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Valuations des espaces homogeénes sphériques

MicHEL BrioN et FrRaNz PAUER

1. Introduction

Soit G un groupe algébrique réductif connexe sur un corps k algébriquement
clos de caractéristique nulle. Soit H un sous-groupe algébrique de G. Un
plongement de I’espace homogeéne G/H est une variété algébrique intégre X, sur
laquelle G opére régulierement, et munie d’'une G-immersion ouverte G/H— X.
Les plongements normaux des espaces homogenes ont été étudiés par Luna et
Vust dans [LV]; leurs résultats se simplifient notablement si ’espace homogeéne
G/H est ‘“‘sphérique”, c’est-a-dire si un sous-groupe de Borel de G a une orbite
ouverte dans G/H. Ils généralisent la théorie des plongements toriques,
développée dans [K] (cf. aussi [D]).

Dans I'étude des plongements, la notion de plongement élémentaire joue un
rOle essentiel: il s’agit d’'une G-variété lisse formée de deux G-orbites, dont I'une
est ouverte (et isomorphe & G/H) et l'autre est fermée, de codimension 1.
L’ensemble des plongements élémentaires de ’espace homogene sphérique G/H
est en bijection naturelle avec I’ensemble ¥(G/H) des valuations discretes,
invariantes par G et normalisées, du corps k(G/H) des fonctions rationnelles sur
G/H. On peut identifier ¥ (G/H) avec I’ensemble des points entiers indivisibles
d’un cone convexe rationnel €7 (G/H) dans un espace vectoriel de dimension
finie sur Q.

Le résultat principal est en gros le suivant (théoréme 3.6): si X est un
plongement élémentaire de G/H, d’orbite fermée isomorphe 2 G/H', et si v est
la valuation associée a X, alors I’espace homogene G/H' est sphérique et le cdne
convexe €V (G/H') s’identifie au quotient de €% (G/H) par la droite engendrée
par v. Cela permet d’étudier le cone €% (G/H) a partir du cone (plus petit)
€V(G/H').

On utilise la théorie des plongements de [LV] et les resultats de “‘structure
locale” de [BLV], dont on trouve les principaux énoncés dans la deuxieéme partie.
Dans la troisi¢me partie, on étudie les plongements élémentaires de G/H, et les
groupes d’isotropie de leurs orbites fermées; ces groupes contiennent ‘‘presque
toujours” un sous-groupe unipotent maximal de G. La quatriéme partie est
consacrée a la description de €¥(G/H) et a des exemples. Enfin, dans la
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cinquieme partie, on décrit le réle joué par le normalisateur de H dans les
plongements de G/H.

On trouve dans [B1] une version préliminaire de cet article.

Nous remercions tous ceux qui se sont intéressés a ce travail: M. Decauwert,
F. Knop, H. Kraft, G. Menzel et T. Vust. Nous remercions tout particuli¢rement
D. Luna pour de nombreuses conversations utiles.

2. Plongements des espaces homogenes sphériques

Les paragraphes 2.1 a 2.10 rassemblent les définitions et résultats de [LV] et
[BLV] dont nous aurons besoin.

Dans tout ce qui suit, G est un groupe algébrique réductif connexe, le corps
de base est algébriquement clos et de caractéristique nulle, et H est un
sous-groupe algébrique de G tel que I’espace homogene G/H soit sphérique,
c’est-a-dire qu’on peut choisir un sous-groupe de Borel B de G tel que BH soit
ouvert dans G.

2.1 Un “plongement normal (X, x) de G/H" est la donnée d’une G-variété
algébrique normale X et d’un point x € X tels que 'orbite de x par G soit dense
dans X et que le sous-groupe d’isotropie de x soit H.

Tout plongement de G/H ne contient qu’un nombre fini de G-orbites [LV;
7.5]; un plongement est appelé “simple”, s’il ne contient qu’une seule G-orbite
fermée. Si X' est une orbite fermée dans un plongement normal (X, x) de G/H,
le couple ({z€ X | X' =G - z}, x) est un plongement simple de G/H.

Soient (X, x) et (Y, y) deux plongements normaux de G/H. L’application
f:X—Y est un morphisme de plongements, si f est un morphisme algébrique
G-équivariant, qui envoie x sur y.

2.2 Un plongement élémentaire de G/H est un plongement normal formé de
deux orbites: I'orbite dense et une orbite de codimension 1; un tel plongement est
lisse. I1 y a une bijection naturelle entire l’ensemble des plongements
élémentaires de G/H, et I’ensemble ¥’ (G/H) des valuations discrétes, invariantes
par G et normalisées, du corps k(G/H) = k(G)" des fonctions rationnelles sur
G/H [LV; 3.3, 7.5, 8.10].

Si (Y, y) est un plongement de G/H, et Y’ est une G-orbite dans Y, il existe
un plongement élémentaire (X, x) de G/H et un morphisme de plongements
X — Y qui envoie I'orbite fermée de X sur Y’ [LV; 3.5].

2.3 Soit A le complementaire de 'ouvert BH/H dans G/H. Puisque BH/H =
=B/BNH est affine, A est pur de codimension | dans G/H. On note
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B%®(G/H) ’ensemble des composantes irréductibles de A, c’est-a-dire I’ensemble
des diviseurs irréductibles stables par B, de G/H. A tout D € 2%(G/H) est
associée une valuation discréte, invariante par B, de k(G/H); on note v, cette
valuation.

2.4 Soit (X, x) un plongement normal simple de G/H; soit X' son orbite
fermée. Si Z est une G-orbite de codimension 1 dans X, alors (G - x U Z, x) est
un plongement élémentaire de G/H, d’ol un sous-ensemble ¥'(X) de V' (G/H),
associé aux diverses G-orbites de codimension 1 dans X. D’autre part, soit 2 (X)
Pensemble des D e®%(G/H) tels que X'<D. Le couple (¥ (X), (X))
détermine alors le plongement (X, x) [LV; 8.1 a 8.3].

2.5 Le groupe B opere par translations a gauche et le groupe H par translations
a droite sur k(G), le corps des fonctions rationnelles de G. Soit 2 ’ensemble des
fonctions dans k(G), qui sont a la fois vecteurs propres de B et de H et vérifient
f(1)=1. (L’ensemble BH étant dense dans G, tout vecteur propre f de B et de H
vérifie f(1) #0, alors f(1)7'f € P).

Soient 27 := PN k(G)" et P, := PN k[G] (les éléments de P qui sont des
fonctions régulieres sur G). ? est un groupe abélien.

Soient N un G-module rationnel de dimension finie, ne N et ve N* (le
G-module dual de N). Alors I’application

v(-n):G—k
s> v(sn)

est un élément de k[G].

Si v est un vecteur propre de B, et n un vecteur propre de H, tels que
v(n) =1, alors v(-n) € ?,. Inversement, tout élément de %, s’obtient de cette
fagon. Si de plus N est simple, alors N (a2 isomorphie pres) et n, v (a
multiplication scalaire prés) sont uniquement détérminés (cf. [BLV; 2.2]).

