&gt;Z&apos; be two morphisms. We con-
sider the case t(Y) ^ t(Z) ^ t(X):

Let s t(X) - t(Y), r t{Z) - t(Y). Thus 5 - r ^(X) - t(Z).
By définition

g&apos;) St

S&apos;

by naturality of ûr,_r

by(2)
s&apos;

by définition of G(f&apos;) and G(g)

The remaining five cases are similar.
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Next we will define |.
For this let X&apos; e Kb(A#). If t(X) 0, let Ç(X&apos;) Ç(X&apos;). Otherwise t{TX)

t(X) -1 s* 0. Then GTX9 SttW&apos;xG(rwX&apos;) and §GX&apos; JS&apos;

Then we define |(A:&apos;) /3(S&apos;w-1G(rwZ&apos;)), where j8:id:*£S&apos; is the

chosen invertible natural transformation.

Clearly f(A~) is an isomorphism.
Let/&apos; \X&apos;-+ Y&quot; be a morphism. We hâve to show that

We présent the case t(X) ^ t(Y). The other case is similar.
Let s t(X) - t(Y). Then

Therefore f is an invertible natural transformation such that f l

10.9 We hâve defined an automorphism T on modA (9.1) which serves us as

a translation functor for the triangulated category modÂ There exists an
invertible natural transformation y-S^T [He]. In particular we obtain an
invertible natural transformation f : GT ^ TG with | |(yG).

PROPOSITION. G is an exact functor of triangulated catégories.

Proof We hâve noticed before that G commutes with T up to isomorphism.
Clearly we may restrict to the triangles constructed in Remark 2 of 9.4 and
contained in K^{){AS&gt;). But then the assertion follows from 10.6.

10.10 THEOREM. Let A be a finite-dimensional k-algebra of finite global
dimension. Then G : Kb(AJ&gt;) -» mod Â is a triangle-équivalence.

Proof We hâve to show that G is dense, full and faithful (compare [Bl],
[B2]). By 10.3 and 10.9 it follows that G is dense. We show that G is full and
faithful by induction on the width w(X&apos;) of the considered complexes X&apos;

(H&gt;(*-) 0if ^-=0, and w(X&apos;)=j-i + l if Xt*0*X&gt; and Xn 0 for n &lt;i or

For this let V, r e Kb(A$) with w(V) w(J) 1. Then /• T&apos;I, /&apos; T&apos;J for
some i, / e Z and I,Je AS. Applying T if necessary, we may assume that i 0. If



384 DIETER HAPPEL

j o we use that G restricted to A3&gt; equals the identity. If j &lt; 0, note that
G(r)eM^° and that G(J&apos;)eM^\ Thus the assertion follows from the first

property of the t-structure. So it remains to consider the case ;&gt;0, where
G(J&apos;)eM*0. Let Q-»TJ-1J^&gt;I(T&gt;-1J)-*TJJ-+0 be exact in modi. Then we
obtain in mod^l:

0 0

i i
T&apos;&apos;lJ /_, ~ /„ ~0 •••

I i
/(P-V) • • • ~ H0me*(Ô&apos;

7o)
~ Hom k(A. /o) ~ 0- ¦ •

I Hom k(A, /_,) I

T&apos;j= A&quot;-, ~ k0 ~o--
I I
0 0

Ko is a direct summand of Hom* (A, Jo), since Jo e A3&gt; (by induction on /). Thus
Hom (7, T&apos;J) 0.

Assume that the assertion is true for r,J&apos;eKb(AJl) with w(/&apos;) l and

w(J)&lt;r. Let J&apos; (J1, d&apos;)eKb(A#) with w{J&apos;) r. Then there exists sel such
that J&apos; is the mapping cône of Ts~lJs-*J&quot;, where w(J&quot;) r — 1. This gives rise

to triangles Ts-lJs-+J&apos;-&gt;J^&gt;TsJs in Kb(AJ&gt;) and Ôr^r^GJ&apos;^GJ^
TQj*-ijs jn inodA Applying the cohomological functors Hom (/&apos;,-) and

Hom (G/*, -) yields the following commutative diagram with exact rows:

