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Generalized Weierstrass p-functions and KP flows in affine space

EMMA PREVIATO

The surprising discovery that the flows of the KP equation:
%u)’y - (ut - %uxxx - %uux)x =0

linearize on Jacobians of curves ([7], [11]) was based on the (forgotten and newly
proved) theory of Burchnall and Chaundy: if a curve C is viewed as the common
“spectrum” (cf. [3]) of a commutative ring & of ordinary differential operators,
then an affine subset of its Jacobian can be parametrized by isospectral
deformations of &. The flows of the KP hierarchy are an example of isospectral
deformations of & and they correspond to (translation) invariant vector fields on
Jac C: in fact they span the tangent bundle.

In the case of the KdV equation, the ‘“2-reduction” of KP (cf. §3), the flows
were made explicit [12] by the use of an algebraic parametrization of Jac C\@
(where © is a theta divisor) that dates back to Jacobi; indeed the corresponding
curve is hyperelliptic, so after removing a branchpoint P, it has an affine model
u'=TI21"'(A—e)=F(A) and a nonspecial divisor D=Y5_,P. on C\P. is
equivalently given by a pair of polynomials in A;

i u(P)Up(A)
i=1 Up(A(P))(A — A(P))

U =ITG-4E).  Voh) -

(with dashes indicating A-derivatives), obviously modified if A(P.) is a multiple
root of U. The KdV evolutions are described by algebraic equations in the
coefficients of U, V, which moreover play the role of “hyperelliptic p-functions”;
this term was coined in [12], to signify the following analogy: if C is an elliptic
curve, the Weierstrass p-function is a meromorphic function on Jac C which gives,
together with its derivative, an affine embedding for Jac C: a cubic equation
®(p,p') =0 defines Jac C\@ (here O is a point) in C°>. Now we let C be
hyperelliptic and associate to the divisor D the triple of polynomials (U, V, W)
where U and V are as above and W is determined by U, V, F through euclidean
division so that UW + V2= F(A); then the coefficients of U, V, W are meromor-
phic functions on Jac C having poles, of various order, exactly on @ and they
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provide an embedding of Jac C\® in C*™*!; indeed, Jac C\@ was shown by
Mumford ([12]) to be isomorphic to the affine subvariety of C**! given by the
following equations on the coefficients of U, V, W :U, W are monic of degrees g,
g+ 1resp.,degV <g—1and UW + VZ=F(A).

The question this paper addresses is, what do the polynomials U, V, W
become for a general curve? We find an answer by spotlighting the link between
the ring & of ODO and the divisor D in Jac C\®. Our main tool is a matrix,
which we call the BC matrix after Burchnall and Chaundy. We sketch its
definition here (for details cf. §1) so as to illustrate our results.

Say o is generated by (monic) elements L, ..., L,, of orders m,, ..., m,.
Then L, —4;, j=2,...,s, act on the solution space of L, —A;; if we choose a
basis for that space, these actions are recorded by the “BC matrix” Ej, whose
coefficients are polynomials in the parameters 4,, ..., A;; the matrix provides
affine equations for C minus one point P, in the coordinates A,, ..., A; affine
coordinates for Jac C\@ are given by the coefficients of all (m; —1) X (m,—1)
minors of Eg. The fact that the curve and the divisor should be thus linked to the
ring & is an easy consequence of the Burchnall-Chaundy—Krichever—Mumford
theory ([3], [7], [11]); our contribution consists in the simple but useful
observation that Jacobi’s polynomials (U, V, W) are given by the 1 X 1 minors of
the BC matrix in the hyperelliptic case (§2). We then generalize both the
p-functions and the Jacobi polynomials:

(I) To generalize p we show that on the Jacobian of any curve C of genus g
we can find g—1 invariant vector fields &;,...,9,_, so that the map
(858, log )4, =J: Jac C\®— C" is an embedding, i.e. the functions 853, log ¢
generate the function ring of Jac C\ @, where 1 <k < N,(g), a linear polynomial
in g (1.9 and following Note).

For comparison, we recall that the classical means of embedding all of Jac C in
P requires M = 3%, g = genus C.

(I) The appropriate generalization of Jacobi’s polynomials are the

((S - 1)m,
m,

m;—1

(m, — 1) submatrices. For computational rather than conceptual ease we con-
centrate on the case in which the ring & can be generated by s = 2 elements; this
corresponds to a special class of curves, which we regard as a generalization of the
hyperelliptic: we say that a curve has the plane model property (with respect to
the point P.) when the ring R. = {meromorphic functions on C regular outside
P.} can be generated by two elements. Say r is the lower of their pole orders at
P..

To mimick Jacobi’s construction, given a nonspecial divisor D on C\{P.}, we
associate to it r* polynomials that obey suitable constraints; we prove that these

) minors of the matrix £ that are determinants of the (m, — 1) X
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give the adjoint of the BC matrix associated to D through the ring %, (2.4), and
observe that they lend themselves to a generalization of the geometrical addition
rule for elliptic curves (2.7). We also prove that there is an inverse morphism
from the set of complex polynomial matrices that obey those constraints to
Jac C\ ©. The upshot is a one-to-one map, in fact a morphism in both directions,
between Jac C\ @ and the r X r complex polynomial matrices in two variables that
drop in rank exactly on the curve C and whose entries satisfy a given set of
constraints. Unfortunately, this doesn’t give us an explicit affine model of
Jac C\ O as in the hyperelliptic case because we don’t have a way for defining the
constraints in general, but only an existence proof. Each case of fixed r and
g = genus C can of course be worked out to obtain affine equations for Jac C\ @
and we do so for two examples: r=3, g=1, 3 (cf. §3). These were chosen
because r =3 corresponds to 3-sheeted coverings of P' (trigonal curves) as
opposed to 2-sheeted (hyperelliptic); on the other hand, for g =1 the curve is
(hyper)elliptic, so one may compare our equations with those found for the
hyperelliptic case by McKean and van Moerbeke ([9]) as solution to a variational
problem.

