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Galois coverings of representation-infinite algebras

PiotR DowBorR and ANDRZEJ SKOWRONSKI

Coverings techniques in representation theory were introduced and developed
for the research of representation-finite algebras and for computing their
indecomposable representations. In this theory one of the important results is the
following [20], [24]:

“Let K be an algebraically closed field, O a locally finite quiver, I an
admissible ideal [10] in the path-category KQ of Q, R the (locally bounded)
quotient category KQ/I, mod R the category of finite dimensional R-modules
(representations of R) and G a group of K-linear automorphisms of R acting
freely on the objects of R. Moreover, let F:R— R/G = A be the functor which
assigns to each object x of R its G-orbit G -x, and F :mod R— mod (R/G)
the push-down functor [10] associated with F and such that (F,M)(a)=
@ r(x)=a M(x) for any M € mod R and a € R. Then R is locally representation-finite
if and only if so is A. In this case, F, induces a bijection between the G-orbits of
isoclasses of indecomposable finite dimensional R-modules and the isoclasses of
indecomposable finite dimensional A-modules”.

Therefore, if R is locally representation-finite, mod A coincides with the full
subcategory mod; A formed by all modules of the form F,M, M € mod R; in the
general case we call these ;M A-modules of the first kind. The authors showed
in [15], [17] that mod A =mod; A holds for a wider class of locally bounded
categories consisting of all locally support-finite ones. The equality mod A =
mod,; A is also discussed here (§2).

The main object investigated in this paper is the full subcategory mod, R/G of
mod R/G formed by all modules having no direct summands of the first kind; we
call them R/G-modules of the second kind (with respect to a fixed Galois
covering F:R— R/G). Our main theorem (3.1) asserts that for some class of
Galois coverings F:R— R/G the investigation of mod, R/G can be reduced to
the quotient categories associated with the supports of some periodic, indecom-
posable, locally finite dimensional R-modules. In particular, we obtain the
following covering interpretation of the Gelfand—Ponomarev classification [21] of
indecomposable finite dimensional modules over the algebras A, =C[X, Y]/
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312 PIOTR DOWBOR AND ANDRZEJ SKOWRONSKI

(XY, X", Y")=CQ,/I,, n=2. Here Q, is the quiver

and I, is the ideal generated by aff, fa, a” and ". Let R be the residue-category
CQ/I where Q is the following locally finite quiver

| | T | |
« n a a !

and [ is the ideal generated by all elements of the form «f, Ba, a" and B".
Consider the action of the free abelian group G=7ZXZ on R given by the
vertical and horizontal shifts of Q. Then A, is isomorphic to R/G and we have a
Galois covering F:R— R/G = A,,.. A line in R is a full convex subcategory L of R
which is isomorphic to the path category of a linear quiver (of type A,,, A.. or AY).
A line L is G-periodic if its stabilizer G, = {g € G; gL = L} is nontrivial. With
each line L in R we associate a canonical indecomposable R-module B, by setting
B,(x)=KforxeL, B;(x)=0 for x ¢ L and B,(y) = idx for each path y in L. It
is well-known that the modules B;, where L ranges over all finite lines in R, are
representatives of the isoclasses of finite dimensional indecomposable R-modules.
Therefore every indecomposable module in mod, A, is isomorphic to F,(B,) for
some finite line L in R. Let £ be the set of all G-periodic lines in R and %, a
fixed set of representatives of the G-orbits in £. Then, according to our main
theorem (3.1), there is an equivalence of categories

LLI%(mod L/G.)/[mod, L/G,] > (mod R/G)/[mod, R/G]

where [mod; R/G] (resp. [mod, L/G.]) denotes the ideal of all morphisms
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factorized through an object of mod, R/G (resp. mod; L/G;). In our example
each (mod L/G,)/[mod, L/G,] is equivalent to the category mod KG, of finite
dimensional modules over the algebra KG, = K[T, T~'] of Laurent polynomials.
Moreover, for any L €%, the canonical action of G, on L supplies a left
KG,-module structure on FB,. For each aeR/G, the K[T, T™']-module
FE, B, (a) is free of finite rank. We will prove that the equivalence

LI mod K[T, T™'] 3 (mod R/G)/mod R/G

Le%
described above is given by the functors

— @ EB,:modK[T, T"']— mod R/G.

K[T.T 1|

In particular every indecomposable module in mod, A, is isomorphic to V
®K|T_T—1]FABL for some L € ¥, and some indecomposable finite dimensional
K[T, T~ ']-module V.

We see that in the research of mod, R/G an important role is played by
locally finite dimensional indecomposable R-modules with nontrivial stabilizers.
In §4 we show that these modules are limits of sequences of finite dimensional
indecomposable modules. In §5 we apply our main theorem to the classification
of indecomposable modules over interesting classes of tame algebras.

The methods we use are rather simple. We assume only basic results on
Galois coverings of locally bounded categories proved by Gabriel in [20],
elementary properties of adjoint functors [23], Krull-Schmidt—Warfield decom-
position theorem [33] and the description of indecomposable representations of
Dynkin quivers of type A, [18].

The results presented here were partially announced by the authors at the
Conferences on Representations of Algebras in Ottawa (August 1984) and in
Durham (July 1985). The final version of this paper was written while the first
author was visiting the Universitidt-Gesamthochschule Paderborn and the second
author the Bielefeld University. We would like to thank H. Lenzing and D.
Simson for helpful discussions on this paper during the preparation of its
preliminary version in Torun.

We take pleasure in especially thanking P. Gabriel for the careful reading of
the first version of this paper, several simplifications of proofs and helpful
remarks.

Finally we like to express our gratidude to Mrs. Duddeck, who typed the
manuscript.
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§1. Basic definitions and notations

1.1. Throughout this paper we denote by K an algebraically closed field and
by R a connected, locally bounded k-category [see S, 10].

Let M be an R-module [5,10]. The support of M is the full subcategory
supp M of R formed by all objects x € R such that M(x)#0. The dimension-
vector of M is the family dim M = (M (x):K),cg; its dimension is the number
dimM =¥, .x (M(x):K). The R-module M is called locally-finite dimensional if
(M(x):K) is finite for all x € R. We denote by MOD R category of all R-modules,
by ModR (resp. mod R) the full subcategory formed by all locally finite
dimensional (resp. finite dimensional) R-modules, by Ind R (resp. ind R) the full
subcategory of Mod R (resp. mod R) formed by all indecomposable objects, by
Ind R/= (resp. ind R/=) the set of isoclasses of objects in Ind R (resp. ind R).

If X, Ye MODR, we write Y cg X whenever Y is isomorphic to a direct
summand of X. If € is a full subcategory of R and Z e MOD €, we write
Zcg I X if Zcg X | 6. We say that € is convex if each path of the ordinary
quiver Qr of R with origin and terminus in € has all its points in €. By € we
denote the full subcategory of R formed by all x € R such that R(x, y)#0 or
R(y, x) #0 for some y € €.

If V" is an additive category and % a full subcategory of V", ¥"/[7;] denote the
factor category of %" modulo the ideal [7;] of all morphisms in V" factorized
through a direct sum of some objects of 7.

