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Links of surface singularities and CR space forms

F. ExLers, W. D. NeuMANN,” and J. SCHERK

In memory of Peter Scherk

Abstract. We classify 3-dimensional compact locally homogeneous non-degenerate CR-manifolds

(“CR space-forms™). Most of them are links of normal complex surface singularities, and we classify
these singularities.

Introduction

In the last century, F. Klein studied the group I of orientation-preserving
symmetries of the triangular tesselation of the 2-sphere with angles 7/2, n/3,
nt/5, and of the hyperbolic plane with angles 7/2, &/3, /7. He showed that the
algebra of I'-automorphic forms has generators x, y, z satisfying x>+ y> + z° =0,
respectively x>+ y*>+ z7 =0. This connection was pursued in [D1], [M1], [N1],
[N2], and [D2]. It can also be interpreted in terms of geometric structures on the
link of the singularities. For example, the link of x*>+ y>+z°>=0 is Poincaré’s
dodecahedral space, which is a spherical space form.

Let (X, x) be a normal complex analytic surface singularity and let M be a link
of (X, x). In [N3] it is shown that for (X, x) in one of the following four classes
there is a one—one correspondence between geometric structures on M (i.e.
locally homogeneous Riemannian metrics) and complex analytic structures on
(X, x):

(i) quotient singularities,

(ii) simple elliptic singularities, or rational singularities which are quotients

thereof,

(iii) quasihomogeneous hyperbolic singularities (i.e. quasihomogeneous sing-

ularities not in (i) or (ii)),
(iv) cusp singularities and quotients of them by involutions.

() Research partially supported by the NSF.
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Links of surface singularities and CR space forms 241

The four geometries which occur are (notation will be explained below):
i) $° (i) N (i) (PSL)” (iv) S

This relationship between the geometric structure on M and the complex
analytic structure on (X, x), as described in [N3], is not intrinsic. On the other
hand, any singularity link carries an intrinsic CR structure which determines the
singularity analytically (cf. [S]). In terms of the CR structure we find the
correspondence between the locally homogeneous structure on M and the
analytic structure on X in a more natural form. In fact (Theorem 7.1) the
singularities which have a CR space form (i.e. a locally homogeneous non-
degenerate CR manifold) as a link are precisely the above together with an
additional class:

(iii)’ non-quasihomogeneous hyperbolic singularities.

This new class is related to the Gorenstein singularities of type (iii) as explained
below.

We now describe the above classes of singularities in more detail. The first
three classes together comprise precisely the class of all normal quasihomoge-
neous surface singularities. According to Pinkham [P] (cf. [D1] and [D2] also)
any such singularity can be constructed in the following way. Let D be P,C, C or
the unit disc A in C, and let I" be a discrete, cocompact subgroup of Aut (D). I
has a normal subgroup I'"’ of finite index which acts freely on D. Let L be a I'-line
bundle on D such that the line bundle I'"\L on I'"\ D is negative. The 0-section
of I'"\ L can then be collapsed to a point to obtain a normal surface X' on which
/I’ acts. Set X(I', L)=(I'/TH)\X'. X(I, L) has one singular point 0. The
classes (i), (ii), and (iii) correspond to the cases D = P,C, C, and A respectively.

The singularity X(I, L) is Gorenstein if and only if L"=T,A as a I'-bundle,
for some r >0 (cf. [D2], prop. 1). In this case there is a non-quasihomogeneous
singularity, of the same topological type, associated with (X (I, L), 0). We give a
construction of it in 3.5 and 4.4. This is a “non-quasihomogeneous hyperbolic
singularity” of the class (iii)’. In a future paper we identify it as the highest weight
deformation of X(I', L).

Finally, the singularities of class (iv) can be described as the singularities
which have a resolution diagram of one of the two types in figure 1 (cf. [N3],

Figure 1
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section 3). The weights are self-intersection numbers and all curves in the
resolution are rational. To be a resolution diagram, the weights must satisfy
e; < —2 for all i and some e; < —2. By Laufer [L] there is just one singularity with
each of these resolution diagrams. (The cusp which double covers the singularity
of figure 1b has the resolution diagram of figure 2.)

Our classification of 3-dimensional CR space forms is as follows (‘7" always

means ‘‘universal cover”):
(i) I'\S> rcuQR);
(ii) '\N, where N carries the standard spherical CR structure, I c
Autcg (N) =C* D<N;
(iii) '\SU(1, 1)~, where SU(1, 1) carries the standard spherical CR struc-
ture, I' « Autcg (SU(1, 1)7), which is an extension of PSU(1, 1) by R;
(iii)" I'\SU(1, 1)~, where SU(1, 1)~ carries one of a 1-parameter family of
aspherical CR structures, I =« SU(1, 1)
(iv) I'\S ,where S carries an aspherical CR structure, I' = (Z/2) D< §;
(v) '\T P (s), where P is the elliptic, hyperbolic, or Euclidean plane,
T ,.P(s) is the tangent circle bundle of radius s with its “natural” CR
structure and I" = Is(P)".
In each case, I' is a discrete subgroup which acts with compact quotient. (i)—(iv)
are links of the singularities (i)—(iv) respectively listed above. The “natural” CR
structure on T ,P(s) can be realized by looking at it as a G-orbit in G/ K, where
G =Is(P) and K is the isotropy group of a point. We give a more explicit
description in sections 5.1, 5.3, and 5.5. We also show (theorem 4.1) that
I'\T ,P(s) bounds an analytic variety if and only if I contains the centre of
Is*(P). This gives examples of compact, 3-dimensional CR manifolds which do
not bound analytic varieties and therefore, by [H-L], cannot be embedded in an
affine space.