Toute valuation v € ¥(G/H) est déterminée par sa restriction a3 27 [LV; 7.4],
donc on peut identifier ¥ (G/H) a un sous-ensemble du Q-espace vectoriel
V :=Hom; (?”, Q). On note €¥'(G/H) le cone engendré par ¥ (G/H) dans V;
il est connexe (cf. [P1; Proposition 2.1]). La dimension de V est appelée le rang
de G/H. Si D € ?*9(G/H), on note aussi v, ’élément de V obtenu par restriction
de vp a P (bien que I'application de ?%(G/H) dans V ainsi définie, ne soit pas
forcément injective (cf. [LV; §7])).

2.6 Soient 2 =< ®P(G/H) et ¥ un sous-ensemble fini de ¥'(G/H). Pour qu’il
existe un plongement simple (X, x) de G/H tel que ¥(X) =¥ et 2(X) = @ (voir
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2.4), il faut et il suffit que les quatre conditions suivantes soient réalisées:

a) le cone convexe €(9, V), engendré par & et ¥" dans V est saillant.

b) Tout v € V" engendre une demi-droite extrémale de €(%, V") distincte de
toute demi-droite engendrée par vp, D € 9.

c) L’interieur €(2, ¥')° de €(2, V') (dans I’espace vectoriel qu’il engendre)
rencontre €V (G/H).

d) Tout caractere de H est somme d’un caractére d’un élément de 2, , et d’un
caractére d’un élément de {f e P | vp(f) =0 pour tout D € @}. (cf. [LV;
§8]).

Nous appellerons 9 I'ensemble des couleurs de (X, x), et nous disons que
(X, x) est sans couleur si & est vide. En particulier, il y a une bijection entre
plongements simples, sans couleur, de G/H, et sous-cOnes convexes saillants de
type fini de €V (G/H).

On montrera que €V (G/H) est lui-méme un céne (convexe) de type fini
(corollaire 3.2), que €% (G/H) engendre I’espace vectoriel V (corollaire 4.1) et
que ce cOne est saillant si et seulement si Ng(H)/H est fini, ou Ng(H) est le
normalisateur de H dans G (corollaire 5.3).

2.7 Soit (X, x) un plongement normal de G/H. D’aprés 2.1, X est réunion finie
de ses sous-plongements simples, donc X est déterminé par une famille finie de
couples (2;, ¥;)ies tels que:
1) chaque (9;, ¥;) vérifie les propriétés a), b), c), d) de 2.6.
2) Pour tout iel, si F est une facette de 6(%;, ¥;) dont lintérieur F°
rencontre €V (G/H), alors il existe jel tel que F=%4(9;, V)) et 9, =
P,NF.
3) Les sous-ensembles €(9;, ¥;)° N €V (G/H) sont deux a deux disjoints.
De plus, pour que (X, x) soit complet, il faut et il suffit que:

4) €V (G/H) cUie; 6(9;, V7). (cf. [LV; 6.3 et 6.4]).

En particulier, on obtient une bijection entre plongements normaux complets
sans couleur de G/H, et “subdivisions” de €V’ (G/H) en cone convexes saillants
de type fini.

2.8 Soit A un sous-groupe a un parameétre de G. A A on associe une valuation
v, € €V (G/H) comme suit:

L’image de A opere par translations a droite sur k[G]. Si fe€k[G], alors
f="Ynezfo, o0 A()f, = t"f, pour tout t € k*. On pose v,(f) :=inf{n e Z | f, # 0} et
on étend v, au corps k(G) des fractions de k[G]. Soit v, la restriction de v, a
k(G)", alors v, € €V (G/H) (mais v, peut étre triviale) [LV; 5.4].

Soit v € ¥(G/H) et soit (X,, x,) le plongement élémentaire associé a v: alors
v et v, sont équivalentes si et seulement si lim,,A(¢f)x, existe dans X, et
appartient a I'orbite fermée de X, [LV; 4.8].
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Lorsque I'image de A est contenue dans Ng;(H), le normalisateur de H, on lui
associe un plongement élémentaire (X,, x,) de la fagon suivante: on fait opérer
k* sur G/H X k par to(gH, 08) = (gA(t)H, t~'0) pour (¢, g, ) e k* X G X k, et on
prend pour X, le quotient G/H X,. k de G/H X k par k* et pour x, la classe de
(H, 1). L’orbite fermée de X; est alors G/H X,. {0} = G/(H - Im (4)). Il est clair
que la valuation correspondante a (X, x;) est équivalente a v;,.

2.9 Soit P l'ensemble des s € G tels que sBH = BH; c’est un sous-groupe
parabolique de G qui contient B. Soit P* le radical unipotent de P. Soit (X, x) un
plongement élémentaire de G/H, d’orbite fermée X'; alors P a une orbite
ouverte Y’ dans X', et Y=P-xUY' est un plongement €élémentaire de
P/P N H. De plus, il existe des sous-groupes de Levi L de P, tels que si C est la
composante neutre du centre de L, on ait:

1) PNH=LNH

2) PN H contient le sous-groupe dérivé (L, L) de L.

3) Pour tout plongement élémentaire (X, x) de G/H, 'opération de P* dans

Y induit un isomorphisme de variétés algébriques P* x (C -xNY)—Y.
Un tel L est dit adapté a H [BLV; 4.2].

Pour tout groupe algébrique G’, notons X(G') (resp. Y(G')) I’ensemble des
caracteres (resp. des sous-groupes a un parametre) de G'.

Soit f € ", alors f est un vecteur propre de P dans k(G)"”. Comme P a une
orbite ouverte dans G/H, f est déterminé par son poids x, € X(P). De plus
xr € X(P)P™ et X(P)'"M=X(C/CNH), car P=P“L et (L, L)c H. On iden-
tifie ainsi 2" et X(C/CNH), d’ou par dualité, une identification de V =
Hom, (2", Q) avec Y(C/CNH)®,Q. En particulier, le rang de G/H est la
dimension de C/C N H.

2.10 Soient L un sous-groupe de Levi de P adapté a H, (voir 2.9), (X, x) un
plongement élémentaire de G/H et X' son orbite fermée.

Il existe un sous-groupe a un parametre A de C tel que lim,_,, A(f)x existe et
appartient a I’orbite ouverte de P dans X'; un tel A est dit adapté a (X, x) [BLV;
4.2].

Soit pu un autre sous—groupe a un parametre de C, adapté a (X, x); alors les
images de A et de u dans Y(C/C N H) sont proportionnelles; en effet A et u sont
adaptés au plongement élémentaire (C-xNY, x) de C/C N H.

L’identification de V avec Y(C/CNH)®,Q (cf. 2.9) envoie V(G/H) sur
I’ensemble des sous-groupes a un parametre indivisibles de C/C N H, adaptés aux
différents plongements élémentaires de G/H (pour voir cela, on se raméne au cas
facile ou G =C est un tore). D’aprés 2.8, la valuation associée a X est
équivalente a v,. On obtient donc une application injective de €¥(G/H) dans
Y(C/ICNH)®,Q=V.
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2.11 Dans toute la suite on conservera les notations G, H, B, P, L, C
introduites ci-dessus.