1.2. In the sequel, G denotes a group of K-linear automorphisms of R. For
each full subcategory L of R, we denote by G, the stabilizer {g e G, gL =L} of
L, by GL the full subcategory of R formed by the G-orbits of all objects of L.
The group G acts on MOD R by the translations #(—), which assign to each
M e MOD R the R-module *M = Mog~'. For each M e MOD R, we denote by
Gy the stabilizer {g € G, *M = M}. Through this paper we assume that G acts
freely on ind R/=. ‘

By MOD“ R we denote the category whose objects are the pairs (M, u),
where u is an R-action on M €e MOD R. The set of morphisms from (M, u) to
(M', u'), denoted by Hom§ (M, M’), consists of all R-homomorphisms from M
to M’ compatible with the actions of G (see [20]). Modf’ R is the full subcategory
of MODY R formed by all (M, u) e MOD“ R such that M e Mod R and that
supp M is contained in a finite number of G-orbits of R.

Let F:R— R/G be a Galois covering, F. :MOD R/G — MOD R the pull-up
functor associated with F and F,:MOD R— MOD R/G the push-down left
adjoint to F. (see [10; 3.2]). Then F. induces an equivalence of categories [20; p.
94]

mod R/G 5 Modf R.
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Moreover, since G acts freely on ind R/=, F, induces an injection from the set
(ind R/=)/G of G-orbits of ind R/= into (ind R/G)/= (see [20; 3.5)}].

1.3. Let ind, R/G be the full subcategory of ind R/G consisting of all objects
isomorphic to ;,M for some M e mod R, and ind, R/G the full subcategory of
ind R/G formed by remaining indecomposables.

§2. G-exhaustive categories

2.1. The category R is called G-exhaustive if ind R/G =ind, R/G. In order to
characterize G-exhaustive categories we shall first give a characterization of
modules of the first and second kind.

LEMMA. (i) Each M e Mod R is a direct sum of indecomposables.

(i) For each M € Ind R, Endg (M) is a local ring.

(iii) Let M = @D,., M, be a decomposition of M € Mod R such that for i #+j no
indecomposable summand of M, is isomorphic to one of M;. Then, an endomorph-
ism f = (f;)ijer of M is invertible iff so is each f;.

Proof. (i) See [4] or prove directly using transitive induction.

(1)) Use spectral decomposition.

(iii) fis invertible iff so is each f(x), x € R. Therefore we can reduce the proof
to the case when M is a direct sum of finitely many indecomposable modules.

2.2. LEMMA [17]. For X € ind R/G the following conditions are equivalent
(i) Xeind, R/G

(i) F.X = D,., Z, where Z; € modR foralliel

(i) F.X has a finite dimensional direct summand.

Proof. For a proof using Auslander—Reiten sequences see [17]. We give here
an alternative elementary proof. The implication (ii)— (iii) is obvious and
(i)— (ii) follows from [20, 3.2]. In order to prove (iii)— (i), assume Z cg F.X for
some Z eind R. Then there exists two morphisms je€ Homg (Z, F.X) and
p € Hom (F. X, Z) such that p - j = 1. The families of morphisms éj:6Z —éF. X 5
F.X and ®p:*F.X—#Z, g € G, produce a pair of morphisms j': D, .;4Z—>F.X
and p":F.X—> @D,.c4Z =11,cc*Z in Modf R. Since G acts freely on ind R/=,
p'ej' is invertible, by Lemma 2.1. Consequently F, Z cg X and by our assump-
tion X =F, Z.

2.3. In a characterization of modules of the second kind an important role is
played by the following class of locally finite-dimensional modules. A module
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Y eInd R is called weakly-G-periodic if supp Y is infinite and (supp Y)/Gy is
finite. This implies that Gy is infinite.

EXAMPLE. Let R, ,.; n, me N, n, m =2 be the locally bounded K-category
defined by the locally finite quiver Q as in introduction and ideal 1, ,, generated
by all paths of the form af3, Ba, a” and ™.

Recall that a full subcategory L of R is called a line if L is convex and is
isomorphic to the path category of a linear quiver (of type A,,, A, or AY). A line
L is called G-periodic if G, # {1}.

With each G-periodic line L in R, , we associate a canonical weakly-G-
periodic R, ,,-module B; by setting B;(x)=K if xeL, B;(x)=0if x¢ L and
B;(a) = idx for each morphism « in L. In fact the map L— B, induces a
bijection between the set £ of all G-periodic lines in R, ,,, and the isoclasses of all
weakly-G-periodic R,, ,,-modules (see §4).

PROPOSITION. Let X emod R/G. Then X e mod, R/G iff there exists a
decomposition F. X = @D.., Y; in Mod R where all Y; are weakly-G-periodic.

In the proof of this Proposition and further we shall use the following lemma.

LEMMA. Let the support of Y €e Mod R be stable under a subgroup H of G,
and denote by U a set of representatives of the cosets of G mod H. Then
EBgGUgY € Mod R iff for each G-orbit O, (O Nsupp Y)/H is finite.

Proof. Obvious.

Proof of Proposition 2.3. The condition is sufficient by Lemma 2.2. Now take
any Xemod, R/G. By Lemma 2.1 and 2.2, there exists a decomposition
FX=6,.,Y, where Y,eIndR and where supp Y, is infinite for all iel. To
prove the necessity it is therefore enough to show, that for any Y € Ind R such
that Y cg F. X, supp Y/Gyis finite. Foreach g € G, #Y c g *(F. X) 3 F. X and hence
@qeuchi@ F.X, where U is a set of representatives of cosets of G mod Gy (use
that Endg () is local and that 8Y &Y if g #g', g,g" € U). On the other hand,
supp Y < supp F. X is contained in a finite number of G-orbits. That (supp Y)/Gy
is finite therefore follows from Lemma 2.3.

COROLLARY. If a group G of K-linear automorphisms of a locally bounded
K-category R acts freely on Ind R/=, then R is G-exhaustive.
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2.4. We will show that under some extra assumption the condition stated in
Corollary 2.3 is also necessary.

PROPOSITION. Let G be a free (noncommutative) group of K-linear
automorphisms of a locally bounded K-category R. Then R is G-exhaustive iff
there is no weakly-G-periodic R-module in Mod R. If moreover R/G is finite and
G =7, then R is G-exhaustive iff G acts freely on Ind R/=.

For the proof of this proposition we need some preparation.

Let H be a subgroup of G, U be a fixed set of representatives of the cosets of
G modH, (N,v)eMod”R and M =&, *N. Then the isomorphisms
u(g, x):M(x) = D, .o N(gi 'x)— M(gx) = ®,,.u N(g5 'gx) induced by v(g;'-
28,8 " -x):Y(gy'-x)—> Y(g;'-gx), whereg - g,H = g,H, produce an R-action
u, of G on M.

LEMMA. With the notation above, suppose that N is weakly-G-periodic and
that H= Gy. Then M = D cev *N is an indecomposable object of Mody’ R, and the
associated R/G-module is of second kind. In particular R is not G-exhaustive.

Proof. By Lemma 2.3 M € Modf R. Now the lemma follows by arguments
similar to those given in [20; 3.5] and Proposition 2.3.