In section 1 we define a link of an isolated singularity as a CR manifold. In
section 2 we discuss classifying spaces for non-degenerate CR structures on
3-dimensional real Lie groups; these are used in section 3 to classify simply-
connected homogeneous 3-dimensional CR manifolds. CR space forms are
discussed and classified in sections 4 and 5; the classification results are collected
as a theorem in 5.6. In section 6 we show that the ‘‘non-quasihomogeneous
hyperbolic singularities’’ are indeed not quasihomogeneous. In section 7 we use
the results from section 5 to prove the classification of surface singularities having
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CR space forms as links (Theorem 7.1) and in section 8 we discuss deformations
of space forms.

We are grateful to E. Looijenga for making us aware of his description of the
non-quasihomogeneous triangle singularities in [Lo], pp. 19, 20, which is
essentially the same as the one we give in 3.5 and 5.3. We thank D. Burns and W.
Goldman for useful conversations.

1. Links of isolated singular points

1.1. Let X be a complex analytic variety of dimension at least 2 with only one
singular point x. Let r:X— [0, ©) be a real analytic function on X such that
r~'(0) = x, and r is strictly plurisubharmonic on X — {x}. Then as in [Lo], 2.2, for
¢ sufficiently small, r has no critical points in r~'(0, £]. We define a link M of the
germ (X, x) to be the boundary of such a neighbourhood U =r~'[0, ¢) of x, i.e.
M =r~'(¢). By extending the proof of 2.5 in [Lo] slightly, one sees that any two
links of (X, x) are diffeomorphic.

Such a link M is a strongly pseudoconvex CR manifold. The CR structure on
M determines the singularity (X, x) in the following sense.

THEOREM 1.1 (cf. [S]). Let (Xi,x,) and (X,, x,) be normal isolated
singularities with links M, and M, respectively. Suppose M, = 3U, and M, = 3U,
where U, and U, are neighbourhoods of x, and x, as above. Let f:M — M, be a
CR isomorphism. Then f extends to an analytic isomorphism F:U,— U,. In
particular (X, x;) = (X5, x,).

This result is a special case of the following:

THEOREM 1.2. Let X, X, = C" be normal varieties whose boundaries are
C*, compact, connected, and pseudoconvex. Let f:3X,— 3X, be a CR covering
map. Then f extends to a finite analytic map F:X,— X,.

The proof of theorem 1.1 given in [S] extends to theorem 1.2 if one makes use
of theorem 12.1' of Harvey and Lawson ([H-L]).
2. Classifying spaces

2.1 DEFINITIONS. (i) A CR manifold M is homogeneous if its group of CR
automorphisms, Autcg (M), acts transitively on M.
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(ii) M is locally homogeneous if M is homogeneous.
(iii) A CR space form is a compact, non-degenerate, locally homogeneous
CR manifold.

A weaker definition of local homogeneity would be that any two points in M have
neighbourhoods which are isomorphic. This is not equivalent to (ii) (cf. section
8.1 below), unlike in Riemannian geometry.

A CR structure on a 3-dimensional manifold M may be given by a
2-dimensional subbundle V <= T .M with a complex structure J on it. M is strongly
pseudoconvex, or equivalently (in dimension 3), non-degenerate if

(*) for &, n linearly independent sections of V, [&, n] is everywhere transverse to
V.

InT M®C,
VRC= Tl,0® 72),1

where T, , and 7, are respectively the i and —i eigenbundles of J. In particular
Ti.o=T,,. Conversely, a complex line bundle L= T M ®C such that L+# L
determines a bundle V < T .M with a complex structure on it. (*) is equivalent to

(**) if § is a nowhere-vanishing section of L, then [§, {] is everywhere transverse
to L@ L.

If M is a real hypersurface in a complex surface Y, then 7; ; can also be described
in the following way. Let J denote the complex structure on Y. Define a mapping
of complex bundles

C.TMIC-T.,Y
by

CE+in)=E+Jy E,nel,M, pEM.

Then T , = ker C and C is surjective.

It turns out that all strongly pseudoconvex, homogeneous, 3-dimensional CR
manifolds are isomorphic to Lie groups with left invariant CR structures on them.
For this reason we shall examine such CR manifolds first before going on to the
actual classification of homogeneous manifolds in section 3.

Suppose G is a 3-dimensional real Lie group with Lie algebra g. A CR
structure on G is then given by a line bundle LcT,GQR®C=GXx(g®C) =
G X ge. So it corresponds to a mapping from G into the complex projective plane
P(g¢c) and L is the pull-back of the canonical line bundle. In particular, left
invariant CR structures on G correspond to points in P(g¢). The CR structure
corresponding to [£], § € g¢ is non-degenerate if and only if [£, ] is not a linear
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combination of { and . If fe Aut(G), then f maps the CR structure
corresponding to a point z € P(gc) isomorphically to the CR structure cor-
responding to f'(z), where f’ € Aut (g) is the derivative of f. If G is the adjoint
group of g, then the following theorem realizes G with these CR structures as
hypersurfaces in P(gc¢).