The next two points might prove useful in studying explicit solutions of the KP
flows. Indeed, while so far we were concerned with parametrizing Jac C\ ©, the
BC matrix as a function on Jac C also undergoes the hierarchy of KP evolutions
(cf. §3). Notice that the “x-evolution” is already represented by the x-dependent
BC matrix E*, because it is given by x-translation in the ODO-ring &, hence it
corresponds to representing the L, — A, action on a different basis of the solution
space for L; — A,, say a fundamental set normalized at x instead of 0. Obviously,
this doesn’t change the spectral curve of Ej.

(IIT) If C has the plane-model property, the (moving) divisor D is given by
the intersection of r < g moving algebraic curves. One of these curves yields the
solution of the KP equation that corresponds to C in terms of algebraic functions
(3.3); this may have the application that qualitative properties of the wave can be
deduced from the dynamical behavior of the corresponding divisor. it should be
interesting to study for which configurations of ovals of the given (real) curve the
(real) solutions may be deformed into solitons: the picture is already very rich
and complicated (cf. [8]) for the Boussinesq equation (r =3 case). We have not
yet pursued this direction.

(IV) In [12], Mumford writes the (algebraic) equations for the KdV flows in
Jacobi’s coordinates; to the same end, but in a different spirit, we write the KP
equations on the generalized Jacobi polynomals; indeed, we translate the KP
hierarchy into Lax-pair equations for the BC matrix, as well as an “‘infinitesimal
generator” (3.2). We have thus converted the Lax-pair equations on coadjoint
orbits of the Lie algebra of formal pseudo-differential operators (cf. [2]) into
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Lax-pair equations for matrices in the formal loop algebra d(r)=gl (r,C) ®
C((A™")): this observation has the advantage that the x-variable is no longer
singled out, as is remarked in [5] where the §(r) model is given for (r X r)-matrix
(as opposed to scalar) hierarchies. Moreover, it is in this context that a
generalization of the “Neumann system” is to be found; this system gives a way
of interpreting Jacobi’s hyperelliptic polynomials as functions on the phase space
of a completely integrable system, whose flows in particular preserve the
spectrum of a (g + 1) X (g + 1) matrix. In [1], we generalize that model to r-gonal
curves. Through the BC matrix these systems can be reconciled with the KP
flows; examples for r = 3 are to be found in [1] and [13].

A final comment: the presentation of a curve as an r-sheeted covering of P!
through a function with r fold pole at P. and regular elsewhere is far from
canonical; the general curve of genus g is r-gonal in the above sense for r = g and
no less, but the sublocus of, say, hyperelliptic curves will also be r-gonal for r = 2.
If equations could be given on the g X g BC matrix to determine whether there is
an alternative presentation of the curve for r <g, then these would be equations
on the theta functions and derivatives along 9, . .., d,_, to define that sublocus
of special curves.

This work profited very much from the kind attention and suggestions of: B.
Dwork, A. Mayer, H. McKean, and G. Wilson.

§1. The BC matrix as a function on the Jacobian; the generalized Weierstrass
p-functions

In this section we recall how every curve can be described as the
(compactification of the) joint spectrum of a ring of commuting operators; we
write the defining equations for the joint spectrum in order to give affine
equations for both the curve and the isospectral class of such rings, modulo
conjugation by a function.

1.1. DEFINITION. Let #® be the ring of differential operators with
coefficients in C[[x]] (formal power series); the product is composition of
operators and is denoted by “°”; R =C[[X]][3] where d=d/dx, so that
dou(x)=u(x) + u(x)3. For any pair of elements of & of the following type:

B=3r+u,_13r—1+"'+u0

L=38"4+v,_,8" '+t

(w;, v; € C[[x]]), we form the “Burchnall-Chaundy” (BC) matrix A(L;B) as
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follows. By “euclidean division” we expand &'~ '° L in powers of B,

L= Sfllt;r]B[n/rl + SE'IJ’_]_IB[n/r]-—-] 4+ 4 S(()l)

QoL = Sf(2’2+1)/r13[(n+1)/r1 4.+ 582)

ar—loL — Sf(rr)z+r—1)/r]Bl(n+r_l)/r] 5 I S(()r)

where S{” is a differential operator of order <r. The i, j element of A is the
polynomial
(coeff. of &' in SP)AX

O<k=<[(n+i—1)/r}

-y 1 Ly 1

Note that A is the matrix such that A y = (L.y)

such that By = Ay. : :
Ly L@y) b

1.2. PROPOSITION (Burchnall-Chaundy, cf. [3]). If the operators B and L
(as in Definition 1.1) commute, then the polynomial det(A—pu)=¢(A, u) is
independent of x and the set of its zeros (A, u) is the joint spectrum in the sense that
there exists a (formal power series) y(x) such that By = Ay, Ly = uy.

for all y(x)

1.3 Remark. Burchnall and Chaundy also proved that B, L satisfy the
equation ¢(B, L) =0. They did not define A using the euclidean algorithm, but
rather via an “elimination matrix” E for two operators, which we now extend to
the case of any finite number of operators. Note the analogy with the elimination
matrix for two polynomials f, g in one variable, which has zero determinant