Proof of the Proposition. The condition is sufficient by Proposition 2.3. In
order to prove the necessity, assume that there exists a weakly-G-periodic
R-module Y. Since Gy, as a subgroup of G, is free one can construct an R-action
of Gy on Y applying arguments from [20, pp. 94-95]. Consequently, by Lemma
2.4, R is not G-exhaustive. Now in order to prove the second part of Proposition
it is enough by Corollary 2.3 to show that, for each Y € Ind R with G, # {1},
supp Y/Gy is finite. But this is an immediate consequence of the fact that R/G is
finite and that G, has finite index in G = Z.

2.5. Now we formulate a more handy sufficient condition for R to be
G-exhaustive, which is a natural generalization of the definition of a locally
representation-finite category [10]. For each x e R, denote by R, the full
subcategory of R consisting of the points of all supp M, where M € ind R is such
that M(x) # 0. Following [15], R is called locally support-finite if R, is finite for all
x€eR.

EXAMPLE 1. A locally representation-finite category R is locally support-
finite.
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EXAMPLE 2. Let R be the locally bounded K-category defined by the quiver

n+1 Rb) n+1 2) n+1 3) n+1 4

\Y VM
(n+1,0)

//2) \
a\a(nz\//

//1 2) \'(n 13) *(n-14)

(n-11) (n-11) (n-1.3) (n-14)

and the relations &1, &y =0, XX niy = A jyXnjy, LF), Lj=1, 2, 3, 4,
neN.

Observe that R contains the full subcategory €, formed by the objects (0, 0),
(0,1), (0,2), (0, 3), (0, 4); this is the path category of an extended Dynkin quiver
Q' of type D,; hence R is not locally representation-finite. In fact the modules
M e ind R which are not projective-injective are annihilated by the radical square.
Their support is therefore contained in a set of the form {(n, 0), (n, 1), (n, 2),
(n,3), (n,4)} or {(n, 1), (n,2), (n,3), (n,4), (n+1,0)}. Let G be the cyclic
group of automorphsms of R generated by (n,i)—(n+1,i). Then mod R/
G =mod T(A), where T(A) is the trivial extension A X D(A) of A=kQ’' by the
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injective cogenerator D(A) of mod A. For other examples of locally support-finite
categories we refer to [29], [30].

PROPOSITION. Let R be a locally support-finite K-category. Then Ind R =
ind R and each locally finite dimensional R-module is a direct sum of finite
dimensional indecomposable R-modules. In particular, R is G-exhaustive for any
group G of K-automorphisms of R acting freely on ind R/=.

For the proof of this proposition we should recall the following simple fact.

LEMMA [15]. Let 6 be a full subcategory of R and M an R-module. Assume,
that there exists Z emod C such that suppZc € and Zcg | M. Then the
R-module Z such that Z | € = Z and Z(x) = 0 for x ¢ € is a direct summand of M.

Proof of the Proposition. Take any Y e Ind R, x e supp Y, and consider the
R,.-module Y | R,. Then there exists Z € ind R, such that Z(x) #0 and Z cg | Y.
Observe that supp Z is contained in R,. Indeed, supp Z < supp e,(Z) = R,, where
e,:MOD R,—>MODR is the left adjoint to the restriction e.:MOD R—
MOD R,. Thus, by the above lemma Z cg Y in MOD R and hence Y = Z, since
Y € Ind R. Two remaining statements follow from Lemma 2.1 and Lemma 2.2.

§3. Modules of the second kind

In this section R is not supposed to be G-exhaustive. Our purpose is to
describe mod, R/G under some assumptions which we are to make precise.

3.1. DEFINITION. A family & of full subcategories of R is called separating

(with respect to G) if & satisfies the following conditions:
(i) foreach Le ¥and ge G, gL e ¥.

(ii) for each L € &¥ and each G-orbit 0 of R, ON L is contained in finitely
many G, -orbits.

(iii) for any two different L, L' €S, L N L' is locally support-finite.

(iv) for each weakly-G-periodic R-module Y there exists an L € & such that
supp Y < L.

Remark. If there exists a weakly-G-periodic R-module Y with supp Y =R,
then ¥ = {R} is the unique separating family of subcategories of R with respect
to G.
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THEOREM. Let R be a locally bounded K-category and G a group of
automorphisms of R which acts freely on (ind R)/=. Let & be a separating family
of subcategories of R with respect to G and ¥, a fixed set of representatives of
G-orbits of . Then there is an equivalence of categories

E: LI_Iy (mod L/G,)/[mod, L/G,]— (mod R/G)/[mod, R/G].

As a consequence, the Auslander—Reiten quiver Ig [1,2] of R/G is
isomorphic to the disjoint union of translation-quivers I'x/G L1 (1 ;. (I'LG,)2),
where (I,G,): is the union of connected components of I';,;, whose points are
L/G -modules of second kind.

We may recall here that 11, .4 (mod L/G,)/[mod, L/G,] denotes the full
subcategory of the product [I, .y, (mod L/G,)/[mod, L/G,] whose object are the
families (M, ), .y, such that M, e mod, L/G for almost all L € &, (i.e. M, is zero
in the factor-category).

3.2. Let H be a group of automorphisms of a locally bounded K-category €,
which acts freely on ind €/=. Denote by Modf € (resp. Modf; €) the full
subcategory of Mod¥ € consisting of all M e Modf' € such that M=, Z,
where Z; eind € (resp. Z;eInd € and Z,cgmod C) for each i el. Then the
pull-up functor F!, associated with the Galois covering F':€— €/H furnishes
equivalences mod, ¢/H xModfi € and mod, /H 3Modf; €. Denote by
Modf € the factor category Mod;’ €/[Modf| €]. In order to prove the first part
of the Theorem it is enough to produce an equivalence of categories

Modf* L xMod ¢ R.

L Mod
Le%

Let L € %, and EX:MOD%. L— MODE R be the left adjoint to the restriction
functor EX:MODC R— MODC: L defined by setting EX(N) = @,y 2(e5N) (see
2.4). Here U, is a fixed set of representatives of the cosets of G mod G,,
el= - @, R:MODL—->MODR is a left adjoint to the restriction functor
e’ :MOD R— MOD L. The R-module e5(N) is endowed with an R-action of G,
which is induced by the given L-action of G, on N.

The proof of the Theorem will be done in several steps.

LEMMA. For each Le ¥, E; and E* induce functors Ef{:Modf: L—
Mod}; R and EL: Modf R— ModfGL L.
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Proof. E7(Modf" L)cModf R holds by Lemma 2.3; the inclusion
E7(Modf}! L)y =Modf R is obvious; so Ej is well defined. E*(Modf R)c
Modf" L by 3.1(ii); again E-(Modf; R) = Modf* L is obvious; so E is well
defined.

3.3. LEMMA. Let Y be a weakly-G, -periodic L-module, where L € S. Then

(@) ex(Y)|L=Y and ex(Y)(x)=0ifx ¢ L.

(b) forany L' e &, L’ # L, (ex(Y))| L’ is a direct sum of finite dimensional
L'-modules.

