
Zeitschrift: Commentarii Mathematici Helvetici

Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 62 (1987)

Artikel: Galois coverings of representation-infinite algebras.

Autor: Dowbor, Piotr / Skowronski, Andrzej

DOI: https://doi.org/10.5169/seals-47351

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 06.02.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-47351
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


Comment. Math. Helvetici 62 (1987) 311-337 0010-2571/87/020311-27$01.50 + 0.20/0
© 1987 Birkhauser Verlag, Basel

Galois coverings of représentation-infinité algebras

Piotr Dowbor and Andrzej Skowronski

Coverings techniques in représentation theory were introduced and developed
for the research of representation-finite algebras and for Computing their
indécomposable représentations. In this theory one of the important results is the

following [20], [24]:
&quot;Let K be an algebraically closed field, Q a locally finite quiver, / an

admissible idéal [10] in the path-category KQ of Q, R the (locally bounded)
quotient category KQ/I, modR the category of finite dimensional /^-modules
(représentations of R) and G a group of /C-linear automorphisms of R acting
freely on the objects of R. Moreover, let F.R-+R/G A be the functor which
assigns to each object x of R its G-orbit Gx, and ivmodi?—&gt;mod (R/G)
the push-down functor [10] associated with F and such that (FxM)(a)
@F{X)=a M(x) for any M e mod R and aeR. Then R is locally representation-finite
if and only if so is A. In this case, Fk induces a bijection between the G-orbits of
isoclasses of indécomposable finite dimensional R -modules and the isoclasses of
indécomposable finite dimensional A-modules&quot;.

Therefore, if R is locally representation-finite, mod A coincides with the full
subcategory mod! A formed by ail modules of the form FkM, M e modR; in the

gênerai case we call thèse FkM A-modules of the first kind. The authors showed
in [15], [17] that modA mod1A holds for a wider class of locally bounded
catégories consisting of ail locally support-finite ones. The equality modA
mod! A is also discussed hère (§2).

The main object investigated in this paper is the full subcategory mod2 R/G of
mod R/G formed by ail modules having no direct summands of the first kind; we
call them RIG -modules of the second kind (with respect to a fixed Galois
covering F.R-+R/G). Our main theorem (3.1) asserts that for some class of
Galois coverings F:R-+R/G the investigation of mod2R/G can be reduced to
the quotient catégories associated with the supports of some periodic, indécomposable,

locally finite dimensional R -modules. In particular, we obtain the

following covering interprétation of the Gelfand-Ponomarev classification [21] of
indécomposable finite dimensional modules over the algebras An C[X, Y]/
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312 PIOTR DOWBOR AND ANDRZEJ SKOWRONSKI

(XY, Xny Yn) CQJln, n^2. Hère Qn is the quiver

and /„ is the idéal generated by a/3, fia, ocn and /T. Let R be the residue-category
CQ/I where Q is the following locally finite quiver

and / is the idéal generated by ail éléments of the form afi, fia, ocn and /T.
Consider the action of the free abelian group G Z x Z on /? given by the
vertical and horizontal shifts of Q. Then An is isomorphic to RIG and we hâve a

Galois covering F:R^&gt;R/G =An. A line in R is a full convex subcategory L of R
which is isomorphic to the path category of a linear quiver (of type Aw, /\x or A~).
A line L is G-periodic if its stabilizer GL {g eG;gL L} is nontrivial. With
each line L in R we associate a canonical indécomposable R -module BL by setting
BL(x) K for x e L, S/X*) 0 for jc ^ L and BL(y) /d^ for each path y in L. It
is well-known that the modules BLy where L ranges over ail finite Unes in R, are
représentatives of the isoclasses of finite dimensional indécomposable /?-modules.
Therefore every indécomposable module in mod! An is isomorphic to Fk(BL) for
some finite line L in R. Let 56 be the set of ail G-periodic lines in R and 5£{) a

fixed set of représentatives of the G-orbits in 5£. Then, according to our main
theorem (3.1), there is an équivalence of catégories

U {moéLlGL)l[moéx LIGL]^{moéRIG)l[moàx RIG]

where [mod! RIG] (resp. [modj L/GL]) dénotes the idéal of ail morphisms
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factonzed through an object of mod, R/G (resp mod, L/GL) In our example
each (mod L/GL)/[mod! L/GL] îs équivalent to the category mod KGL of finite
dimensional modules over the algebra KGL 2$,K[T&gt; T~l] of Laurent polynomials
Moreover, for any LeJ£(), the canomcal action of GL on L supplies a left
KGL-modu\e structure on FXBL For each aeR/G, the K[T, T~l]-module
FxBL{a) îs free of finite rank We will prove that the équivalence

U mod K[T, T~l]-&gt;(mod R/G)/mod R/G

descnbed above îs given by the functors

- (g) FXBL mod K[T,T-[]^modR/G
K[TT &lt;|

In particular every indécomposable module in mod2An îs isomorphic to V

®k[tt {\FxBL for some Leï£() and some indécomposable finite dimensional

K[T, T~^-module V
We see that in the research of mod2 R/G an important rôle îs played by

locally finite dimensional indécomposable /^-modules with nontnvial stabihzers
In §4 we show that thèse modules are hmits of séquences of finite dimensional

indécomposable modules In §5 we apply our main theorem to the classification

of indécomposable modules over interesting classes of tame algebras
The methods we use are rather simple We assume only basic results on

Galois covenngs of locally bounded catégories proved by Gabriel in [20],
elementary properties of adjoint functors [23], Krull-Schmidt-Warfield
décomposition theorem [33] and the description of indécomposable représentations of
Dynkin quivers of type An [18]

The results presented hère were partially announced by the authors at the
Conférences on Représentations of Algebras in Ottawa (August 1984) and in
Durham (July 1985) The final version of this paper was wntten while the first
author was visiting the Umversitat-Gesamthochschule Paderborn and the second

author the Bielefeld Umversity We would hke to thank H Lenzing and D
Simson for helpful discussions on this paper dunng the préparation of îts

prehminary version in Torurï
We take pleasure in especially thanking P Gabriel for the careful reading of

the first version of this paper, several simplifications of proofs and helpful
remarks

Finally we hke to express our gratidude to Mrs Duddeck, who typed the

manuscnpt
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§1. Basic définitions and notations

1.1. Throughout this paper we dénote by K an algebraically closed field and

by R a connected, locally bounded &amp;-category [see 5, 10].

