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Valuations des espaces homogènes sphériques

Michel Brion et Franz Pauer

1. Introduction

Soit G un groupe algébrique réductif connexe sur un corps k algébriquement
clos de caractéristique nulle. Soit H un sous-groupe algébrique de G. Un
plongement de l&apos;espace homogène G/H est une variété algébrique intègre X, sur

laquelle G opère régulièrement, et munie d&apos;une G-immersion ouverte G/H-+X.
Les plongements normaux des espaces homogènes ont été étudiés par Luna et
Vust dans [LV]; leurs résultats se simplifient notablement si l&apos;espace homogène
G/H est &quot;sphérique&quot;, c&apos;est-à-dire si un sous-groupe de Borel de G a une orbite
ouverte dans G/H. Ils généralisent la théorie des plongements toriques,
développée dans [K] (cf. aussi [D]).

Dans l&apos;étude des plongements, la notion de plongement élémentaire joue un
rôle essentiel: il s&apos;agit d&apos;une G-variété lisse formée de deux G-orbites, dont l&apos;une

est ouverte (et isomorphe à G/H) et l&apos;autre est fermée, de codimension 1.

L&apos;ensemble des plongements élémentaires de l&apos;espace homogène sphérique G/H
est en bijection naturelle avec l&apos;ensemble Y(G/H) des valuations discrètes,
invariantes par G et normalisées, du corps k(G/H) des fonctions rationnelles sur
G/H. On peut identifier V(G/H) avec l&apos;ensemble des points entiers indivisibles
d&apos;un cône convexe rationnel C€Y(G/H) dans un espace vectoriel de dimension
finie sur Q.

Le résultat principal est en gros le suivant (théorème 3.6): si X est un
plongement élémentaire de G///, d&apos;orbite fermée isomorphe à G/H &apos;, et si v est
la valuation associée à X, alors l&apos;espace homogène G/H&apos; est sphérique et le cône

convexe C€Y{GIH&apos;) s&apos;identifie au quotient de &lt;€Y(G/H) par la droite engendrée

par v. Cela permet d&apos;étudier le cône C€Y{GIH) à partir du cône (plus petit)

On utilise la théorie des plongements de [LV] et les résultats de &quot;structure

locale&quot; de [BLV], dont on trouve les principaux énoncés dans la deuxième partie.
Dans la troisième partie, on étudie les plongements élémentaires de G/Hf et les

groupes d&apos;isotropie de leurs orbites fermées; ces groupes contiennent &quot;presque

toujours&quot; un sous-groupe unipotent maximal de G. La quatrième partie est
consacrée à la description de C€Y{GIH) et à des exemples. Enfin, dans la
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266 MICHEL BRION ET FRANZ PAUER

cinquième partie, on décrit le rôle joué par le normalisateur de H dans les

plongements de G/H.
On trouve dans [Bl] une version préliminaire de cet article.
Nous remercions tous ceux qui se sont intéressés à ce travail: M. Decauwert,

F. Knop, H. Kraft, G. Menzel et T. Vust. Nous remercions tout particulièrement
D. Luna pour de nombreuses conversations utiles.

2. Plongements des espaces homogènes sphériques

Les paragraphes 2.1 à 2.10 rassemblent les définitions et résultats de [LV] et

[BLV] dont nous aurons besoin.
Dans tout ce qui suit, G est un groupe algébrique réductif connexe, le corps

de base est algébriquement clos et de caractéristique nulle, et H est un

sous-groupe algébrique de G tel que l&apos;espace homogène G/H soit sphérique,
c&apos;est-à-dire qu&apos;on peut choisir un sous-groupe de Borel B de G tel que BH soit
ouvert dans G.

2.1 Un &quot;plongement normal {X, x) de G/H&quot; est la donnée d&apos;une G-variété
algébrique normale X et d&apos;un point xeX tels que l&apos;orbite de x par G soit dense

dans X et que le sous-groupe d&apos;isotropie de x soit H.
Tout plongement de G/H ne contient qu&apos;un nombre fini de G-orbites [LV;

7.5]; un plongement est appelé &quot;simple&quot;, s&apos;il ne contient qu&apos;une seule G-orbite
fermée. Si X&apos; est une orbite fermée dans un plongement normal (X, x) de G/H,
le couple ({z e X \ X&apos; c G • z}, x) est un plongement simple de G/H.

Soient (X, x) et (7, y) deux plongements normaux de G/H. L&apos;application

f.X-*Y est un morphisme de plongements, si / est un morphisme algébrique
G-équivariant, qui envoie x sur y.

2.2 Un plongement élémentaire de G/H est un plongement normal formé de

deux orbites: l&apos;orbite dense et une orbite de codimension 1; un tel plongement est

lisse. Il y a une bijection naturelle entire l&apos;ensemble des plongements
élémentaires de G/H, et l&apos;ensemble V(G/H) des valuations discrètes, invariantes

par G et normalisées, du corps k(G/H) k(G)H des fonctions rationnelles sur
G/H [LV; 3.3, 7.5, 8.10].

Si (F, y) est un plongemeitf de G///, et Y&apos; est une G-orbite dans Y, il existe

un plongement élémentaire (X, x) de G/H et un morphisme de plongements
X-* Y qui envoie l&apos;orbite fermée de X sur Y&apos; [LV; 3.5].

2.3 Soit A le complémentaire de l&apos;ouvert BH/H dans G/H. Puisque BH/H
B/BC\H est affine, A est pur de codimension 1 dans G/H. On note
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B3)(G/H) l&apos;ensemble des composantes irréductibles de A, c&apos;est-à-dire l&apos;ensemble

des diviseurs irréductibles stables par B, de G/H. A tout D e B2&gt;(G/H) est
associée une valuation discrète, invariante par S, de k(G/H); on note vD cette
valuation.

2.4 Soit (X, x) un plongement normal simple de G/H; soit X&apos; son orbite
fermée. Si Z est une G-orbite de codimension 1 dans X, alors (G • x U Z, x) est

un plongement élémentaire de G/H, d&apos;où un sous-ensemble Y(X) de Y(G/H),
associé aux diverses G-orbites de codimension 1 dans X. D&apos;autre part, soit 9){X)
l&apos;ensemble des DeB2)(G/H) tels que l&apos;cD. Le couple (Y(X), 2)(X))
détermine alors le plongement (X, x) [LV; 8.1 à 8.3].

2.5 Le groupe B opère par translations à gauche et le groupe H par translations
à droite sur fc(G), le corps des fonctions rationnelles de G. Soit 9 l&apos;ensemble des

fonctions dans k(G), qui sont à la fois vecteurs propres de B et de H et vérifient

/(l) 1. (L&apos;ensemble BH étant dense dans G, tout vecteur propre/de B et de H
vérifie /(l) # 0, alors /(l)&quot;1/ e 9).

Soient &amp;H := 9 H k{G)H et 3P+ := 9 H fc[G] (les éléments de 0&gt; qui sont des

fonctions régulières sur G). 9H est un groupe abélien.
Soient Af un G-module rationnel de dimension finie, neN et veN* (le

G-module dual de TV). Alors l&apos;application

v(-n):G-+k
s •-&gt; v(sn)

est un élément de k[G].
Si v est un vecteur propre de B, et n un vecteur propre de H, tels que

v(rt) 1, alors v(- /t) e £P+. Inversement, tout élément de 9+ s&apos;obtient de cette
façon. Si de plus N est simple, alors N (à isomorphie près) et n, v (à

multiplication scalaire près) sont uniquement déterminés (cf. [BLV; 2.2]).
Toute valuation v e V(G/H) est déterminée par sa restriction à 9H [LV; 7.4],

donc on peut identifier T(G/H) à un sous-ensemble du Q-espace vectoriel
V : Homz (9&quot;, Q). On note &lt;€Y{GIH) le cône engendré par Y(G/H) dans V;
il est connexe (cf. [PI; Proposition 2.1]). La dimension de V est appelée le rang
de G/H. Si D e B3)(G/H), on note aussi vD l&apos;élément de V obtenu par restriction
de vD à 9H (bien que l&apos;application de B3)(G/H) dans V ainsi définie, ne soit pas
forcément injective (cf. [LV; §7])).