3. Groupes d’isotropie des orbites fermées des plongements élémentaires

Le résultat principal de cette partie est le théoreme 3.6, ou on étudie le
comportement des objets P, L, €V (G/H) lorsqu’on passe de G/H a l'orbite
fermée d’un plongement élémentaire. Pour prouver ce théoréme, on a besoin de
résultats préliminaires sur les plongements, et en particulier sur ceux qui sont
sans couleur.

3.1 PROPOSITION. Soit (X, x) un plongement élémentaire de G/H. Alors
il existe une ‘“‘complétion sans couleur” de (X, x), c’est-a-dire un plongement
(X, x°) normal complet sans couleur (cf. 2.6) de G/H et un morphisme injectif de
plongements X — X°.

Démonstration. D’aprés [S] on peut supposer que X est une sous-variété
G-stable, localement fermée de P(M), ou M est un G-module rationnel de
dimension finie. Soit f € P, tel que A soit I’ensemble des zéros de f (cf. 2.3).
Soient N un G-module rationnel simple, n € N, ve N* tels que f = v(- n) (cf.
2.5). Soit y I'image de n dans P(N). Soient X¢ la normalisation de G - (x, y)
P(M) x P(N), et x° 'unique point de X au-dessus de (x, y). Montrons que
(X, x°) convient.

L’élément y est fixé par H, donc X est un plongement normal complet de
G/H. La projection P(M) X P(N)— P(M) induit un G-morphisme surjectif
@:X—G -x, et la restriction de ¢ a G -x* est un isomorphisme sur G - x.
Comme (X, x) est un plongement élémentaire, il suit que @ est un isomorphisme
au-dessus de X. :

Il reste 2 montrer que (X, x“) est sans couleur. Grace aux propriétés de la
normalisation, il suffit de montrer que A, I’adhérence de G - (x, y)— P - (x, y)
dans P(M) X P(N)cP(M ® N) ne contient pas d’orbite fermée de G dans
G-(x,y)

Soient p e M, q € N tels que la G-orbite de I'image de (p, q) dans P(M) X
P(N) soit fermée et contenue dans G - (x, y). On peut supposer que p, g sont des
vecteurs propres d’un sous-groupe de Borel de G opposé a B. Alors il existe un
complément B-stable de kp dans M; soit u:M — k la projection sur kp =k le
long de ce complément. Alors u est un vecteur propre de B dans M* et u(p) = 1.
Le module N étant simple, on a v(q) #0, d’ou N = kq @ Ker (v).

Considérons I’application g := (u @ v)(- (imn @ n)) € P,. Alors g = u(- m)f, en
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particulier I’ensemble de zéros de g est égal & A. Soit # I'hyperplan dans
P(M ® N) associé a u ®ve(M®N)*. Alors ¥ contient ’adhérence de A=
G- (x,y)— P (x, y) dans P(M @ N), mais ne contient pas I'image de p ® g dans
P(M®ON). R

3.2 COROLLAIRE. Le cone €V(G/H) est de type fini (i.e. est engendré
par un nombre fini de ses éléments).

Démonstration. Si €V (G/H) n’est pas réduit a {0}, il existe un plongement
élémentaire (X, x) de G/H. Alors a (X*, x°) correspond une subdivision finie de
€V (G/H) en des cones de type fini (voir 2.7). D’ou le corollaire. W

3.3 COROLLAIRE. Tout plongement normal sans couleur de G[H posseéde
une complétion sans couleur.

Démonstration. Au plongement donné correspond une famille finie de cOnes
saillants dans €7(G/H). D’aprés 3.2 on voit facilement qu’en ajoutant un
nombre fini de cOnes saillants, on obtient une subdivision de €V (G/H). Le
plongement correspondant est la complétion sans couleur cherchée. W

3.4 PROPOSITION. Soit (Y, y) un plongement normal de G/H. Soient A
I’adhérence de G -y — P - y dans Y, et W l’adhérence de C - y dans Y — A.
i) Si Y' est une G-orbite dans Y, non incluse dans A, alors Y' — A est une
P-orbite (ouverte) dans Y'.
ii) L’opération de P* sur Y induit un isomorphisme P* X W—Y — A.

Démonstration. i) D’aprés 2.2 il existe un plongement élémentaire (Z, z) de
G/H d’orbite fermée Z', et un morphisme de plongements ¢:Z—Y tels que
@(Z')=Y'. Soient u un sous-groupe a un paramétre de C adapté a (Z, z), et
z':=lim_ u(t)z. Alors C-zUC -z' est un plongement élémentaire du tore
C/CNH, donc il est affine (cela se voit facilement a I'aide de 2.8). Par suite
P-zUP-z'=P“X(C-zUC-z") (voir 2.9) est un ouvert affine de Z, donc son
complémentaire est pur de codimension 1 dans Z. Comme G -z’ — P - z' est de
codimension2dans Z,onaG-z'—P-z2'cG-z—P-z. Alors Y — P- @p(z') c
oG-z —P-z2)c@p(G-z—-P-2)cp(G-z—P-z)c A.

ii) Soit Y’ une G-orbite dans Y, non incluse dans A. D’aprés i), Y' — A est
'orbite ouverte de P dans Y'. Puisque L est adapté a H, C -y rencontre Y' — A.
Le morphisme y:P“XW—>Y — A est donc surjectif. Puisque v induit un
isomorphisme P“ X C -y— P -y, v est birationnel.
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Montrons de plus que les fibres de ¥ sont finies. Alors le théoréme principal
de Zariski impliquera que 1 est un isomorphisme.

Quitte a remplacer Y par I’ensemble des x € Y tels que A ne contienne pas
G -x, on peut supposer que Y est sans couleur. D’aprés 3.3, on peut aussi
supposer que Y est complet. Soit Z une orbite fermée de G dans Y. En
remplagant Y par I’ensemble des x € Y tels que G - x © Z, on se raméne enfin au
cas ou Y est simple sans couleur, d’orbite fermée et compleéte Z. En utilisant
[BLV; 2.3 et 3.2], on montre aisément que Z — A est I'unique orbite fermée de P
dans Y — A, et qu’elle est isomorphe a P* = P/L. Par conséquent, I’ensemble des
points de Y — A au-dessus desquels la fibre de y est finie, contient les orbites
fermées de P. Comme cet ensemble est un ouvert P-stable, il est égal a
Y-A 1

3.5 PROPOSITION. Soit (Y, y) un plongement normal de G/H; soit Y’ une
G-orbite dans Y. Alors I’adhérence Y' de Y' dans Y est une variété normale.