(Sylvester’s resultant) if and only if f, g have a common root. Let Ly, ..., L (s =2)
be differential operators with leading term=1 and orders m,, ..., m, with
m<sm,<---<m, We define a matrix E with (s — 1)m, + m, rows and m, + m,
columns, by putting along the rows the coefficients of 1, 9, 8% ..., 8™*™ ! in

the operators: Li—=A, 09o(Li—A)---3™to(L;—Ay); L,— A, 8o(L,—
A), ..., 8 to(Ly—Ay);. .. ;L — Ay, ..., 8™ o (L —A,).
Let us first observe the link of E with A in the case s = 2; if we partition E into

E, F
blocks, 'rl [El 1] and set A, = pu, then A— u=E, — E,F{'E,, as can be checked
2 2

r n
on the r-dimensional space of solutions of By =Ay. If B, L commute then L
determines an endomorphism of that space represented by A7|,_, on a
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fundamental set of solutions normalized at x =0 (cf. [15], Proof of 5.1). In
general, we partition

If y(x) is a solution of L;y=2A;y then [((Lx—A:)y) loca<m,—1=[Ex—
EF{'E]][y'?), k=2, ...,s. Finally, we denote by E* the matrix

Ez - FzFl—lEl

E, - F,FT'E,
1.4 PROPOSITION. If L,, ..., L (as in 1.3) commute pairwise, then the
joint spectrum is the set of (A, ..., A;) for which the matrix E§ = E*|,_, has

(s — Dm,

) polynomial equations.
1

rank <m,, thus is given by (

Proof. The action of L, on the m,-dimensional kernel W, of L, =4, will
determine a A,-eigenspace W,; L, acts on W, and will have a A;-eigenspace W; and
so on. A function y(x) is in the intersection of these spaces if and only if the
vector [y ®oca<ym -1 is in the kernel of E. But because the operators
commute, the action of L, —A, on W, is represented by the matrices (E; —
F.F7'E)7"|,0, as in the case of 2 operators. Thus the condition defining the joint
spectrum is the same as the condition that the matrix fails to have maximal
rank. QED

Next we assemble some known results in order to describe the spectral curve
and its Jacobian. First we enlarge the ring ® to a ring of (formal)
pseudodifferential operators g = C[[x]]((87")) = {L%* u;(x)&’, uj(x) a formal
power series} with the (associative) product:

Sou=u+ud, 0 tou=ud"'—ud2+id3-...

g is also a Lie algebra via commutators [B, L]= BL — LB, which as a vector

space we view as the direct sum of two subalgebras: g* @ g~ with projections:
X, =X ud, X =Y-Lud forall X=F", ud eg.
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1.5 PROPOSITION. Let C be a smooth irreducible curve with a fixed point
P.. and a local parameter z centered at P.. We let z~' = k. Lee D =P, + - - + P, be
a divisor on C such that D — P, is nonspecial.

(i) (Krichever, [7]) Associated to the above data there is a unique function y of
P € C and x € C such that: for fixed x with |x| small y is meromorphic in P outside
P, with pole divisor < D and ye™* = y(x, k') is holomorphic in x~"' near P.; for
fixed P # P., P, and |x| small ¢ is holomorphic in x and (0, P) = 1.

(ii) y(x, P) determines an element Lp, =3+ u_,0"'+u_,07*+... of g so
that LpyY = kY (formally in x and for k in an open domain of the complex plane)
with the convection Lpy = (¥p°x)e™ and 3 'e™ =k 'e™.

(iii) (Schur [14]). The ring of differential operators that commute with ¥, is a
maximal commutative subalgebra A, of R and A ={X =Y " c¥ s.t. X, =X,
where c; € C}.

(iv) Ap is isomorphic to the ring R.. of meromorphic functions on C regular
outside P, via the map: B € dp, B> fg where By = fg(P)vy; the order of B is the
order of pole of fg at P..

(v) (Mumford, [11]; Wilson, [15]). The affine curve C,=Spec A, has a
one-point smooth compactification, isomorphic to the curve C. Each point P of

C\P, corresponds to the homomorphism H,—C, B—fz(P). If L,,...,L,isa
set of generators of Ay, then C, is the joint spectrum of L,, ..., L, i.e. the set
(A’l’ o« 0oy As) € Cs SuCh that L]w = A«](P)w.

If Ly, ..., L/(s=2) generate a smaller ring B+ A, the corresponding affine
curve I in C’ is the image of C, under a morphism, which is generically of degree
1 provided the g.c.d. of the orders of the elements of R is 1; thus I, is singular.

(vi) ([11]) The space of common solutions of A, is one dimensional at each
point of Cy; the dual of such spaces can be glued into a line bundle whose extension
over P, corresponds to the divisor D — P..

(vii) ([11]) yp(x, P) is a global section of M, ® O(D), where M, is the analytic
line bundle given by glueing data e** on a punctured neighborhood of P.. M, has
zero Chern class; the divisor corresponding to M, ® O(D) is D,— D, D, non-
special, and it moves linearly with x on Jac C.

1.6 COROLLARY. Let the data (C, P., k, D) and the notation be as in 1.3.
IfL,,...,L;(of degree m,, ..., m, and leading coefficient 1) generate s, then:

(i) equations for the curve C, are given by the rank condition in 1.4;

(ii) the divisor D is defined by the vanishing of all (m, — 1) X (m, — 1) minors
of the matrix E*|,_, that are adjoint to the first column.

