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Generalized Weierstrass p-functions and KP flows in affine space

Emma Previato

The surprising discovery that the flows of the KP équation:

\Uyy » (Uf - \UXXX ~ \UUX\ 0

linearize on Jacobians of curves ([7], [11]) was based on the (forgotten and newly
proved) theory of Burchnall and Chaundy: if a curve C is viewed as the common
&quot;spectrum&quot; (cf. [3]) of a commutative ring si of ordinary differential operators,
then an affine subset of its Jacobian can be parametrized by isospectral
déformations of si. The flows of the KP hierarchy are an example of isospectral
déformations of si and they correspond to (translation) invariant vector fields on
Jac C: in fact they span the tangent bundle.

In the case of the KdV équation, the &quot;2-reduction&quot; of KP (cf. §3), the flows

were made explicit [12] by the use of an algebraic parametrization of Jac C\0
(where 0 is a thêta divisor) that dates back to Jacobi; indeed the corresponding
curve is hyperelliptic, so after removing a branchpoint Px it has an affine model
jU2 n?£t1(A-e,) F(A) and a nonspecial divisor £&gt; Ef=1/&gt; on C\PX is

equivalently given by a pair of polynomials in A;

ft (A - VD(A) «

(with dashes indicating Â-derivatives), obviously modified if A(P.) is a multiple
root of U. The KdV évolutions are described by algebraic équations in the
coefficients of U, V, which moreover play the rôle of &quot;hyperelliptic p-functions&quot;;

this term was coined in [12], to signify the following analogy: if C is an elliptic
curve, the Weierstrass p-function is a meromorphic function on Jac C which gives,
together with its derivative, an affine embedding for JacC: a cubic équation
#(p,p&apos;) O defines JacC\0 (here 0 is a point) in C2. Now we let C be

hyperelliptic and associate to the divisor D the triple of polynomials (U, V, W)
where U and V are as above and W is determined by £/, V&gt; F through euclidean
division so that UW + V2 F(A); then the coefficients of U, V, W are meromorphic

functions on Jac C having pôles, of various order, exactly on 0 and they
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Weierstrass p-functions and KP flows in affine space 293

provide an embedding of JacC\0 in C3g+1; indeed, JacC\@ was shown by
Mumford ([12]) to be isomorphic to the affine subvariety of C3*+1 given by the

following équations on the coefficients of U, V, W : (/, W are monic of degrees g,

g + 1 resp., deg V ^g - 1 and UW + V2 F(Â).
The question this paper addresses is, what do the polynomials U, V, W

become for a gênerai curve? We find an answer by spotlighting the link between
the ring se of ODO and the divisor D in Jac C\0, Our main tool is a matrix,
which we call the BC matrix after Burchnall and Chaundy. We sketch its
définition hère (for détails cf. §1) so as to illustrate our results.

Say sd is generated by (monic) éléments Lx, Lsf of orders mu ms.
Then L, — Â;, j 2, s, act on the solution space of Lx — kx; if we choose a

basis for that space, thèse actions are recorded by the &quot;BC matrix&quot; E*x&gt; whose

coefficients are polynomials in the parameters kx, Â5; the matrix provides
affine équations for C minus one point Px in the coordinates À,, Ây; affine
coordinates for Jac C\0 are given by the coefficients of ail (m, - 1) x (m, - 1)

minors of Eq The fact that the curve and the divisor should be thus linked to the

ring si is an easy conséquence of the Burchnall-Chaundy-Krichever-Mumford
theory ([3], [7], [11]); our contribution consists in the simple but useful
observation that Jacobi&apos;s polynomials ((/, V, W) are given by the 1 x 1 minors of
the BC matrix in the hyperelliptic case (§2). We then generalize both the
p-functions and the Jacobi polynomials:

(I) To generalize p we show that on the Jacobian of any curve C of genus g
we can find g-1 invariant vector fields 3,, dg_l so that the map
(dida log &amp;)a&gt;k=J: Jac C\@-&gt; CN is an embedding, i.e. the functions d^da log û
generate the function ring of Jac C\ &amp;, where 1 ^ k ^ Na(g), a linear polynomial
in g (1.9 and following Note).

For comparison, we recall that the classical means of embedding ail of Jac C in
PM requires M 3g, g genus C.

(II) The appropriate generalization of Jacobi&apos;s polynomials are the

m A M minors of the matrix E*} that are déterminants of the {mx - 1) x
\ mi — 1 /

(mx-\) submatrices. For computational rather than conceptual ease we con-
centrate on the case in which the ring M can be generated by s 2 éléments; this

corresponds to a spécial class of curves, which we regard as a generalization of the

hyperelliptic: we say that a curve has the plane model property (with respect to
the point /y when the ring R^ — {meromorphic functions on C regular outside
Px] can be generated by two éléments. Say r is the lower of their pôle orders at
P..