THEOREM 2.1. Let g be a 3-dimensional real Lie algebra, and G its adjoint
group. Suppose z € P(g¢c) corresponds to a left invariant CR structure on G and

G,={1}. Then G with this CR structure is isomorphic to the hypersurface
Gz < P(gc).

Proof. Let L < g¢ be the line corresponding to z. For fixed e L, £#0, we
may identify T,P(gc) = Tz gc/L = gc/L. Then, since T:(G{) = ad{(g),

T.(Gz) = (adf(g) + L)/L
and the diffeomorphism IT: G — Gz has derivative I1': g— T,(Gz) given by

IT'(n)=(adt(n)+L)/L  neg.
Thus the mapping C: gc— T,P(gc) is simply IT' ® C, i.e.

C(n)=(adf(n)+L)/L  negc,

whose kernel is L. Therefore the orbit mapping II is a CR isomorphism.

2.2. A left invariant non-degenerate CR structure on G induces a non-
degenerate, locally homogeneous CR structure on any quotient I'\G by a
discrete subgroup. For any g € G, right translation by g on I'\G maps the CR
structure corresponding to z € P(gc) to the one corresponding to Ad(g™")z. Thus
CR structures on I'\ G corresponding to points in P(qc) lying in the same G-orbit
are isomorphic.

2.3. There are many parallels between CR geometry and Riemannian
geometry. The CR manifolds which correspond to flat Riemannian manifolds are
those locally isomorphic to S° = C%

DEFINITIONS. (i) A CR manifold locally isomorphic to S* is called
spherical.

(ii) A locally homogeneous, non-degenerate CR manifold which is not
spherical is called aspherical.
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Spherical CR manifolds can also be characterized as those whose local
automorphism groups have dimension greater than 3 (cf. [C], section 81). In [C]
Cartan defines a scalar curvature R for any non-degenerate hypersurface M in C2.
He proves that R vanishes identically if and only if M is spherical. (The definition
of R and most of his results about it extend to any non-degenerate 3-dimensional
CR manifold).

For a spherical manifold M, Burns and Shnider ([B-S], section 1) define a
development map M — S>. They show that if M is locally homogeneous, then the
image M in S* is a homogeneous domain and the map is a covering of M.
Autcg (M) is a subgroup of Autcg (S°) =PSU(2, 1).

For aspherical manifolds the situation is quite different. Cartan proves the
following ([C], section 77).

THEOREM 2.2. Let M be a homogeneous, aspherical, 3-dimensional CR
manifold. Then dim Autcg (M) = 3.

So if M is simply connected, then M is isomorphic to G = Autcg (M), with a
left invariant CR structure on it.

To classify homogeneous aspherical CR manifolds, we must determine when
two such structures on a 3-dimensional Lie group G are isomorphic. Let
Z,, z; € P(gc) represent two such structures. Suppose f is a diffeomorphism of G
mapping the first isomorphically to the second. We can assume that f(1)=1.
Then, as is shown in section 84 of [C], f must preserve the fundamental invariants
of the CR structures, which include the structure constants of g. Therefore
f' € Aut (g) and z, =f'(z,;). So to classify aspherical CR structures on G, we need
only determine the orbits of Aut (g) in P(gc¢).

For aspherical CR structures, theorem 2.1 can therefore be strengthened.

THEOREM 2.1. Let g be a real 3-dimensional Lie algebra, and G its adjoint
group. Suppose z € P(g¢c) corresponds to a non-degenerate, left invariant,
aspherical CR structure on G and G,={1}. Then G with this CR structure is
isomorphic to the hypersurface Gz  P(gc). Two such hypersurfaces are isomor-
phic if and only if there is an f € Aut (g) such that the mapping induced by f on
P(gc) maps the one to the other.

3. Classification of homogeneous CR manifolds

3.1. Cartan classified homogeneous real hypersurfaces in C* ([C], 63 bis). His
classification was extended to higher dimensions in the spherical case by Burns
and Shnider ([B-S)).
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As mentioned in 2.3 all simply-connected, homogeneous, spherical manifolds
are covering spaces of homogeneous domains in S>. Here is a list of the five
possibilities, together with a description of their automorphism groups (cf. [B-S],
p. 229).

(i) D=85’={(z1, 2) e C*| |z]* + |z* = 1} =SU(2);

Autcg (D)= PSU(2, 1)

(i) D=S8*-{(1, 0)} =N, the Heisenberg group; (A)
Autcg (D) =C* D< N (cf. [B--S], p- 236)

(iii) D =(S*—{2,=0})=T,A(1)=PSU(1, 1); D is an infinite
cyclic cover of D; (©)
1— R — Autcg (D)— PSU(1, 1)— 1 (cf. [B-S], p. 234)

(iv) D =(S$*- (>N R?)=PSU(, 1);

D is an infinite cyclic cover of D; (K")
Auteg (D) =SO(2, 1) =2/2 >< PSU(1, 1) (cf. [C], 59)
(v) D ={(z, ) € C*|im z, = |z;|*, im z, > 0}; (E)

Autcgr (D) =R D< R? with t € R acting by #(x, y) = (e'x, e*y).
(A), (O), (E), and (K') are Cartan’s notations. (v) does not admit any compact
quotients ([B-S], 5.5). In 3.5 we shall make explicit the two spherical CR
structures on PSU(1, 1) in (iii) and (iv).