Let M be an /^-module [5,10]. The support of M is the full subcategory

suppM of R formed by ail objects xeR such that M(x)^0. The dimension-

vector of M is the family dim M (M(x) : K)rt=R; its dimension is the number
dimM YtxeR (M(x) : K). The R -module M is called locally -finite dimensional if
(M(x) : K) is finite for ail xeR.We dénote by MOD R category of ail /^-modules,
by Mod/? (resp. mod/?) the full subcategory formed by ail locally finite
dimensional (resp. finite dimensional) /^-modules, by indR (resp. indR) the full
subcategory of Mod/? (resp. modR) formed by ail indécomposable objects, by
IndR/— (resp. indR/—) the set of isoclasses of objects in IndR (resp. ind/?).

If X, Y eMOD R, we write Ycz&amp;X whenever Y is isomorphic to a direct
summand of X. If ^ is a full subcategory of R and Z e MOD cêt we write

Zcze | A&apos; if Zcz®X I c€. We say that % is convex if each path of the ordinary
quiver QR of R with origin and terminus in % has ail its points in %. By % we
dénote the full subcategory of R formed by ail xeR such that R(x, y)z£0 or
R(y, jc)#O for someye^.

If V is an additive category and Vo a full subcategory of V, y/l^o] dénote the

factor category of V modulo the idéal [T()] of ail morphisms in Y factorized

through a direct sum of some objects of Yo.

1.2. In the sequel, G dénotes a group of ÀMinear automorphisms of R. For
each full subcategory L of /?, we dénote by G7 the stabilizer {g e G, gL L} of
L, by GL the full subcategory of R formed by the G-orbits of ail objects of L.
The group G acts on MOD/? by the translations g{—), which assign to each

M eMOD R the R -module *Af Af°g&quot;1. For each M eMOD/?, we dénote by
GM the stabilizer {g eGygM — M). Through this paper we assume that G acts

freely on indR/—.
By MODG R we dénote the category whose objects are the pairs (M,/i),

where ju is an /?-action on M eMOD/?. The set of morphisms from (M, ju) to
(M&apos;, ju&apos;), denoted by Hom£(A/, Mf), consists of ail /?-homomorphisms from M
to M&apos; compatible with the actions of G (see [20]). Mod|&apos; R is the full subcategory
of MODG/? formed by ail (M, n) e MODCjR such that Me ModR and that

supp M is contained in a finite number of G-orbits of R.

Let F.R-+R/G be a Galois covering, F. :MODR/G-^MODR the pull-up
functor associated with F and FA : MOD R -* MOD R/G the push-down left

adjoint to F. (see [10; 3.2]). Then F. induces an équivalence of catégories [20; p.
94]

R.
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Moreover, since G acts freely on ind RI—, Fx induces an injection from the set

/-)/G of G-orbits of ind/?/- into (ind R/G)/~ (see [20; 3.5)].
1.3. Let ind! RIG be the full subcategory of ind RIG consisting of ail objects

isomorphic to FkM for some M emodR, and ind2 RIG the full subcategory of
indi?/G formed by remaining indécomposables.

§2. G-exhaustive catégories

2.1. The category R is called G-exhaustive if ind RIG ind! RIG. In order to
characterize G-exhaustive catégories we shall first give a characterization of
modules of the first and second kind.

LEMMA. (i) Each M e Mod R is a direct sum of indécomposables.
(ii) For each M e Ind R, End/? (M) is a local ring.
(iii) Let M (&amp;ieIMt be a décomposition of M e Mod R such that for i #/ no

indécomposable summand of Ml is isomorphic to one of Mr Then, an endomorph-
ism f (fj)ltjei of M is invertible iff so is each fn.

Proof. (i) See [4] or prove directly using transitive induction.
(ii) Use spectral décomposition.
(iii) /is invertible iff so is each/(*), x e R. Therefore we can reduce the proof

to the case when M is a direct sum of finitely many indécomposable modules.

2.2. LEMMA [17]. For X e ind RIG the following conditions are équivalent
(i) Xeind, R/G
(ii) F.X ©/e/ Zn where Z, e mod R for ail i e I
(iii) F.X has a finite dimensional direct summand.

Proof. For a proof using Auslander-Reiten séquences see [17]. We give hère

an alternative elementary proof. The implication (ii)-»(iii) is obvious and

(i)-» (ii) follows from [20, 3.2]. In order to prove (iii)-» (i), assume Zce F.X for
some ZeindR. Then there exists two morphisms j eHomR(Z, F.X) and

p e Hom {F.X, Z) such that p • j lz. The families of morphisms 8j :gZ-*gF.X2&gt;

F.X and 8p\gF.X^&gt;8Z&gt; g e G, produce a pair of morphisms /&apos; : ®g€G8Z-^F.X
and p&apos;:F.X-+®geG8Z ngeGgZ in Modf R. Since G acts freely on ind/?/==,

p&apos;oy&apos; is invertible, by Lemma 2.1. Consequently FxZœ®X and by our assump-
tion X^FkZ.

2.3. In a characterization of modules of the second kind an important rôle is

played by the following class of locally finite-dimensional modules. A module
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Yelnd/? is called weakly-G-periodic if supp Y is infinité and (supp Y)/GY is

finite. This implies that GY is infinité.

EXAMPLE. Let Rnm; n, m e N, ny m ^2 be the locally bounded K-category
defined by the locally finite quiver Q as in introduction and idéal /n&gt;m generated

by ail paths of the form or/?, j3ar, an and )3m.

Recall that a full subcategory L of R is called a line if L is convex and is

isomorphic to the path category of a linear quiver (of type An, A^ or A~). A line
L is called G-periodic if GL -h {1}.

With each G-periodic line L in Rnm we associate a canonical weakly-G-
periodic Rn m-module BL by setting fi^M K if x e L, BL{x) 0 if x $ L and

BL(a) idK for each morphism ût in L. In fact the map L^&gt;BL induces a

bijection between the set ££ of ail G-periodic lines in Rnm and the isoclasses of ail

weakly-G-periodic Rnm-modules (see §4).

PROPOSITION. Let XemodR/G. Then X emod2 R/G iff there exists a

décomposition F.X ©,e/ Yl in Mod R where ail Yt are weakly-G-periodic.

In the proof of this Proposition and further we shall use the following lemma.

LEMMA. Let the support of Y e Mod R be stable under a subgroup H of G,
and dénote by U a set of représentatives of the cosets of G mod H. Then

®g€UgY e Mod R iff for each G-orbit Û, (0 (1 supp Y)/H is finite.

Proof. Obvious.

Proof of Proposition 2.3. The condition is sufficient by Lemma 2.2. Now take

any X emod2 R/G. By Lemma 2.1 and 2.2, there exists a décomposition
F.X=®ieIYn where YtelndR and where supp Yt is infinité for ail iel. To

prove the necessity it is therefore enough to show, that for any Y e Ind R such

that yce F.X, supp 7/Gyis finite. For each g e G, 8Ya^g(F.X)^F.Xand hence

®qeu8Ycz® F.X, where U is a set of représentatives of cosets of G mod GY (use
that End* (Y) is local and that ^Y^8&apos;Y if g*gf, g,gf e U). On the other hand,

supp y c supp F.X is contained in a finite number of G-orbits. That (supp Y)/GY
is finite therefore follows from Lemma 2.3.