2.6 Soient 2 c B3)(G/H) et Y un sous-ensemble fini de V(G/H). Pour qu&apos;il

existe un plongement simple (X, x) de G/H tel que Y{X) Y et S(Z) S (voir
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2.4), il faut et il suffit que les quatre conditions suivantes soient réalisées:

a) le cône convexe %(3), V), engendré par 3) et V dans V est saillant.

b) Tout v e ¥ engendre une demi-droite extrémale de c€{3)} V) distincte de

toute demi-droite engendrée par vD, D e 3).

c) L&apos;intérieur &lt;g(®, Vf de &lt;£(S&gt;, V) (dans l&apos;espace vectoriel qu&apos;il engendre)
rencontre %V{GjH).

d) Tout caractère de H est somme d&apos;un caractère d&apos;un élément de SP+, et d&apos;un

caractère d&apos;un élément de {/ e &amp; | vD(f) 0 pour tout De 3)}. (cf. [LV;
§8]).

Nous appellerons 3) l&apos;ensemble des couleurs de (X, x), et nous disons que
(X, x) est sans couleur si 3) est vide. En particulier, il y a une bijection entre

plongements simples, sans couleur, de G/H, et sous-cônes convexes saillants de

type fini de %Y(GIH).
On montrera que (€T(G/H) est lui-même un cône (convexe) de type fini

(corollaire 3.2), que C€V(G/H) engendre l&apos;espace vectoriel V (corollaire 4.1) et

que ce cône est saillant si et seulement si NG(H)/H est fini, où NG(H) est le

normalisateur de H dans G (corollaire 5.3).

2.7 Soit (X, x) un plongement normal de G/H. D&apos;après 2.1, X est réunion finie
de ses sous-plongements simples, donc X est déterminé par une famille finie de

couples (3)n Vt)l€l tels que:
1) chaque (3&gt;n %) vérifie les propriétés a), b), c), d) de 2.6.

2) Pour tout /e/, si F est une facette de c€(3)nTl) dont l&apos;intérieur F0

rencontre (€Y{GIH)i alors il existe jel tel que F c€{3)jy Ty) et 3)}

3&gt;tnF.

3) Les sous-ensembles ^(S,, VlfPic€V{GIH) sont deux à deux disjoints.
De plus, pour que (X, x) soit complet, il faut et il suffit que:

4) «nG/flJcU,,/»^ %). (cf. [LV; 6.3 et 6.4]).
En particulier, on obtient une bijection entre plongements normaux complets

sans couleur de G/H, et &quot;subdivisions&quot; de C€T(G/H) en cône convexes saillants
de type fini.

2.8 Soit À un sous-groupe à un paramètre de G. A Â on associe une valuation

i/A e %T{GIH) comme suit:
L&apos;image de Â opère par translations à droite sur k[G]. Si f e k[G], alors

/ Encz/n^où k(t)fn t% pour tout t e k*. On pose v~x(f) := inf {n e Z | fn ¥= OJ_et

on étend vk au corps k(G) des fractions de k[G]. Soit vx la restriction de \TX à

k(G)H, alors vk e %Y(Gllï) (mais vx peut être triviale) [LV; 5.4].
Soit v e V(G/H) et soit (Xy, xv) le plongement élémentaire associé à v: alors

v et vx sont équivalentes si et seulement si limt^ok(t)xv existe dans Xy et

appartient à l&apos;orbite fermée de X» [LV; 4.8].



Valuations des espaces homogènes sphériques 269

Lorsque l&apos;image de A est contenue dans NG(H), le normalisateur de //, on lui
associe un plongement élémentaire (Xk, xk) de la façon suivante: on fait opérer
k* sur G/H x k par f °(g//, 6) (gX(t)H, rl6) pour {t, g,8)ek*xGxk, et on

prend pour Xk le quotient G/H xk* k de G/H x k par k* et pour xk la classe de

(//, 1). L&apos;orbite fermée de Xk est alors G/H xk* {0} G/{H • Im (A)). Il est clair

que la valuation correspondante à {Xky xk) est équivalente à vk.

2.9 Soit P l&apos;ensemble des s e G tels que sBH BH; c&apos;est un sous-groupe
parabolique de G qui contient B. Soit Pu le radical unipotent de P. Soit (X, x) un

plongement élémentaire de G ///, d&apos;orbite fermée X&apos;; alors F a une orbite
ouverte Y&apos; dans X&apos;, et Y P xUY&apos; est un plongement élémentaire de

P/P fï //. De plus, il existe des sous-groupes de Levi L de P, tels que si C est la

composante neutre du centre de L, on ait:

2) P fï H contient le sous-groupe dérivé (L, L) de L.
3) Pour tout plongement élémentaire (X, x) de G/H, l&apos;opération de Pu dans

Y induit un isomorphisme de variétés algébriques Pu x (C • x D Y)—&gt; Y.

Un tel L est dit adapté à H [BLV; 4.2].
Pour tout groupe algébrique G&apos;, notons X(G&apos;) (resp. Y(G&apos;)) l&apos;ensemble des

caractères (resp. des sous-groupes à un paramètre) de G&apos;.

Soit / e ÇPH\ alors / est un vecteur propre de P dans k(G)H. Comme P a une
orbite ouverte dans G/Hy f est déterminé par son poids X/eX(P). De plus
XfeX(P)pnH et X(P)pnH X(C/CnH), car P PUL et (L, L)c//. On identifie

ainsi 3&gt;H et X(C/CDH), d&apos;où par dualité, une identification de V
Homz(0&gt;&quot;, Q) avec Y(C/Cfl//) ®zQ. En particulier, le rang de G/H est la

dimension de C/C D H.

2.10 Soient L un sous-groupe de Levi de P adapté à //, (voir 2.9), (X, x) un
plongement élémentaire de G/H et ^&apos; son orbite fermée.

Il existe un sous-groupe à un paramètre A de C tel que lim,_»() k{t)x existe et

appartient à l&apos;orbite ouverte de P dans X&apos;\ un tel A est dit adapté à (X, x) [BLV;
4.2].

Soit ju un autre sous-groupe à un paramètre de C, adapté à (X, x); alors les

images de A et de ju dans Y(C/C C\ H) sont proportionnelles; en effet A et ]U sont

adaptés au plongement élémentaire (C • x D Y, x) de C/C H H.
L&apos;identification de V avec Y(C/CH//)®ZQ (cf. 2.9) envoie V(G/H) sur

l&apos;ensemble des sous-groupes à un paramètre indivisibles de C/C D H, adaptés aux
différents plongements élémentaires de G/H (pour voir cela, on se ramène au cas
facile où G C est un tore). D&apos;après 2.8, la valuation associée à X est

équivalente àuA, On obtient donc une application injective de ^TiG/H) dans

y(c/cn//)®zQ v.
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2.11 Dans toute la suite on conservera les notations G, //, B, P, L, C
introduites ci-dessus.

3. Groupes d&apos;isotropie des orbites fermées des plongements élémentaires

Le résultat principal de cette partie est le théorème 3.6, où on étudie le

comportement des objets P, L, C€V(G/H) lorsqu&apos;on passe de G/H à l&apos;orbite

fermée d&apos;un plongement élémentaire. Pour prouver ce théorème, on a besoin de

résultats préliminaires sur les plongements, et en particulier sur ceux qui sont
sans couleur.