3.2. To classify simply-connected, homogeneous, aspherical CR manifolds
we shall use section 2 rather than follow Cartan’s approach. It is easy to obtain
his equations from theorem 2.1'. A Lie group admits compact quotients only if its
Lie algebra is unimodular (cf. e.g. [M2], p. 317 ff.). The 3-dimensional real
unimodular Lie algebras are

(i) R?

(i) su(2); (L)

(iii)) n, the Heisenberg algebra; (A)

(iv) su(l, 1); (K)

(v) 3, the algebra of infinitesimal isometries of R*> with a non-degenerate

indefinite bilinear form; (E) with m = —1

(vi) &', the algebra of infinitesimal isometries of E?; (H) with m =0.

Again (A), (E), (H), (K), (L) are Cartan’s notations. (i) clearly admits no
non-degenerate left invariant CR structures. In 3.3-3.7 we shall determine up to
isomorphism all left invariant CR structures, spherical and aspherical, on the
simply-connected groups corresponding to (ii)—(vi).

3.3. 5u(2)
Left invariant CR structures on SU(2) correspond to non-real points in
P(3u(2)c). Choosing a basis of su(2) gives an isomorphism P(su(2)c) = P(C).
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We take a basis {&;, &, &3} = s1(2) such that

[gli 52] = §3’ [§2> §3] = gl} [§3’ El] = EZ-

With respect to this basis, the Killing form is the diagonal form 2(x,y, + x,y, +
x3y3). So we can identify the adjoint action of SU(2) = Aut (su(2)) on su(2) or
P(3u(2)c), with the standard action of SO(3) on R* or P,(C).

To identify the orbits of SO(3) in P,(C), we define a mapping @: T, P(R)—
Py(C) by

D(x, y) = [x; +iy;, x5 + iyz, x5+ iy3] € P(C),
xz(xh xz,x3); y=(}’1,)’2, ¥3), |x|=1, X-y

I

0.

It is easy to check that @ is onto. Moreover, z = [x + iy] lies in the image of the
zero-section if and only if z = z, in which case the CR structure corresponding to
z is degenerate. @ is SO(3)-equivariant, and the orbits of SO(3) in T, P(R) are
the circle bundles. Therefore the orbits of SO(3) in the image of @ are the orbits
of the points z, =1, is, 0], s=0. For s >0 these points correspond to non-
degenerate CR structures. Since z; and z,,, lie in the same orbit, we can in fact
take 0 <s=<1. Using the formulae in [C], section 82, we find that the scalar
curvature R of the CR structure corresponding to z, is 3(s> — 1/s°). This shows
that for 0 <s <1, these CR structures are not isomorphic, and correspond to the
possible left invariant aspherical CR structures on SU(2). The orbit of z; is the
conic z - z =0. It represents the isomorphism class of the standard spherical CR
structure on S° (cf. also [D-G]). We denote by M,, SU(2) with the left invariant
CR structure corresponding to z, and by M,, the orbit of z,. Notice that @ is an
embedding of the disc bundle of radius s onto a domain X, = P,(C), for s <1.
This provides these disc bundles with a “natural” complex structure, and the
circle bundles with a “natural” CR structure.

34. n
It turns out that all non-degenerate left invariant CR structures on N are
isomorphic to the spherical one 3.1(ii). To see this, we take a basis {&,, &, &3} of
n such that

&1, &0 =85 [5ss Ei\]l=1[85, §2]=0.

Then z =[{] € P(n¢) with § =a,&, + a,§, + a;&; corresponds to a non-degenerate
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CR structure if and only if
(&, €] = (a,a; — a,a5)E3#0.

This choice of basis gives

ay; app 0
Aut (n) — a,y dan 0 € GL(3, R) I d= a1145 — 41242 #0
as; dax d

The spherical CR structure in 3.1 corresponds to the point z =[1, i, 0] € P,(C).
But the orbit of z is

X = {[ay, a3, as] € P(C) | ,a, — a,a, # 0}
= {[1, a,, a3] | lm 02$0}.
Thus all non-degenerate CR structures are isomorphic to the standard one.

The following remark will be used in our discussion of compact quotients in
section 5.2. The image of N in Aut (n) is

1
0 |a, b eR
a

SO
-0 O

So the orbits of N in X are affine lines; in particular, the N-orbit of [1, i, 0] is
{11, i, a + bi]}.

3.5. su(1, 1)

For &, n e 3u(1, 1) let & - n be the Killing form. For { € su(1, 1)¢, & not real,
we have that the Hermitian form ¢ - is degenerate, indefinite and non-
degenerate, or definite on the plane generated by ¢ and £ according to whether
its discriminant D(§) = (¢ - §)*— ¢ - &J* is =0, <0, or >0.