COROLLARY. If a group G of K-linear automorphisms of a locally bounded

K-category R acts freely on Ind/?/=, then R is G-exhaustive.
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2.4. We will show that under some extra assumption the condition stated in

Corollary 2.3 is also necessary.

PROPOSITION. Let G be a free {noncommutative) group of K-linear
automorphisms of a locally bounded K-category R. Then R is G-exhaustive iff
there is no weakly-G-periodic R-module in Mod«. If moreover RIG is finite and
G — Z, then R is G-exhaustive iff G acts freely on Ind R/—.

For the proof of this proposition we need some préparation.
Let H be a subgroup of G, U be a fixed set of représentatives of the cosets of

G mod//, (N, v) e Mod&quot; R and M ®MeUHN. Then the isomorphisms

li(g,x):M(x) ®gieUN(gTlx)^&gt;M(gx) ®g2€UN(g;lgx) induced by vCgJ1 •

g &apos; g\ &gt;g7l • *) • Y(gï* • *)-* Y(g2l • gx), whereg • g, H g2H, produce an «-action
jUv of G on M.

LEMMA. With the notation above&gt; suppose that N is weakly-G-periodic and
that H GN. Then M ®K€:uHN is an indécomposable object of Mod^; R, and the

associated RI G-module is of second kind. In particular R is not G-exhaustive.

Proof. By Lemma 2.3 M eModf R. Now the lemma follows by arguments
similar to those given in [20; 3.5] and Proposition 2.3.

Proof of the Proposition. The condition is sufficient by Proposition 2.3. In
order to prove the necessity, assume that there exists a weakly-G-periodic
«-module Y. Since GY, as a subgroup of G, is free one can construct an «-action
of GY on Y applying arguments from [20, pp. 94-95]. Consequently, by Lemma
2.4, R is not G-exhaustive. Now in order to prove the second part of Proposition
it is enough by Corollary 2.3 to show that, for each Ye Ind/? with Gy=É{l},
supp Y/GY is finite. But this is an immédiate conséquence of the fact that RIG is

finite and that GY has finite index in G Z.

2.5. Now we formulate a more handy sufficient condition for R to be

G-exhaustive, which is a natural generalization of the définition of a locally
representation-finite category [10]. For each xeR, dénote by Rx the full
subcategory of R consisting of the points of ail supp M, where M e ind R is such

that M{x) =£0. Following [15], R is called locally support-finite if Rx is finite for ail
xeR.

EXAMPLE 1. A locally representation-finite category R is locally support-
finite.
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EXAMPLE 2. Let R be the locally bounded #-category defined by the quiver

(n+11) (n+12)

(n+1 0)

(nO)

(n-11) (n 11)

and the relations a(n+ltj)a*ntl) 0, a*nil)aintl) a*nj)aintj)y /,/ 2, 3, 4,

ne\

Observe that R contains the full subcategory %) formed by the objects (0,0),
(0,1), (0,2), (0, 3), (0,4); this is the path category of an extended Dynkin quiver
Q&apos; of type D4; hence R is not locally representation-finite. In fact the modules
M e ind R which are not projective-injective are annihilated by the radical square.
Their support is therefore contained in a set of the form {(n, 0), (n, 1), (n, 2),
(n, 3), (n, 4)} or {(n, 1), (n, 2), (n, 3), (n, 4), (n + 1, 0)}. Let G be the cyclic

group of automorphsms of R generated by (n, i)-*(n+ 1, i). Then modR/
G » mod T(A), where T(A) is the trivial extension A tx D(A) of A kQ&apos; by the
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injective cogenerator D(A) of mod A For other examples of locally support-finite
catégories we refer to [29], [30].

PROPOSITION. Let R be a locally support-finite K-category. Then Ind/?
ind R and each locally finite dimensional R-module is a direct sum of finite
dimensional indécomposable R-modules. In particular, R is G-exhaustive for any
group G of K-automorphisms of R acting freely on ind RI—.

For the proof of this proposition we should recall the following simple fact.

LEMMA [15]. Let &lt;€ be a full subcategory of R and M an R-module. Assume,
that there exists Z e mod C such that supp Za% and Z cze j M. Then the

R-module Z such that Z\% Z and Z(x) 0 for x $*% is a direct summand of M.

Proof of the Proposition. Take any Y e Ind R, x e supp Y, and consider the
^-module Y \ Rx. Then there exists Z e ind Rx such that Z(x) # 0 and Z ce | Y.

Observe that supp Z is contained in Rx. Indeed, supp Z c supp eA(Z) c= Rx, where

ek:MODRx-*MODR is the left adjoint to the restriction e. :MOD/?-&gt;

MOD Rx. Thus, by the above lemma Z ce Y in MOD R and hence Y^Zy since

Y e IndR. Two remaining statements follow from Lemma 2.1 and Lemma 2.2.

§3. Modules of the second kind

In this section R is not supposed to be G-exhaustive. Our purpose is to
describe mod2 RIG under some assumptions which we are to make précise.

3.1. DEFINITION. A family y of full subcategories of R is called separating

(with respect to G) if Sf satisfies the following conditions:

(i) for each L e ¥ and g e G, gL e Sf.

(ii) for each L e Sf and each G-orbit 6 of R, ÛD L is contained in finitely
many GL-orbits.

(iii) for any two différent L, L&apos; eS&gt; LCiL&apos; is locally support-finite.
(iv) for each weakly-G-periodic R -module Y there exists an Le 5^ such that

supp Y c L.

Remark. If there exists a weakly-G-periodic /?-module Y with supp Y R,
then ^ - {R} is the unique separating family of subcategories of R with respect
to G.
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THEOREM. Let R be a locally bounded K-category and G a group of
automorphisms of R which acts freely on (ind R)/—. Let if be a separating family
of subcategories of R with respect to G and £f{) a fixed set of représentatives of
G-orbits of Sf. Then there is an équivalence of catégories

E: U (modL/GL)/[modlL/GL]-*(modR/G)/[modlR/G].

As a conséquence, the Auslander-Reiten quiver FR/G [1,2] of RIG is

isomorphic to the disjoint union of translation-quivers FRIG\1{\1 Lecfo{FUGl)2)y
where (Fl/Gl)2 is the union of connected components of FL/G[ whose points are
LIGL-modules of second kind.