To mimick Jacobi&apos;s construction, given a nonspecial divisor D on C\{P*}, we
associate to it r2 polynomials that obey suitable constraints; we prove that thèse
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give the adjoint of the BC matnx associated to D through the ring séD (2 4), and
observe that they lend themselves to a generahzation of the geometncal addition
rule for elhptic curves (2 7) We also prove that there îs an inverse morphism
from the set of complex polynomial matrices that obey those constraints to
Jac C\0 The upshot îs a one-to-one map, in fact a morphism in both directions,
between Jac C\&amp; and the r x r complex polynomial matrices in two variables that
drop m rank exactly on the curve C and whose entnes satisfy a given set of
constramts Unfortunately, this doesn&apos;t give us an exphcit affine model of
Jac C\0 as in the hyperelhptic case because we don&apos;t hâve a way for defining the
constraints in gênerai, but only an existence proof Each case of fixed r and

g genus C can of course be worked out to obtam affine équations for Jac C\0
and we do so for two examples r 3, g l, 3 (cf §3) Thèse were chosen
because r 3 corresponds to 3-sheeted covenngs of P1 (tngonal curves) as

opposed to 2-sheeted (hyperelhptic), on the other hand, for g 1 the curve îs

(hyper)elhptic, so one may compare our équations with those found for the

hyperelhptic case by McKean and van Moerbeke ([9]) as solution to a vanational
problem

The next two points might prove useful in studying exphcit solutions of the KP
flows Indeed, while so far we were concerned with parametnzing Jac C\0, the
BC matnx as a function on Jac C also undergoes the hierarchy of KP évolutions
(cf §3) Notice that the &quot;x-évolution&quot; îs already represented by the Jt-dependent
BC matnx £*, because it îs given by x-translation in the ODO-nng se, hence ît

corresponds to representing the Lf — À, action on a différent basis of the solution

space for L, — kX) say a fundamental set normahzed at x instead of 0 Obviously,
this doesn&apos;t change the spectral curve of £&lt;?

(III) If C has the plane-model property, the (movmg) divisor D îs given by
the intersection of r ^ g moving algebraic curves One of thèse curves yields the
solution of the KP équation that corresponds to C in terms of algebraic functions
(3 3), this may hâve the application that qualitative properties of the wave can be

deduced from the dynamical behavior of the corresponding divisor It should be

mteresting to study for which configurations of ovals of the given (real) curve the

(real) solutions may be deformed into sohtons the picture îs already very rich
and comphcated (cf [8]) for the Boussinesq équation (r 3 case) We hâve not
yet pursued this direction

(IV) In [12], Mumford wntes the (algebraic) équations for the KdV flows in
Jacobfs coordinates, to the same end, but in a différent spint, we write the KP
équations on the generahzed Jacobi polynomals, indeed, we translate the KP
hierarchy into Lax-pair équations for the BC matnx, as well as an &quot;infinitésimal

generator&quot; (3 2) We hâve thus converted the Lax-pair équations on coadjoint
orbits of the Lie algebra of formai pseudo-differential operators (cf [2]) into
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Lax-pair équations for matrices in the formai loop algebra §(r) gl (r, C) &lt;8&gt;

C((Â~1)): this observation has the advantage that the x-variable is no longer
singled out, as is remarked in [5] where the §(r) model is given for (r x r)-matrix
(as opposed to scalar) hiérarchies. Moreover, it is in this context that a

generalization of the &quot;Neumann System&quot; is to be found; this System gives a way
of interpreting Jacobi&apos;s hyperelliptic polynomials as functions on the phase space
of a completely integrable System, whose flows in particular préserve the

spectrum of a (g + 1) x (g + 1) matrix. In [1], we generalize that model to r-gonal
curves. Through the BC matrix thèse Systems can be reconciled with the KP
flows; examples for r 3 are to be found in [1] and [13].

A final comment: the présentation of a curve as an r-sheeted covering of P1

through a function with r fold pôle at Px and regular elsewhere is far from
canonical; the gênerai curve of genus g is r-gonal in the above sensé for r g and

no less, but the sublocus of, say, hyperelliptic curves will also be r-gonal for r 2.

If équations could be given on the g x g BC matrix to détermine whether there is

an alternative présentation of the curve for r &lt; g, then thèse would be équations
on the thêta functions and derivatives along dl9 dg_x to define that sublocus

of spécial curves.
This work profited very much from the kind attention and suggestions of: B.

Dwork, A. Mayer, H. McKean, and G. Wilson.

§1. The BC matrix as a function on the Jacobîan; the generalized Weierstrass

p-functions

In this section we recall how every curve can be described as the

(compactification of the) joint spectrum of a ring of commuting operators; we
write the defining équations for the joint spectrum in order to give affine

équations for both the curve and the isospectral class of such rings, modulo

conjugation by a function.

1.1. DEFINITION. Let $1 be the ring of differential operators with
coefficients in C[[x]] (formai power séries); the product is composition of

operators and is denoted by &quot;°&quot;; 3ï C[[Z]][d] where 3 d/dx, so that

d°u{x) à(x) + u(x)d. For any pair of éléments of 01 of the following type:

(uJ} Vj € C[[jc]]), we form the &quot;Burchnall-Chaundy&quot; (BC) matrix A(L; B) as
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follows. By &quot;euclidean division&quot; we expand dl l°L in powers of B,

L SfJ)rlB&apos;&quot;&quot;&gt; + Sf^,-,*1&quot;&quot;1-1 + • • •

where S^ is a differential operator of order &lt;r. The i, j élément of A is the

polynomial

2 (coeff. of &amp;~l in S^)kk

Note that A is the matrix such that A
such that By Ay.

y
y&apos;

for ail

1.2. PROPOSITION (Burchnall-Chaundy, cf. [3]). If the operators B and L
(as in Définition 1.1) commute, then the polynomial det (A — fi) 0(A, ju) w

independent of x and the set ofits zéros (X, fi) is the joint spectrum in the sensé that
there exists a (formai power séries) y(x) such that By ky, Ly fxy.