These conditions have the following geometric significance for the point
z =[&] e P(su(l, 1)¢). Corresponding to the three cases, the line zZ joining z and
Z is either tangent to the conic C = {z |z -z =0}, meets C in two distinct real
points, or meets C in two distinct complex conjugate points. We set X' = {z =
[E]1I D(§)<0}; X"={z=[£]|D(£)>0}. X" has two components which are
conjugate to each other.

Suppose the Hermitian form is degenerate on the plane spanned by ¢ and £.
Since [, £]- £ =[¢, £]- E=0, [£, {] must lie in this plane. Thus the CR structure



250 F. EHLERS, W. D. NEUMANN AND J. SCHERK

given by the line [{] will be degenerate. Hence the non-degenerate CR structures
correspond to points in X' and X".

We want to describe the orbits of SU(1, 1) in P(5u(1, 1)¢). Let {&,, &,, &3} be
a basis of 31(1, 1) such that

(&1, &) = — &3 (&2, &3] = &4, (&3, §1] = —&,.

With respect to this basis, the Killing form is diagonal: for § = x,§; + x,&, + x3§3,
N =y& +»& +y:&, &-n=—-2x,y; + 2x,y, + 2x3y;. So the adjoint action of
SU(1, 1) can be identified with the standard action of G = SO(2, 1), on R*, where
R? carries the bilinear form above. We first discuss the orbits of G in X'.

The tangent bundles of the hyperbolic plane H is given by

TH={(x,y)|x,yeRx-x=-1,x,>0,x-y=0}.

Define @: T ,H— P,(C) by @(x, y) =z =[x +iy]. @ is an open embedding. This
gives T,H a ‘“natural” complex structure and the circle bundles in T ,H a
“natural” CR structure. @ is G-equivariant and maps T ,H — {zero-section} onto
X'. Therefore the orbits of G in X' are the orbits M, of the points z, = [1, is, 0],
s =0. The CR structures corresponding to the points z; for s >0 are non-
degenerate and therefore all the points in X' give non-degenerate CR structures.
The curvature of the CR structure corresponding to z, is 2(s* — 1/s%). So for s # 1,
the orbits of the z; represent aspherical CR structures on SU(1, 1). By theorem 2.1’
no two of them are isomorphic. (The automorphism group of su(1, 1) is O(2, 1),
whose orbits on X' are the same as those of G). The orbit of z; lies in
{z]|z-2=0}=8> 1t is clearly S°— {S°N Py(R)), which is just the spherical
manifold (iv) in 3.1. SU(1, 1)~ with the CR structure corresponding to z, will be
denoted by M;. Let X be the image under @ of the disc bundle of radius s.

To finish, we identify the orbits of G in X". z € X" if and only if the line zz
meets C in two distinct complex conjugate points. One such line is z; =0, which
meets C in the points [0, 1, £i]. Let X be the component of X" containing
[0, 1, i]. It is sufficient to find the orbits of G in X. The isotropy group of z; =0 is
isomorphic to SO(2). Any non-real point on z, =0 lies in the orbit of a point
z, =0, 1, is], s >0, under this group. Therefore any point in X lies in the G-orbit
M, of some z,. Since z, and z;, lie in the same orbit, we may take 0<s <1. The
curvature of the CR structure corresponding to z, is 3(s*— 1/s%). Thus for
0=s=1, the points z; correspond to non-isomorphic CR structures. The orbit
D =M, of z, is one of the half-planes in C—Cg. It corresponds to the standard
spherical CR structure on SU(1, 1) ((iii) in 3.1). We denote SU(1, 1)~ with the
CR structure corresponding to z, by M,. We set X, =<1 M, 0=s5s<1. X, is
strongly pseudoconvex, and is G-diffeomorphic to a disc bundle over D.
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3.6.
Let {&,, &,, 53} be a basis of g such that

[51, Ez] =0, [53» 51] =&, [53, 52] =—&,.

z =[a,§, + a,§, + a35;] corresponds to a degenerate CR structure on S if and
only if a; =0 or z =[a,§, + a,&, + &3] with a, or a, real. So the domain in P(C)
corresponding to non-degenerate structure is

{la:, a;, 1] | (im a,)(im a;) # 0}.

On the other hand,

a 0 as 0 a;; aps
Aut (g) = 0 a», da»3 |}, an 0 a,s; | € GL(3, R)
0O 0 1 0 0 -1

so the domain above is just the orbit of [i, i, 1] under Aut(3), and all

non-degenerate left invariant CR structures on S are isomorphic. In the chosen
coordinates

r 0 a
S= 0 r' b|leGL(3,R)|r>0
0O 0 1

Therefore the orbits of S are isomorphic to the hypersurfaces in C* given by

(im z;)(im z;) =5, s #0, imz, >0
or

(im z;)(im z;,) = s, s #0, im z; <0.

These are exchanged by an automorphism of 3, so we need only consider the
former, which we denote by M. For s >0 we set

X, ={(z1, ) | (im z))(im 2,) >, im z, >0}.