We may recall hère that LJ Le^0 (mod L/GL)/[mod! L/GL] dénotes the full
subcategory of the product Wl^^ (mod L/GL)/[mod! L/GL] whose object are the

families (ML)Le&lt;?Q such that ML e modj L/G for almost ail L e % (i.e. ML is zéro
in the factor-category).

3.2. Let H be a group of automorphisms of a locally bounded /C-category &lt;&lt;?,

which acts freely on ind %l—. Dénote by Mod^ % (resp. Mod^ &lt;€) the full
subcategory of Mod&quot;^ consisting of ail M e Modf ^ such that M=©/6/Z,,
where Z^ind^ (resp. Z.elnd^ and Z,czemodC) for each iel. Then the

pull-up functor F&apos;., associated with the Galois covering F&apos;\ c€—» ^/H furnishes

équivalences mod! ^/H 2$ Mod^ % and mod2 %/H ^ Mod^&gt; &lt;€. Dénote by

Modj? % the factor category Mod^ ^/[Mod^ ^J. In order to prove the first part
of the Theorem it is enough to produce an équivalence of catégories

U ModfiL^Modf R.

Let Le% and E\:MODG^L-*MODGR be the left adjoint to the restriction
functor £f :MODG R-? MODG^ L defined by setting £[(Af) ®g€uL 8(e{N) (see

2.4). Hère UL is a fixed set of représentatives of the cosets of G modGL,
e£= - ®Li?:MODL-*MOD/? is a left adjoint to the restriction functor
ef :MOD/?-&gt;MOD L. The /?-module e{{N) is endowed with an /«-action of GL

which is induced by the given L-action of GL on N.

The proof of the Theorem will be done in several steps.

LEMMA. For each Letf, E% and £f induce functors EjhModf7 L-»
Mod? R and Ef : Mod? R -? Mod?L L.
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Proof. E^(Modf&apos; L) a Modf R holds by Lemma 2.3; the inclusion
£jt(Modf/ L) c Modf /? is obvious; so Ejc is well defined. £f(Modf fl) c
Modf&apos; L by 3.1(ii); again E^(Modfi R)czModfl L is obvious; so E^ is well
defined.

3.3. LEMMA. Let Y be a weakly-GL-periodic L-module, where Le S. Then

(a) ei(Y) \L=Yand eLx(Y)(x) 0ifxi L.
(b) for any L&apos; e Sf, V i=- L, (e^(Y)) \ L&apos; is a direct sum of finite dimensional

L&apos;-modules.

Proof. For the proof of (a) it suffices to show that (suppexY)aL. Observe

that (supp e £ Y) a supp Y, (GL)Y^GeikY and (supp Y)/GY is finite. Now by
3.1(iv) there exists L&apos; e ïf such that suppe^YaL&apos;. Hence 3.1(hi) and Proposition

2.5 imply L L&apos;. For the proof (b) take L&apos;eSf, L=£L&apos;. By (a)

supp ((exY) | L&apos;) c L fï L\ so by 3.1(iii) and Proposition 2.5, ej:(Y) satisfies the

required condition.

3.4. LEMMA. Let L, L&apos; e 5fl}. Then

E-Ea 1 0 ifL*U
Proof. Let q&gt;L: Imod^l^^a be the unit of the adjoint pair (Ex, E1:) and

N e Mod^&apos; L. Applying 3.3b to the indécomposable summands of N (considered
as an L-module), we infer that

is an isomorphism and that £f &apos;E.^N) (BgeU, g(e^N) | L&apos; e Mod^ L&apos;ifL* V.

Let E.:Modf R-^ULe^Modfl L be the functor defined by the family of
functors (Ef)Ley0, and let / : U ,^ Modf1 L^ 17/ c% Modf&apos; L be canonical
embedding. We dénote by EA: LIL€^0 Modf; L-+ Modf R the functor which

maps the object (ML)Le/() onto ULeTEx(ML), where T {Le5fo:MLt
ModffL}.

COROLLARY. The functors I and E.EA are isomorphic.

3.5. PROPOSITION. E. factors through LI/^Modf&apos;L. The induced functor

E : Modf /? ~» LI /^Modfi L w swc/i f/ïaf EEA and EAE are isomorphic to the
identical functors.
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Proof. We will show that each indécomposable M e Moéf2 R is isomorphic to
some ExN, where Le% and iVeMod^LL. This fact and Lemma 3.4 clearly
imply our proposition. So let M e Mod^ R be indécomposable. Then there exists

a weakly-G-periodic R -module Y such that Yce M in Mod/?. By 3.1(iv) there
exists Le y such that supp Y a L. Without loss of generality one can assume that
L e &amp;0, because for any geG, 8Y^^8M Z-M in Mod R. It follows that Y | L cze
N * 0 for any décomposition E^M N © N&apos; in Mod)7 &apos; L such that N e Mod)7/ L
and Nr e Mod^ L. Set N e%N extension ofNtoR by 0). As in 3.3, we can
show that N is identified with e^N, where e£ is the right adjoint to the restriction
ef. The inclusion N—&gt; E&apos;rM and the projection E&apos;rM^N are therefore associated

with GL-equivariant morphisms i:N-+M and p.M-*N such that pi !&amp;. The
induced morphisms 8i:8N-+8M2$,M and 8p:M^8M—*8N define G-equivariant
morphisms j:UgeUl8N—&gt;M and q:M—&gt;ngeUlgN^ llgeUl gN- By Lemma
3.3(b) the morphism qj satisfies the assumption of Lemma 2.1(iii); so is invertible
and M is isomorphic to E^N Ugeu, gN-

In order to describe the structure of FRIG recall that by [20; 3.6] the modules
of the first kind and second kind are contained in différent components of FR/G

and that the union (FRIG)X of the components containing ail indécomposables of
the first kind has the form FR/G. Dénote by JR (resp. JL, Le %) the Jacobson

radical of the category Mod)7/? (resp. Mod)77 L). Since, for each Le%, £jf|:
Modf2L L^Modf R is &quot;exact&quot; by Lemma 3.3(a), the structure of (FR/G)2

/]?/G\(/]?/G)1 follows immediately from the formula

}JJJ2l(N,

N&apos;) if M Ej;N&apos; for some N&apos; e Mod)7,&apos; L
0 if M Eï&apos;N&apos; for some N&apos; e Mod£ L&apos;\ L±U
0 if M e Mod)7!/?

where M e Mod)7 R and N e Modp7 L are indécomposable and L is a fixed
élément of #},. This finishes the proof of Theorem 3.1.

3.6. Let A be a fc-algebra (not necessarily finite-dimensional). Then any
contravariant functor Q : R -» MOD Aop will simply be called A-R-bimodule.
Each A-/?-bimodule Q induces a functor -®A G:MOD^-^MOD /?, where

(V ®A Q)(x) V&lt;8)A Q(x) for ail V e MOD A and x e R.