Démonstration. Grace a [BLV; §3] on peut supposer que Y est affine. Soit U
le radical unipotent de B. Alors I'algebre Yk[Y] des fonctions réguliéres sur Y,
invariantes par U, est de type fini et normale [V; Th. 1] (cf. aussi [KR; I11.3.3,
Satz 2]). Le tore B/U opére sur Yy, le spectre de Yk[Y], avec une orbite ouverte
(car les B/U-modules irréductibles dans Yk[Y] sont de multiplicité <1). Soit I
I'idéal des fonctions régulieres sur Y qui s’annulent partout sur Y'. Alors
Uk[Y']=Yk[Y]/YI, donc Yk[Y'] est Palgébre des fonctions réguliéres sur
I'adhérence d’une B/U-orbite dans Y. D’apres [K; Chap. I, Prop. 2], Yk[Y’] est
normale, d’aprés [V; Th. 1] cela implique la normalité de Y'. W

3.6 THEOREME. Soit (X, x) un plongement élémentaire de G/H d’orbite
fermée X'. Soit A un sous-groupe a un parametre de C adapté a (X, x) (cf. 2.10).
Soient x' = lim,_,o A(t)x et H' le groupe d’isotropie de x' dans G. Alors:
i) BH' est ouvert dans G; I’ensemble des s € G tels que sBH' = BH' est égal a
P, et L est adapté a H'.

ii) Soit ¢:Y(C/CNH)®,Q—>Y(C/CNH')R®;,Q application surjective
définie par linclusion CNHc CNH'. Alors le noyau de ¢ est Qu; (cf.
2.8) et I'image de €V (G/H) par @ est €V (G/H').

Démonstration. i) Remarquons que (L, L)c H': en effet (L, L) fixe x et
centralise I'image de A. Puisque P -x' = P“L - x' = P“C - x' est ouvert dans X', et
que P“C < B, on voit que BH' = PH' est ouvert dans G.

Soit P':={s € G|sBH' = BH'}; on vient de voir que P c P', donc P'“ c P“.
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D’apres [BLV; 3.4}, P'“N H' = {1} et il existe un sous-groupe de Levi L' de P’
tel que (L', L')c H'; il s’ensuit que tout sous-groupe unipotent de P', qui
contient strictement P'*, rencontre H' non trivialement. Mais P* N H' = {1} car
P“ opere librement sur P - x’ (cf. 2.9). Donc P* =P’ d'ou P = P"'.

Comme I’application naturelle P“ X C -x’— P - x’ est un isomorphisme, on
voit facilement que PN H'=L N H'. Pour montrer que L est adapté a H’, il
reste a montrer que pour tout plongement élémentaire (Z, z) de G/H', d’orbite
fermée Z', C - z rencontre I'orbite ouverte de B dans Z' [BLV; 4.2].

Soit (X<, x°) une complétion normale de (X, x). Soit X' I’adhérence de X'
dans X°. Soit (Z, z) un plongement élémentaire de G/H' d’orbire fermée Z'.
Comme X' est complet, il existe un morphisme de plongements f: Z— X". Soit 0
I’orbite ouverte de P dans f(Z'). D’apres 3.4, O contient un point de C -x'. Alors
f~1(0) est la P-orbite ouverte dans Z' et C - z=f""'(C - x') rencontre f~'(6).

ii) Remarquons d’abord que puisque dim (C - x')=dim (C -x)—1, la com-
posante neutre (C N H')" de C N H' est engendrée par (C N H)" et Im (1), donc
@ s’identifie au quotient par Qu,. Soit v € €V (G/H). On peut choisir u € Y(C/
CNH) tel que v soit équivalente a v,. Supposons que A et p ne sont pas
proportionnels, c’est-a-dire que @(u) # 0. Alors le cone convexe engendré par v,
et v, dans €V (G/H) est saillant; on peut donc lui associer un plongement
(X,, x) normal, simple, sans couleur de G/H, qui vérifie X < X,, (voir 2.6).

Soient A I'adhérence de G -x — P - x dans X,, et C - x I'adhérence de C - x
dans X, — A. D’aprés 3.4 le morphisme naturel P* X C-x— X,— A est un
isomorphisme et C - x est un plongement normal du tore C/C N H, dont le cone
associé est engendré par A et p.

D’apres [K; Chap. 1], lim_, u(f)x’ existe dans C-x'—C -x' (o C-x' est
I’adhérence de C - x’ dans C - x), et C - x’ est le plongement élémentaire du tore
C/CN H' associé a @(u). Donc G - x' est un plongement élémentaire de G/H’,
et @(u) est un sous-groupe a un parametre de C/C N H' adapté a G -x'. Par
suite p(u) e €V(G/H').

Pour montrer que ¢ est surjective, on utilise 3.1. Soit (X, x) une complétion
sans couleur de (X, x), et soit X’ I'adhérence de X’ dans X¢. Alors X' est un
plongement normal (cf. 3.5), complet sans couleur (cf. 3.4) de G/H'. Soient
A=Ay, Ay, ..., A, des sous-groupes a un parametre de C adaptés aux differentes
G -orbites de codimension 1 dans X¢; d’aprés ce qui précéde, parmi A,, . .., A, se
trouve pour chaque G-orbite de codimension 1 dans X' un sous-groupe a un
paramétre adapté a cette orbite. D’apres 2.7, v, , ..., v,, engendrent le cOne
€V (G/H); de méme @(v;), ..., ¢(vy,) engendrent €V (G/H'), donc @ est
surjective. W

Le corollaire suivant indique comment varie €%(G/H) lorsqu’on déforme
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’espace homogene G/H de fagon G-équivariante. (Voir [B2] pour un exemple
d’une telle déformation).

3.7 COROLLAIRE. Soit Z une (G X k*)-variété lisse, munie d’un (G X
k*)-morphisme plat p:Z—k (ot G opére trivialement sur k, et k* opére par
homothéties) tels que p~'(k*) = G/H X k*, et que p~'(0) est une G-orbite. Soit H,
le groupe d’isotropie d’un point de p~'(0). Il existe alors A € Y(C/C N H) tel que
€V (G/H,) s’identifie a €V (G/H) + QA.

Démonstration. On peut considérer Z comme un plongement élémentaire de
(G X k*)/H. On vérifie sans peine que L X k* est adapté au sous-groupe H de
G X k*, et que l'isomorphisme Y(C/CNH X k*)— Y(C/C N H) X Z fournit un
isomorphisme €% (G x k*/H)— €V (G/H) X Q. Soit A un sous-groupe a un
paramétre de C/C N H X k*, adapté a Z; écrivons A(t) = (A(¢), t") ou Ae Y(C/
CNH)etneZ—{0}. D’aprés le théoréme 3.6, €V (G X k*/H, X k*) s’identifie
au quotient de €¥(Gxk*/H) par QA; le corollaire s’en déduit
immédiatement. W

3.8 COROLLAIRE. Soient (X, x) un plongement élémentaire de G/H, et
ve 6V (G/H) la wvaluation correspondante. Les conditions suivantes sont
équivalentes:

(1) Le groupe d’isotropie d’un point de orbite fermée de X contient un
sous-groupe unipotent maximal de G.

(2) La valuation v est a I'intérieur de €V (G/H).

Démonstration. Avec les notations du théoréeme, (2) équivaut au fait
que €V (G/H')=Y(C/CNH')®;Q. Mais d’aprés [P1; Prop. 2.5], le cone
€V (G/H') est un espace vectoriel si et seulement si H' contient un sous-groupe
unipotent maximal de G (ce résultat sera redémontré en 5.4). W

Si H' est le sous-groupe d’isotropie d’un point de l'orbite fermée d’un
plongement élémentaire de G/H, alors H' contient ‘“presque toujours” un
sous-groupe unipotent maximal de G. On va donc étudier ce cas plus en détail.