3.1 PROPOSITION. Soit (X, x) un plongement élémentaire de G/H. Alors
il existe une &quot;complétion sans couleur&quot; de (X, x), c&apos;est-à-dire un plongement
(Xe, xc) normal complet sans couleur (cf. 2.6) de G/H et un morphisme injectif de

plongements X &lt;-» Xe.

Démonstration. D&apos;après [S] on peut supposer que X est une sous-variété

G-stable, localement fermée de P(Af), où M est un G-module rationnel de

dimension finie. Soit f e 8P+ tel que A soit l&apos;ensemble des zéros de / (cf. 2.3).
Soient N un G-module rationnel simple, n e N, veiV* tels que / v(- n) (cf.
2.5). Soit y l&apos;image de n dans P(N). Soient Xe la normalisation de G • (x} y) c
P(Af) x P(N), et xc Tunique point de Xe au-dessus de (xf y). Montrons que
(Xey xc) convient.

L&apos;élément y est fixé par H&gt; donc Xe est un plongement normal complet de

G/H. La projection P(M)xP(iV)^P(M) induit un G-morphisme surjectif
q).Xc-*G • jc, et la restriction de q&gt; à G - x1 est un isomorphisme sur G - x.
Comme (X, x) est un plongement élémentaire, il suit que q) est un isomorphisme
au-dessus de X.

Il reste à montrer que (Xe, xc) est sans couleur. Grâce aux propriétés de la

normalisation, il suffit de montrer que À, l&apos;adhérence de G • (x&gt; y) - P • (x, y)
dans P(M) x P(N) c P(M ® N) ne contient pas d&apos;orbite fermée de G dans

G-(x,y).
Soient p eM, q eN tels que la G-orbite de l&apos;image de (p, q) dans P(Af) x

P(N) soit fermée et contenue d#ns G • (x, y). On peut supposer que p, q sont des

vecteurs propres d&apos;un sous-groupe de Borel de G opposé à B. Alors il existe un
complément B-stable de kp dans M; soit [i\M-^k la projection sur kp k le

long de ce complément. Alors \i est un vecteur propre de B dans M* et fi(p) 1.

Le module N étant simple, on a v(q) =£0, d&apos;où N kq® Ker (v).
Considérons l&apos;application g := (ju ® v)(- (m ® n)) e &amp;+. Alors g ju(- m)/, en
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particulier l&apos;ensemble de zéros de g est égal à A. Soit 3if l&apos;hyperplan dans

P(M®iV) associé à ju ® v e (M® N)*. Alors X contient l&apos;adhérence de 4
G • (x, y) - P • (jc, y) dans P(M &lt;8&gt; N), mais ne contient pas l&apos;image de p ® q dans

P(M ® N). ¦
3.2 COROLLAIRE. Le cône C€T(GIH) est de type fini (Le. est engendré

par un nombre fini de ses éléments).

Démonstration. Si ^TiG/H) n&apos;est pas réduit à {0}, il existe un plongement
élémentaire (X&gt; x) de G/H. Alors à (Xe, xc) correspond une subdivision finie de

%V{GIH) en des cônes de type fini (voir 2.7). D&apos;où le corollaire. ¦
3.3 COROLLAIRE. Tout plongement normal sans couleur de G/H possède

une complétion sans couleur.

Démonstration. Au plongement donné correspond une famille finie de cônes

saillants dans C€T(G/H). D&apos;après 3.2 on voit facilement qu&apos;en ajoutant un
nombre fini de cônes saillants, on obtient une subdivision de C€V(G/H). Le

plongement correspondant est la complétion sans couleur cherchée. ¦
3.4 PROPOSITION. Soit (Y, y) un plongement normal de G /H. Soient Â

Vadhérence de G • y — P • y dans Y, et W Vadhérence de C • y dans Y — À.

i) Si Y&apos; est une G-orbite dans Y, non incluse dans Â, alors Y&apos; - Â est une
P-orbite (ouverte) dans Y&apos;.

ii) L&apos;opération de Pu sur Y induit un isomorphisme Pu x W—&gt; Y — Â.

Démonstration, i) D&apos;après 2.2 il existe un plongement élémentaire (Z, 2) de

G/H d&apos;orbite fermée Z&apos;, et un morphisme de plongements q&gt;:Z-*Y tels que
(p(Z&apos;) Y&apos;. Soient \i un sous-groupe à un paramètre de C adapté à (Z, z), et
z&apos;:= lim,^Oju(f)z. Alors C - zUC - z&apos; est un plongement élémentaire du tore
C/CHH, donc il est affine (cela se voit facilement à l&apos;aide de 2.8). Par suite
P • z U P - z&apos; s Pu x (C • z U C - z1) (voir 2.9) est un ouvert affine de Z, donc son

complémentaire est pur de codimension 1 dans Z. Comme G • z&apos; - P • z&apos; est de

codimension 2 dans Z, on a G • z&apos; - P • z&apos; œG • z - P • z. Alors Y1 - P - &lt;p(z&apos;) c
cp(G -z1 -P-z&apos;)c &lt;p(G z-Pz) c q&gt;(G-z-Pz) c A.

ii) Soit Y&apos; une G-orbite dans Y, non incluse dans Â. D&apos;après i), Y&apos; — Â est
l&apos;orbite ouverte de P dans Y&apos;. Puisque L est adapté à H, C • y rencontre Y&apos; — À.

Le morphisme \p:Pu xW-^&gt;Y - Â est donc surjectif. Puisque y induit un

isomorphisme Pu x C • y-&gt; P - y, y est birationnel.
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Montrons de plus que les fibres de ty sont finies. Alors le théorème principal
de Zariski impliquera que ty est un isomorphisme.

Quitte à remplacer y par l&apos;ensemble des x e Y tels que À ne contienne pas
G*jc, on peut supposer que Y est sans couleur. D&apos;après 3.3, on peut aussi

supposer que Y est complet, Soit Z une orbite fermée de G dans Y. En

remplaçant Y par l&apos;ensemble des x e Y tels que G • x 3 Z, on se ramène enfin au
cas où Y est simple sans couleur, d&apos;orbite fermée et complète Z. En utilisant
[BLV; 2.3 et 3.2], on montre aisément que Z - À est l&apos;unique orbite fermée de P
dans Y - À, et qu&apos;elle est isomorphe à Pu P/L. Par conséquent, l&apos;ensemble des

points de Y — À au-dessus desquels la fibre de xp est finie, contient les orbites
fermées de P. Comme cet ensemble est un ouvert P-stable, il est égal à

y-A. m

3.5 PROPOSITION. Soit (Y, y)_un plongement normal de G/H; soit Y&apos; une
G-orbite dans Y. Alors Vadhérence Y&apos; de Y&apos; dans Y est une variété normale.

Démonstration. Grâce à [BLV; §3] on peut supposer que Y est affine. Soit U
le radical unipotent de B. Alors l&apos;algèbre uk[Y] des fonctions régulières sur Y,
invariantes par U, est de type fini et normale [V; Th. 1] (cf. aussi [KR; III.3.3,
Satz 2]). Le tore B/U opère sur YUy le spectre de uk[Y], avec une orbite ouverte
(car les B/(/-modules irréductibles dans uk[Y] sont de multiplicité ^1). Soit I
l&apos;idéal des fonctions régulières sur Y qui s&apos;annulent partout sur Y&apos;. Alors
uk[T] uk[Y]/% donc uk[Y] est l&apos;algèbre des fonctions régulières^ sur
l&apos;adhérence d&apos;une B/U-orbite dans Yv. D&apos;après [K; Chap. I, Prop. 2], uk[Y&apos;} est

normale, d&apos;après [V; Th. 1] cela implique la normalité de Y&apos;. ¦
3.6 THÉORÈME. Soit (X, x) un plongement élémentaire de G/H d&apos;orbite

fermée X&apos;. Soit À un sous-groupe à un paramètre de C adapté à (X, x) (cf. 2.10).
Soient x&apos; lim,_&gt;0 X(t)x et H&apos; le groupe dHsotropie de x&apos; dans G. Alors:

i) BHf est ouvert dans G; l&apos;ensemble des s eG tels que sBH&apos; BH&apos; est égal à

P, et L est adapté à H1.

ii) Soit cp : Y(C/C H H) &lt;8&gt;z Q-* Y(C/C fl H&apos;) ®z Q l&apos;application surjective
définie par Vinclusion C DH czC DHf. Alors le noyau de cp est Qvk (cf.
2.8) et Vimage de &lt;€V(G/H) par &lt;p est &lt;€V(G/H&apos;).