Let fi be a weakly-G-periodic R -module together with an /^-action v of GB on
B. Then F^B carries the structure of a ^Gfl-/?/G-bimodule, where KGB is the

group algebra of GB over K. More precisely, for each Gx e R/G, (FxB)(Gx) is a
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free #GB-module of rank Jlyewx (B(y) : K), where Wx is a set of représentatives of
the G/rorbits of Gx. In particular, if B BL for some line L in R (see 2.3), then
FkBL is a K[T, r^J-fl/G-bimodule. In this case we will dénote by &lt;PL the functor

-®k[t. T^}FxBL:modK[Ty T~l]-&gt;modR/G.
Let i? be the set of ail subcategories supp Y czR, where Y ranges over ail

weakly-G-periodic R -modules, and let «2^ be a fixed set of représentatives of the
G-orbits of £.

THEOREM. Let R be a locally bounded K-category and let a group G of
K-linear automorphisms of R act freely on md RI—. Assume that 5£ consists only
of Unes in R (2.3). The family of functors &lt;PL, Le =2^» induces an équivalence of
catégories

&lt;P: U modK[T, T&apos;l]^(modR/G)/[mod1 R/Gl

In particulary (rR/G)2= ll&lt;fork[T&gt;r-i], where rk[TtT-\] is the translation-quiver
of the category offinite dimensional k[T, T~l]-modules.

Moreover, RIG is tame iff so is R.

Proof First we show that «S? forms a separating family of subcategories of R.

Properties (i), (ii), (iv) are trivially satisfied. Let L, Lr e £y L^L&apos;. Then LDU
is a disjoint union of connected finite subcategories. Indeed, if D is a half-line of
L and L&apos;, it easily follows that the semigroup {g e G, gD cfl} is infinité cyclic.
Its generator g is also a generator of the groups GL and GL and satisfies

L - U« g~&quot;D L&apos;, a contradiction. Consequently, LHLf is a disjoint union of
finite connected subcategories, and (iii) is satisfied.

Let L e «%. Then by [14] and [26] (see also [13]) the functor

WL^- ® Fï(BL\L): mod k[T,T-l]-*modL/GLf

where FL:L—&gt; L/GL is the canonical &quot;projection&quot;, induces an équivalence of
catégories

WL.modk[Ty T~l]^{modLIGL)l[modx L/GL]

and an isomorphism of the translation-quivers Fk[T,r-&gt;]- (rL/GL)2- (One can

prove this statement in an elementary way using the fact that each weakly-GL-
periodic L-module is isomorphic to BL \ L by Corollary 4.4 below.) The functors
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WL give rise to the following diagram which is commutative up to isomorphism:

mod R/G

n

(mod L/GL)/[modiL/GL] Ë

Since E is an équivalence by Theorem 2.1 sois 4&gt; [J°4&gt; — E°W.
The required description of (rR/G)2 follows from Theorem 2.1.
Before the proof of the last assertion, we recall that a locally bounded

category R is called tame if, for each finite dimension-vector d of R there exists a

finite family of &amp;[r]-/?-bimodules Qt such that:
(a) For each x e R, Qt{x) is a free fc(T]-module of rank d{x).
(b) Every indécomposable R-module M with dim M — d is of the form

M V ® k[T] Qi for some i and some simple fc|T]-module V.

In this définition, k[T] can be replaced by k[Ty T~l).
It is shown in [15, Proposition 2] that, if R/G is tame, so is always R.

Conversely, if R is tame, the indécomposable /?/G-modules of the first kind with
fixed dimension-vector are parametrized by finite families of bimodules (see [15;
Lemma 3]).

Let us now turn to the /?/G-modules of second kind. By theorem 3.6 they
are &quot;parametrized&quot; by k[Ty T-^-ZÎ/G-bimodules QLn k[S, T, T~l]l{T - S)n

®k[s\FkBLy where LeJ£0 and n ^ 1. The dimension of the #/G-module V
®k[T] Ql,h attached to a simple k[T, T^J-module V is equal to n • \L/GL\, where
\L/G\ dénotes the number of points of L/GL. We infer that the number of
bimodules QLn such that modules V®k[T) Ql.h hâve a fixed dimension-vector, is

finite because, for each y eR and each r ^ 1, there are only finitely many Unes

passing through y and such that \L/GL\^r.

§4. Fundamental séquences

In this section we shall show that each indécomposable locally finite
dimensional R -module is a &quot;limit&quot; of a séquence of finite dimensional indécomposable

modules over some finite full subcategories of R. In particular,
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weakly-G-periodic R-modules are &quot;limits&quot; of &quot;G-periodic séquences&quot;. We will
see in §5 that, for a class of locally bounded catégories /?, such séquences are
related with a rather narrow class of modules in ind/?. This will enable us to
describe weakly-G-periodic R -modules completely.

4.1. In the sequel &lt;#„, n e N {0, 1, 2, .}, dénotes a fixed family of finite
full subcategories of R such that

(1) For each n e N, %+l % (1.1).
(2) /?=Un€IM«n-

Since R is connected, such a family always exists.

For each n e N, the restriction functors en. : Mod ^n+1 —» Mod %n and

^iMod/î-^Mod^ admit left adjoint functors e&quot;:Mod %,-^Mod %+l and

ej:Mod &lt;&lt;?„-&gt;Mod/? such that e?e^lMod^, £?,£^lMod^ and cp:erlenk^enx
([23, chap X]).

DEFINITION. A fondamental R-sequence is a séquence (Yn, un)neN of
modules Y^emod^ and ^-homomorphisms un:Yn-*Yn+l\% satisfying the
conditions (a), (b), (c), and (d) below:

(a) For each neN, Yn 0 or Yn eind «„.
(b) Y^OforsomenefU
(c) For each neN, un is a splittable monomorphism in mod (ë/l.

(d) For each x e R, the séquence (dim K(jc))wef^ is bounded. A fundamental
R-séquence (Yn, un)nçN is bounded if there is a common upper bound for
dimkYn(x)y xeRy neN. Finally, a fundamental /{-séquence (Yn, un)neN is

produced by an R -module A&quot; if Yn c:e | X for ail n e N.

4.2. Remark. Every locally finite dimensional R -module X^O produces a

fundamental R -séquence (Yn, un)neN. Indeed, take a point aesuppA&apos; and an

arbitrary indécomposable direct summand Z of X \ %m with Z(a) =£0 for some %m

containing a. Put Yn 0 for n &lt; m and Ym Z. There exists Ym+l e ind ^w+1 and
a splittable monomorphism um:Ym-+Ym+l\ (€m such that Ym+X ce | X. Repeating
this procédure we can find, for ail n^my Yne ind ^&gt;n and splittable monomorph-
isms un : Yn~* Yn+] \ %n such that Yn ce | X. Since X | % is finite dimensional the
condition (d) is satisfied and (Yn&gt; un)n€M is a fundamental R-sequence produced
byZ.