Proof. For the proof of (a) it suffices to show that (supp e5Y) < L. Observe
T — .
that (suppeiY)csuppY, (G.)y< G,y and (supp Y)/Gy is finite. Now by
3.1(iv) there exists L' € & such that suppe;Y < L’. Hence 3.1(iii) and Proposi-
tion 2.5 imply L=L’. For the proof (b) take L'e¥, L+#L’'. By (a)
supp ((exY)|L"Yc LN L', so by 3.1(iii) and Proposition 2.5, e5(Y) satisfies the
required condition.

3.4. LEMMA. Let L, L' € %,. Then

i 1 G lf L=L'
EXEL z{ ModrtL
g 0 fL#L’
Proof. Let @": Iyopor.— EFEJ be the unit of the adjoint pair (ET, E) and
N e Modf™ L. Applying 3.3b to the indecomposable summands of N (considered
as an L-module), we infer that

@“(N):N— ELEL(N)
is an isomorphism and that EX'E.(N) = @D, .y, #(efN) | L' e Mod§ L' if L# L',

Let E.:Modf R— 1], .4, Modf* L be the functor defined by the family of
functors (E*),cy,, and let [: 11, 4 Modf* L—[], .4 Modf* L be canonical
embedding. We denote by E;: LI, .y Modf" L—Modf R the functor which
maps the object (M) ..y onto LI,.rE{(M,), where T={Le%:M, ¢
Mod¢t L},

COROLLARY. The functors I and E.E, are isomorphic.

3.5. PROPOSITION. E. factors through 11, ., Mod$" L. The induced func-
tor E:Modf R— L1, .4, Modf" L is such that EE, and E,E are isomorphic to the
identical functors.
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Proof. We will show that each indecomposable M € Modf R is isomorphic to
some ELN, where L e %, and N e Modf L. This fact and Lemma 3.4 clearly
imply our proposition. So let M € Mods; R be indecomposable. Then there exists
a weakly-G-periodic R-module Y such that Y g M in Mod R. By 3.1(iv) there
exists L € & such that supp Y < L. Without loss of generality one can assume that
L € &,, because for any g € G, 8 Y c g M <M in Mod R. It follows that Y | L cg
N #0 for any decomposition E*M =N @ N’ in Modf* L such that N e Modf¥ L
and N’ € Modf L. Set N = e7N (= extension of N to R by 0). As in 3.3, we can
show that N is identified with e;N, where e} is the right adjoint to the restriction
el. The inclusion N— E“M and the projection E*M — N are therefore associated
with G,-equivariant morphisms i:N— M and p:M — N such that pi = 15. The
induced morphisms % :8N—&M x M and %p: M 5 8M — &N define G-equivariant
morphisms j: L, (N—>M and ¢:M—Il,cy, *N> L,y *N. By Lemma
3.3(b) the morphism gj satisfies the assumption of Lemma 2.1(iii); so is invertible
and M is isomorphic to EXN = LI, “N.

In order to describe the structure of Ir,; recall that by [20; 3.6] the modules
of the first kind and second kind are contained in different components of I,
and that the union (Ix,;), of the components containing all indecomposables of
the first kind has the form I;/G. Denote by J; (resp. J,, L € &,) the Jacobson
radical of the category Modf R (resp. Modf" L). Since, for each L€ %,, Ef|:
Modf L— Modf R is ‘“‘exact” by Lemma 3.3(a), the structure of (Ix).=
Ik, \(Ix/c), follows immediately from the formula

J/JL(N,N') if M=EiN’  forsome N' e Mod§¥ L
JRIJR(ELN, M) = 0 if M=E7N' forsome N eModf L', L#L’
0 if M e Mod{; R

where M e Mod{ R and N e Modf L are indecomposable and L is a fixed
element of %,. This finishes the proof of Theorem 3.1.

3.6. Let A be a k-algebra (not necessarily finite-dimensional). Then any
contravariant functor Q:R—MOD A“” will simply be called A-R-bimodule.
Each A-R-bimodule Q induces a functor — @, 0:MOD A— MOD R, where
(VR 0)x)=V®, Q(x) for all Ve MOD A and x € R.

Let B be a weakly-G-periodic R-module together with an R-action v of Gz on
B. Then E B carries the structure of a KGgz-R/G-bimodule, where KGp is the
group algebra of Gz over K. More precisely, for each Gx e R/G, (FB)(Gx) is a
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free KGg-module of rank ¥, .w, (B(y):K), where W, is a set of representatives of
the Gg-orbits of Gx. In particular, if B = B, for some line L in R (see 2.3), then
E.B, is a K[T, T™']-R/G-bimodule. In this case we will denote by & the functor
—Q«(r. -1y B BL:mod K[T, T~']- mod R/G.

Let & be the set of all subcategories supp Y = R, where Y ranges over all

weakly-G-periodic R-modules, and let %, be a fixed set of representatives of the
G-orbits of £.

THEOREM. Let R be a locally bounded K-category and let a group G of
K-linear automorphisms of R act freely on ind R/=. Assume that £ consists only
of lines in R (2.3). The family of functors ®*, L € %,, induces an equivalence of
categories

b {%I mod K[7, T7'] 3 (mod R/G)/[mod, R/G].

In particular, (I,G); = U g, I'jr,7-1), where I'yr,7- is the translation-quiver
of the category of finite dimensional k[T, T~"']-modules.
Moreover, R/G is tame iff so is R.

Proof. First we show that £ forms a separating family of subcategories of R.
Properties (i), (ii), (iv) are trivially satisfied. Let L, L' € ¥, L#L'. Then LN L'
is a disjoint union of connected finite subcategories. Indeed, if D is a half-line of
L and L', it easily follows that the semigroup {g € G, gD < D} is infinite cyclic.
Its generator g is also a generator of the groups G, and G, . and satisfies
L=J,g "D =L', a contradiction. Consequently, LN L' is a disjoint union of
finite connected subcategories, and (iii) is satisfied.

Let L € %,. Then by [14] and [26] (see also [13]) the functor

wt=—- @ FYB,|L):modk[T, T"'|->modL/G,,

KIT.T™]

where FX:L— L/G, is the canonical “projection”, induces an equivalence of
categories

Wt :mod k[T, T~']— (mod L/G,)/[mod, L/G,]
and an isomorphism of the translation-quivers I'yrr-y=(IL,).- (One can

prove this statement in an elementary way using the fact that each weakly-G; -
periodic L-module is isomorphic to B, | L by Corollary 4.4 below.) The functors
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YL give rise to the following diagram which is commutative up to isomorphism:

J_Lmodk 11" ]

kt) ¢-(Pl)
¢- (Pl

mod L/G, —=  modR/G
L e L

(1) n

rl__lL_(modL/GL)/[momL/GL] E o (mod R/G)/[mod;R/G]
€ Ly

Since E is an equivalence by Theorem 2.1 s0is @ =[Te@=E- ¥,

The required description of (Ix,;), follows from Theorem 2.1.

Before the proof of the last assertion, we recall that a locally bounded
category R is called tame if, for each finite dimension-vector d of R there exists a
finite family of k[T]-R-bimodules Q; such that:

(a) For each x € R, Q;(x) is a free k[T]-module of rank d(x).

(b) Every indecomposable R-module M with dim M =d is of the form
M =V Q1) O, for some i and some simple k[T]-module V.

In this definition, k[T] can be replaced by k[T, T7'].