3.7. g
Take a basis {&§;, &,, §3} satisfying

[51, §2] =0, (&3, E1]=—&,, [&3, &) =&:.
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Then the domain of non-degenerate left invariant CR structures is
X ={[a,, a5, 1] € P(C) | (im a,)* + (im a,)* # 0}.

This is just the orbit of (i, 0, 1) under

ay a2 ap ay, 4a; Aa
Aut (¢') = —ap a, axj|, a;; —ap, a; |eGL(3, R)
0 0 1 0 0 1

Thus all non-degenerate, left invariant CR structures on S’ are isomorphic, where
S' = Is*(B?),

cost —sind a
S’ == sin* cos? b |eGL3,R)
0 0 1

If T, E*is given its “natural” complex structure, then @: T ,E>*— P,(C) given by
D(x, y) =[x, +iy;, xo + iy,, 1] € P,(C), x = (xy, x2), y=01y2)

is a holomorphic embedding. The non-degenerate orbits of S’ are then the
hypersurfaces

M, ={(a,, a;) e C*| (ima,)* + (ima,)* =5}, s>0.

4. Non-embeddable CR space forms

Theorem 10.4 of [H-L] shows that a compact, connected, pseudoconvex CR
manifold which can be embedded in some C" (as a CR manifold) bounds an
irreducible variety with finitely many singularities. In this section we shall prove
that the examples mentioned in'the introduction do not bound analytic varieties.

Let P be the elliptic, hyperbolic, or Euclidean plane. Denote by Is(P),
respectively Is*(P), the group of isometries, respectively orientation preserving
isometries, of P. Set X = T ,P and for s >0, let

X ={EeX|||Ell<s}, M, ={EeX]|&ll=s},
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and let M, be the universal cover of M,. In 3.3 (for s<1), 3.5, and 3.7
respectively, we give embeddings of X| in P,(C) which provide X with a natural
complex structure, such that M, is strongly pseudoconvex as the boundary of X,
and P c X is totally real. Is(P) acts analytically on X;.

THEOREM 4.1. Let I" c Is(P)~ be a discrete, cocompact subgroup which acts

freely on M;. Then I'\ M, bounds an analytic variety if and only if T contains the
centre of Is*(P)".

Proof. Let I' c Is(P) be the projection of I'. Then I' acts freely on X, — P and
I'\(X, — P) is smooth. So the singular set of I'\ X, lies in I"\ P which is totally
real. Therefore '\ X, has finitely many singularities. Since I'\X, is relatively
compact and its boundary I"\ M is strongly pseudoconvex, I"\ X, is a Stein space.
I' > Z(Is*(P)) if and only if the covering f: '\M,— '\ M, is of degree 1. Assume
that '\ M, does bound a variety Y. By theorem 1.2, f extends to a finite analytic
mapping F:Y— '\ X,. Since '\ X, is Stein, the branch locus in '\ X, is a finite
set of points. Let p € I'\ X, be a smooth point. Then p does not lie in the branch
locus of F. For if g € F~'(p), then the link of g is a covering space of the link of
p, which is simply- connected, so g cannot be a branch point. It follows that

F:F"\(I'\(X, - P))— I'\(X, — P)

is unbranched.

Let D, = x~'(p), where m:I'\X,— '\ P, is the projection, p e '\P, 0<t<s.
Since F~'(8D,) is a circle, F~'(dD,) must be too, for all t>0. On the other hand,
if p € '\ P is smooth, then for ¢ small F~'(3D,) will be a disjoint union of circles.
So Y does not exist if deg f > 1.

The manifolds I'\ M, will be discussed further in 5.1, 5.3, and 5.5. It turns out
that for P =%, '\ M, is always isomorphic to "'\ M,.

5. Classification of CR space forms

5.1. SUQ2)

In 3.3, non-degenerate, left invariant CR structures on SU(2) were classified
by the orbits of SU(2) in P(su(2)c). The result was a 1-parameter family M,,
0<s =1, where M, is spherical and M;, for s <1, aspherical.

We first deal with the spherical structure M, =S">. Suppose I is a discrete
subgroup of Autcg (S%) = PSU(2, 1) which acts properly discontinuously on S°.
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Then I' must be conjugate to a finite subgroup of U(2) ([B-S], p- 233). The
quotients I'\S’ are precisely the links of the quotient singularities.

For s <1, Autcg (M;)=SU(2). Therefore a discrete cocompact subgroup
I' = Autcg (M;) must be a finite subgroup of SU(2). If I' > {£I}, then I'\ M, is
isomorphic to I'\M,, where I = I'/{xI}. This bounds the Stein space I'\X,
which has cyclic quotient singularities in '\ P,(R). If I’ $ {%1}, i.e. if I'is a cyclic
group of odd order, then by theorem 4.1, I'\M, does not bound an analytic
variety (cf. [R], p. 135 for the case I' = {I}).