4.3. Let (Yn, un)neN be a fundamental R-sequence. We shall define the limit
lim(Yn, un)y shortly denoted by lim Yn. Since e&quot; is left adjoint to e&apos;!, un:Yn-^&gt;

e?(Yn+]) induces canonical morphism vn :e&quot;(Yw)-&gt; Yrt+1 in mod^w+,. Then we
hâve the following homomorphisms in Mod R
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and consequently

l&gt;eT\Yn^), neN.

LEMMA. Let (Yn, un)neN be a fundamental R-sequence. Then lim Yn is an

indécomposable locally finite dimensional R-module and, for each m eN, there
exists p^m such thaï Yp \ %m 2&gt; (lim Yn) \ %m.

Proof The last property follows from (d) and the fact that epx(Yp) \ %m

(epx(Yp) | %) \c€m Yp\c€m for p ^ m. Set Y lim Yn and suppose that Y X 0 Z
for some X*0 and Z=£0 in ModR. Set N^= {n e N; Yncz^ \ X} and Nz
{n e N; Yn ce | Z}. Then N ^x U f^Jz and one of the sets Mx or Nz, say Nx, is

infinité. Hence N N^ since m^n and n e Nx imply m e Nx- Therefore e?(Y)cz&amp;\

e?(X) for ail n e N, Z 0 and we hâve a contradiction.

4.4. PROPOSITION. Let X and Z be modules in ModR. Then

(i) Xcz® Z if and only if X \(€na&lt;BZ\c€n for ail neN.
(ii) X Z if and only ifX\c€n Z\ %n for ail neN.

We owe the proof to Gabriel: (ii) is a conséquence of (i). In order to prove (i),
we first consider arbitrary modules F, W e Mod R. We set Vn V | &lt;€n and dénote
the restriction map Hom^w (Vm, Wm)-»Hom&lt;€n (Vn} Wn) by p^ for m^n. We
then put Hom&apos; (Vn, Wn) flm^rt Im p™ and observe that Hom&apos; (Vn, Wn) Im p™

for large m, that the maps H^:Hom&apos; (Vm, Wm)-*Hom&apos; (Vn, Wn) induced by p™

are surjective and that Hom^ (V, W) 2» lim Hom&apos; (V^, Wn). Now, for each neN,
our assumptions imply the existence of morphisms an e Hom&apos; (Xn, Zn) and
&amp;w € Hom&apos; (ZM, ZM) such that bnan 1^. The problem is to construct thèse an) bn

in such a way that JT^+1 art+1 an and /I^+16rt+1 6n. We do this by induction on
n, setting

1 {Xn^®Zn+uXn+l®Zn+x)y A&apos;

and using the following simple lemma.

LEMMA. Let p:A-+A&apos; be a surjective homomorphism of finite dimensional
k-algebras, and e, f two orthogonal idempotents of A. Suppose that there are
éléments x efAe and y e eAf such that yx e. Then, for ail a&apos; e p(f)A&apos;p(e) and
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b&apos; e p(e)A&apos;p(f) such that b&apos;a&apos; p(e), there are éléments a efAe and b e eAf such

that p{a) af, p(b) -b1 and ba e.

Proof. Reduce to the semisimple case by factoring out the radicals of A and
A&apos;.

COROLLARY. Let X be a module in MoAR and (Yn, un)neN a fundamental
R-sequence produced by X. Then lim Yn is a direct summand of X. In particular,
X lim Yn if and only if X is indécomposable.

4.5. A fundamental /^-séquence (Yn, un)neN with Y limYn is called G-
periodic if GY # {Ir}- The following lemma gives a description of GY in terms of
the séquence (Yn).

LEMMA. Let {Yny un)neN be a fundamental R-sequence} Y limYn and

g € G. The following two conditions are équivalent
(i) Y 8Y

(ii) For any n eN there is an m^n such that Yn cze | 8Ym.

Proof Assume (i) and take neN. Then ^&gt;n^g\ for some p^n and,
by Lemma 4.3, there is m^p such that 8Y \ gCp =gYm \ gCp. Consequently
Yn&lt;:=-®\8Ym since Yrtcze| Y^8Y. Conversely, if (ii) holds, Lemma 4.3 implies
that Y | %cz^8Y | % for ail n e N\ so, by Proposition 4.4, Yœ^8Y and finally
Y 8Y, since 8Y is indécomposable.

§5. Examples and applications

5.1. Assume that R kQ/I is a locally bounded K-category satisfying the

following conditions: (a) R is Schurian [12], (b) Q is connected, directed and

interval-finite [5], (c) nx(Q, /) 0 [25], (d) the support of any indécomposable
finite dimensional R -module is representation-finite or belongs to the Bongartz-
Happel-Vossieck list ([5], [9], [22]) of critical algebras. Let G be a group of
AT-linear automorphisms of R acting freely on the objects of R. It follows from
our assumption and [24] that G acts also freely on ind R/—.

PROPOSITION. Every weakly-G-periodic R-module is linear. As a

conséquence RIG is tame.

Proof. Let Y be a weakly-G-periodic R -module and let (Yn, un)neN be a
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(G-periodic) fundamental R-séquence produced by Y. By Corollary 4.4, Y
lim Yn lim e&quot;(Yn) (4.1). From our assumption and [23] we know that the

support of any 8&quot;(Yn) belongs to the Bongartz-Happel-Vossieck list or is a

(representation-finite) simply connected algebra. Set m min {i e N, Yl ^0} and

no m + 336. Since Y is infinité dimensional and indécomposable, Lemma 2.5

implies supp Yn c£ %n-\ for n^n0. Hence, for n^n0, supp Yn has at least
336 5-67 + 1 points and consequently supp el{Yn) is either a Schurian algebra of

type Dm (Bongartz-Happel-Vossieck list) or belongs to the 24 familes listed by
Bongartz in [7, 2.4]. Moreover, for n ^n0, 1 =Ég e Gy, we hâve Yn enK{Yn) \ %,
Yn c0 | Yr and Yn c=e | gYr for some r ^ n. Using the structure of indécomposable
finite dimensional modules of the above families of algebras and the fact that G

acts freely on indi?/=, we deduce that the support of any Yn is linear and

consequently y lim Yn is linear. The second part of the proposition follows from
Theorem 3.6.

COROLLARY. Assume that d dimR/G is finite. Then the following
statements are équivalent.

(i) R is locally support-finite.
(ii) ind R Ind R.