Proof. (i) is a consequence of 1.4 and 1.5(v). (ii): by 1.5(vi), the space of
common solutions of &, is one dimensional at each point (4,,...,A,);
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equivalently, the kernel of E*|,_, is one dimensional, thus the cofactors
(v, ...,V,) of a row in an appropriate m, X m, submatrix of E*|,_, give a
nonzero eigenvector. Finally, if y,(x),...,y,(x) is a fundamental set of
solutions for L;y =A,;y at x =0, then yp =y, + (vV2/v1)y, -+ + (Un,/V1)Ym,» SO
the poles of ¥, on (, are given by the equation v,(A,, ..., 4,)=0. QED

Because of its construction (1.3), the BC matrix E§ of a ring &, can be
viewed as a function on Jac C\ O, thus the entries can be expressed in terms of
?-functions; our next calculation gives a sufficient number of parameters for
recovering the entries.

1.7 PROPOSITION. Let L,= B, be an element of minimal order m,=r in
Ap and let X, = B, (we can always assume this to be the case by a suitable choice
of the local parameter k). Let {p=38+u_,0 '+u_,0*+...,B, =3+
U0+ +ugand let L, =Y c{¥; we may also assume that c(") =0 for j
a multiple of r.

(1) The coefficients of L, are differential polynomials (in the variable x) of the
coefficients of B,. The coefficient of 3™/ in Lk is a universal polynomial in u,_,,
Up_gy ooy U 5U 5, sy oo, w3, o u,_; (if j > r the sequence stops with
uf™") mvolvmg the [m,/ r](mk —1)+1- 1 constants c*) where 0<I<r—1 and
m, =1 (modr)

(i) The entries of the elimination matrix E are linear in the coefficients of L,
and their derivatives; the highest derivatives involved in the block [E, F|] are
determined as follows: the (ij) entry involves the coefficient of 3™~ for a >m, —j
up to its (m, + i — a — j)th derivative when this number is nonnegative (otherwise
that coefficient is not involved). The blocks [E, FE.], k > 1, if we use (i) to express
the coefficients of L,, involve at most the same number of derivatives as the block
[E: F]

(iii) (Baker, Akhiezer, Krichever; cf. [7]). There exist r — 1 invariant vector
fields on Jac C, 3, ..., 8,_, such that the coefficient of 3™~ in B, is a polynomial
in 873, log }(P.— D+ A+ L' t,U) where l<n(a)<j—-«a, 3, =9/3t, and
t, = x; the notation P, — D is an abbreviation for the image of P.— D under the
Abel map, which is determined up to coordinate change (immaterial here) by a
choice of homology basis for C and of base point P, and A is a consequently
determined universal constant; U; is the g vector obtained by expanding a
(normalized) basis of holomorphic differentials w,, . . ., w, in powers of k™' and
taking the (j — 1)st coefficient of the expansion with negative sign.

Proof. (i) is straightforward, by first expressing the coefficients of B, in terms
ofu_,,...,u_,,; and then solving for u_,_,, [ =0, intermsof u_,, ..., u_,,y,
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which is possible because L ={; finally, L, =Y ¢/ (a consequence of
1.5(iii)) gives the statement. (ii) is likewise straightforward: by Leibnitz’ rule, the
i—1
a—1
the blocks [E, F.] follows from the fact that 8™ 'o L, and 8™ 'L, involve
the same highest power of ¥, and m;, <m,. QED

coefficient of @1 in 8 1oL, is ¥ <p<min (,-,,-_1)( )u,(-i—"a“)- The statement on

1.8 DEFINITION. We say that the generalized Weierstrass p-functions for C
are the functions 3,9, log #(z), 1< a <r —1, in the notation of 1.7(iii).

1.9 PROPOSITION. The morphism J:

JacC\@—-CV, N=(r._1)ms+(r”1)2("_2)

given by z+—(8Y3, log 3(z))1<a<r-1, 1<N(a)<m,+r—(a+1) 5 an embedding;
equivalently, the coordinate functions following the arrow generate the function
ring of Jac C\ ©.

Proof. The given functions separate points because they allow us to write the
matrix E which defines the divisor D corresponding to P.+ A—2z (1.6 and
1.7(iii)). Also, no derivatives on Jac C can annihilate all the given functions,
because the tangent space to Jac C at any point can be spanned by the KP flows
9, (cf. §3) and the effect of 5, on the BC matrix can only be trivial if 3, is the
trivial flow, as we will see in (3.2). QED

Note. For the general curve the smallest m, (as in 1.5) is g (cf [6], Chapter 2,
§4) s=gwith L,,...,L,of orders g, g+2, g+3,...,2g—1, 2g + 1. By the
construction of the BC matrix we can write the equation of the curve C, using a
suitable element of CV, N =5(g(g — 1)/2).

§2. The plane-model case: geometric addition law

In the previous section we introduced the analog of the Weierstrass p-function
in the following sense: a set of functions on Jac C with poles on © which, together
with a number of derivatives along a given direction, can be taken to be affine
coordinates for Jac C\ ©. In this section we show how to generalize the geometric
construction of the addition law on the elliptic curve, under a ‘“‘speciality”
assumption. Under the same assumption, we give a characterization of nonspecial
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divisors that allows us to invert the map on the set of “BC matrices” and prove
that the map in 1.9 has an inverse on that set.

2.1 DEFINITION. We say that the curve C has the plane-model property if
there is a point P, € C such that the ring R.. can be generated by two elements.

Note: 1. Unless g =1, such a point must be a Weierstrass point, namely the
lowest order r of a function f € R.. at P. must be <g; indeed, g is the number of
gaps at P, and R.. is generated by two elements, one of which has order r. 2. As
a consequence of the plane-model property we can represent the curve C\P, as a
smooth plane curve, by the equation det (A(B; L) — u) = ¢(A, u) =0 where B, L
are generators of R.. (of orders, say, r and m resp.)