Hom(/-, Ts~lJs) * Hom (/&apos;,/&quot;) »• Hom (/•,/&apos;)

l^1 I&apos;2 I&apos;3

Hom (G/\ GTS-XJS) * Hom (G/1, G/&apos;) * Hom (G/1, GJ)

Hom (F.TT) &gt; Hom(/&apos;, TJ&quot;)

Hom (G/&apos;, GTV5) &gt; Hom (G/&apos;, TG/&apos;)

By induction it follows that/j, /2, /4&gt; /5 are isomorphisms, hence/3. The remaining
part of the proof is dual.
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COROLLARY. Let A be a finite-dimensional k-algebra of finite global
dimension. Then Db(A) and mod A are triangle-équivalent.

COROLLARY. Let (A, AMBt B) be a tilting triple with gl. dimA &lt;oo. Then
mocM and mod Ê are triangle-équivalent.

For a resuit related to this we refer to [TW].

COROLLARY. Let A be a piecewise hereditary algebra of type A. Then

mod A and mod (kA) are triangle-équivalent.

10.11 For the alternative description of mod .A we hâve to recall the
définition of the trivial extension algebra T(A) of A. The underlying vectorspace
of T(A) A © Q, and the multiplication is defined by

for a, ar eA and q, q&apos; e Q.

T(A) is a Z-graded algebra, where A © 0 are the éléments of degree zéro, and

0© Q those of degree one. We dénote by gr mod T(A) the category of finitely
generated Z-graded T(yl)-modules with morphisms of degree zéro.

It is straightforward that gr mod T(A) and mod A are équivalent. Moreover,
the forgetful functor from grmod T(A) to mod T(A) is a Galois covering in the
sensé of Gabriel [G3].

Appendix: Proof of theorem 5.10

Al. The following démonstration replaces the proof of theorem 1 of [H2] for
which P. Gabriel communicated us a counterexample.

Let 3~ ={fi,..., tn) be a tilting set (5.4) whose associated algebra E End ÏÏ
(5.5) is simply connected. Consider the canonical functor n :ind Db(kA)-* 31{Â)
(5.1) and the full subcategories ^of 0l(A) and jt~1(ÏF) of ind Db{kÂ) which are
supported by ST and tî~ï(3&apos;). Then jt&quot;1^) is a Galois covering of ÏÏ with Galois

group T21 [G3]. Since End ST is simply connected, the connected components of
n~\?F) are mapped isomorphically onto 3~ by n. In the sensé of the following
définition, the points of such a component form a tilting set 3T= {tu tn} of
the quiver fof Db(kÂ) (4.4), and we hâve End ÏÏ (Bu HomDt(k^(th tj) z&gt; End ST.

Theorem 5.10 therefore follows from the theorem below.

DEFINITION. A set of vertices St {tl9 ,tn} of f is called a tilting set of
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t if the following two conditions are satisfied:

(i) HomD6(*^) (F,, Trtj) 0 for ail r # 0 and ail i&gt; j.
(ii) dim tx,.. d/m Fn /orm a Z-basis of Zn.

THEOREM. If A is a Dynkin quiver and &amp;= {tX). Frt} a tilting set of f,
f/*en End J&quot; is an iterated tilted algebra of type A.

A2. Proo/ o/ theorem Al.

Consider an élément of É End 5&quot; as a square matrix with entries in

HomDfr(*£) (F,, tj). Then each object XeDb{kÂ) gives rise to an £-module CX
which consists of ail columns with entries in HomDfr(^) (tJf X)y where ;
1,... n. In particular, the objects tt e Db(kÂ) yield représentatives Ci, of the

indécomposable projectives, and we hâve HomD6(^^)(F/, f/)2&gt;Hom^(CF/, Ci}) for
ail/,/.

Let Fl0 be minimal in ïï for the order of f defined by the arrows. Then Ctl() is

simple projective; it is not injective (otherwise K0(kÂ) would be the orthogonal
sum of subgroups of rank 1 and n - 1). So we hâve an almost split séquence of
the form

0 &gt;CtlQ-

By [APR], the £-module

is tilting. In order to show that End K is associated with a tilting set of f, we
consider a triangle of Db(kA) of the form

*l0—» W r7—&gt; t —&gt; rr/().