3.9 PROPOSITION. Si H contient un sous-groupe unipotent maximal, L est
I'unique sous-groupe de Levi de P adapté a H.

Démonstration. Si p est un sous-groupe a un paramétre de G, on pose
G(n):={s € G| lim,_o u(t)su(t)""' existe dans G}; c’est un sous-groupe para-
bolique de G (cf. [M; Def. 2.3, Prop. 2.6]). D’aprés [BLV; 4.2], les sous-groupes
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de Levi de P adaptés a H sont tous conjugués par un sous-groupe R de P, et R
est inclus dans I'intersection des G(u), ou u parcourt I’ensemble des sous-groupes
a un parametre de C, adaptés a H. Mais comme €7 (G/H)=Y(C/CNH)®,Q,
tout ueY(C) avec Im(u)E CNH est adapté a H, donc R= {1}, d’ou la
proposition. W

3.10 PROPOSITION. On conserve les notations du théoreme, et on suppose
de plus que H' contient un sous-groupe unipotent maximal.
i) Notons Q lunique sous-groupe parabolique de G tel que PN Q = L. Alors
L normalise H', on a H' = Q“(LN H') et la composante neutre (L N H')°
de L N H' est engendrée par (L N H)° et Im (A).
ii) Soit C - x 'adhérence de C - x dans X. Alors les orbites de C dans C - x N X'
sont toutes de codimension 1 dans C - x.

Démonstration. i) Soit f € k[G] tel que I'ensemble des zéros de f soit
G — BH'. Soient N un G-module simple, n€ N et ve N* tels que f =v(-n).
Puisque H' contient un sous-groupe unipotent maximal, kn est ’ensemble des
vecteurs propres de (H')° dans N. Comme H' normalise (H')°, on voit que H’
stabilise kn. Notons Q' le stabilisateur de kn dans G; alors H' < Q. De plus Q'
est un sous-groupe parabolique de G, opposé au stabilisateur P de kv. Donc
L’ := PN Q' est un sous-groupe de Levi de P, et f est un point fixe de L' opérant
par conjugaison sur k[G]. Par conséquent L’ fixe df(1), la différentielle de f en
1€ G, donc L' est adapté a H' d’apres [BLV; 3.5].

D’aprés 3.9 on a L'=L, d’ou Q' = Q. Puisque Q“(L, L)yc H' = Q, on voit
que L normalise H' et que H' = Q“(L N H'). Enfin, comme (CNH")’=(CN
H)°Im (1), on voit aussi que (LN H')°=(LNH)’Im (A).

ii) Soit @ une C-orbite dans C-xNX'. Il existe ueY(C) tel que y=
lim,_,o u(t)x existe et appartient a O [K; Ch. I, Theorem 2]. Soit L*=(LN
H)°Im (u). Puisque L* est réductif connexe et que la dimension de L* est celle
d’un sous-groupe de Levi de H', L* est un sous-groupe de Levi de G). Comme
(L, LycL*< L), on voit que L) est réductif, donc que L)=L* Par suite,
Cd=(CNH)’Im(u), dou dim(C-y)=dim(C)—dim(C))=dim(C-x)—1.

|

3.11 Le résultat suivant est une réponse (technique) a la question naturelle: si
v € ¥ (G/H), quels sont les sous-groupes a un parametre u de C tels que les

valuations v et v, soient équivalentes?

PROPOSITION. On conserve les notations et hypothéses de 3.10. Soit
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u € Y(C). Les conditions suivantes sont équivalentes:
a) lim,_o u(t)x existe et appartient a X'.
b) Les valuations v, et v sont équivalentes.
c) 1l existe des entiers m, n strictement positifs; A' € Y(L) et s € G(A")H tels
que A'(t")x = A(t™)x pour tout t e k*, et u=s5s"'A's.

Démonstration. L’équivalence de a) et b) résulte de 2.8.
c)=>a): Ecrivons s=gh ou geG(A') et heH. Alors u(tH)x=s"'A'(f)sx =
sTLeA"(HgA' ()~ - A'(¢)x. En outre lim,_oA'(£)x =x' et lim,_ o A'(¢)gA'(t) " existe
dans G. Donc lim,_,, u(¢)x existe et appartient a X'.
a)>c): Soit u e Y(C) tel que y =lim, o u(¢)x existe et appartient a X'. Soit
se€G tel que y=s""x'. Comme Im(u)c=G,, on a s(Im(u))s ' <H' donc,
d’aprés 3.9, il existe h e Q“ tel que A’ =h"'sus'h soit un sous-groupe a un
paramétre de LN H'. Comme h € Q“ < H' = G,-, on peut remplacer s par A~ 's.
Alors A’ =sus ™', et A'(t)sx = su(t)x converge vers x’' quand ¢ tend vers zéro, d’ou
P - sx contient P-x'. Comme P -x' est ouvert dans X', on voit que P - sx est
ouvert dans G - x, i.e. s € PH.

Soient pe P¥, ce C et he H tels que s =pch. Alors x' =lim,_,yA'(t)sx =
lim,_oA'(£)pA'(t)~" - cA'(t)x. Puisque I'operation de P* sur X induit un isomor-
phisme P-xUP-x'3P“X(C-xUC-x’), on voit que lim,_,,A'(¢f)x existe et
appartient a C-x', et que pe G(A'). Comme C-xUC -x' est le plongement
élémentaire de C/CNH associé a A, il existe des entiers m, n >0 tels que
A'(t")x = A(t™)x, d’ot le résultat. W

Remarque. Si H' ne contient pas de sous-groupe unipotent maximal de G, il
se peut que C-x N X' contienne des C-orbites de codimension au moins deux.
L’exemple suivant est di & Th. Vust:

Soient G = SL(3, k); e,, e,, e; la base canonique de k> et e}, e5, e} la base
duale. Soit H le stabilisateur dans G de.e, + e; et e + e3; alors H est isomorphe a
SL(2, k). Soient B le sous-groupe de Borel de G qui fixe le drapeau (e, e,, e3) et
T le tore maximal de B qui fixe les droites ke,, ke,, k(e,+e3;). On vérifie
facilement (cf. [BLV; 2.5]) que BH est ouvert dans G; P = B; T est un sous-tore
de B adapté a H; ’adhérence de TH/H dans G/H est un plongement élémentaire
de T. Soit K le normalisateur de H dans G; alors K=GL(2, k) donc le
déterminant fournit un caractére y de K, de noyau H. Soit X = G X k ou on fait
opérer K sur G par translations a droite, et sur k par homothéties via y; alors X
est un plongement €lémentaire affine de G/H, d’orbite fermée X' isomorphe a
G/K. L’adhérence T -x de T -x dans X est donc un plongement affine de T,
contenant au moins deux plongements élémentaires; donc T a un point fixe dans
T-xNX'.
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4. Le cone des valuations

Dans cette partie on étudie le cone des valuations €% (G/H) dans V, et son
céne dual X dans V* = X(C/CNH)Q®,;Q; rappelons que X est ’ensemble des
o€ V* tels que (o, ¢c) =0 pour tout c € €V (G/H).