2.2 PROPOSITION. If C has the plane-model property, a divisor D =}%_, P,
on C, is such that D — P.. is nonspecial if and only if H((2g +i)P.— D) has a
basis {fi+1;j =0, ... i} such that the order of pole of f}., at P is 2g + j, for some
i=0.

Proof. We note that (2g—2)P. is a canonical divisor; indeed, dA

d L : : : g
( = — —M) is a holomorphic differential on C with no zeroes on (,. By Riemann-
A

Roch, D — P, is special if and only if dim H°((2g — 1)P. — D) is nonzero. If there
is a function f € H°((2g — 1)P. — D), then f € H((2g + i)P. — D) for any i = —1,
but this contradicts the assumption that for some i =0 there exists a basis whose
elements have order of pole at P, strictly increasing from 2g. Conversely, if
D — P, is nonspecial, then by Riemann-Roch the dimension of H((2g + i)P. —
D) is i+ 1 for all i=—1, so a basis with the stated property can be found by
induction, for all i =0 in fact. QED

We can finally emphasize a property of the BC matrix which is quite intriguing
and motivates our looking at the plane-model case.

2.3 PROPOSITION. If the divisor D — P. (as in 2.2) is nonspecial and
Ag=A(L; B)|y—0 is the BC matrix determined by D, then the sequence of
(r — 1) X (r — 1) minors adjoint to the first column of A,— u, which define D, is a
sequence of functions f;,; € H((2g + j)P= — D), normalized by the condition that
the monomial of f;.., in A, u with highest-order pole at P.. has coefficient 11; if the
minors adjoint to the first column are ordered from top to bottom, then the
corresponding sequence is f,, f—1, . . ., fi.
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Proof. Let [v;(A, u)] be the adjoint matrix of A,— u, i.e. the one made up
with the (r —1) X (r — 1) minors. The r functions v,,(4, ), 1<i=<r, define D
(1.6(i1)) and are contained in H((2g+r—1)P.— D) as an easy calculation
shows; indeed, by definition (cf. 1.1), A — u has the following top-weight, monic
terms (the “weight” is the order of pole at P.):

«—/|—> “—r—[—>
—u . r—1
. o
M+1
1 A
l .
l_ ' AM+1 —li

where the order of L is Mr + 1, [ is a fixed number between 1 and r — 1 and prime
(Mr+1-1)(r-1)
2
must be a basis of H((2g + r — 1)P. — D). On the other hand, each X}_, vy, i =
1, ..., ris a common eigenfunction of B and L, where y, is a fundamental system
for B at x =0; by the same reason why 1.5 (vi), (vii) hold, the function
Y = (Nj=1 v;y;)/vi; has a pole divisor of degree g +i—1 on C, (notice that the
normalizing property of the section v, is that y{~"|,_,=1) and v,,/v, has order
of pole i — 1 at P.; on the other hand, by inspection v; has highest-weight term
u’~', with weight (r — 1)(Mr + 1) =2g + r — 1, so the weight of v;, is 2g +r — i, as
claimed, and the leading coefficient is +1, by inspection. The sequence of leading
terms is w"AMAM*VE with 0<y<r—1, but y not necessarily in decreasing
order: this depends on what lis. QED

with r. Notice that the genus g = (cf. [3]). Thus {v; } <<,

In the proof of the previous Proposition, we noticed that the adjoint [v;] of
the BC matrix is linked to various boundary conditions for &,; in fact, the jth
column defines the divisor D,, with D, = D, attached to the eigenfunction vy, of
A such that V=], _, = 1; if we picture the zeroes of v,,

D,+D, D,+D, --- D,+D,
D,+D,_,
D,+D, D,+D, --- D, +D,



Weierstrass p-functions and KP flows in affine space 303

The D; are the corresponding divisors for the (formally) “dual” (cf. [4]) ring. The
v; are our generalized Jacobi polynomials because, as we’ll prove next, they can
be determined from D algebraically, namely without recourse to the ring &, or,
which is the same, the theta function. This determination takes place by picking
out one curve v; of weight 2g +j — 1+ r —iineach H((2g +j —1+r—i)P.— D))
through a set of constraints which, moreover, ensure uniqueness for a polynomial
matrix [w;] that defines a given divisor D. If r =2, the constraint is satisfied by
choosing the curve V(A) — u through D; and the curve —V(1)— u through D,
whose monomial of weight 2g has zero coefficient; the BC matrix Ay — u is given
by Jacobi’s polynomials:

[V u |
Ag—p=
W) V) —u
If the ring &/, happens to be periodic in x, the divisors I),, D, correspond to the
Dirichlet, resp. Neumann boundary conditions.

2.4 PROPOSITION. Given a curve C with the plane-model property, let r,
m=Mr+1, ¢(A, u)=det(Ay—pu) be associated to (C, P., x, D) as in (2.1),
(r=2)(r—-1)

2

(2.3). To N parameters (v,, ..., yy) in C¥, N= +m(r — 1) we can

associate in a one-to-one fashion a matrix E, as in 1.7(ii) by letting these
parameters play the role of the coefficients of B=3 +u,_,8" '+ +u,
L=38"+v,, 8™ '+---+uv, and their derivatives at x =0. If E, satisfies the
equation det E,= ¢(A, u), then the corresponding matrix A, defines a point D in
Jac C\ © and the composition of this morphism from the Aj-matrix to D with the
morphism J (cf. 1.9) is the identity.