1.3 Remark. Burchnall and Chaundy also proved that B, L satisfy the

équation (f)(B, L) 0. They did not define A using the euclidean algorithm, but
rather via an &quot;élimination matrix&quot; E for two operators, which we now extend to
the case of any finite number of operators. Note the analogy with the élimination
matrix for two polynomials /, g in one variable, which has zéro déterminant
(Sylvester&apos;s résultant) if and only if/, g hâve a common root. Let Lx, Ls(s ^ 2)
be differential operators with leading term=l and orders m i, ms with
m1^m2^&quot;&gt;^ ms. We define a matrix E with (s — \)mx + ms rows and mx + ms

columns, by putting along the rows the coefficients of 1, 3, 32,.. dmx+ms~x in
the operators: Lx-ku d°(Lx - At) • • • S&quot;1*&quot;1 &lt;&gt;(!,! - A^; L2-A2, d°(L2-
A2),. a^&quot;1o(L2-A2);. ;L,-A,, 3m^lo(Ls-ks).

Let us first observe the link of E with A in the case s 2; if we partition E into

2 r2J
r n

on the r-dimensional space of solutions of By ky. If fî, L commute then L
détermines an endomorphism of that space represented by Ar|^=0 on a

; p

blocks, J M and set A2 ju, then A- \i-E2- F2Fï1E1, as can be checked
r l_£S2 r2J
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fondamental set of solutions normalized at jc O (cf. [15], Proof of 5.1). In
gênerai, we partition

Ex ms

mx

Jmx

mx ms

If y(x) is a solution of Lxy kxy then [((L*-À*)&gt;0(%^
FkFxlEx][y((x)], k 2, ,s. Finally, we dénote by £* the matrix

E2-F2FïlE

i-i ==[£*-

-iiLES-F.F

1.4 PROPOSITION. If Ll9... ,LS (as in 1.3) commute pairwise, then the

joint spectrum is the set of (kx, Â5) for which the matrix Eq E*\x=0 has

rank&lt; miy thus is given by M polynomial équations.\ mx J

Proof. The action of L2 on the mrdimensional kernel Wx of Lx Xx will
détermine a A2-eigenspace W2; L3 acts on W2 and will hâve a Â3-eigenspace W3 and

so on. A function y(x) is in the intersection of thèse spaces if and only if the

vector [y(ff)]0^^mr(î-i) is *n the kernel of E. But because the operators
commute, the action of Lk - kk on Wx is represented by the matrices (Ek -
FkFï1E1)T\x=0, as in the case of 2 operators. Thus the condition defining the joint
spectrum is the same as the condition that the matrix fails to hâve maximal
rank. QED

Next we assemble some known results in order to describe the spectral curve
and its Jacobian. First we enlarge the ring 9? to a ring of (formai)
pseudodifferential operators g C[[x]]((d~1)) {E^f uy(*:)d;, u}{x) a formai

power séries} with the (associative) product:

g is also a Lie algebra via commutators [B, L]-BL-LB, which as a vector
space we view as the direct sum of two subalgebras: g+ © g&quot; with projections:
X+ Zo U;3J, X. Eli u,&amp; for ail X Elc u^ e g.
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1.5 PROPOSITION. Let C be a smooth irreducible curve with a fixed point
Px and a localparameter z centered at Px. We let z~l k. Let D Px + • • • 4- Pgbe
a divisor on C such that D — Px is nonspecial.

(i) (Krichever, [7]) Associated to the above data there is a unique fonction xp of
P eC and x e C such that: for fixed x with \x\ small xp is meromorphic in P outside
Px with pôle divisor ^ D and tpe~KX x(x, k~1) is holomorphic in tc~l near Py; for
fixed P =£ Px&gt; Pj and \x\ small tp is holomorphic in x and xp(O, P) 1.

(ii) ip(x, P) détermines an élément i?D d + w_,5~J + w_23~2 +. of $ so
that i?Dt/&gt; Kip (formally in x and for k in an open domain of the complex plane)
with the convection ttDip (^D°x)eKX and d~xeKX K~xeKX.

(iii) (Schur [14]). The ring of differential operators that commute with iîD is a

maximal commutative subalgebra sdD of 91 and séD {X= Yf-£e cfî s. t. X+ X,
where c} e C}.

(iv) siD is isomorphic to the ring Rx of meromorphic fonctions on C regular
outside Px via the map: B e sdDy B ^&gt;fB where Bxp =fB(P)xp; the order of B is the

order of pôle of fB at Px.

(v) (Mumford, [11]; Wilson, [15]). The affine curve C0 Spec$$D has a

one-point smooth compactification, isomorphic to the curve C. Each point P of
C\PX corresponds to the homomorphism séD-^C, B*-^&gt;fB(P). If Lu Ls is a
set of generators of séD, then Co is the joint spectrum of L,, Ls, i.e. the set

(Ai, A5) e C such that Ltf A;(P)t/;.

// Lu Ls(s ^ 2) gênerate a smaller ring ë&amp; ^ séD, the corresponding affine
curve Fo in Cs is the image of Co under a morphism, which is generically of degree
1 provided the g.c.d. of the orders of the éléments of 36 is 1; thus Fo is singular.