4.1 Soit f € P, ; soit w (resp. x) le poids de f par rapport a P (resp. H). On voit
facilement que le couple (w, x) détermine f et que ®|pny = —x|pnr; ON note

f=lo, x]

PROPOSITION. 2 est ’enveloppe convexe des m — w — w’, tels qu’il existe
f=lw, x], f =0, x'] et o =[n x+x'] dans P, avec @ dans 'espace vectoriel
engendré par les produits (sf)(s'f'), ou s, s € G.

Remarque. Sif, f', @ sont comme ci-dessus, alors ff'/@ € ", doncar — w — '
s’identifie a un caractére de C/C N H.

Démonstration. Analogue a celle de [P1; proposition 2.1]. H

Soit T un tore maximal de G contenu dans B N L. Soit Q_ le cOne convexe de
X(T)®,Q engendré par les racines négatives de G par rapport a (B, T).
Puisque C = Tetque LN H o (L, L), 'application naturelle X(T/T N H) ®,Q—
X(C/CNH)®;Q est un isomorphisme. On peut donc plonger X dans X(T) ®; Q.

COROLLAIRE. i) 2 est inclus dans Q _.
ii) €V (G/H) est un cone convexe qui engendre ’espace vectoriel V.

Démonstration. i) résulte de la propostion et de [BO; §7, proposition 9].
ii) résulte de i) et du fait que Q_ est saillant. W

Remarque. Supposons de plus que G/H est quasi-affine, c’est-a-dire que
k(G)" est le corps des fractions de k[G]”. Soit k[G]"=D, oM, la
décomposition de k[G]” en G-modules simples, ou chaque M,, est de plus grand
poids w. Alors M, est I’espace vectoriel engendré par les translatés a gauche de
[w, 1] € %, donc le monoide Q est isomorphe 2 . On peut montrer (cf. [P1;
proposition 2.1]) que X est engendré par les 7 — w — w’, ot w, ', 1€ Qet M,
est inclus dans le G-module engendré par les produits ff', ou fe M, f' e M,,..

4.2 Soit (X, x) un plongement élémentaire de G/H, d’orbite fermée X'. Soient
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A un sous-groupe a un parametre adapté a (X, x), et H' le groupe d’isotropie de
lim,_,o A(t)x.

L’inclusion CNHcCNH' définit  une application  injective
¢*: X(C/ICNH)Y®, Q- X(C/CNH)®,Q. Soit X' le coOne dual de
€V (G/H') dans X(C/CNH') ®; Q. D’apres le théoreme 3.6, ii), I'image de X’
par @* est la facette de 2 orthogonale a A.

D’autre part, on a:rg(G/H') =rg(G/H) — 1. En continuant ce processus, on
associe a toute demidroite extrémale  de X un espace homogene sphérique de
rang | dont § est le cone dual du cone des valuations.

Cela conduit a la proposition suivante, qui montre en particulier, que pour un
rang fixé, il n’y a qu’un nombre fim de possibilités pour X.

PROPOSITION. Le céne convexe X est engendré par des racines négatives, et
des sommes de deux racines négatives fortement orthogonales.

Remarque. Ce dernier cas peut se produire, voir 'exemple 1 de 4.3.

Démonstration. 11 suffit de démontrer I’assertion suivante:

Soit G/H un espace homogene sphérique de rang 1, tel que X # {0}. Alors X
est engendré par une racine négative ou la somme de deux racines négatives
fortement orthogonales.

Premiére méthode: Le groupe T N H est de codimension 1 dans T'; soit y un
caractére de T dont le noyau est TN H. Il est clair que y ou —y engendre X'; on
peut donc supposer que x € Q_ (d’aprées le corollaire 4.1).

Soient &, B, O les algebres de Lie de G, B, H et soit & =D, xS la
décomposition de & en sous-espaces propres de T, et & = Dy xrnm &g la
décomposition de & en sous-espaces propres de TNH. Alors &y rnn=
ez B*7"% pour tout a € X(T). Comme & =8B + D et que B et $ sont stables
par TN H, on a pour tout B € X(T NH): BN Gz = {0} implique &3 = H. On en
déduit que y est proportionnel a une racine ou a la somme de deux racines:
sinon, on aurait 8“ =&,y pour tout a € X(T), d’ott D .o - B = H. Donc
H contiendrait un sous-groupe unipotent maximal de G, ce qui contredit le fait
que 2 # {0} (cf. corollaire 3.7).

Soit o € X(T) tel que G, 7y #* G Soit &’ la sous-algébre de Lie de &
engendrée par les @**"* et $~*7"* n e Z. C’est une algebre semisimple de rang
<2, et =B +9,00B'=@"NBet H =" NH. On voit facilement que
I’espace homogéne (sphérique) associé a ((8', ') est de rang 1.

11 suffit donc de démontrer ’assertion dans le cas ou G est semisimple de rang
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<2. D’aprés ce qui précede, y est contenu dans Q_, et proportionnel a une
racine ou a la somme de deux racines.

En utilisant la classification des systémes de racines de rang 2, on voit que
est proportionnel a une racine négative ou a une somme de deux racines
négatives fortement orthogonales, sauf peut-étre dans les cas suivants (on note «,
B les racines simples de &):

a) & =3l(3, k) et x est proportionnel a —a — (a + B);

b) & =30(5, k) et x est proportionnel &8 —a —(f +2«), a est la racine

simple courte;

c) & =30(5, k) et x est proportionnel a —f8 — (B + a), « est la racine simple

courte.

Dans le cas a), d’apres ce qui précéde, ona & *+ G *F < 9. On en déduit
facilement que H est conjugué au groupe étudié dans I’exemple 2 de 4.3. On sait
alors (voir 4.3) que 2 est engendré par une racine négative. Donc ce cas ne peut
pas se produire.

Dans le cas b), on a @ *+ G P9, (BP+G P ) NH+{0} et (BP+
G&**#) N H # {0}. On en déduit facilement que H continent T ou un sous-groupe
unipotent maximal de G, ce qui n’est pas possible.

Le cas c) est exclu de mani¢re analogue au cas b).

Deuxi¢me méthode: L’espace homogéne G/H est de rang 1, donc admet un
plongement élémentaire complet (X, x). Une telle situation a été étudiée par D.
Ahiezer dans [A2]; résumons une partie de ses résultats.

Il existe un sous-groupe parabolique P’ de G, et un sous-groupe de Levi L’ de
P’', tels que H — P’ et qu’on soit dans 'un des cas suivants:

i) H=H“L' ou H"c P'* est le radical unipotent de H; la P’-variété
P'/H' = P'*/H" est isomorphe a un espace vectoriel M sur lequel P’ opere
par transformations affines, et L’ opeére transitivement sur P(M); on a
X =G X pP(M D k).

ii) H=P'*H' ou H' est un sous-groupe réductif de L', et ou L'/H' est de
rang 1. Si Y est un plongement élémentaire complet de L'/H', on a
X =G Xp Y ou P'* opere trivialement sur Y.