52. N

In 3.4 we showed that any non-degenerate left invariant CR structure on N can
be mapped by an automorphism of N to the standard spherical structure
corresponding to the point [1, i, 0] € P,(C). The automorphism group of this
spherical structure on N is a semi-direct product: Autcg (N)=C*D< N (cf.
[B-S], p- 236). C* acts on N in the following way:

1 a c
forre’®eC*, | 0 1 b |eN,
0 0 1
1 a c 1 ra rc 1 a c 1 a' ¢
rl0 1 b (Olr e?lo 1 bl={0 1 b']|,
0 01 0 0 01 0 0 1

h ( )__(cosﬁ —s1n0>()
WHETE b/ " \sin®  cos® /\b/

If I'c Autcg (N) is a discrete cocompact subgroup, acting properly discon-
tinuously on N, then (cf. [B-S], 5.6) it has the form '=CD>< T’ c U(1) D< N,
where I'"=I'N N is a normal subgroup of finite index in ' and C=TI/I" is a
cyclic group of rotations, of order 1, 2, 3, 4, or 6, leaving the lattice
I''/(Z(N)NI') in N/Z(N) invariant.
Any discrete cocompact subgroup I’ of N can be mapped by a CR
automorphism to one of the form
1 a+bx cylk
L.=310 1 by ||a,b,ceZy, T=x+iyeC, kezZ".
0 0 1

therefore I'"\N is CR isomorphic to I; .\N for some k, 7. I; . \N is isomorphic
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to the unit circle bundle of a line bundle with Chern class —k over the elliptic
curve (Z + Zt)\C. By definition, I'"\N is a link of a simple elliptic singularity.
For arbitrary I' = Autcg (N), we have that N'\N = (I/T")\(I"'"\N). If I'/T" #
{1}, then this is the link of the rational singularity obtained from the appropriate
simple elliptic singularity by taking its quotient by I'/I"".

An alternative way of seeing this classification is the following. It is well
known that a discrete cocompact subgroup I' of N can be mapped by an
automorphism of N to one of the form

c/k

/
I, = b |la,b,ceZy, keZ".
1

S O
S = N

In 3.4 we remarked that the orbits of N in p(n¢) are lines parallel to
{[1, i, a + bi]}, the orbit of [1, i, 0]. As a slice transversal to this line at [1, i, 0],
we can take X = {[1, —1/7, 0] |im 7 >0}. Any non-degenerate left invariant CR
structure on N can be mapped to one corresponding to a point on X by an inner
automorphism. Therefore, if N carries any such CR structure and I'' < N is
discrete and cocompact, I'"\ N is CR isomorphic to I; \N where N carries the CR
structure corresponding to a point [1, —1/7, 0] in the slice 2. Then I} \ N is again
isomorphic to a circle bundle over the elliptic curve (Z + Z7)\C. (This curve can
be described as Z*\R? with the complex structure given by Ty ; = C(1, —1/7)). In
particular, CR structures on I''\ N corresponding to points in different N-orbits
are in general not isomorphic.

5.3. SU(1, 1)

In 3.5 it was shown that there are two 1-parameter families of left invariant
non-degenerate CR structures on SU(1,1)”, M,, 0<s, and M;, 0<s=1,
corresponding to points in P(5u(1, 1)c) in the domains X and X' respectively.
We first consider compact quotients of CR structures on SU(1, 1)~ coming from
points in the domain X’. For any such CR structure, the automorphism group is
Z/2xSU(1,1)"=S0(2,1)". So let I' be a discrete cocompact subgroup of
SO(2, 1)". Points in the same SU(1, 1) orbit M. give isomorphic CR structures on
'\su(, 1)".

The image I" of I'in SO(2, 1) is also discrete. I'\M_ bounds the Stein variety
'\ X!. It may have cyclic quotient singularities in I'\H. I'\ M, is a finite covering
of I'\M.. For a description of the possible coverings see [N-R], theorem 3.1 (in
that theorem g +s should be 2g +s). By theorem 4.1, if I'\M, # ['\M,, then
I'\M, does not bound an analytic variety.
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Now suppose SU(1, 1)~ carries the standard spherical CR structure M,. M, is
a principal R-bundle over the unit disc A, and R acts by CR automorphisms.
Autcr (M) is a central extension of PSU(1, 1) by R (cf. 3.1)

0— R — Autcg (M,)— PSU(1, 1)— 1,

and SU(1,1) " NR =7Z. Let I < Autcg (M,) be a discrete cocompact subgroup
which acts properly discontinuously on M,. The image I' of I'in PSU(1, 1) is also
discrete (cf. [B-S], p. 235). Therefore 'NR =rZ, for some r e Q. Z(I')\M, is a
circle bundle of a “negative” I'-line bundle L on A, and thus I'\ M, is a link of
the quasihomogeneous hyperbolic singularity (X(I, L), 0) (cf. Introduction).

(X(I, L), 0) is Gorenstein if and only if reZ and L"=T A (cf. [D2)), i.e.
I'c=SU(1,1)". For such I' one can also construct a non-quasihomogeneous
surface singularity. To do so, we consider compact quotients of CR structures on
SU(1, 1)~ coming from aspherical points in X. The automorphism group of such
a CR structure is SU(1, 1) itself, and the possible CR structures on a compact
quotient I'\SU(1, 1)~ are represented by the family '\ M,, 0 <s < 1. We want to
show that the I'\ M, are links of surface singularities.