(vi) ([11]) The space of common solutions of sdD is one dimensional at each

point of Co; the dual of such spaces can be glued into a Une bundle whose extension

over Poe corresponds to the divisor D — Px.

(vii) ([11]) *1&gt;d(x&gt; P) is a global section of Mx &lt;8&gt; 6(D), where Mx is the analytic
Une bundle given by glueing data eXK on a punctured neighborhood of Px. Mx has

zéro Chern class; the divisor corresponding to MX®€(D) is Dx — D, Dx
nonspecial, and it moves linearly with x on Jac C.

1.6 COROLLARY. Let the data (C, Px, k, D) and the notation be as in 1.3.

// Llf Ls (of degree mu ms and leading coefficient 1) gênerate s£D, then:
(i) équations for the curve C() are given by the rank condition in 1.4;

(ii) the divisor D is defined by the vanishing of ail (mx — 1) x (mx — 1) minors
of the matrix E*\x={) that are adjoint to the first column.

Proof. (i) is a conséquence of 1.4 and 1.5(v). (ii): by 1.5(vi), the space of
common solutions of $£D is one dimensional at each point (Aj,...,A5);
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equivalently, the kernel of E*\X=Q is one dimensional, thus the cofactors
(vx, umi) of a row in an appropriate mxxmx submatrix of E*\x=0 give a

nonzero eigenvector. Finally, if yx(x)y ymx(x) is a fondamental set of
solutions for Lxy Xxy at x 0, then tyD =yx 4- (v2/vx)y2 • • • 4- (vmjvx)ymï, so
the pôles of tjjD on Q are given by the équation vx(XXy À5) 0. QED

Because of its construction (1.3), the BC matrix E$ of a ring ^D can be

viewed as a fonction on JacC\@, thus the entries can be expressed in terms of
^-fonctions; our next calculation gives a sufficient number of parameters for
recovering the entries.

1.7 PROPOSITION. Let Lx Br be an élément of minimal order mx r in
sdD and let iiD BxJr (we can always assume this to be the case by a suitable choice

of the local parameter k). Let i*D 9 + u^x9~l 4- m_23~24- Br dr +
ur_23r~2 4- • • • 4- m0 and let Lk E^ cf)(&gt;lJ\ we may also assume that c;(A) 0 for j
a multiple of r.

(i) The coefficients of Lk are differential polynomials (in the variable x) of the

coefficients of Br. The coefficient of 9mk~J in Lk is a universal polynomial in Mr_2,

Mr_2, u[JI22); Mr_3, Mr_3, uiJS33)&apos;, Mr_; (if j &gt; r the séquence stops with
u^~r)) involving the [mk/r](mk — 1) 4-/ — 1 constants c)k) where O^l^r — 1 and

mk^l (mod r)
(ii) The entries of the élimination matrix E are linear in the coefficients of Lk

and their derivatives; the highest derivatives involved in the block [Ex F,] are
determined as follows : the (ij) entry involves the coefficient of 9mi~a for a&gt;ml—j

up to its (mx 4- i — a — j)th derivative when this number is nonnegative (otherwise
that coefficient is not involved). The blocks [Ek Fk], k&gt;l, if we use (i) to express
the coefficients of Lk&gt; involve at most the same number of derivatives as the block

[E, F,].

(iii) (Baker, Akhiezer, Krichever; cf. [7]). There exist r—l invariant vector
fields on Jac C, 9X&gt;

y 9r^x such that the coefficient of 9mi~J in Br is a polynomial
in 9nx(a)9a log û(Px - D 4- A 4- £r* (,l/y) where 1 ^ n(a) ^j - or, 9a 9/9ta and

tx=x\ the notation Px — D is an abbreviation for the image of Px — D under the

Abel mapy which is determined up to coordinate change (immaterial hère) by a

choice of homology basis for C and of base point P{) and A is a consequently
determined universal constant; U} is the g vector obtained by expanding a

(normalized) basis of holomorphic differentials œXy a)H in powers of k~x and

taking the (j - \)st coefficient of the expansion with négative sign.

Proof (i) is straightforward, by first expressing the coefficients of Br in terms
of m_i, M_r+1 and then solving for M_r_/, /^=0, in terms of m_j, w_r+,,
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which is possible because 2r &amp;+; finally, L^ £ c;(A:)£; (a conséquence of
l.S(iii)) gives the statement. (ii) is likewise straightforward: by Leibnitz&apos; rule, the

coefficient of dJ~l in ff&quot;l^Lx is Ei*a«mino,«-i)
&apos;

^Jm}1-&quot;^. The statement on

the blocks [Ek Fk] follows from the fact that ami&quot;1°L^ and dmk-l°Lx involve
the same highest power of iîD, and mk^ms. QED

1.8 DEFINITION. We say that the generalized Weierstrass p-functions for C

are the functions dxda log #(z), 1 ^ oc ^ r — 1, in the notation of 1.7(iii).

1.9 PROPOSITION. ThemorphismJ:

~ ^ &quot; 2)
Jac C\0-+CN,N (r~ \)ms

gn/en 6;y 2 »-* (3f(ar)9ar log #(z))i*«r-i. i&lt;N(«)*#n,+r-(*+i) « û« embedding;
equivalently, the coordinate functions following the arrow generate the function
ring of Jac C\0.