It is shown in [15, Proposition 2] that, if R/G is tame, so is always R.
Conversely, if R is tame, the indecomposable R/G-modules of the first kind with
fixed dimension-vector are parametrized by finite families of bimodules (see [15;
Lemma 3]).

Let us now turn to the R/G-modules of second kind. By theorem 3.6 they
are ‘“parametrized” by k[T, T~']-R/G-bimodules Q, , =k[S, T, T™']/(T - S)"
Q(s; FoB., where Le %, and n=1. The dimension of the R/G-module V
@ (71 QL. attached to a simple k[T, T~']-module V is equal to n - |L/G,|, where
|L/G| denotes the number of points of L/G,. We infer that the number of
bimodules Q; , such that modules V ®k(T] Q; . have a fixed dimension-vector, is
finite because, for each y € R and each r =1, there are only finitely many lines
passing through y and such that |L/G,|<r.

§4. Fundamental sequences
In this section we shall show that each indecomposable locally finite

dimensional R-module is a “limit” of a sequence of finite dimensional indecom-
posable modules over some finite full subcategories of R. In particular,
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weakly-G-periodic R-modules are ““limits” of “G-periodic sequences’”. We will
see in §5 that, for a class of locally bounded categories R, such sequences are
related with a rather narrow class of modules in ind R. This will enable us to
describe weakly-G-periodic R-modules completely.

4.1. In the sequel €,, neN={0,1,2,...}, denotes a fixed family of finite
full subcategories of R such that

(1) ForeachneN, €,,,=€, (1.1).

(2) R=U,n&..

Since R is connected, such a family always exists.

For each nelN, the restriction functors e”:Mod €,,,— Mod €, and
€’:Mod R— Mod €, admit left adjoint functors e}:Mod €,— Mod €6,.; and
£%:Mod 6,— Mod R such that e’e} X 1yoae,, €653 Imoae, and @: &7 e x €}
([23, chap X]}).

DEFINITION. A fundamental R-sequence is a sequence (Y,, U,),eny Of
modules Y, e mod ¢, and €,-homomorphisms u,:Y,—Y,,,| €, satisfying the
conditions (a), (b), (c), and (d) below:

(a) ForeachneN, Y,=0o0r Y,€ind €,.

(b) Y, #0 for some n € N.

(c) For each n €N, u, is a splittable monomorphism in mod €,,.

(d) For each x € R, the sequence (dim Y, (x)),.n is bounded. A fundamental
R-sequence (Y,, u,).en IS bounded if there is a common upper bound for
dim, Y,(x), xeR, neN. Finally, a fundamental R-sequence (Y,, u,),cn IS
produced by an R-module X if ¥, cg | X for all n e N.

4.2. Remark. Every locally finite dimensional R-module X #0 produces a
fundamental R-sequence (Y,, 4,),.n. Indeed, take a point a e supp X and an
arbitrary indecomposable direct summand Z of X | €,, with Z(a) # 0 for some €,
containing a. Put Y,, =0 for n <m and Y,, = Z. There exists Y,,,, €ind €,,,, and
a splittable monomorphism u,,,: Y,,— Y,,.,| €,, such that Y,,,, cg IX. Repeating
this procedure we can find, for all n =m, Y, €ind €, and splittable monomorph-
isms u,:Y,— Y,., | €, such that Y, cg | X. Since X | 6, is finite dimensional the
condition (d) is satisfied and (Y,, u,),n is a fundamental R-sequence produced
by X.

4.3. Let (Y,, u,).en be a fundamental R-sequence. We shall define the limit
lim (Y,, u,), shortly denoted by lim Y,. Since e} is left adjoint to €', u,:Y,—
e’(Y,+;) induces canonical morphism v,:e}(Y,)— Y,., in mod €,,,. Then we
have the following homomorphisms in Mod R

te= €57 (v,): 37 'eR(Y,) = €37 (Vo)
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and consequently
Wo = L@y £3(Y,) > €37 (Y1), neN.

We set lim Y, =_liin) (e5(Y,), w,).

LEMMA. Let (Y,, u,),n be a fundamental R-sequence. Then limY, is an
indecomposable locally finite dimensional R-module and, for each m € N, there
exists p = m such that Y, | €,, 5 (lim Y,) | €,,,.

Proof. The last property follows from (d) and the fact that 3(Y,)| €, =
(e5(Y,) | 6,)| .=V, | 6, for p=m. Set Y =1lim Y, and suppose that Y = X D Z
for some X#0 and Z+#0 in ModR. Set Ny={neN;Y,ce|X} and N, =
{neN;Y, cg ] Z}. Then N =Ny UN; and one of the sets Ny or N, say Ny, is
infinite. Hence N = Ny since m < n and n € Nyimply m € Ny. Therefore £(Y) cg |
e’(X) for all n e N, Z =0 and we have a contradiction.

4.4. PROPOSITION. Let X and Z be modules in Mod R. Then
(1) XcgZifandonly if X | €,cq Z | €, for all n e N.
(i) X=Zifandonly if X |€,=Z2|€, for all n e N.

We owe the proof to Gabriel: (ii) is a consequence of (i). In order to prove (i),
we first consider arbitrary modules V, W e Mod R. We set V,, = V | €, and denote
the restriction map Home  (V,,, W,)— Hom¢_ (V,, W,) by p; for m=n. We
then put Hom' (V,,, W,)) =(),.>, Im p} and observe that Hom' (V,,, W) =Im p}
for large m, that the maps II;:Hom’ (V,,, W,,)— Hom' (V,,, W,) induced by p
are surjective and that Homg (V, W) x Ll_rg Hom' (V,, W,). Now, for each n e N,

our assumptions imply the existence of morphisms a, € Hom' (X,, Z,) and
b, e Hom' (Z,, X,) such that b,a, = 1x . The problem is to construct these a,, b,

in such a way that IT,*' a, ., =a, and IT;*'b,,, = b,. We do this by induction on
n, setting

A = Hom’ (Xn+l GB Zn+1) Xn+1 @ Zn+l)’ A, = Hom, (Xn @ Zn) Xn @ Zn)

and using the following simple lemma.

LEMMA. Let p:A— A’ be a surjective homomorphism of finite dimensional
k-algebras, and e, f two orthogonal idempotents of A. Suppose that there are
elements x € fAe and y € eAf such that yx = e. Then, for all a’' € p(f)A’p(e) and
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b’ € p(e)A'p(f) such that b'a’ = p(e), there are elements a € fAe and b € eAf such
that p(a)=a’, p(b) =b' and ba = e.

Proof. Reduce to the semisimple case by factoring out the radicals of A and
A

COROLLARY. Let X be a module in Mod R and (Y, u,),n a fundamental
R-sequence produced by X. Then lim Y, is a direct summand of X. In particular,
X =lim Y, if and only if X is indecomposable.

4.5. A fundamental R-sequence (Y,, u,),ny With Y=1limY, is called G-
periodic if Gy # {1z}. The following lemma gives a description of G, in terms of
the sequence (Y),).

LEMMA. Let (Y,, u,),n be a fundamental R-sequence, Y =1limY, and
g € G. The following two conditions are equivalent

(1) Y=¢8Y

(i1) For any n €N there is an m = n such that Y, c g | Y.