De plus, Ahiezer donne la liste de tous les (L', M) (dans le cas i)) ou (L', H')
(dans le cas ii)) possibles. La proposition se vérifie aisément dans le cas i); dans le
cas ii), on peut montrer que si N est un L’-module simple tel que Hy # 0, alors
le plus grand poids de N engendre —2'; puis on utilise la classification de
[A2]. &

4.3 EXEMPLES. 1) Cet exemple montre qu’en général X n’est pas engendré
par des racines négatives.
Soient G =SL(2, k) X SL(2, k), et H=SL(2, k) la diagonale de G. Soient
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B,, B, deux sous-groupes de Borel opposés de SL(2, k), et T=B,NB,. On
vérifie facilement que si B = B, X B,, alors BH est ouvert dans G, et que de plus
P=B, et L=C=T XT est un sous-groupe de Levi de P adapté a H; I’espace
homogeéne G/H est de rang 1.

Soient x;, x, € k* tels que chaque x; soit un vecteur propre de B;, et que
dét (x,, x,) = 1. L’application f:G— k telle que f(s, t) = dét (s 'x,, £~ 'x,) pour
s, t € SL(2, k), est un élément de #. On vérifie sans peine que f engendre le
monoide %, et que I'espace vectoriel engendré par les (sf)(s’f), ou s,s' € G,
contient les fonctions constantes sur G. A 'aide de la remarque précédente (qui
s’applique car G/H est affine), on en déduit que X est engendré par (—«, +a),
ol « est la racine de B, par rapport a T. On aurait pu aussi déterminer 2 en
remarquant que tout caractere de C, trivial sur CN H, est proportionnel a
(—a, +a).

2) Soit G =SL(3, k); soient (e, e,, e;) la base canonique de k°, et
(ef, e3, e3) la base duale. Soit H le sous-groupe de G qui stabilise les droites ke?,
et k(ef +e3). Soient B le sous-groupe de Borel de G qui fixe le drapeau
(e, €5, €3), et T le tore standard de B. On peut vérifier que BH est ouvert dans
G, que P =B et que T est adapté a H.

Soient f;, f», f; les applications de G dans k définies par: fi(s) = (e3, se;);
f(s) = (ey, set); fs(s) = (ey, s(ef +e3)). Alors fi, f,, f» engendrent librement le
monoide P, , et pour tout s € G tel que se, = e,, on a f; = (sfz) — (s/2)fs. Avec les
notations précédentes, on a f; = [w,, x1]; o =[w1, x2] et fs=[wy, x7'x5'] ob x1,
%, sont des caractéres de H et w,;, w, les poids fondamentaux de 7.

D’autre part, on a dim (T N H) =1, donc G/H est de rang 1. On en déduit
que X est engendré par le caractére —2w, + w, = —a, de T. Dans cet exemple,
G/H n’est pas quasi-affine.

3) Soit E un espace vectoriel de dimension 4 sur k£, muni d’une forme
symplectique non dégénérée (- | -). Notons G le groupe symplectique associé; D,
D' deux droites de E, non orthogonales pour (- | -); H le stabilisateur de D et de
D' dans G. Alors H est isomorphe a k* X SL(2, k). Choisissons une base
(e, €2, €_5, €_;) de E telle que (e; | e_;) =(e2| e_,) =1 et que les autres produits
soient nuls. Soient B (resp. T) le sous-groupe de G formé des matrices
triangulaires supérieures (resp. diagonales) dans la base considérée.

Si D (resp. D') est engendrée par x =3e;+2e,—3e_,+e_, (resp. x'=
—3e, +2e,+3e_,+e_,), on peut vérifier que BH est ouvert dans G et que le
monoide %, est engendré librement par f,, f,, f, ou fi(s) = (e, |sx), fi(s)=
(e1]sx"), fs(s)=(e;|sx)(e;|sx’)— (e;|sx')(e;|sx) pour tout se€G. En outre
P = B, et T est un tore maximal de B adapté a H.

Soient y le poids de 'opération de H sur D, et m,, &, les poids fondamentaux
de G; alors f; =7y, x] £ =71, —x], fs=[72, 1] avec les notations de 4.1.
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Notons P(E) l’espace projectif de E, et Gr,(E) la grassmannienne des
sous-espaces vectoriels de dimension 2 dans E. Soit X la sous-variété de
P(E) X P(E) X Gry(E) formée des triplets (d, d', p) tels que le plan p contienne
les droites d et d'. Soit P le plan engendré par D et D’. On peut vérifier que
(X, (D, D', P)) est un plongement lisse, sans couleur de G/H, dont les orbites
non ouvertes sont:

0,={(d, d, p) e X | p non isotrope},
0,={(d,d', p)e X | p isotrope, d #d'},
0,={(d, d, p) e X | p isotrope}.

L’orbite O; est fermée, isomorphe a G/B. Le complémentaire de l'orbite
ouverte O dans X est formé des deux diviseurs lisses et transverses 0, = 0, U 0; et
0,=0,U 0.

On peut vérifier que les sous-groupes a un parametre A, et A, de T tels que
M)=diag (¢t7', t,t7", 1) et A(¢)=diag (¢, ¢7', ¢, t) sont adaptés aux plonge-
ments élémentaires d’orbites fermées O, et 0,. On en déduit que 2 est engendrée
par les deux racines négatives courtes (on peut aussi le montrer par les méthodes
de 4.2, en étudiant les groupes d’isotropie des plongements élémentaires O U O,
et OU 0,, dont les valuations associées engendrent €' (G/H)).

L’ensemble ?%(G/H) est formé des trois diviseurs B-stables de G/H définis
par fi, f>, f3. Notons v, v,, v; les valuations correspondantes.

Dans Y(T/TNH)® Q=0QA, © Q4,, on obtient la figure suivante:

Vs

Ny Yy
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Le plongement normal (simple, complet), associé a V' = {A,} et 9 = {v,;} a
'aide de 2.7, n’est autre que (P(E) X P(E), (D, D')).

5. Le normalisateur d’un sous-groupe sphérique

Dans cette partie, on étudie le normalisateur N;(H) de H dans G, et on
retrouve et améliore les résultats de [P1].

5.1 PROPOSITION. Soit H° la composante neutre de H: alors BH® = BH,
et le normalisateur de H dans G est I’ensemble des s € G tels que BHs = BH.

Remarque. On verra plus loin (Corollaire 5.2) que H et H’ ont le méme
normalisateur dans G.

Démonstration. Soit K I'ensemble des s € G tels que BHs = BH; c’est un
sous-groupe de G qui contient H. Soit s € Ng(H"): alors BsH" = BH's est ouvert
dans G, donc BsH® rencontre 'ouvert BH®, d’ott s € BH’. Par suite, BNg(H") =
BH, d’out BH = BH" et N;(H") c K.