Proof. By construction the highest-weight monic terms of A, are as in the
sketch within the proof of 2.3. This implies that the minors f;, . . . , f, adjoint to
the first column have weights 2g +r—1, 2g+r—2,...2g at P.. On the other
hand, they define a divisor; indeed at every point (A, u) of ¢, there is a
one-dimensional eigenspace of A, with eigenvalue u (if the dimension were
higher, the polynomial ¢(u, A) would be singular at that point). We take the
extension of this line bundle across P.. The minors f;, ..., f, are a basis for
H°((2g + r —1)P.— D), where D is the corresponding divisor (cf. [11]), so D is
nonspecial by 2.2, of degree g. This map from CV to Jac C\ O is a morphism,
because D is given as the common zeroes of r functions polynomial in the
parameters (y) as well as the entries of Ay — u. To prove that J is the inverse map,
we show that two matrices A, A’ that are constructed as in 1.7(ii) and define the
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same divisor D must coincide. This follows from two remarks: (I) It is enough to
show that adjA=adjA’ since the determinant ¢(A, u) is the same. Let
adj A = (v;). Each function v;; belongs to H°((2g + r — 1)P. — D), is monic up to
sign and has weight 2g +r —i (cf. 2.3). Likewise, each function v,; belongs to
H°((2g +r —1)P.— E), is monic up to sign and has weight 2g +j — 1, where
E + D is the zero divisor of v,;. (II) For a matrix A that is constructed through
the map J of 1.9 and 1.7 (ii), the function (X}-, v;y;)/v;; is the eigenfunction y of
1.5(1), for all i=1,...,r, thus it has an expansion around P. vy(x, k)=
e™(1+ & (x)k '+ Ex(x)k ™%+ - - -). We use this fact to show that for any matrix
A' constructed through 1.7(ii) using N numbers y,, ..., yy, the polynomial
entries v; of adj A’ are determined by D algebraically. Let us fix i =7, the
argument for the other rows being similar. Notice that v,,/v,, = ¢ (0, k) =k +
E,(0)x~ '+ £,(0)k™ 2+ - - - so that the two top coefficients of the function v,,,
which belongs to the 2-dimensional space H°((2g + 1)P. — E) depend only on E
and the form of the matrix, so v), is determined. Next, v,5/v,, = ¥(0, k) =
K2+ 2(E1(0) + £E,(0)k '+ - - -) + E,(0)k ™ + - - - 50 that the three top coefficients
of the function v,;, which belongs to the 3-dimensional space H°((2g + 2)P. — E)
depend only on E and the form of the matrix (indeed £,(0) appears among the
coefficients of v,,), so v,3 is determined, and so on inductively. QED

2.5 Remark. 2.4does notgive equations for the image of J, because the map from
the E to the Amatricesisnot1:1(cf. §3). If we could extract from the p-functions (1.8)
a least number N’ of parameters to determine A in a 1:1 fashion, we would have
equations for an affine subvariety of CV" isomorphic to Jac C\ @.

We conclude this section by pointing out the analog of the geometric construction
for the addition law on elliptic curves. Recall that for a plane elliptic curve with a
branchpoint P. at infinity, the sum of two points, P+ Q “=" R, unless P+ Qis a
special divisor is found by taking the third (finite) intersection of C with the line
through P and Q and the corresponding point, R, under the ““‘sheet exchange” ¢. Thus,
P+ Q + 1R ~3P.or P+ Q ~ P. + R; P.is taken to be the zero of the group. For a
curve C with the plane-model property, the construction is the following:

(2.6) Assume that the divisors P,+---+ P, and Pi+---P,+ Q on ( are
nonspecial. Then the sum Y%_; R; such that Y§_, P, + Q ~ ¥4_, R; + P. is found as
follows: let Q, + - - - + Q, be the residual intersection with C of the unique curve (cf.
2.2) of weight 2g + 1 that goes through ¥ P, + Q; then R, + - - - + R, is the residual
intersection with C of the unique curve of weight 2g that goes through @, + - - - + Q,.

As a corollary, we state an analog of the following property of the Weierstrass
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p-function: (cf. [6]):

1 p(z;) p'(z1)
1 p(z;) p'(z;) | =0 if and only if
1 p(z) p'(23)

z, + z, + z3 = alattice point; the determinantal condition says that the points P, Q, (R
with coordinates p(z;), p'(z;), i =1, 2, 3 (resp.) lie on a straight line; the equivalent
condition is the image of the statement P + Q + tR ~ 3P under the Abel map. Thus,

(2.7) COROLLARY. For two nonspecial divisors Y5 P, Y5Q;, the sum
A(X P)+ A(X Q,)isalattice point (where A is the Abel map with base-point P..) ifand
only if the matrix of (A, u)-coefficients of the functionsfy p, fy. o, Wwhichgothrough ¥ P,
Y. Q; (resp.) and have weight 2g has rank <2.

Note. This condition can be expressed in terms of generalized p-functions (1.8)
since the functions fy, p, f o, are the minors adjoint to the (r, 1) entryof Ay, p, Ay .
Likewise, we can express the conditions Y.§ P, + Q¢ =" — Y§ O, by saying that the
rank of the coefficient matrix of fy p, 0, fy 0,+0 15 <2, etc.

§3. Applications: The infinitesimal generator for the KP flows; the solutions of
the KP equation; equations for Jac C\ © in two examples

As we said in the introduction, the Burchnall-Chaundy isospectral theory can
be used as a tool for solving the KP equation. We give a definition for the
equation in our setting.