Proof. The given functions separate points because they allow us to write the
matrix E which defines the divisor D corresponding to Px + A — z (1.6 and

1.7(iii)). Also, no derivatives on JacC can annihilate ail the given functions,
because the tangent space to Jac C at any point can be spanned by the KP flows

dtj (cf. §3) and the effect of dt/ on the BC matrix can only be trivial if 3t) is the
trivial flow, as we will see in (3.2). QED

Note. For the gênerai curve the smallest mx (as in 1.5) is g (cf [6], Chapter 2,

§4) s =g with L,,. Lg of orders g, g + 2, g + 3, 2g - 1, 2g + 1. By the
construction of the BC matrix we can write the équation of the curve Co using a

suitable élément of CN, N 5(g(g - l)/2).

§2. The plane-model case: géométrie addition law

In the previous section we introduced the analog of the Weierstrass p-function
in the following sensé: a set of functions on Jac C with pôles on 0 which, together
with a number of derivatives along a given direction, can be taken to be affine
coordinates for Jac C\0. In this section we show how to generalize the géométrie
construction of the addition law on the elliptic curve, under a &quot;speciality&quot;

assumption. Under the same assumption, we give a characterization of nonspecial
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divisors that allows us to invert the map on the set of &quot;BC matrices&quot; and prove
that the map in 1.9 has an inverse on that set.

2.1 DEFINITION. We say that the curve C has the plane-model property if
there is a point PxeC such that the ring Rx can be generated by two éléments.

Note: 1. Unless g 1, such a point must be a Weierstrass point, namely the
lowest order r of a function / e Rx at Px must be ^g; indeed, g is the number of
gaps at Poe and Rx is generated by two éléments, one of which has order r. 2. As
a conséquence of the plane-model property we can represent the curve CXF^ as a

smooth plane curve, by the équation det (A(B; L) — ju) &lt;j&gt;(k, ju) 0 where B, L
are generators of Rx (of orders, say, r and m resp.)

2.2 PROPOSITION. // C has the plane-model property, a divisor D =&apos;Ef=i Pt

on Cq is such that D - Px is nonspecial if and only if H°((2g + i)Px - D) has a

basis {fj+ùj 0, i} such that the order of pôle of f)+x at P is 2g +/, for some

Proof We note that (2g - 2)PX is a canonical divisor; indeed, —

I is a holomorphic differential on C with no zeroes on Q. By Riemann-

Roch, D - Px is spécial if and only if dim H°((2g - 1)/^ - D) is nonzero. If there
is a function / € H°((2g - 1)PX - D), then / e H°((2g + i)Px - D) for any / ^ -1,
but this contradicts the assumption that for some i ^ 0 there exists a basis whose

éléments hâve order of pôle at Px strictly increasing from 2g. Conversely, if
D — Px is nonspecial, then by Riemann-Roch the dimension of //°((2g + i)P*, —

D) is / + 1 for ail i ^ -1, so a basis with the stated property can be found by
induction, for ail i: ^ 0 in fact. QED

We can finally emphasize a property of the BC matrix which is quite intriguing
and motivâtes our looking at the plane-model case.

2.3 PROPOSITION. // the divisor D - P^ (as in 2.2) is nonspecial and

Aq — A(L; B)\x==0 is the BC matrix determined by D, then the séquence of
(r - 1) x (r - 1) minors adjoint to the first column of A) - M&gt; which define D&gt; is a

séquence of functions fJ+l e H°((2g +j)Px - D), normalized by the condition that
the monomial offi+i in A, jU with highest-order pôle at P^ has coefficient ±1; if the

minors adjoint to the first column are ordered from top to bottom, then the

corresponding séquence is fr, fr-x,. /i.
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Proof. Let [uiy(À, ju)] be the adjoint matrix of A{) — ju, i.e. the one made up
with the (r — 1) x (r — 1) minors. The r functions vt\(k&gt; ju), 1 ^ i ^ r, define D
(1.6(ii)) and are contained in H{)((2g + r — \)PX — D) as an easy calculation
shows; indeed, by définition (cf. 1.1), A- fi has the following top-weight, monic
terms (the &quot;weight&quot; is the order of pôle at P*)\

-r-h

i iAf+1

where the order of L is Afr 4- /, / is a fixed number between 1 and r - 1 and prime
(Afr + /-l)(rwith r. Notice that the genus g (cf. [3]). Thus

must be a basis of H{\{2g + r — 1)P^ — D). On the other hand, each Eyr=i /

1, r is a common eigenfunction of /? and L, where yy is a fundamental System
for B at jc O; by the same reason why 1.5 (vi), (vii) hold, the function
Vi (Sy=i vijyf)lvit has a pôle divisor of degree g + / — 1 on C() (notice that the

normalizing property of the section ty, is that t/;i/~1)|^=() 1) and vlXlvu has order
of pôle i — 1 at P^; on the other hand, by inspection vn has highest-weight term
fir~\ with weight (r — \){Mr + /) 2g + r — 1, so the weight of fn is 2g + r - /, as

claimed, and the leading coefficient is ±1, by inspection. The séquence of leading
terms is jaykMaX(M+X)fi with 0^y^r-l, but y not necessarily in decreasing
order: this dépends on what / is. QED