Proof. Assume (i) and take neN. Then €,cg¥%, for some p=n and,
by Lemma 4.3, there is m=p such that ngngEgYm Ing. Consequently
Y,co | 2Y,, since Ync$| Y =8Y. Conversely, if (ii)) holds, Lemma 4.3 implies
that Y l <€nc®gY| €. for all n e N; so, by Proposition 4.4, Y cg?¢Y and finally
Y =#Y, since ¢Y is indecomposable.

§5. Examples and applications

5.1. Assume that R =kQ/I is a locally bounded K-category satisfying the
following conditions: (a) R is Schurian [12], (b) Q is connected, directed and
interval-finite [5], (c) IT,(Q, I) =0 [25], (d) the support of any indecomposable
finite dimensional R-module is representation-finite or belongs to the Bongartz—
Happel-Vossieck list ([S], [9], [22]) of critical algebras. Let G be a group of
K-linear automorphisms of R acting freely on the objects of R. It follows from
our assumption and [24] that G acts also freely on ind R/=.

PROPOSITION. Every weakly-G-periodic R-module is linear. As a conse-
quence R/G is tame.

Proof. Let Y be a weakly-G-periodic R-module and let (Y,, u,),.n be a
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(G-periodic) fundamental R-sequence produced by Y. By Corollary 4.4, Y =
limY,,=£r_n) e3(Y,) (4.1). From our assumption and [23] we know that the

support of any &€3(Y,) belongs to the Bongartz—Happel-Vossieck list or is a
(representation-finite) simply connected algebra. Set m = min {i e N, ¥;# 0} and
no=m + 336. Since Y is infinite dimensional and indecomposable, Lemma 2.5
implies supp Y, & €,_, for n=n, Hence, for n=n,, suppY, has at least
336 = 5-67 + 1 points and consequently supp €3(Y,,) is either a Schurian algebra of
type D,. (Bongartz—Happel—-Vossieck list) or belongs to the 24 familes listed by
Bongartz in [7, 2.4]. Moreover, for n =n,, 1#g € Gy, we have Y, = €3(Y,,) | €.,
Y,cg| Y, and YV, cq l 2Y, for some r = n. Using the structure of indecomposable
finite dimensional modules of the above families of algebras and the fact that G
acts freely on ind R/=, we deduce that the support of any Y, is linear and
consequently Y =lim Y, is linear. The second part of the proposition follows from
Theorem 3.6.

COROLLARY. Assume that d=dim R/G is finite. Then the following
statements are equivalent.

(i) R is locally support-finite.

(ii) ind R =Ind R.

(ili) G acts freely on Ind R/=.

(iv) R is G-exhaustive.

(V) R does not contain convex subcategory B <—kQpg, where Qg is a Dynkin
quiver of type A4, 1.

Proof. The implications (i) = (ii) = (iii)) > (iv) follow from Proposition 2.5
and Corollary 2.3. Assume that (iv) holds and suppose that R contains a convex
subcategory B < kQp for some Dynkin quiver Qp of type A,,.,. We mark all
sources and sinks in Oz and get, up to duality,

QB:ql__)t_>.-..—)Sl(__...u(__ql_.)v...x(_qr__)y__)...__)s

where the right part after y can be missing. Then by our assumption, Q4 contains
three sources which have the same image under the Galois covering F:R— R/G
(see [8, 3.2]). Changing notation, we have F(q,)=F(q;) = F(q,). Assume first
that F(u) # F(v). Then we have F(t) # F(u) or F(v) # F(x) or F(x)# F(t) and B
contains a full subcategory C of the form x,—x,—:::<«x, <x,,, such that
F(xo) = F(x,+,) and F(x,)# F(x,). In case F(u)= F(v), since F is a covering
map and u ¥ v, R contains a convex subcategory D of the form

o B_: a@q Ba ay B
rZpET Y TR YT e >
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where F(a;) = F(ay), F(B;) = F(By), and «; and B; are pairwise different for all
integers i, j. In both cases R contains a G-periodic line and we get a contradiction
with the fact that R is G-exhaustive (Lemma 2.4). Therefore (iv) implies (v). If
(v) holds, our assumption implies the existence of an upper bound on the number
of points of the supports of indecomposable finite dimensional R-modules.
Consequently, R is locally support-finite.

5.2. Biserial algebras. A locally bounded k-category R is called biserial if the
radical of each indecomposable projective left or right R-modules is a sum of two
uniserial submodules whose intersection is simple or zero. A locally bounded
category is called special biserial if it is isomorphic to a bounden quiver category
(in the sense of [10]) kQ/I, where the bounden quiver satisfies the following
conditions:

(i) the numbers of arrows starting and ending at any vertex of Q are bounded
by 2,

(i1) for any arrow « of Q there is at most one arrow f3 and at most one arrow
y such that Ba and ay are not in /. By [31, Lemma 1], each special biserial
category is biserial. By [5, 31], each locally representation-finite biserial category
is special biserial. Well-known examples of representation-infinite special biserial
algebras are group algebras of dihedral groups in characteristic 2 [6, 28] and
algebras appearing in the Gelfand-Ponomarev classification of Harish—Chandra
modules over the Lorentz group [21]. K. Erdmann has recently proved that in
characteristic 2 each block with a dihedral defect group is a special biserial.

Recall that for an algebra A, we have two natural invariants a(A) and B(A)
introduced by Auslander and Reiten [2, 3]. The invariant «(A) is the largest
possible number of indecomposable summands in the middle term of an almost
split sequence and S(A) is the largest possible number of such summands which
are neither projective nor injective. In the research of biserial algebras we can
assume that each indecomposable projective-injective is uniserial (see [3; 4.2]).
Moreover, by [31, Corollary 1], each special biserial algebra having no nonun-
iserial projective-injective indecomposable modules is isomorphic to kQ/1, where
(Q, I) satisfies (i), (ii) and [ is generated by a set of paths. The universal cover
(0, ) of such a (Q, I) is a bounden tree satisfying the conditions (i) and (ii).
Finally, it is known [11, 27] that the support of any module in ind kQ/I is a finite
line. Therefore we obtain the following consequence of Theorem 3.6 (and
Corollary 4.4).

PROPOSITION. Every special biserial algebra A is tame and B(A) < 2.