By A3 below, r&apos; is indécomposable, say t&apos; et; the set et&apos; (3^{Fl0}) U {f;} is

tilting in JT, and £&apos; End J&quot;&apos; is identified with End K. So it remains to show that,
for some choice of i0, et&apos; is &quot;better&quot; than ât if fr is not a slice the set of
vertices of a connected full subquiver of f which contains one représentative of
each r-orbit). In fact, by A4 we can proceed by induction on the cardinality of
the convex hull (ât) of f the set of vertices occurring in the paths of F which

start and stop in #).
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A3. The long exact Hom-sequence of Db{kÂ) provides us with an exact

séquence

C[up)
&apos;

_ Cv Cw
ctl0—&gt; e a,,—&gt; a&apos; —* CTtlu.

By Al(i) we hâve CTtl(} 0, and Ct&apos; is identified with V.

By construction, we hâve Hom Çtn X)^Hom (CinCX) for ail i and ail
XeDb(kÂ) (Yoneda-lemma!). The diagram below shows that Hom (f\ X)z+
Hom {Ct&apos;t CX)) whenever Hom (Tti()&gt; X) 0, so in particular if X th or X tf
(use the injectivity of Hom (tl0,[up])î&gt; Hom (Ctlu, C[up]) to prove
Hom(?l0, r~V) 0). We infer that End t&apos;

2&gt; End V, that f is indécomposable
and that End K ^ End (F, © • • • © t&apos; © • • • © tn).

Hom (7ÎIO, Ar)-^ Hom (/&apos;, X) &gt; © Hom (F,, AT) &gt; Hom (Fl(l, X)

i i
&apos;

\
&apos;

\
0 * Hom (Q&apos;f CX) -* 0 Hom (a, CX) -+ Hom (a,,,, CX).

P

Because of Al(i) and of the minimality of tt()t we hâve Hom (T rin iJp) 0

Hom (J~rtn Ttl{), hence Hom (T~rtn t&apos;) 0 for r^O and î#i&apos;o. The exact

séquence below and the surjectivity of Hom ([Tw,,], Ttt) 2; Hom ([Cwp], Ci,) show

that Hom (/&apos;, Trit) 0 if r * 0 and i i-10:

n,,, rf,)-^Hom (^, rÔ^Hom(©pf/p, Trtt).

In case i i0, the same séquence shows that Hom(f&apos;, 7&quot;7/0) 0 if r #= 1 and

dim Hom (f&apos;, TFI{)) 1. Finally the exact séquence

e,Hom(f, TrtJp)^Hom(t&apos;f T&apos;f)-*Hom{t&apos;, Tr+1?J

shows that Hom (tf, TV) 0 if r =£0. We conclude that 5&quot;&apos; (^\{rl(j) U {^} is a

tilting set of f
A4. Suppose that 5&quot; is not a slice. Then we hâve x~{tt € (3t) for some i, and we
choose i0 so that Fl0 is minimal in ÏÏ and satisfies tt{i&lt;tt. The last assumption
implies that t&quot;1^€ (&amp;)\{îlu}.

If there is an index y#i0 such that Hom (rf, f;)#0, then r&apos;€(J&quot;)\{?l} and
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On the contrary, if Hom(f&apos;, f;) 0 for ail j¥=i0, then (dimt\ dimf,) =0
(dim F,, dimfl0) {dimf,0, dimrr^) -(dim r~lt,0, dimF;) and (dimf&apos;, dim?&gt;0)

-dim Hom (t&apos;, TtlQ) -1 (dim r&apos;1!^ dim Fl0). We infer that dim t&apos;

dim r&quot;1!^ and V T2rx~ltlQ for some r. Now f;i belongs to the convex hull
(Fl0, t2\), because Hom(fl0, th)*0; so we hâve t&apos;e &lt;?l0, (rr)2Fl0) because

Hom(fyi, r&apos;)^=0. Since t&quot;1^ is the only vertex of the form T2rr~lil0 within
(?l0, (rr)2fl0&gt;, we obtain t&apos; r&apos;^e &lt;^&gt;\{?l0} and again &lt;^&apos;&gt; c &lt;^)\{rl0}.

The induction announced in A2 works!
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