Démonstration, i) Remarquons que (L, L)czHf: en effet (L, L) fixe x et
centralise l&apos;image de À. Puisque P • x&apos; PUL - x&apos; PUC • x&apos; est ouvert dans X&apos;, et

que PUC c B, on voit que BH&apos; PHf est ouvert dans G.

Soit P&apos; := {5 e G | sBH&apos; BH&apos;}; on vient de voir que P a P&apos;f donc P&apos;u c Pu.
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D&apos;après [BLV; 3.4], P&apos;&quot; n H&apos; {1} et il existe un sous-groupe de Levi L&apos; de P&apos;

tel que (L&apos;, L&apos;)cz//&apos;; il s&apos;ensuit que tout sous-groupe unipotent de P&apos;, qui
contient strictement P&apos;M, rencontre H&apos; non trivialement. Mais Pu DHr {1} car
Pu opère librement sur P • jc&apos; (cf. 2.9). Donc P&quot; P&apos;&quot;, d&apos;où P P&apos;.

Comme l&apos;application naturelle P&quot; x C • x&apos;—*P • jc&apos; est un isomorphisme, on
voit facilement que PC\Hf LDH&apos;. Pour montrer que L est adapté à H&apos;&apos;, il
reste à montrer que pour tout plongement élémentaire (Z, z) de G/Hf, d&apos;orbite

fermée Z&apos;, C • z rencontre l&apos;orbite ouverte de B dans Z&apos; [BLV; 4.2].
Soit (Xe, xc) une complétion normale de (X, x). Soit le l&apos;adhérence de X&apos;

dans Xe. Soit (Z, z) un plongement élémentaire de GIH1 d&apos;orbire fermée Z&apos;.

Comme X&apos; est complet, il existe un morphisme de plongements/:Z —&gt;X&apos;. Soit €
l&apos;orbite ouverte de P dans/(Z&apos;). D&apos;après 3.4, € contient un point de C • x&apos;. Alors
f&quot;\0) est la P-orbite ouverte dans Z&apos; et C • z=f~l(C • xf) rencontre f~\€).

ii) Remarquons d&apos;abord que puisque dim (C • x&apos;) dim (C x) — 1, la

composante neutre (C H //&apos;)° de C D //&apos; est engendrée par (C H //)° et Im (A), donc

cp s&apos;identifie au quotient par Qvx. Soit v e C€Y(GIH). On peut choisir ]U e Y(C/
CC\ H) tel que v soit équivalente à u^. Supposons que À et /i ne sont pas

proportionnels, c&apos;est-à-dire que &lt;p(ju)=£O. Alors le cône convexe engendré par vk

et v^ dans &lt;€T(G/H) est saillant; on peut donc lui associer un plongement
(X^y x) normal, simple, sans couleur de G/H, qui vérifie X a X^ (voir 2.6).

Soient A l&apos;adhérence de G - x — P - x dans X^, et C • jc l&apos;adhérence de C • jc

dans A^-zï. D&apos;après 3.4 le morphisme naturel P&quot; x C x—* X^ — Â est un
isomorphisme et C • jc est un plongement normal du tore C/C D //, dont le cône
associé est engendré par À et \x.

D&apos;après [K; Chap. I], lim^() iÀ,(t)xr existe dans C - x&apos; — C x&apos; (où C - x&apos; est
l&apos;adhérence de C x&apos; dans C • jc), et C • x&apos; est le plongement élémentaire du tore
C/CDH&apos; associé à &lt;p(/i). Donc G jc&apos; est un plongement élémentaire de G/H&apos;,

et cp(fi) est un sous-groupe à un paramètre de C/C H H&apos; adapté à G jc&apos;. Par
suite cp(ti) e ^V(G/Hf).

Pour montrer que q&gt; est surjective, on utilise 3.1. Soit (Xe, x) une complétion
sans couleur de (X, jc), et soit X&apos; l&apos;adhérence de X&apos; dans Xe. Alors X&apos; est un

plongement normal (cf. 3.5), complet sans couleur (cf. 3.4) de GIH&apos;. Soient
Â klt Â2, Ar des sous-groupes à un paramètre de C adaptés aux différentes
G-orbites de codimension 1 dans Xe; d&apos;après ce qui précède, parmi À2, Ar se

trouve pour chaque G-orbite de codimension 1 dans X&apos; un sous-groupe à un

paramètre adapté à cette orbite. D&apos;après 2.7, uA|, vXr engendrent le cône

^r(G///); de même &lt;p(vXl)y cp(vK) engendrent ^r(G///&apos;), donc cp est

surjective. ¦
Le corollaire suivant indique comment varie ^^(G///) lorsqu&apos;on déforme
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l&apos;espace homogène G/H de façon G-équivariante. (Voir [B2] pour un exemple
d&apos;une telle déformation).

3.7 COROLLAIRE. Soit Z une (G x k*)~variété lisse, munie d&apos;un (G x
k*)-morphisme plat p:Z—*k (où G opère trivialement sur k, et k* opère par
homothéties) tels que p~l(k*) G/H x A:*, et que p~\0) est une G-orbite. Soit Ho
le groupe d&apos;isotropie d&apos;un point de p~l(0). Il existe alors A e Y(C/C D H) tel que
&lt;€y{GIH0) s&apos;identifie à ^Y(GIH) + QA.

Démonstration. On peut considérer Z comme un plongement élémentaire de

(G x k*)/H. On vérifie sans peine que L x k* est adapté au sous-groupe H de

G x k*, et que Fisomorphisme Y(C/C HHxk*)-* Y(C/C H H) x Z fournit un
isomorphisme W(GxJt*///)-^W(G///)xQ. Soit X un sous-groupe à un
paramètre de C/CHHxk*, adapté à Z; écrivons Â(f) (A(f), tn) où A e Y(C/
C H H) et n e Z - {0}. D&apos;après le théorème 3.6, %Y(G x k*/HQ x k*) s&apos;identifie

au quotient de C€T(G x k*/H) par QÂ; le corollaire s&apos;en déduit
immédiatement. ¦

3.8 COROLLAIRE. Soient (X, x) un plongement élémentaire de G/H, et

v e C€Y(GIH) la valuation correspondante. Les conditions suivantes sont
équivalentes:

(1) Le groupe d&apos;isotropie d&apos;un point de l&apos;orbite fermée de X contient un

sous-groupe unipotent maximal de G.

(2) La valuation v est à l&apos;intérieur de C€T(GIH).

Démonstration. Avec les notations du théorème, (2) équivaut au fait

que «r(G//f&apos;) y(C/Cn//&apos;)®zQ. Mais d&apos;après [PI; Prop. 2.5], le cône

C€T(GIHI) est un espace vectoriel si et seulement si H&apos; contient un sous-groupe
unipotent maximal de G (ce résultat sera redémontré en 5.4). ¦

Si H&apos; est le sous-groupe d&apos;isotropie d&apos;un point de l&apos;orbite fermée d&apos;un

plongement élémentaire de G///, alors H&apos; contient &quot;presque toujours&quot; un

sous-groupe unipotent maximal de G. On va donc étudier ce cas plus en détail.