In the proof of the previous Proposition, we noticed that the adjoint [vl}] of
the BC matrix is linked to various boundary conditions for siD; in fact, the ;th
column defines the divisor Dn with D, =Z), attached to the eigenfunction i//; of
MD such that t//^&quot;1^^,— 1; if we picture the zeroes of vljy

D] + Dr

0, + D,

D2-

D2-\

ïDr

-A

•• Dr-

¦¦¦ DrA

ïDr

toi.
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The Dj are the corresponding divisors for the (formally) &quot;dual&quot; (cf. [4]) ring. The

vt] are our generalized Jacobi polynomials because, as we&apos;ll prove next, they can
be determined from D algebraically&gt; namely without recourse to the ring sdD or,
which is the same, the thêta function. This détermination takes place by picking
out one curve vl} of weight 2g +/&quot; — 1 + r — i in each H°((2g + j — 1 4- r — i)Px — D})
through a set of constraints which, moreover, ensure uniqueness for a polynomial
matrix [w,;] that defines a given divisor D. If r 2, the constraint is satisfied by

choosing the curve V(A)-jU through Dx and the curve ~V(k)-fi through Dx

whose monomial of weight 2g has zéro coefficient; the BC matrix Aq — ju is given
by Jacobi&apos;s polynomials:

(/(A)
v(â)

1

If the ring MD happens to be periodic in x&gt; the divisors Dx, D2 correspond to the

Dirichlet, resp. Neumann boundary conditions.

2.4 PROPOSITION. Given a curve C with the plane-model property, let r,
m Mr + /, cj&gt;(X, ju) det (Aq — ju) be associated to (C, Px, k, D) as in (2.1),

(2.3). To N parameters (y,, yN) in CN, N — ^ -h m(r - 1) we can

associate in a one-to-one fashion a matrix EQ as in 1.7(ii) by letting thèse

parameters play the rôle of the coefficients of B dr 4- wr_23r~! + • • • + w0,

L dm 4- vm-xdm~x + • • • 4- Vq and their derivatives at x 0. // Eo satisfies the

équation det Eo &lt;£(A, ju), r/ie« r/i^ corresponding matrix Aq defines a point D in
Jac C\0 and the composition of this morphism from the AQ-matrix to D with the

morphism J (cf. 1.9) is the identity.

Proof By construction the highest-weight monic terms of Aq are as in the
sketch within the proof of 2.3. This implies that the minors fx&gt;. ,/r adjoint to
the first column hâve weights 2g + r - 1, 2g + r - 2,... 2g at Px. On the other
hand, they define a divisor; indeed at every point (À, /x) of Q there is a

one-dimensional eigenspace of Aq with eigenvalue ju (if the dimension were
higher, the polynomial 0(]U, A) would be singular at that point). We take the
extension of this Une bundle across Poe. The minors /i,. ,/r are a basis for
H°((2g + r - 1)^00 - £&gt;), where D is the corresponding divisor (cf. [11]), so D is

nonspecial by 2.2, of degree g. This map from CN to JacC\@ is a morphism,
because D is given as the common zeroes of r functions polynomial in the

parameters (y) as well as the entries of Aq — ju. To prove that / is the inverse map,
we show that two matrices A, A&apos; that are constructed as in 1.7(ii) and define the
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same divisor D must coincide. This follows from two remarks: (I) It is enough to
show that adj A adj A&apos; since the déterminant &lt;p(Xy jm) is the same. Let
adj A (vtJ). Each fonction vtl belongs to H°((2g + r - l)Px - D), is monic up to
sign and has weight 2g 4-r-i (cf. 2.3). Likewise, each function vrj belongs to
H^((2g 4- r - 1)PX - E)y is monic up to sign and has weight 2g+/-l, where
E 4- D is the zéro divisor of vn. (II) For a matrix A that is constructed through
the map / of 1.9 and 1.7 (ii), the function (Ey=i v^/vn is the eigenfunction tp of
1.5(i), for ail i&apos; l, ...,r, thus it has an expansion around P^ t//(x, k)
e^il 4- ^(jc)*&quot;1 4- £2(*)*&quot;~2 + •••)• We use this fact to show that for any matrix
A&apos; constructed through 1.7(ii) using N numbers yu yNf the polynomial
entries v&apos;t] of adj A&apos; are determined by D algebraically. Let us fix i r, the
argument for the other rows being similar. Notice that vr2/vrl - ip(0, k) k +
f^O)*:&quot;1 + |2(0)ic~2H- • • • so that the two top coefficients of the function vr2,
which belongs to the 2-dimensional space H°((2g + l)Px - E) dépend only on E
and the form of the matrix, so v&apos;r2 is determined. Next, vr3/vrl i/&gt;(0, k)
k2 -h 2(^(0) + %2(0)k~1 + •••) + li(O)*-1 + • • • so that the three top coefficients
of the function ur3, which belongs to the 3-dimensional space H°((2g + 2)PX - E)
dépend only on E and the form of the matrix (indeed ^(0) appears among the
coefficients of vr2), so v&apos;r3 is determined, and so on inductively. QED

2.5 Remark. 2.4 does not give équations for the image of/, because the map from
the £to the A matrices isnot 1:1 (cf. §3). Ifwecould extract from the p-functions (1.8)
a least number N&apos; of parameters to détermine A in a 1:1 fashion, we would hâve

équations for an affine subvariety of CN&apos; isomorphic to Jac C\0.