This result was proved in [32] using methods of Gelfand and Panomarev [21].
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5.3. The following example shows that there are other locally representation-
infinite K-categories satisfying the assumptions of (5.1). Let A be the bounden
quiver algebra kQ/I where Q is the quiver and / is the ideal of KQ generated by

P
77

the elements 8§, ov, naf, uap, nyo, uyo, vua, vuy, Ena and Eny. Then the
fundamental group II(Q, I) of (Q, I) [25] is a (non-commutative) free group in
three generators and there is a universal Galois covering F:R— R/G = A with
group G = I1(Q, I) where R = KQ/I is given by the following quiver Q the ideal
I being generated by all elements of the form BE, ov, naB, uaB, nyo, uyo, vuy,

\ V4
N Y
X
% NN
NN 7N\
\/ \V4
14 \ / N

N N
N Y
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vua, Ena and Eny. Observe that R contains full subcategories given by the
extended Dynkin quivers of type D,. Fix a quiver D and consider the full

\U/

bounden subquiver E of R of the form
'\ ‘B/o
<

L

\/

(where all paths of length 3 equal zero). Then E can be obtained from D by two
one-point extensions using the D-modules X and Y below which lie at the end of
the preinjective component [13] of I;, and two one-point coextensions using the

D-modules U and V which lie at the beginning of the preprojective component of
Ip:

\/ \/ \/ \/

M=

/\ /\ /\ /\

Hence the support of any Z € ind E is contained in D or in one of the following
linear subquivers

L3 5. & & o Ly & &5 5

Further, R can be obtained from E by successive one-point extensions and
coextensions using modules whose restriction to E is either a representation of
L,, a representation of L, or zero. Thus, if the support of a module M €ind R is
not contained in some quiver D, M is annihilated by the ideal J of R generated by
all paths of the form uw, uy, ny, na, that is, M is a representation of the special
biserial category R/J. Therefore the support of any indecomposable finite
dimensional R-module is either a finite line or is contained in an extended Dynkin
quiver of the form D; so R satisfies the assumptions of 5.1.
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5.4. We end the paper with an example showing that Theorem 3.1 can be also
applied to locally bounded categories having nonlinear weakly periodic modules.
In a forthcoming paper by the second author and Z. Pogorzaty, Theorem 3.1 will
be applied to the classification of indecomposable finite dimensional modules over
arbitrary biserial algebras. In the example considered below we shall outline the
covering part of this classification.

Let A be the bounden quiver algebra kQ/I defined by the quiver

and the ideal I generated by the elements ao — Byo, oa, &%, Ey and BE. It is easy
to see that A is a nonspecial biserial algebra and each indecomposable
projective-injective A-module is uniserial. The fundamental group I1(Q, I) of
(Q, 1) is a free group in two generators and there is a universal Galois covering
F:R— R/G with group G = II(Q, I), where R =kQ/I is defined by the quiver
Q (page opposite) and the ideal I generated by all elements of the form
ao — Byo, ow, E?, Ey and BE. Observe that kQ/I contains a finite full
subcategory defined by the extended Dynkin quiver

of type A;. If we identify the points of each triangle in Q of the above form, we
obtain an infinite tree. A convex subcategory U of R is called t-closed if it
contains the whole of a triangle of the above form whenever it contains one of its
vertices. A convex subcategory V of R is called admissible if its quiver does not
contain a subquiver of the form Q, (page opposite). Observe that any admissible
subcategory of R is special biserial. Using one-point extensions and coextensions,
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one can prove that the support of any indecomposable finite dimensional
R-module is an admissible subcategory of R. Consequently, by Corollary 4.4 and
Lemma 4.5, the support of any weakly-G-periodic R-module is an admissible
subcategory D with G, = {g € G; gD = D} an infinite cyclic group. Denote by &
the set of all ¢-closed admissible subcategories D of R with Gp nontrivial and by
S, a set of representatives of the G-orbits in &. It is easy to check that ¥ is a
separating family (3.1) in R and then, according to Theorem 3.1, there is an
equivalence of categories

LI (mod D/Gp)/[mod, D/Gp] 3 (mod R/G)/[mod, R/G].

DESF()

Moreover, since all D/Gj, with D € &, are special biserial, it is easy to deduce
(c.f. 3.6) the following description of (mod R/G)/[mod, R/G]). Let W be a set of
representatives of the G-orbits in Ind R/= of weakly-G-periodic R-modules with
supports contained in some D € &,, and W; a set of representatives of isoclasses
in W. Then for each Y e W,,, Gy = {g € G;®Y =Y} is an infinite cyclic group, K Y
is a K[T, T™']-R/G-bimodule, and the functors

— ® EY:modK[T, T"']->modR/G, Y e W,

K[T. T ]
induce an equivalence of categories

LI mod K[T, T™'] 3 (mod R/G)/[mod, R/G].

YeW,

Here each D € ¥, is a support of infinitely nonisomorphic nonlinear weakly-G-
periodic R-modules. The following R-module Y is a typical example of such a
module (see page opposite). Then the k[T, T~']-A-bimodule E Y is isomorphic to
the bimodule (see page opposite).

REFERENCES

[1] AUSLANDER, M., Applications of morphisms determined by objects. In: Representation theory of
algebras (R. Gordon, ed.). Proceedings of Conference (Philadelphia 1976), pp. 245-327, New
York—Basel, Marcel Dekker 1978.

[2] AUSLANDER, M. and REITEN, 1., Representation theory of artin algebra IV ; Invariants given by
almost split sequences, Comm. Algebra 5 (1977), 443-518.

[3] AUSLANDER, M. and REITEN, 1., Uniserial functors. In: Representation Theory Il (V. Dlab, P.
Gabriel, eds.) Proceedings (Ottawa 1979), pp. 1-47, Springer Lect. Notes in Math. 832.

[4] BAER, D., Zerlegungen von Moduln und Injektive iiber Ringoiden, Arch. Math. 36 (1981),
495-501.