3.9 PROPOSITION. Si H contient un sous-groupe unipotent maximal, L est

l&apos;unique sous-groupe de Levi de P adapté à H.

Démonstration. Si \i est un sous-groupe à un paramètre de G, on pose
G(jm):= {s 6 G | linv_»0 fi(t)siÂ(t)~l existe dans G}; c&apos;est un sous-groupe
parabolique de G (cf. [M; Def. 2.3, Prop. 2.6]). D&apos;après [BLV; 4.2], les sous-groupes
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de Levi de P adaptés à H sont tous conjugués par un sous-groupe R de P&quot;, et R
est inclus dans l&apos;intersection des G(pi), où ju parcourt l&apos;ensemble des sous-groupes
à un paramètre de C, adaptés à H. Mais comme %Y(GIH) Y(C/C H H) &lt;g&gt;zQ,

tout tieY(C) avec Im(fi)^CnH est adapté à H, donc R {1}, d&apos;où la

proposition. ¦
3.10 PROPOSITION. On conserve les notations du théorème, et on suppose

de plus que Hr contient un sous-groupe unipotent maximal.

i) Notons Q l&apos;unique sous-groupe parabolique de G tel que P D Q L. Alors
L normalise H&apos;, on a H&apos; Qu(Lr\H&apos;) et la composante neutre (LC\H&apos;f

de LDH&apos; est engendrée par (L H H)° et Im (A).

ii) Soit C • x Vadhérence de C • x dans X. Alors les orbites de C dans C • xdX*
sont toutes de codimension 1 dans C • x.

Démonstration, i) Soit / e k[G] tel que l&apos;ensemble des zéros de / soit
G — BH&apos;. Soient N un G-module simple, neNet veN* tels que / v(-n).
Puisque H1 contient un sous-groupe unipotent maximal, kn est l&apos;ensemble des

vecteurs propres de (H&apos;)° dans N. Comme H&apos; normalise (//&apos;)°, on voit que H&apos;

stabilise kn. Notons Q&apos; le stabilisateur de kn dans G; alors H&apos; cg&apos;. De plus Q1

est un sous-groupe parabolique de G, opposé au stabilisateur P de kv. Donc
L&apos; := P fl Q1 est un sous-groupe de Levi de P, et/est un point fixe de L&apos; opérant

par conjugaison sur k[G]. Par conséquent L&apos; fixe df(l), la différentielle de / en
1 e G, donc L&apos; est adapté à H&apos; d&apos;après [BLV; 3.5].

D&apos;après 3.9 on a L&apos; L, d&apos;où Q&apos; Q. Puisque QU(L, L) c H&apos; c Q, on voit

que L normalise H&apos; et que H&apos; Qu(LDHt). Enfin, comme (CflH&apos;)° (Cn
H)° Im (A), on voit aussi que (L H /T)° (L H //)° Im (A).

ii) Soit 0 une C-orbite dans CxHX&apos;. Il existe jU e Y(C) tel que y
lim^oMO)* existe et appartient à € [K; Ch. I, Theorem 2]. Soit Z/ (Ln
/f)°Im (ju). Puisque LM est réductif connexe et que la dimension de Z/ est celle
d&apos;un sous-groupe de Levi de H&apos;, L*1 est un sous-groupe de Levi de G£. Comme

(L, L)aL^ a Ly, on voit que L° est réductif, donc que L°y Z/. Par suite,
C°y (Cn H)° Im (fi), d&apos;où dim (C • y) dim (C) - dim (C°) dim (C • x) - 1.

3.11 Le résultat suivant est une réponse (technique) à la question naturelle: si

v e T(GIH), quels sont les sous-groupes à un paramètre ]U de C tels que les

valuations v et v^ soient équivalentes?

PROPOSITION. On conserve les notations et hypothèses de 3.10. Soit
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jU € Y(C). Les conditions suivantes sont équivalentes:
a) limf_*o ju(r)x existe et appartient à X&apos;.

b) Les valuations v^ et v sont équivalentes.
c) // existe des entiers m, n strictement positifs; X&apos; e Y(L) et s e G(X&apos;)H tels

que X&apos;{tn)x X(tm)x pour tout tek*, et \i s~lX&apos;s.

Démonstration. L&apos;équivalence de a) et b) résulte de 2.8.

c) =&gt; a): Ecrivons s gh où g e G(À&apos;) et h e H. Alors ti{t)x s~lX&apos;{t)sx

s~l • X&apos;{t)gXf{t)~l - X&apos;(t)x. En outre limt^0 X&apos;(t)x =x&apos; et linw0 Xr(t)gX&apos;(t)~l existe

dans G. Donc limf_*0 K0x existe et appartient à X&apos;.

a)=&gt;c): Soit iàeY(C) tel que y lim,_0 n{t)x existe et appartient à X&apos;. Soit

seG tel que y=s~lxr. Comme Im(iu)c:G&gt;;, on a s(Im (iâ))s~1 a H&apos; donc,
d&apos;après 3.9, il existe heQu tel que X&apos; h~lspis~lh soit un sous-groupe à un
paramètre de L H H&apos;. Comme h eQu ç //&apos; G*-, on peut remplacer s par h~ls.

Alors À&apos; sjus&quot;1, et kf(t)sx sfi(t)x converge vers x&apos; quand t tend vers zéro, d&apos;où

P • sx contient P • jc&apos;. Comme F • jc&apos; est ouvert dans X&apos;, on voit que P • sx est

ouvert dans G • jc, i.e. s e PH.
Soient pePu, ceC et heH tels que s=pch. Alors x&apos; \imt_+0X&apos;(t)sx

limt_+0X&apos;(t)pX&apos;(t)~l -cXf(t)x. Puisque l&apos;opération de Pu sur X induit un isomor-
phisme P • x UP • xr2^Pu x (C • x U C • jc&apos;), on voit que lim,_»oA&apos;(0* existe et
appartient à C • jc&apos;, et que p 6 G (À&apos;). Comme C • jc U C • jc&apos; est le plongement
élémentaire de C/C D H associé à À, il existe des entiers m, n &gt; 0 tels que
A&apos;(fw)jc X(tm)jc, d&apos;où le résultat. ¦

Remarque. Si //&apos; ne contient pas de sous-groupe unipotent maximal de G, il
se peut que C-xHX&apos; contienne des C-orbites de codimension au moins deux.
L&apos;exemple suivant est dû à Th. Vust:

Soient G 5L(3, k)\ ely e2, e3 la base canonique de k3 et e\&gt; e%, e* la base

duale. Soit H le stabilisateur dans G de ex + e3 et e\ + e*; alors H est isomorphe à

SL(2, k). Soient B le sous-groupe de Borel de G qui fixe le drapeau (elf e2, e3) et
T le tore maximal de B qui fixe les droites keït ke2, k{ex-\-e3). On vérifie
facilement (cf. [BLV; 2.5]) que BH est ouvert dans G; P B; T est un sous-tore
de B adapté à H; l&apos;adhérence de TH/H dans G/H est un plongement élémentaire
de T. Soit K le normalisateur de H dans G; alors K GL(2, k) donc le

déterminant fournit un caractère x de K, de noyau H. Soit X G xK k où on fait
opérer K sur G par translations à droite, et sur k par homothéties via %\ alors X
est un plongement élémentaire affine de G//f, d&apos;orbite fermée X&apos; isomorphe à

G/K. L&apos;adhérence T • jc de T • x dans X est donc un plongement affine de Ty

contenant au moins deux plongements élémentaires; donc T a un point fixe dans
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4. Le cône des valuations

Dans cette partie on étudie le cône des valuations &lt;€T(G/H) dans V, et son
cône dual I dans V* X(C/C HH) ®ZQ; rappelons que S est l&apos;ensemble des

a e V* tels que (o, c) ^0 pour tout c e &lt;ër(G///).