3.1 DEFINITION. The equations 9, & = [(¥"),, ¥] are constrained commut-
ing Hamiltonians on the Lie algebra g (cf. [2]). Therefore, there exists a formal
solution which can be regarded as a function of infinitely many variables ¢,,
provided only a finite number is nonzero: () € C.. = an; Y t,C; weletx =t,. If we

let B,=(8"),, then the system of equations 3, B, — 3, B, =[B,, B,] is by
definition the KP hierarchy. By further letting ¢, =y, t; =t and eliminating from
the (two) equations on the coefficients of the operator:

at2B3 - at382 = [BZI B3]

we obtain, respectively: the KP equation; the KdV equation (u, — 3u,,, — 3uu, =
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0), and the Boussinesq equation (3u,, + (U, + 3uu,), =0) for u =2u_,, in the:
general case; case when (¥%), = &%, and case when (¥°), = £°. More generally, if
the initial condition ¥(x) satisfies the ODE (¥"), = ¥’, we say that the resulting
hierarchy is the r-reduction of KP; notice that in this case the coefficients of ¥(¢)
are independent of ¢,, for the flow J, is trivial.

Suppose we have an initial condition ¥ for the r-reduction of KP. Since the
operators B, correspond to the matrices A(B,, B,) and the commutators of two
such matrices to the action of the commutator of operators, we address the
question of writing a matrix that corresponds to ¥, the infinitesimal generator of
KP.

(3.2) For & such that ¥ = (¥"), = B,, we define the r X r matrix A as follows:
let

=8+ SUB ' +SUB 7+ -
=8P +SHB "+

o =8VB +85+SB; '+ -

with S\ differential operators of order <r; the ij entry of A is the negative
Laurent series Y, (coefficient of &' in S{?)A*. Then, the KP hierarchy is
equivalent to the following evolution equations:

8, A =[A(B,, B,), A], as well as:
01, Am — 0, An =[An, Api]

where we abbreviated A(B,, B,) = A,,.

(3.2) can be checked on a basis of eigenfunctions for B,. We point out this
way of interpreting the flows in §(r) = gl (r, C) ® C((A™")) because in [1] we give
a construction of flows in d(r)* that are Hamiltonian in the classical sense, by
considering the isospectral deformations of a matrix N(A), the image of the
moment map for a suitable infinitesimal q(r)* action. In some examples, we show
that N(A) equals a linear combination of powers of A, translated by a constant
matrix and multiplied by a fixed meromorphic function on C.

KP, KdV and Boussinesq are nonlinear approximations of equations for
waves in shallow water and the qualitative properties of the solution u (reality
for suitable x, y, ¢; blow-up in finite time; soliton behavior) are of interest for the
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applications. We now give an expression for u in terms of the coordinates of the
divisor Y P, on the affine curve: such a formula proved very useful in the
hyperelliptic case (corresponding to KdV) for understanding the motion. Let the
data (C, P., k, D) determine ¥, (as in 1.5); by Krichever’s theory ([7]), ¥
satisfies the KP hierarchy if the flows on Jac C are given by U,) - (3/ dz;), where
U, is (—1) X the vector of (n—1)st coefficients in the k™ '-expansion of a
normalized basis of holomorphic differentials, (z;) are the corresponding abelian
coordinates.

3.3 PROPOSITION. If C has the plane-model property, then the function u_,
(as a function of the divisor D) equals the second-from-the-top coefficient in the
polynomial giving the normalized curve of weight 2g through D (= the minor
adjoint to the (r, 1) entry of the BC matrix attached to D), up to a multiplicative
constant depending on r, m and an additive constant depending on the curve.

Proof. The highest possible weight after 2g for a monomial in A, p is 2g — 2
(cf. [3]); in fact, such a monomial must appear in the expression of a curve of
weight 2g that goes through g (variable) points of C in general position, by a
dimension count (there are only g possible weights <2g cf. [3]). By definition of
the BC matrix (cf. 1.1), and because B=3"+ru_,8 *+..., L=3" + const.
3™ '+ mu_,8 %*+..., in each row the top coefficient of S (largest k) is 1,
but the next nonconstant one, either in S’ or S{),, is a multiple of u_,. Finally,
such a coefficient contributes to the monomial of weight 2g --2 because the
weight of the monomial equals the total number of “3’s” corresponding to the
variables. QED

Examples: Let’s denote here by f, the “monic’ curve of weight 2g through D.
When r =2, m =2g + 1, u_, = the coefficient of A*~" in f; minus c¢t?._, (cf. 1.7 for
the meaning of ¢{*’); when r =3, m =3M + 1, u_, = the coefficient of uA*~"in f,
minus c$3)

M1

Finally, we compute the equations for the image of Jac C\©, in two cases
only, to emphasize the relation of the elimination matrix E to the BC matrix A.
Since the case r =2 (hyperelliptic) has been treated exhaustively ([12]), we
develop the r =3 model. Let g=1, r=3. Then: m=2, M=0, [=2 in the
notation above and the generators of the ring &, are taken to be: B=
P +3u_,8+3u_,+3u_,, L=3+cd+2u_,. We need 5 parameters (cf. 1.9) to
write the E matrix: u_,, t_,, iy, u_,, u_, (at x =0), but only 4 to write the A,
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matrix:

cA=vs A-vs —-vi—u

where y,=u_y, Yo=u_1+3u_,, y3=ii1+30u_,+3c(i_,+u_y), vs=2u_,+
3u_, + 3cu_,. Thus the equation of C, is:

— 1+ uBA+3yi—cva— Y3 —cr) + A+ A — V2 — va) + 271 — iy
—¥1Y3+ 2¢Y1Va+ Y2¥a— ¥a¢> = —p’ + u(3cA + a) + A* + bA + d, fixed,

and Jac C\ @ is isomorphic to the affine subvariety of C* = {(y,, v,, s, y4)} given
by the equations:

3yt —cy2—ys—cYs=a
—y2—vs=b
27’? —CY1Y2— V1Y3+ 2cY Vst YoVa — Y3CZ =d

Remark. In the above example, the map E,+—> Ay has fibres of dimension 1. In
particular, not all Ey-matrices satisfying the equation of the curve correspond to a
divisor; equivalently, the initial conditions y(0) =v,, ..., """~ Y(0) =v,,,, for
the joint eigenfunctions in general do not correspond to a solution.