(iii) G acts freely on lndR/=.
(iv) R is G-exhaustive.

(v) R does not contain convex subcategory B ^kQB&gt; where QB is a Dynkin
quiver of type A2&lt;i+i&gt;

Proof The implications (i) =£&gt;(ii) =^&gt; (iii) =&gt; (iv) follow from Proposition 2.5
and Corollary 2.3. Assume that (iv) holds and suppose that R contains a convex
subcategory B ^kQB for some Dynkin quiver QB of type A2d+\&apos; We mark ail
sources and sinks in QB and get, up to duality,

where the right part after y can be missing. Then by our assumption, QB contains
three sources which hâve the same image under the Galois covering F\R—&gt;RIG

(see [8, 3.2]). Changinç notation, we hâve F{qx) F(q,) F(qr). Assume first
that F(u) * F(v). Then we hâve F(t) * F{u) or F(v) * F(x) or F(x) * F(t) and B
contains a full subcategory C of the form Jto—?*!-»• • • &lt;—*„ &lt;^xn+x such that
F(xo) F(xn+i) and F(xl)^F{xn). In case F(u) F(v), since F is a covering
map and u^v, R contains a convex subcategory D of the form

y-\
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where F(at) F(a{)), F(fi}) F(/Jo), and a, and f}; are pairwise différent for ail

integers i, j. In both cases R contains a G-periodic line and we get a contradiction
with the fact that R is G-exhaustive (Lemma 2.4). Therefore (iv) implies (v). If
(v) holds, our assumption implies the existence of an upper bound on the number
of points of the supports of indécomposable finite dimensional /^-modules.

Consequently, R is locally support-finite.

5.2. Biserial algebras. A locally bounded &amp;-category R is called biserial if the
radical of each indécomposable projective left or right /^-modules is a sum of two
uniserial submodules whose intersection is simple or zéro. A locally bounded

category is called spécial biserial if it is isomorphic to a bounden quiver category
(in the sensé of [10]) kQ/I, where the bounden quiver satisfies the following
conditions:

(i) the numbers of arrows starting and ending at any vertex of Q are bounded

by 2,
(ii) for any arrow a of Q there is at most one arrow /J and at most one arrow

y such that (Sa and ocy are not in /. By [31, Lemma 1], each spécial biserial

category is biserial. By [5, 31], each locally representation-finite biserial category
is spécial biserial. Well-known examples of représentation-infinité spécial biserial

algebras are group algebras of dihedral groups in characteristic 2 [6, 28] and

algebras appearing in the Gelfand-Ponomarev classification of Harish-Chandra
modules over the Lorentz group [21]. K. Erdmann has recently proved that in
characteristic 2 each block with a dihedral defect group is a spécial biserial.

Recall that for an algebra A, we hâve two natural invariants a(A) and j3(A)
introduced by Auslander and Reiten [2, 3]. The invariant &lt;x(A) is the largest
possible number of indécomposable summands in the middle term of an almost

split séquence and /?(A) is the largest possible number of such summands which

are neither projective nor injective. In the research of biserial algebras we can

assume that each indécomposable projective-injective is uniserial (see [3; 4.2]).
Moreover, by [31, Corollary 1], each spécial biserial algebra having no nonun-
iserial projective-injective indécomposable modules is isomorphic to kQ/I, where

{Q, I) satisfies (i), (ii) and / is generated by a set of paths. The universal cover
(Q, /) of such a (g, /) is a bounden tree satisfying the conditions (i) and (ii).
Finally, it is known [11, 27] that the support of any module in ind kQ/ï is a finite
line. Therefore we obtain the following conséquence of Theorem 3.6 (and

Corollary 4.4).

PROPOSITION. Every spécial biserial algebra A is tame and /3(A) ^ 2.

This resuit was proved in [32] using methods of Gelfand and Panomarev [21].
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5.3. The following example shows that there are other locally représentation-
infinité ^-catégories satisfying the assumptions of (5.1). Let A be the bounden

quiver algebra kQ/I where Q is the quiver and / is the idéal of KQ generated by

the éléments /3§, av, rjaf}, ^a/3y r\yoy \iyoy v\iocy v\iy&gt; Çrja and §777. Then the
fundamental group TI(Q, I) of {Q&gt; I) [25] is a (non-commutative) free group in
three generators and there is a universai Galois covering F:R^R/G A with

group G /I(&lt;2, /) where R KQ/Ï is given by the following quiver Q the idéal

/ being generated by ail éléments of the form /?£, av, ryar)8, fia/3, rjyo, \iyoy v\xyy

\%

u/ V)
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r, Çrja and Çrjy. Observe that R contains full subcategories given by the
extended Dynkin quivers of type D4. Fix a quiver D and consider the full

D:

bounden subquiver E of R of the form

(where ail paths of length 3 equal zéro). Then E can be obtained from D by two
one-point extensions using the D-modules X and Y below which lie at the end of
the preinjective component [13] of FD, and two one-point coextensions using the
D-modules U and V which lie at the beginning of the preprojective component of

V 1/ V 1/ II 1/ \/«

Hence the support of any Z e ind E is contained in D or in one of the following
linear subquivers

or

Further, R can be obtained from E by successive one-point extensions and

coextensions using modules whose restriction to E is either a représentation of
Li, a représentation of L2 or zéro. Thus, if the support of a module M e ind R is

not contained in some quiver D&gt; M is annihilated by the idéal J of R generated by
ail paths of the form juar, juy, rçy, r\a, that is, M is a représentation of the spécial
biserial category R/J. Therefore the support of any indécomposable finite
dimensional R -module is either a finite line or is contained in an extended Dynkin
quiver of the form D; so R satisfies the assumptions of 5.1.
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5.4. We end the paper with an example showing that Theorem 3.1 can be also

applied to locally bounded catégories having nonlinear weakly periodic modules.
In a forthcoming paper by the second author and Z. Pogorzaty, Theorem 3.1 will
be applied to the classification of indécomposable finite dimensional modules over
arbitrary biserial algebras. In the example considered below we shall outline the

covering part of this classification.