4.1 Soit/e 0V; soit co (resp. #) le poids de/par rapport à P (resp. H). On voit
facilement que le couple (co, x) détermine /et que co\PnH —x\phh\ on

PROPOSITION. I est l&apos;enveloppe convexe des n - co - co&apos;, tels qu&apos;il existe

f [co, x\y /&apos; [w&apos;y x&apos;] et &lt;P [n, X + X&apos;] dans 3P+ avec cp dans l&apos;espace vectoriel
engendré par les produits (sf)(s&apos;f), où s, sf e G.

Remarque. Si/, /&apos;, y sont comme ci-dessus, alorsff Icp e 9&gt;H, donc n — co - œ&apos;

s&apos;identifie à un caractère de C/C H H.

Démonstration. Analogue à celle de [PI; proposition 2.1]. ¦
Soit T un tore maximal de G contenu dans B (1L. Soit Q-le cône convexe de

X(T)&lt;8)ZQ engendré par les racines négatives de G par rapport à (fi, T).
Puisque C c Tet que L H H 3 (L, L), l&apos;application naturelle X(T/T H //) ®zQ-&gt;

X(C/C fi //) &lt;8&gt;z Q est un isomorphisme. On peut donc plonger 21 dans X(T) &lt;8&gt;z Q.

COROLLAIRE, i) lest inclus dans Q..
ii) C€T(G/H) est un cône convexe qui engendre l&apos;espace vectoriel V.

Démonstration, i) résulte de la propostion et de [BO; §7, proposition 9].

ii) résulte de i) et du fait que (?- est saillant. ¦
Remarque. Supposons de plus que G/H est quasi-affine, c&apos;est-à-dire que

k(G)H est le corps des fractions de k[G)H. Soit k[G]H ®lDeQMlû la

décomposition de ^[G]^ en G-modules simples, où chaque M(O est de plus grand
poids o). Alors Afw est l&apos;espace vectoriel engendré par les translatés à gauche de

[co, 1] e 0&gt;+, donc le monoïde Q est isomorphe à 3P+. On peut montrer (cf. [PI;
proposition 2.1]) que I est engendré par les n - co - co&apos;, où co, co1&apos;, k € Q et Mn
est inclus dans le G-module engendré par les produits ff, oùfe M(O, f eM(0&gt;.

4.2 Soit (X, x) un plongement élémentaire de G/H, d&apos;orbite fermée X&apos;. Soient
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À un sous-groupe à un paramètre adapté à (X, x), et H&apos; le groupe d&apos;isotropie de

L&apos;inclusion C C\H aC OH1 définit une application injective
&lt;p*:X(C/CnH&apos;)®zQ~&gt;X(C/CnH)®zQ. Soit Z1 le cône dual de

&lt;€r(G/Hf) dans X(C/CDH&apos;) &lt;8&gt;ZQ. D&apos;après le théorème 3.6, ii), l&apos;image de Z&apos;

par &lt;p* est la facette de 21 orthogonale à À.

D&apos;autre part, on a:rg(G/H&apos;) rg(G/H) - 1. En continuant ce processus, on
associe à toute demidroite extrémaie ô de Z un espace homogène sphérique de

rang 1 dont ô est le cône dual du cône des valuations.
Cela conduit à la proposition suivante, qui montre en particulier, que pour un

rang fixé, il n&apos;y a qu&apos;un nombre fini de possibilités pour Z.

PROPOSITION. Le cône convexe Z est engendré par des racines négatives, et

des sommes de deux racines négatives fortement orthogonales.

Remarque. Ce dernier cas peut se produire, voir l&apos;exemple 1 de 4.3.

Démonstration. Il suffit de démontrer l&apos;assertion suivante:
Soit G/H un espace homogène sphérique de rang 1, tel que Z =£ {0}. Alors Z

est engendré par une racine négative ou la somme de deux racines négatives
fortement orthogonales.

Première méthode: Le groupe T C\H est de codimension 1 dans T; soit x un
caractère de T dont le noyau est T C\H. Il est clair que x ou ~x engendre Z; on
peut donc supposer que x € Q- (d&apos;après le corollaire 4.1).

Soient ©, 93, # les algèbres de Lie de G, B, H et soit © ®aeX{T)^a la

décomposition de © en sous-espaces propres de T, et © ®^ex(TnH) ©p la

décomposition de © en sous-espaces propres de TilH. Alors ®a\TnH
£n6Z ©ar+n*, pour tout oc e X(T). Comme © © 4- &lt;p et que 33 et $ sont stables

par T H //, on a pour tout p e X(T H H): 93 H ©^ {0} implique ©„ c &lt;p. On en
déduit que x est proportionnel à une racine ou à la somme de deux racines:

sinon, on aurait ©a &amp;aiTnH pour tout a e X(T), d&apos;où ©aeO _{0&gt; ©tt c £&gt;• Donc

/f contiendrait un sous-groupe unipotent maximal de G, ce qui contredit le fait
que Z * {0} (cf. corollaire 3.7).

Soit aeX(T) tel que ©a(rnw^©a. Soit ©&apos; la sous-algèbre de Lie de ©
engendrée par les ©a+n* et ©&quot;&quot;*&quot;&quot;*, neZ. C&apos;est une algèbre semisimple de rang
^2, et ©&apos; 93&apos; + #\ où 83&apos; ©&apos; n » et #&apos; ©&apos; n #. On voit facilement que
l&apos;espace homogène (sphérique) associé à (©&apos;,#&apos;) est de rang 1.

Il suffit donc de démontrer l&apos;assertion dans le cas où G est semisimple de rang
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=^2. D&apos;après ce qui précède, % est contenu dans Q-, et proportionnel à une
racine ou à la somme de deux racines.

En utilisant la classification des systèmes de racines de rang 2, on voit que x
est proportionnel à une racine négative ou à une somme de deux racines

négatives fortement orthogonales, sauf peut-être dans les cas suivants (on note a,
p les racines simples de ©):

a) © êl(3, k) et x est proportionnel à -a-(&lt;x + /?);

b) © 3o(5, k) et x est proportionnel à -oc - (j3 + 2ar), oc est la racine

simple courte;
c) @ ëo(5, k) et x est proportionnel à — /? — ()3 4- a), or est la racine simple

courte.
Dans le cas a), d&apos;après ce qui précède, on a ©~a + ®~a~&amp; c £&gt;. On en déduit

facilement que H est conjugué au groupe étudié dans l&apos;exemple 2 de 4.3. On sait
alors (voir 4.3) que I est engendré par une racine négative. Donc ce cas ne peut
pas se produire.

Dans le cas b), on a ®~a + ©~2ar~^ç£, (&amp;? + ©-&quot;-*) H £=* {0} et (©** +
©af+/î) n £ =£ {0}. On en déduit facilement que H continent T ou un sous-groupe
unipotent maximal de G, ce qui n&apos;est pas possible.

Le cas c) est exclu de manière analogue au cas b).
Deuxième méthode: L&apos;espace homogène G/H est de rang 1, donc admet un

plongement élémentaire complet (X, x). Une telle situation a été étudiée par D.
Ahiezer dans [A2]; résumons une partie de ses résultats.