We conclude this section by pointing out the analog of the géométrie construction
for the addition law on elliptic curves. Recall that for a plane elliptic curve with a

branchpoint Px at infinity, the sum of two points, P + Q
&quot;

&quot;/?, unless P + Q is a

spécial divisor is found by taking the third (finite) intersection of C with the line

through P and Q and the corresponding point,/?, under the &quot;sheet exchange&quot; t. Thus,
P + Q 4- iR ~ 3PX or P + Q ~ Px -h i? ; P^ is taken to be the zéro of the group. For a

curve C with the plane-model property, the construction is the following:

(2.6) Assume that the divisors Pj 4- • - + Pg and Px + • -Pg 4- on Q are
nonspecial. Then the sum ZU\ K such that Ef=i P, + Q - Ef=i Rt 4- Pœ is found as

follows: let Qx 4- • • • 4- Qg be the residual intersection with C of the unique curve (cf.
2.2) of weight 2g 4-1 that goes through E Pt + Q; then /?! + •• + Rg is the residual
intersection with Cof the unique curve ofweight 2g that goes through Q j 4- • • • 4- Qg.

As a corollary, we state an analog of the following property of the Weierstrass
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p-function: (cf. [6]):

0 if and only if

zx + z2 + Z3 a lattice point; the determinantal condition saysthat thepoints P, t/?

with coordinates p(z,), p&apos;Cz,), i 1, 2, 3 (resp.) lie on a straight Une; the équivalent
condition is the image of the statement P + Q + i/? ~ 3Poc under the Abel map. Thus,

1 P(zi)
1 p(z2) p&apos;(z2)

P&apos;(Z3)

(2.7) COROLLARY. For m&gt;o nonspecial divisors EfP,, Efô,, ^
+ A(E Q,) is a latticepoint (where A is the Abel map with base-poiniPx) ifand

onlyifthematrixof(k, \x)-coefficients ofthefonctionsf^ ptJz Q,whichgothrough E P,,

S g, (resp.) and hâve weight 2g has rank &lt; 2.

Note. This condition can be expressed in terms of generalized p-functions (1.8)
since the fonctions/^ Pi, /s Qi are the minors adjoint to the (r, 1) entry of A^ Pt, As Qi.

Likewise, we can express the conditions £f Pt + g&quot;
&quot;

— Eî Qi by saying that the
rank of the coefficient matrix of /sPi+Q, /sô+e &apos;s &lt;2&gt; etc-

§3. Applications: The infinitésimal generator for the KP flows; the solutions of
the KP équation; équations for JacC\@ in two examples

As we said in the introduction, the Burchnall-Chaundy isospectral theory can
be used as a tool for solving the KP équation. We give a définition for the

équation in our setting.

3.1 DEFINITION. The équations dtn2 [(%&quot;)+, £] are constrained commut-
ing Hamiltonians on the Lie algebra g (cf. [2]). Therefore, there exists a formai
solution which can be regarded as a function of infinitely many variables tnf

provided only a finite number is nonzero: (t) eCx lim E tnC; we let x tx. If we

let firt (£&quot;)+, then the System of équations dtEm - 3tmBn [Bn, Bm] is by
définition the KP hierarchy. By further letting t2 y, t3 t and eliminating from
the (two) équations on the coefficients of the operator:

we obtain, respectively: the KP équation; the KdV équation (ut - \uxxx - \uux
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0), and the Boussinesq équation (luyy + (\uxxx 4- 2.uux)x 0) for u 2w_i, in the:

gênerai case; case when (Si2)+ i?2, and case when (Xi3)+ ii3. More generally, if
the initial condition i&gt;(x) satisfies the ODE (iJr)+ Mry we say that the resulting
hierarchy is the r-reduction of KP; notice that in this case the coefficients of ii(r)
are independent of try for the flow 3tr is trivial.

Suppose we hâve an initial condition iî for the r-reduction of KP. Since the

operators Bn correspond to the matrices A(Bny Br) and the commutators of two
such matrices to the action of the commutator of operators, we address the

question of writing a matrix that corresponds to ^, the infinitésimal generator of
KP.

(3.2) For Si such that i&gt;r (iT)+ Bry we define the r x r matrix Â as follows:
let

with 5;(/) differential operators of order &lt;r; the ij entry of Â is the négative
Laurent séries E* (coefficient of 5/~1 in S^JA*. Then, the KP hierarchy is

équivalent to the following évolution équations:

3tnÂ [A(Bn, Br), Â], as well as:

where we abbreviated A(Bny Br) — An.

(3.2) can be checked on a basis of eigenfunctions for Br. We point out this

way of interpreting the flows in g(r) $1 (r, C) ® C((A~J)) because in [1] we give
a construction of flows in §(r)* that are Hamiltonian in the classical sensé, by
considering the isospectral déformations of a matrix jV(A), the image of the
moment map for a suitable infinitésimal fj(r)+ action. In some examples, we show
that N(X) equals a linear combination of powers of Â, translated by a constant
matrix and multiplied by a fixed meromorphic function on C.