For g =2, we cannot have the plane-model property corresponding to a point
P. such that H°QP.)\H°(2P.) #&. To describe JacC\® we need two BC
matrices: 11 parameters are needed for writing E.

For g = 3, the general curve has Weierstrass number 1 ([6]) and does not have
the plane-model property for any point P.: 15 parameters are needed for writing
Ey,. We work out the example of curves with the plane-model property; r =3,
m=4, M=1, I=1, B=3+3u_0+30u_,+3u_,, L=38*+4u_,8*+ (du_, +
61_ )0+ 4ii_ +61_,+du_s+6ul, +c,(3*+2u_,)+c,d, but we let c,=c,=0
for simplicity. 9 parameters are needed for writing E,,, according to (1.9); indeed,
we need u_y, d_y, ..., uHu_y, .., u, u_y, ... iy but u_y=-3Gu_, +
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3u®, +ii_,). In this case, in calculating the BC matrix we also need 9 parameters,

Y1~ U A+y, Y3
Ag—p=| yh+v4 Ys— U A+ ye (where y;=u_)
A+yht+ys —2vsh+vs —(ritys)—p

and the fixed curve det (A, — ) gives us 6 equations (the coefficient of u? and A*u
are zero because of the relations holding among the entries of Ap), defining
Jac C\ @:

Yo —2Y3Ye+ Y2Yat Yat Y3¥7=a

(Y1+¥5)> = v1¥s+ VYot VaYat Ya¥s=b

Y2t YetV,=C

3173+ Ya¥e + Ya¥7 + Ye¥7 + ¥s—2v3=d

Y1(= Yo + 2Y3Y6) + (Y1 + ¥s)(Y2Y3 + Va) + Y2YeY7 + Va(Y2 + ve) +
Y3(YoYs = 2YaY3) = V3¥syr =€

(Y1+ Ys)(Y2Ya = Y1¥s) = Y1Y6Yo + Y2Y6Ys + Y3YaYo — V3Vs¥s=f

where —u* + (aA + b)u + A* + cA> + dA* + eA + f = 0 is the equation of the curve.

REFERENCES

[1] M. R. Apawms, J. HARNAD and E. PREvVIATO, Generalized Moser systems and moment maps into
Kac-Moody Lie algebras, preprint.
[2] M. ADLER, On a trace functional for formal pseudodifferential operators and the symplectic
structure of the Korteweg-de Vries equation, Inv. Math. 50 (1979), 219-248.
[3] J. L. BURCHNALL and T. W. CHAUNDY, Commutative ordinary differential operators, Proc.
Lond. Math. Soc. Ser. 2, 21 (1922), 420-440 and Proc. R. Soc. Lond. A118 (1928), 557-583.
[4] 1. M. CHEREDNIK, Differential equations for the Baker Akhiezer functions of algebraic curves,
Funct. Anal. Appl. 12 (1978), 195-203.
[5] H. FLascHkA, A. C. NEWELL and T. RATIU, Kac-Moody Lie algebras and soliton equations II
and III, Physica 9D (1983), 300-332.
[6] P. GrIFFiTHS and J. HARRIS, Principles of algebraic geometry, Wiley-Interscience, 1978.
[7] I. M. KRICHEVER, Methods of algebraic geometry in the theory of nonlinear equations, Russian
Math. Surveys 32 (1977), 185-214.
[8] H. P. McKEAN, Boussinesq’s equation on the circle, Comm. Pure Appl. Math. 34 (1981),
599-692.
[9] H. P. McKEAN and P. vaN MOERBEKE, The spectrum of Hill’s operator, Invent. Math. 30
(1975), 217-274.
[10] M. MuLaAsg, Cohomological structure in soliton equations and Jacobian varieties, J. Diff. Geom.
19 (1984), 403-430.



310 EMMA PREVIATO

[11] D. MuUMFORD, An algebro-geometric construction of commuting operators and of solutions to
the Toda lattice, etc. Proc. Symp. Alg. Geom. Kyoto 1977, 115-153.

[12] D. MuUMFORD, Tata Lectures on theta II, Birkhduser, Boston 1984.

[13] E. PreviaTO, Flows on r-gonal Jacobians, to appear in the AMS series: Contemporary
Mathematics, Proceedings of the Kovalevsky Symposium.

[14] I. ScHUR, Uber vertauschbare lineare Differential-ausdriicke, Ges. Abh. I, Springer-Verlag
(1973), 170-176.

[15] G. WILSON, Algebraic curves and soliton equations, in Geometry Today, editors E. Arbarello et
al., Birkhduser, Boston, 1985, pp. 303-329.

Emma Previato

Mittag- Leffler Institute

S-18262 Djursholm — Sweden
(Permanent address:

Mathematics Dept. — Boston University
Boston, MA 02215)

Received September 23, 1986



	Generalized Weierstrass ...-functions and KP flows in affine spaces.