336 PIOTR DOWBOR AND ANDRZEJ SKOWRONSKI

[5] BauTisTA, R., GABRIEL, P., ROITER, A. V. and SALMERON, L., Representation-finite algebras
and multiplicative bases, Invent. Math. 81 (1985), 217-285.
[6] BONDARENKO, M. V., Representations of dihedral groups over a field of characteristic 2, Math.
Sbornik 96 (1975), 63-74.
[7] BoNGARTZ, K., Treu einfach zusammenhingende Algebren I, Comment. Math. Helv. 57 (1982),
282-330.
[8] BONGARTZ, K., A criterion for finite representation type. Math. Ann. 269 (1984), 1-12.
[9] BoNGARTZ, K., Critical simply connected algebras, Manuscripta Math. 46 (1984), 117-136.
[10] BonGARTZ, K. and GABRIEL, P., Covering spaces in representation theory, Invent. Math. 65
(1982), 331-378.
[11] BoNnGARTZ, K, and RINGEL, C. M., Representation-finite tree algebras, Proc. Puebla 1980,
Springer Lect. Notes 903, 39-54.
[12] BRETCHER, O. and GABRIEL, P., The standard form of a representation-finite algebra, Bull. Soc.
Math. France 111 (1983), 21-40.
[13] DLAB, V. and RINGEL, C. M., Indecomposable representations of graphs and algebras, Memoirs
Amer. Math. Soc. 173 (1976).
[14] DonovaN, P. W. and FREISLICH, M. R., The representation theory of finite graphs and associated
algebras, Carleton Math. Lect. Notes 5 (1973).
[15] DowBoOR, P. and SKOWRONSKI, A., On Galois coverings of tame algebras, Arch. Math. 44
(1985), 522-529.
[16] DOWBOR, P. and SKOWRONSKI, A., On the representation type of locally bounded categories,
Tsukuba J. Math., 10 No 1 (1986), 63-72.
[17] DowBor, P., LENzING, H. and SKOWRONSKI, A., Galois coverings of algebras by locally
support-finite categories, Proc. Ottawa 1984, Springer Lect. Notes 1177, 91-93.
[18] GABRIEL, P., Unzerlegbare Darstellungen I, Manuscripta Math. 6 (1972), 71-103.
[19] GABRIEL, P., Auslander—Reiten sequences and representation-finite algebras, In: Representation
Theory I, Proc. Ottawa 1979, Springer Lect. Notes 831, 1-71.
[20] GABRIEL, P., The universal cover of a representation-finite algebra, Proc. Puebla 1980, Springer
Lect. Notes 903, 68-105.
[21] GELFAND, I. M. and PONOMAREV, V. A., Indecomposable representations of the Lorentz group,
Usp. Math. Nauk 23 (1968), 3-60.
[22] HAPPEL, D. and VOSSIECK, D., Minimal algebras of infinite representation type with preprojective
component, Manuscripta Math. 42 (1983), 221-243.
[23] MAC LANE, S., Categories for the working mathematicians, Springer Verlag 1971.
[24] MARTINEZ, R. and DE LA PENA, J. A., Automorphisms of representation-finite algebras, Invent.
Math. 72 (1983), 359-362.
[25] MARTINEZ, R. and DE LA PENA, J. A., The universal cover of a quiver with relations, J. Pure
Appl. Algebra 30 (1983), 277-292.
[26] NazAROVA, L. A., Representations of quivers of infinite type, 1zv. Akad. Nauk. SSSR. Ser. Mat.
37 (1973), 752-791.
[27] PoGARzALY, Z. and SKOWRONSKI, A., On algebras whose indecomposable modules are
multiplicity-free. Proc. London Math. Soc. 47 (1983), 463-479.
[28] RINGEL, C. M., The indecomposable representatios of dihedral 2-groups, Math. Ann. 214 (1975),
19-34.
[29] SKOWRONKSKI, A., Tame triangular matrix algebras over Nakayama algebras, J. London Math.
Soc., to appear.
[30] SKOWRONSKI, A., The representation type of group algebras, In: Abelian groups and modules,
Proc. Udine 1984, CISM 287, 517-531, Wien-New York 1984.
[31] SkowRONski, A. and WASCHBUSCH, J., Representation-finite biserial algebras, J. Reine Angew.
Math. 345 (1983), 172-181.
[32] WaLD, B. and WASCHBUSCH, J., Tame biserial algebras, J. Algebra 95 (1985), 480-500.



Galois coverings of representation-infinite algebras 337

[33] WARFIELD, R. B., A Krull-Schmidt theorem for infinite sums of modules, Proc. Amer. Math.
Soc. 22 (1969), 460-465.

Institute of Mathematics
Nicholas Copernicus University
Chopina 12/18

87-100 Torun, Poland

Received September 16, 1985/May 20, 1986



Buchanzeigen

Correspondance de Leonhard Euler avec P.-L. M. de Maupertuis et Frederic I, publiece par Pierre
Costabel, Eduard Winterf, ASot T. Grigorijan et Adolf P. JuSkevi¢ en collaboration avec Emil A.
Fellmann. L. Euleri Opera Omnia, Series Quarta A, Commercium Epistolicum Vol. 6, Birkhéduser
Basileae, 1986, XII + 454 pp., Fr. 192.-.

Der vorliegende Band ist der dritte nunmehr erschienene der auf acht Binde veranschlagten IV.
Serie der Gesamtausgabe (vorgéngig der Registerband IV A 1; dann IV A 5, der die Korrespondenz
Eulers mit Clairaut, d’Alembert und Lagrange enthilt). Etwa 130 (3 lateinische, sonst franzésisch
verfasste) Briefe von Euler an Maupertuis sind erhalten, leider nur S von M. an E. Eine fliissig
verfasste Einleitung und ein hervorragender Kommentar von P. Costabel begleiten die Herausgabe.
Wichtigster Inhalt ist die Diskussion um das Prinzip der kleinsten Wirkung. Der von Eduard Winter
(1) eingeleitete Briefwechsel von Euler mit Friedrich II betrifft neben administrativen Fragen solche
der Anwendung der Mathematik, u.a. auf Windmiihlen, Pumpen, Gliicksspiele, Finow-Kanal. Ein
Sachverzeichnis verweist auf die Fiille der behandelten Probleme. Daher ist zu erwarten, dass der
hervorragend edierte Band auf das Interesse breitester Kreise stossen wird. J. J. Burckhardt

W. R. KNORR, The Ancient Tradition of Geometric Problems, Birkhduser Verlag Boston—-Basel-
Stuttgart, 1986, 411 pp., SFr. 128.—

1. Sifting History from Legend 1 - 2. Beginnings and Early Efforts: The Duplication of the Cube;
The Quadrature of the Circle; Problems and Methods — 3. The Geometers in Plato’s Academy:
Solutions of the Cube-Duplication; Geometric Methods in the Analysis of Problems; Efforts toward
the Quadrature of the Circle; Geometry and Philosophy in the 4th Century - 4. The Generation of
Euclid: A Locus-Problem in the Aristotelian Corpus; Euclid’s Analytic Work; The Analysis of Conic
Problems: Some Reconstructions; An Angle-Trisection via “Surface-Locus’’; Euclid’s Contribution to
the Study of Problems - 5. Archimedes — The Perfect Eudoxean Geometer: Circle-Quadrature and
Spirals; Problem-Solving via Conic Sections; Problem-Solving via Neuses, An Anonymous Cube-
Duplication; The Impact of Archimedes’ Work — 6. The Successors of Archimedes in the 3rd
Century: Eratosthenes; Nicomedes; Diocles; On the Curve called “Cissoid’’; Dionysodorus, Perseus
and Zenodorus; In the Shadow of Archimedes- 7. Apollonius — Culmination of the Tradition:
Apollonius; Archimedes and Heraclides; Apollonius and Nicomedes; Apollonius and Euclid;
Apollonius and Aristaeus; Origins and Motives of the Apollonian Geometry — 8. Appraisal of the
Analytic Field in Antiquity: The Ancient Classifications of Problems; Problems, Theorems and the
Method of Analysis; . . . and many and the greatest sought, but did not find”; Epilogue.

R. G. DoucLas, C. M. PEARCY, B. Sz-NAGY, F. -H. VaAsILEscu and D. VoicULEsCU (Managing
Editor Gr. ARSENE), Advances in Invariant Subspaces and Other Results of Operator Theory - 9th
Int. Conf. oti Operator Theory, Timisoara and Herculane, Romania, (Operator Theory: Advances a.
Applications Vol. 17), Birkhéuser Verlag Basel-Boston-Stuttgart, 1986, 375 pp., SFr. 88.-.

Contributions by E. Albrecht, J. Eschmeier and M. N. Neumann, F. Altomare, C. Apostol, H.
Bercovici, C. Foiag and C. Pearcy, J. Barria and K. R. Davidson, Z. Ceaugescu and 1. Suciu, B.
Chevreau, T. Constantinescu, R. E. Curto, P. S. Muhly and T. Nakazi, J. Dazord, R. G. Douglas, H.
Helson, P. Jonas, T. Kailath and A. M. Bruckstein, L. Kérchy, H. Langer, P. Legisa, B. Magajna, H.
Neidhardt, M. Omladi¢, M. Putinar, C. J. Read, J. Rosenberg, K. Rudol, D. Timotin, D. Vuza and
H. Widom.
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