Il existe un sous-groupe parabolique P&apos; de G, et un sous-groupe de Levi U de
P&apos;, tels que H a P&apos; et qu&apos;on soit dans l&apos;un des cas suivants:

i) H HUL&apos; où HuaPfU est le radical unipotent de H; la P&apos;-variété

P&apos;/H&apos; PfU/Hu est isomorphe à un espace vectoriel M sur lequel P&apos; opère

par transformations affines, et U opère transitivement sur P(M); on a

X G X PP(M 0 A:).

ii) H PfuH&apos; où H&apos; est un sous-groupe réductif de L&apos;, et où L&apos;/H&apos; est de

rang 1. Si y est un plongement élémentaire complet de L&apos;/H&apos;, on a

X GxP,Yoù P&apos;u opère trivialement sur Y.

De plus, Ahiezer donne la liste de tous les (L&apos;, M) (dans le cas i)) ou (L&apos;, H&apos;)

(dans le cas ii)) possibles. La proposition se vérifie aisément dans le cas i); dans le

cas ii), on peut montrer que si N est un L&apos;-module simple tel que H&apos;N¥^0, alors
le plus grand poids de N engendre -21; puis on utilise la classification de

[A2]. ¦
4.3 EXEMPLES. 1) Cet exemple montre qu&apos;en général I n&apos;est pas engendré

par des racines négatives.
Soient G 5L(2, k) x 5L(2, k), et H 5L(2, k) la diagonale de G. Soient
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Bt, B2 deux sous-groupes de Borel opposés de SL(2, k), et r B1flB2. On
vérifie facilement que si B Bx x B2f alors BH est ouvert dans G, et que de plus
P B, et L C T x T est un sous-groupe de Levi de P adapté à H ; l&apos;espace

homogène G//f est de rang 1.

Soient xXfx2ek2 tels que chaque xt soit un vecteur propre de Blf et que
dét (xXf jc2) 1. L&apos;application /: G—» &amp; telle que f(s, t) dét (s&quot;1*!, t~lx2) pour
5, f 6 SL(2, fc), est un élément de 0&gt;+. On vérifie sans peine que / engendre le

monoïde 3^lf et que l&apos;espace vectoriel engendré par les (sf)(s&apos;f)f où s, sf eG,
contient les fonctions constantes sur G. A l&apos;aide de la remarque précédente (qui
s&apos;applique car G/H est affine), on en déduit que 21 est engendré par (—a, +a),
où oc est la racine de Bx par rapport à T. On aurait pu aussi déterminer Z en

remarquant que tout caractère de C, trivial sur CHH, est proportionnel à

(-a, +or).
2) Soit G SL(3, k); soient (ex,e2, e3) la base canonique de k3, et

(e*, e|, e*) la base duale. Soit H le sous-groupe de G qui stabilise les droites ke*,
et Jt(ef -f e*). Soient fi le sous-groupe de Borel de G qui fixe le drapeau
(eXf e2, e3), et T le tore standard de fî. On peut vérifier que BH est ouvert dans

G, que P B et que T est adapté à //.
Soient fXf f2, f3 les applications de G dans k définies par: /iC?)= {e*,se3);

fi(s) (eu set); f3(s) (eu s(et + ej)&gt;. Alors /^ /2, /3 engendrent librement le
monoïde &amp;+, et pour tout s e G tel que sex e2, ona/t =f2(sf3) - (sf2)f3. Avec les

notations précédentes, on a fa [ù)2, Xl];f2 [o)u %2\ et/3 [œu X\XXîl] où ^,
%2 sont des caractères de H et o)lf co2 les poids fondamentaux de T.

D&apos;autre part, on a dim (T f) H) 1, donc G//f est de rang 1. On en déduit

que E est engendré par le caractère — 2wx + co2= —ax de T. Dans cet exemple,
G/H n&apos;est pas quasi-affine.

3) Soit E un espace vectoriel de dimension 4 sur k, muni d&apos;une forme
symplectique non dégénérée (• | •)• Notons G le groupe symplectique associé; D,
D&apos; deux droites de Ey non orthogonales pour (• | •); H le stabilisateur de D et de
D&apos; dans G. Alors // est isomorphe à k*xSL(2,k). Choisissons une base

(elf e2, e_2&gt; £-0 de E telle que (ex | e_!) (e21 ^-2) 1 et que les autres produits
soient nuls. Soient B (resp. T) le sous-groupe de G formé des matrices

triangulaires supérieures (resp. diagonales) dans la base considérée.
Si D (resp. D&apos;) est engendrée par x 3ex -f 2e2 — |e_2 + e_! (resp. jc&apos;

—3ex 4-2e24-^6_2 + e_!), on peut vérifier que B/f est ouvert dans G et que le

monoïde 0&gt;+ est engendré librement par fl9 f2t f3, où fa(s) (el \sx), f2(s)
(ei\sx&apos;)f f3(s) (ei \sx)(e2\sx&apos;)- {ex \sx&apos;)(e2\sx) pour tout se G. En outre
P « fi, et r est un tore maximal de B adapté à H.

Soient % le poids de l&apos;opération de H sur D, et nu n2 les poids fondamentaux
de G; alors fx [nx&gt; x] h - [^i&gt; ~%\ h [^2» 1] avec les notations de 4.1.
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Notons P(E) l&apos;espace projectif de £, et Gr2(E) la grassmannienne des

sous-espaces vectoriels de dimension 2 dans E. Soit X la sous-variété de

P(E) x P(E) x Gr2(E) formée des triplets (d, d&apos;, p) tels que le plan p contienne
les droites d et d&apos;. Soit P le plan engendré par D et D&apos;. On peut vérifier que
(Xy (£&gt;, £&gt;&apos;, P)) est un plongement lisse, sans couleur de G///, dont les orbites

non ouvertes sont:

0x — {{d, dy p) e X | p non isotrope},

02 {(dy d\p)eX\p isotrope, d±d&apos;}y

€3 {(dy dy p) e X | p isotrope}.

L&apos;orbite 63 est fermée, isomorphe à G/B. Le complémentaire de l&apos;orbite

ouverte 6 dans X est formé des deux diviseurs lisses et transverses Ô\ G{ U 63 et

On peut vérifier que les sous-groupes à un paramètre À, et À2 de T tels que
À,(r) diag (t~\ ty r\ t) et X2(t) diag (t~\ t~\ tf t) sont adaptés aux plonge-
ments élémentaires d&apos;orbites fermées &lt;9j et Û2. On en déduit que ^Test engendrée

par les deux racines négatives courtes (on peut aussi le montrer par les méthodes
de 4.2, en étudiant les groupes d&apos;isotropie des plongements élémentaires OU &lt;?,

et ©U 02, dont les valuations associées engendrent (€T(G/H)).
L&apos;ensemble BSè(G/H) est formé des trois diviseurs fi-stables de G/H définis

par/i, f2f /v Notons vu v2y u3 les valuations correspondantes.
Dans Y(T/T H H) &lt;g&gt; Q s QA, 0 QA2, on obtient la figure suivante:
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Le plongement normal (simple, complet), associé à V •==¦ {Â2} et 3) {v3} à

l&apos;aide de 2.7, n&apos;est autre que (P(£) x P(E), (£&gt;, £&gt;&apos;))•

S. Le normalisateur d&apos;un sous-groupe sphérique

Dans cette partie, on étudie le normalisateur NG(H) de H dans G, et on
retrouve et améliore les résultats de [PI].

5.1 PROPOSITION. Soit H° la composante neutre de H: alors BH° BH,
et le normalisateur de H° dans G est l&apos;ensemble des s e G tels que BHs BH.

Remarque. On verra plus loin (Corollaire 5.2) que H et H° ont le même
normalisateur dans G.

Démonstration. Soit K l&apos;ensemble des s e G tels que BHs — BH\ c&apos;est un

sous-groupe de G qui contient H. Soit s e NG(H°): alors BsH° BH°s est ouvert
dans G, donc BsH° rencontre l&apos;ouvert BH°, d&apos;où s e B//°. Par suite, BNG(H°)
BH, d&apos;où BH BH° et NG(H°) c K.