Let A be the bounden quiver algebra kQ/I defined by the quiver

and the idéal / generated by the éléments oco - f5yo, oa, §2, £y and j3§. It is easy
to see that A is a nonspecial biserial algebra and each indécomposable
projective-injective A-module is uniserial. The fundamental group FI(Q, I) of
(&lt;2, /) is a free group in two generators and there is a universal Galois covering
F.R-+RIG with group G Jï(g, /), where R kQ/ï is defined by the quiver
Q (page opposite) and the idéal / generated by ail éléments of the form
oco — $yo, oa, £2, £y and j3£. Observe that kQ/ï contains a finite full
subcategory defined by the extended Dynkin quiver

of type Â3. If we identify the points of each triangle in Q of the above form, we
obtain an infinité tree. A convex subcategory U of R is called f-closed if it
contains the whole of a triangle of the above form whenever it contains one of its
vertices. A convex subcategory V of R is called admissible if its quiver does not
contain a subquiver of the form Ql (page opposite). Observe that any admissible
subcategory of R is spécial biserial. Using one-point extensions and coextensions,
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/1 0 0 0 0\
r&gt; [010001
P 00010

\00001 /

/lOOOv
/0100\

y- 0010
10001/
\0000&apos;

k[TT k[TT
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one can prove that the support of any indécomposable finite dimensional
R-module is an admissible subcategory of R. Consequently, by Corollary 4.4 and

Lemma 4.5, the support of any weakly-G-periodic /^-module is an admissible

subcategory D with GD {ge G;gD D} an infinité cyclic group. Dénote by Hf

the set of ail f-closed admissible subcategories D of R with GD nontrivial and by
% a set of représentatives of the G-orbits in Sf. It is easy to check that &amp;* is a

separating family (3.1) in R and then, according to Theorem 3.1, there is an

équivalence of catégories

U (mod D/GD)/[modl D/GD] 2» (mod R/G)/[mod1 R/G].
De9&gt;0

Moreover, smce ail D/GD with D e % are spécial biserial, it is easy to deduce

(cf. 3.6) the following description of (modi?/G)/[mod1 RIG]. Let Wbe a set of
représentatives of the G-orbits in lndR/= of weakly-G-periodic R -modules with
supports contained in some D e %&gt; and WQ a set of représentatives of isoclasses

in W. Then for each Y e Wo, GY {g eG;gY=Y} is an infinité cyclic group, FkY

is a K[T, r-^-fl/G-bimodule, and the functors

- ® FkY:modK[T,T-l]^modR/G,YeW0,
K[TT &apos;J

induce an équivalence of catégories

U modK[T, T-l]^(modR/G)/[modlR/G].
YeW0

Hère each D e 5^0 is a support of infinitely nonisomorphic nonlinear weakly-G-
periodic R -modules. The following R -module Y is a typical example of such a

module (see page opposite). Then the k[Tf T^-A-bimodule FXYis isomorphic to
the bimodule (see page opposite).
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Buchanzeigen

Correspondance de Leonhard Euler avec P.-L. M. de Maupertuis et Frédéric II, publiée par Pierre
Costabel, Eduard Wintert, ASot T Gngonjan et Adolf P Ju§kevi5 en collaboration avec Emil A
Fellmann L Eulen Opéra Omnia, Séries Quarta A, Commercium Epistolicum Vol 6, Birkhauser
Basileae, 1986, XII + 454 pp Fr 192 -

Der vorhegende Band ist der dntte nunmehr erschienene der auf acht Bande veranschlagten IV
Série der Gesamtausgabe (vorgangig der Registerband IV A 1, dann IV A 5, der die Korrespondenz
Eulers mit Clairaut, d&apos;Alembert und Lagrange enthalt) Etwa 130 (3 lateinische, sonst franzosisch

verfasste) Bnefe von Euler an Maupertuis sind erhalten, leider nur 5 von M an E Eine flussig
verfasste Einleitung und em hervorragender Kommentar von P Costabel begleiten die Herausgabe
Wichtigster Inhalt ist die Diskussion um das Pnnzip der kleinsten Wirkung Der von Eduard Winter
(t) emgeleitete Bnefwechsel von Euler mit Friedrich II betnfft neben administrativen Fragen solche
der Anwendung der Mathematik, u a auf Windmuhlen, Pumpen, Glucksspiele, Finow-Kanal Ein
Sachverzeichnis verweist auf die Fulle der behandelten Problème Daher ist zu erwarten, dass der
hervorragend edierte Band auf das Interesse breitester Kreise stossen wird j j Burckhardt

W R Knorr, The Ancient Tradition of Géométrie Problems, Birkhauser Verlag Boston-Basel-
Stuttgart, 1986, 411 pp SFr 128 —

1 Sifting History from Legend 1-2 Begmnings and Early Efforts The Duplication of the Cube,
The Quadrature of the Circle, Problems and Methods-3 The Geometers in Plato&apos;s Academy
Solutions of the Cube-Duplication, Geometnc Methods in the Analysis of Problems, Efforts toward
the Quadrature of the Circle, Geometry and Philosophy in the 4th Century - 4 The Génération of
Euclid A Locus-Problem in the Anstotehan Corpus, Euchd&apos;s Analytic Work, The Analysis of Conic
Problems Some Reconstructions, An Angle-Tnsection via &quot;Surface-Locus&quot;, Euchd&apos;s Contnbution to
the Study of Problems - 5 Archimedes - The Perfect Eudoxean Geometer Circle-Quadrature and

Spirals, Problem-Solving via Conic Sections, Problem-Solving via Neuses, An Anonymous Cube-

Duphcation, The Impact of Archimedes&apos; Work-6 The Successors of Archimedes in the 3rd

Century Eratosthenes, Nicomedes, Diodes, On the Curve called &quot;Cissoid&quot;, Dionysodorus, Perseus

and Zenodorus, In the Shadow of Archimedes-7 Apollonius - Culmination of the Tradition
Apollonius, Archimedes and Herachdes, Apollonius and Nicomedes, Apollonius and Euclid,
Apollonius and Anstaeus, Ongms and Motives of the Apoilonian Geometry-8 Appraisal of the

Analytic Field in Antiquity The Ancient Classifications of Problems, Problems, Theorems and the
Method of Analysis,

&quot; and many and the greatest sought, but did not find&quot;, Epilogue

R G Douglas, C M Pearcy, B Sz-Nagy, F -H Vasilescu and D Voiculescu (Managing
Editor Gr Arsène), Advances in Invariant Subspaces and Other Results of Operator Theory- 9th
Int Conf on Operator Theory, Timi§oara and Herculane, Romania, (Operator Theory Advances a

Applications Vol 17), Birkhauser Verlag Basel-Boston-Stuttgart, 1986, 375 pp SFr 88 -
Contributions by E Albrecht, J Eschmeier and M N Neumann, F Altomare, C Apostol, H

Bercovici, C Foia§ and C Pearcy, J Barna and K R Davidson, Z Ceau§escu and I Suciu, B
Chevreau, T Constantmescu, R E Curto, P S Muhly and T Nakazi, J Dazord, R G Douglas, H
Helson, P Jonas, T Kailath and A M Bruckstem, L Kérchy, H Langer, P Legisa, B Magajna, H
Neidhardt, M OmladiS, M Putmar, C J Read, J Rosenberg, K Rudol, D Timotin, D Vuza and

H Widom
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