KP, KdV and Boussinesq are nonlinear approximations of équations for
waves in shallow water and the qualitative properties of the solution u (reality
for suitable jc, y, t\ blow-up in finite time; soliton behavior) are of interest for the
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applications. We now give an expression for u in terms of the coordinates of the
divisor £ Pt on the affine curve: such a formula proved very useful in the

hyperelliptic case (corresponding to KdV) for understanding the motion. Let the
data (C, Poe, k, D) détermine iiD (as in 1.5); by Krichever&apos;s theory ([7]), &amp;D

satisfies the KP hierarchy if the flows on Jac C are given by Un) • (3/3zy), where
Un is (—1) X the vector of (n — l)st coefficients in the k~ ^expansion of a

normalized basis of holomorphic differentials, (z;) are the corresponding abelian
coordinates.

3.3 PROPOSITION. If C has the plane-modelproperty, then the function m_,

(as a function of the divisor D) equals the second-from-the-top coefficient in the

polynomial giving the normalized curve of weight 2g through D { — the minor
adjoint to the (r, 1) entry of the BC matrix attached to D), up to a multiplicative
constant depending on r, m and an additive constant depending on the curve.

Proof The highest possible weight after 2g for a monomial in À, /j is 2g - 2

(cf. [3]); in fact, such a monomial must appear in the expression of a curve of
weight 2g that goes through g (variable) points of C in gênerai position, by a

dimension count (there are only g possible weights ^2g cf. [3]). By définition of
the BC matrix (cf. 1.1), and because B dr + ru_xdr~2 + L dm + const
Sm~x + mw_!3m&quot;2 + in each row the top coefficient of Stf (largest k) is 1,

but the next nonconstant one, either in S^ or Si&apos;-i&gt; is a multiple of u^x- Finally,
such a coefficient contributes to the monomial of weight 2g - 2 because the

weight of the monomial equals the total number of &quot;3&apos;s&quot; corresponding to the
variables. QED

Examples: Let&apos;s dénote hère by/, the &quot;monic&quot; curve of weight 2g through D.
When r 2, m 2g + l, w_j= the coefficient of À*&quot;1 in fx minus c^-i (cf- 1.7 for
the meaning of c]k))\ when r 3, m — 3M + 1, w_, the coefficient of iikM~l mfx
minus ^

Finally, we compute the équations for the image of JacC\&lt;9, in two cases

only, to emphasize the relation of the élimination matrix E to the BC matrix A.
Since the case r-2 (hyperelliptic) has been treated exhaustively ([12]), we

develop the r 3 model. Let g l, r 3. Then: m =2, M 0, / 2 in the
notation above and the generators of the ring sdD are taken to be: J5

93 + 3w_i3 + 3ù-x + 3u_2, L d2 + cd + 2a_,. We need 5 parameters (cf. 1.9) to
write the E matrix: u^Ay ù^u ù-x&gt; m_2, m_2 (at x =0), but only 4 to write the \)
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2yi - m c

A-y2 -y,-m
cA-y3 A-y4

where Y\ u-u y2 wi 2 y3

3w_2 + 3cw_i. Thus the équation of Co is:

-Y1Y3 +

3y2 - cy2 - y3 -
+ Y2Y4 - Y3C2 -|U3 +

A2 + A(c3 - y2 - y4) + 2y\ - cyxy2

+ a) + A2 + bk + d, fixed,

and Jac C\ 0 is isomorphic to the affine subvariety of C4 {(y!, y2, y3, y4)} given
by the équations:

3y2 - cy2 -Y3-cy4 a

~ Y1Y3 + 2cy,y4 + y2y4 - y3c2

Remark. In the above example, the map fo1&quot;* A) has fibres of dimension 1. In
particular, not ail Ivmatrices satisfying the équation of the curve correspond to a

divisor; equivalently, the initial conditions y(0) vlf ^(m+r~1)(0) vm+r for
the joint eigenfunctions in gênerai do not correspond to a solution.

For g 2, we cannot hâve the plane-model property corresponding to a point
Px such that HO(3PX)\H°(2PX)*0. To describe JacC\0 we need two BC
matrices: 11 parameters are needed for writing E.

For g 3, the gênerai curve has Weierstrass number 1 ([6]) and does not hâve
the plane-model property for any point Px: 15 parameters are needed for writing
£i). We work out the example of curves with the plane-model property; r 3,

6w_1)a4-4w_, + 6M_2 + 4w_3 + 6«i1 + c2(a2-h2w_1) + c1a, but we let cl c2 0

for simplicity. 9 parameters are needed for writing £0, according to (1.9); indeed,
we need w_lf «_,,..., w(i}; w_2, u% m_3, w_3 but m_3= -^(3w_2-h
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4- w_!). In this case, in calculating the BC matrix we also need 9 parameters,

y5-
2y3A

A + y6 (where y3 M_,

and the fixed curve det (Aq ~ £0 gives us 6 équations (the coefficient of ju2 and k2fi

are zéro because of the relations holding among the entries of A)), defining
JacC\@:

Ï9 - 2y3y6 + Y2Ï3 + YA + YïYl û

(7i + Ys)2 - YiYs + 7ô79 + 7274 + 737s

Yi + 76 + 7? c

37i73 + 7276 + 727? + YeYi + 7s ~ 273

Yi(-Y9 + 2y3y6) + (7i + 7s)(7273 + Y*) +

73(7973 - 2y4y3) - y3y5y7 e

(7i + 7s)(7274 - 7i7s) ~

Ye)

737479 - 737s7s =/

where —/i3 4- (ak -h 6)/i H- A4 4- cA3 + dA2 + ek +/ 0 is the équation of the curve.
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