Réciproquement, montrons que KœNg(H°). Notons 2P°+ l&apos;ensemble des

vecteurs propres (non nuls) de B (opérant par translations à gauche) et de H°
(opérant par translations à droite) dans k[G]; alors ^+ est l&apos;ensemble des

fek[G] telles que/ne s&apos;annule pas sur BH BH° [BLV; 2.1]. Par conséquent,
l&apos;opération par translations à droite de K laisse stable &amp;*{, donc aussi l&apos;ensemble

des vecteurs propres de H° dans k[G]. On en déduit que l&apos;opération par
translations à droite de K dans k(G) laisse stable le corps fc(G)&quot;°. Donc on a bien

K c NG(H°), qui est le groupe de G-automorphismes de G/H°. ¦
5.2 Soit f e SP+ telle que l&apos;ensemble des zéros de / soit G — BH. Soient M un
G-module simple, me M et jueM* tels que f~ti(-m) (cf. 2.5). Soit df{\) la
différentielle de / en 1 e G; c&apos;est un élément du dual de l&apos;algèbre de Lie de G.

Notons Z/le groupe d&apos;isotropie de df(l); d&apos;après [BLV; 3.5] c&apos;est un sous-groupe
de Levi de P, adapté à H.

PROPOSITION, i) On a NG(H°) H°(Cf nNG(H0)), où Cf est la

composante neutre du centre de Lf.

ii) Si de plus f s&apos;annule avec la même multiplicité sur toutes les composantes
irréductibles de G - BH, alors NG(H°) est le stabilisateur de km.

Démonstration, i) Puisque BH BNG(H°), on voit que l&apos;on a P
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{s € G | sBNG(H°) BNG(H0)} et que Lf est un sous-groupe de Levi de P adapté
à NG(H°). Par suite, la multiplication de G induit des isomorphismes

Pu x CfNG(H°)-&gt;PNG(H°) PH°^-PU x CfH°.

En particulier, C&apos; NG(H°) CW, d&apos;où i).
ii) Soit s 6 G tel que sm e km. Il existe alors a e k* tel que sm orra, d&apos;où

f(gs) ûrf(g) pour tout g e G. Donc BH={geG \f(g) #0} est stable par
translations à droite par s. Par conséquent, d&apos;après 5.1 le groupe NG(H°) contient
le stabilisateur de km.

Pour prouver l&apos;inclusion opposée, il suffit d&apos;après i) de montrer que
Cf H NG(H) stabilise km. Or, pour tout s eCf D NG(H), la conjugaison par s

laisse stable BH, donc fixe/(d&apos;après l&apos;hypothèse sur/). On en déduit que sm est

proportionnel à m, d&apos;où la proposition. ¦
COROLLAIRE. On a NG(H) NG(H°) H(Cf H NG(H)); en particulier

NG(H)/H est diagonalisable.

Démonstration. Il suffit de prouver que NG{H) NG(H°). Il est clair que
NG(H) a NG(H°). Réciproquement, soit s e NG(H°): alors H° &lt;= sHs~l c NG(H°).
Puisque NG(H°)/H° s (Cr H NG(H°))/(Cf H //°) est abélien, on en déduit que

H, U.seNG(H). ¦
5.3 PROPOSITION. Sm&apos;éwf A e Y(C) ef vk la valuation de k(G/H) associée

à À (cf. 2.8). Les conditions suivantes sont équivalentes:
(i) vx et -vk sont dans %Y(GIH).
(ii) À esf à valeurs dans NG(H).

Démonstration, (i)^(ii): On utilise les notations de 4.1. L&apos;hypothèse signifie

que À est orthogonal à 2&quot;, c&apos;est-à-dire que si f [(oy #], /&apos; [ct&gt;&apos;, x] et
(P [^X + ^&apos;] sont dans 0&gt;+ et &lt;p est dans l&apos;espace vectoriel engendré par
{(sf)(s&apos;ff) \s,s&apos; e G}, alors (A, n) (A, œ) + (A, œ&apos;). Cette condition signifie

que l&apos;action de k* sur 9&quot; définie par A, se prolonge en une action de k* sur
k(G)H qui commute aux translations à gauche. Donc A est à valeurs dans le

groupe des G-automorphismes de G/H, c&apos;est-à-dire dans NG(H).
(ii) :^&gt; (i) est conséquence immédiate de 2.8. ¦
COROLLAIRE. Les conditions suivantes sont équivalentes:

(i) // existe un plongement simple normal, complet sans couleur de G/H
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(alors d&apos;après 2.1
&gt;

c&apos;est Vunique plongement associé à ^^(GIH) tout
entier).

(ii) Le cône ^(G///) est saillant.

(iii) NG(H)/Hestfini.

Démonstration. (i)O(ii) résulte de 2.7, et (ii)&lt;=&gt;(iii) de la Proposition 5.3 et
du Corollaire 5.2. ¦

Remarque. Soit G/H un espace symétrique, i.e. H est le groupe des points
fixes d&apos;un automorphisme involutif du groupe semisimple G. Alors la condition
(iii) du corollaire est remplie; l&apos;unique plongement simple, normal, sans couleur
de G/H a été défini et étudié dans [DPI] et [DP2] en vue d&apos;applications à la

géométrie énumérative.

5.4 PROPOSITION. Soient (X, x) un plongement élémentaire de G/H, et v
la valuation associée. Alors Vopération à droite de NG(H)/H sur G/H se prolonge
à X. Si de plus -v $ &lt;iêT(G///), alors le quotient X/NG(H) existe, et est un
plongement élémentaire de G/NG(H).

Démonstration. Le cas où —v e (€V(G/H) se traite facilement à l&apos;aide de 5.3.
On suppose donc que — v $ C€V(G/H). Soient /, Lf et Cf comme en 5.2.
Choisissons un sous-groupe à un paramètre A de Cf, adapté à (X, x); soit

x&apos; lim,_»0 k(t)x. Alors Cf • x U Cf • x&apos; est un plongement élémentaire de
Cf l(Cf H H) (voir 2.10). D&apos;après la Proposition 5.3, quitte à remplacer A par un
multiple de A, on peut supposer que NG(H) n Im (A) {1}.

Le quotient de Cf-xUCf-x&apos; par Cf(lNG(H) existe donc, et est un
plongement élémentaire de Cf/(Cf(lNG(H)). Remarquons que d&apos;après le

Corollaire 5.2, Cf CïNG(H) s&apos;envoie surjectivement sur NG(H)/H. La proposition
résulte alors du résultat de structure locale de X rappelé en 2.9. ¦

A l&apos;aide de cette proposition, on définit une application n\
&lt;€Y{GING(H)) (si v et -v sont dans ^^(G///), alors Jt(v) 0). On voit
facilement que m est le quotient par HL (et 2^ est le plus grand sous-espace
vectoriel de V contenu dans C€V(G/H)). En particulier, le cône des valuations de

G/NG(H) est saillant.
On peut ainsi retrouver le résultat principal de [PI], utilisé en 3.7 (les

troisième et cinquième parties sont bien sûr indépendantes

COROLLAIRE. Pour un sous-groupe sphérique H de G, les conditions
suivantes sont équivalentes:
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(1) C€T{G/H) est un sous-espace vectoriel de V.

(11) H contient un sous-groupe unipotent maximal de G.

Démonstration La condition (1) signifie que C€V(G/NG(H)) est réduit à {0},
donc que NG(H) est un sous-groupe parabolique de G. Comme NG(H)/H est un

groupe diagonalisable, il est clair que (1) équivaut à (u) ¦
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