Réciproquement, montrons que K < Ng(H®). Notons %% I'’ensemble des
vecteurs propres (non nuls) de B (opérant par translations a gauche) et de H°
(opérant par translations a droite) dans k[G]; alors ?° est I'ensemble des
f € k[G] telles que f ne s’annule pas sur BH = BH [BLV; 2.1]. Par conséquent,
I'operation par translations a droite de K laisse stable #°., donc aussi I’ensemble
des vecteurs propres de H’ dans k[G]. On en déduit que l'opération par
translations 2 droite de K dans k(G) laisse stable le corps k(G)*". Donc on a bien
K < Ng(H"), qui est le groupe de G-automorphismes de G/H’. W

5.2 Soit f e P, telle que I'ensemble -des zéros de f soit G — BH. Soient M un
G-module simple, me M et ue M* tels que f=u(-m) (cf. 2.5). Soit df(1) la
différentielle de f en 1€ G; c’est un élément du dual de ’algebre de Lie de G.
Notons L’ le groupe d’isotropie de df(1); d’aprés [BLV; 3.5] c’est un sous-groupe
de Levi de P, adapté a H.

PROPOSITION. i) On a Ng(H®)=H(C' N Ng(H")), oir C' est la com-
posante neutre du centre de L7,

ii) Si de plus f s’annule avec la méme multiplicité sur toutes les composantes
irréductibles de G — BH, alors Ng(H®) est le stabilisateur de km.

Démonstration. i) Puisque BH = BNg(H’), on voit que lon a P=
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{s € G | sBNg(H®) = BN;(H")} et que L’ est un sous-groupe de Levi de P adapté
a Ng(HP). Par suite, la multiplication de G induit des isomorphismes

P* X C'Ng(H)— PNg(H®) = PH® < P* x C'H".

En particulier, C' Ng(H®) = C'H®, d’ou i).

ii) Soit s € G tel que sm € km. 1l existe alors a € k* tel que sm = am, d’ou
f(gs)=af(g) pour tout ge G. Donc BH={geG |f(g)+#0} est stable par
translations a droite par s. Par conséquent, d’aprés 5.1 le groupe Ng(H®) contient
le stabilisateur de km.

Pour prouver linclusion opposée, il suffit d’aprés i) de montrer que
C/ N Ng(H) stabilise km. Or, pour tout s € C' N Ng(H), la conjugaison par s
laisse stable BH, donc fixe f (d’apres I’hypothése sur f). On en déduit que sm est
proportionnel a m, d’ou la proposition. W

COROLLAIRE. On a Ng(H)=Ng(H°)=H(C' " Ng(H)); en particulier
Ng(H)/H est diagonalisable.

Démonstration. 11 suffit de prouver que Ng(H)= Ng(H’). 1l est clair que
Ng(H) < Ng(H®). Réciproquement, soit s € Ng(H®): alors H° « sHs™' = Ng(H°).
Puisque Ng(H®)/H®=(C/ N Ng(H®))/(C' N H®) est abélien, on en déduit que
sHs"'=H, i.e.se Ng(H). W

5.3 PROPOSITION. Soient A € Y(C) et v, la valuation de k(G/H) associée
a A (cf. 2.8). Les conditions suivantes sont équivalentes:

(i) v, et —v, sont dans €V (G/H).

(ii) A est a valeurs dans Ng(H).

Démonstration. (i) = (ii): On utilise les notations de 4.1. L hypothése signifie
que A est orthogonal a X, c'est-a-dire que si f=[w, x], f' =[w’, x'] et
@ =[x, x+x'] sont dans P, et @ est dans l’espace vectoriel engendré par
{GH)('f)]|s,s' € G}, alors (A, m) =(A, w) + (A, w'). Cette condition signifie
que l'action de k* sur " définie par A, se prolonge en une action de k* sur
k(G)? qui commute aux translations a gauche. Donc A est a valeurs dans le
groupe des G-automorphismes de G/H, c’est-a-dire dans Ng(H).

(ii) = (i) est conséquence immédiate de 2.8. M

COROLLAIRE. Les conditions suivantes sont équivalentes:
(i) Il existe un plongement simple normal, complet sans couleur de G/H
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(alors d’apreés 2.7, c’est l'unique plongement associé a €V(G/H) tout
entier).

(ii) Le cone €V (G/H) est saillant.

(iii) Ng(H)/H est fini.

Démonstration. (1)< (ii) résulte de 2.7, et (ii) < (iii) de la Proposition 5.3 et
du Corollaire 5.2. W

Remarque. Soit G/H un espace symétrique, i.e. H est le groupe des points
fixes d’un automorphisme involutif du groupe semisimple G. Alors la condition
(iii) du corollaire est remplie; I'unique plongement simple, normal, sans couleur
de G/H a été défini et étudié dans [DP1] et [DP2] en vue d’applications a la
géométrie énumérative.

5.4 PROPOSITION. Soient (X, x) un plongement élémentaire de G/H, et v
la valuation associée. Alors I’opération a droite de No(H)/H sur G/H se prolonge
a X. Si de plus —v ¢ €V (G/H), alors le quotient X/Ng(H) existe, et est un
plongement élémentaire de G/Ng(H).

Démonstration. Le cas ot —v € €7 (G/H) se traite facilement a I’aide de 5.3.
On suppose donc que —v ¢ €V (G/H). Soient f, L' et ¢/ comme en 5.2.
Choisissons un sous-groupe a un paramétre A de C/, adapté a (X, x); soit
x'=lim,_,oA(t)x. Alors C'-xUC’ -x' est un plongement élémentaire de
C’/(C' N H) (voir 2.10). D’aprés la Proposition 5.3, quitte a remplacer A par un
multiple de A, on peut supposer que Ng(H) NIm (A) = {1}.

Le quotient de C/-xUC -x’ par ¢/ NNg(H) existe donc, et est un
plongement élémentaire de C//(C/ N Ng(H)). Remarquons que d’aprés le
Corollaire 5.2, ¢/ N Ng(H) s’envoie surjectivement sur Ng(H)/H. La proposition
résulte alors du résultat de structure locale de X rappelé en 2.9. B

A TP'aide de cette proposition, on définit une application w: €V (G/H)—
€V (G/Ng(H)) (si v et —v sont dans 6V (G/H), alors zm(v)=0). On voit
facilement que & est le quotient par X+ (et X* est le plus grand sous-espace
vectoriel de V contenu dans €7(G/H)). En particulier, le cone des valuations de
G/Ng(H) est saillant.

On peut ainsi retrouver le résultat principal de [P1], utilisé en 3.7 (les
troisiéme et cinquie¢me parties sont bien siir indépendantes . . . ).

COROLLAIRE. Pour un sous-groupe sphérique H de G, les conditions
suivantes sont équivalentes:
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(i) €V (G/H) est un sous-espace vectoriel de V.
(i) H contient un sous-groupe unipotent maximal de G.

Démonstration. La condition (i) signifie que €7 (G/Ng(H)) est réduit a {0},
donc que Ng(H) est un sous-groupe parabolique de G. Comme Ng(H)/H est un
groupe diagonalisable, il est clair que (i) équivaut a (ii). W
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