Let I' < PSU(1, 1) be the projection of I'. I" has a normal subgroup I'" of
finite index such that I'' = I is torsion free (cf. [M1], p. 184). Then I'"\ X, is a
smooth surface with boundary I''\M,. We claim that there exists a smooth
surface Y, with boundary I'"\ M, such that the covering map f:I'"\M,—T"'"\M,
extends to a finite analytic mapping F:Y,— I''\ X,. Indeed, f can be extended to
a C” branched covering of I'"\X,, branched along R=TI"\D. Since R is a
complex analytic curve in I''\ X, this cover can be given a complex analytic
structure.

Since I''\ M; is strongly pseudoconvex, R can be blown down to a point, and
Y,/R is a Stein variety. The action of I'/T" on I''\M, extends to Y,/R. So
Z,=(I'/T")\(Y,/R) is Stein variety with one singular point p. The singularities
(Z, p) are still isomorphic for s <1 and I'\M, is a link of this singularity. In
section 6 we shall show that is is not quasihomogeneous. Singularities of this form
we call non-quasihomogeneous hyperbolic singularities.

54. §

In 3.6 it was shown that all non-degenerate left invariant CR structures on §
are isomorphic. The CR automorphism group is Z/2 D><§ (cf. [C], 47), where
Z/2 acts on M, by exchanging z, and z,. Let I' < Autcx (S) be a discrete,
cocompact subgroup and let I"'=INS. It is well-known that I' must be

isomorphic to an extension of Z by Z*, where 1€ Z acts on Z* by a hyperbolic
element in SL(2, 7).
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Those points which lie in the same S-orbits give isomorphic CR structures on
I'\S. So the possible non-degenerate locally homogeneous CR structures on I'\§
are represented by the hypersurfaces I'\M, « I'\H? In [H], section 2 (cf. also
[K], p. 237) it is shown that I'\ X can be compactified by adding a point . I'\ M
is then a link of the singularity . Since I'\ X; does not admit a good C* action,
the links I'\ M are all distinct. The family of CR manifolds I'\ M;, s >0, can also
be obtained with fixed s by deforming the subgroup I' c Autcg (S).

5.5. §'

All non-degenerate, left invariant CR structures on §' are isomorphic to one
another (cf. 3.7). The CR automorphism group is Is(E?)~ =7/2 D>< S§’. Suppose
I' < Is(E?)" is a discrete cocompact subgroup which acts freely on §’. Then the
projection I of I'in §' is discrete as well and in fact I'\$’ is diffeomorphic to
'\S’ ([R-V], 1.3). So we can restrict ourselves to discrete cocompact subgroups
I of Is(E?) which act freely on S’. These are the crystallographic groups which
contain no reflections (up to similarity there are 7 types: three triangle groups
plus four 1-parameter families). The different non-degenerate, locally homoge-
neous CR structures on I'\S’ are represented by the hypersurfaces I'\M,
I'\C? s>0. The Stein space I'\C? has singularities of type A,, A3, A,, or A in
I'\R?. Since I'\C? does not admit a good C* action, for fixed I" the hypersurfaces
I'\M; are in general distinct. This family of CR structures can also be obtained
with fixed s by deforming the subgroup I' c Is(E?) by similarity transformations.

5.6. Classification

Collecting the results of 5.1-5.5 we get our classification of CR space forms.

THEOREM 5.1. The 3-dimensional CR space forms are
(i) I'\S®, with S* = M,, the standard spherical structure, I’ = U(2) (5.1);

(i) I'\N, with I' = Auteg (N) (5.2);

(iii) K\SU(, 1)~, where SU(1, 1)~ carries the standard spherical CR structure
M,, I c Auteg (M,) (5.3);

(iv) I'\SU(1, 1)~, where SU(1, 1)” carries the CR structure M;, 0<s <1,
rcSu(, 1)~ (5.3);

(v) I'\S, where S carries the CR structure M,, I c Autcg (S) (5.4);

(vi) I'\M;, M, =T ,P(s)~ carrying the natural CR structure, where P = P,(R),
H, or E* and 0<s<1, 0<s, or s=1 respectively, I <Is(P)”
(5.1, 5.3, 5.5).

If M— F i1s a Seifert fibration of a closed oriented 3-manifold M over a
possibly  non-orientable surface F  with  Seifert invariant (g;b;
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(a1, B1), - - -, (ax, Bx)), we define

e(M-—->F)=—b—i;3,-/oz,-, x(M—~>F)=x(F)—i(a,~-1)/af,-.

i=1

Then the 3-manifolds M which admit CR space form structures in cases (i), (ii),
and (iii) are precisely the manifolds admitting Seifert fibrations with F orientable
and e(M— F)<0 and x(M— F)>0, =0, <0, respectively (cf. [N3]). The
manifolds for cases (iv) and (vi) are also Seifert fibered, but are much more
restricted (cf. [R—V] or [N-R], Theorem 3.1); case (vi) includes some manifolds
Seifert fibered over non-orientable F. Case (v) gives all oriented manifolds which
can be fibered over S' with fiber §' X S' and monodromy h € SL(2, Z) satisfying
|trace (k)| >2 and all manifolds double covered by these (twisted doubles of the
orientation [0, 1]-bundle over the Klein bottle).

6. Non-quasihomogeneous hyperbolic singularities

In order to prove that the singularities (Z;, p) with links I'\M;, s <1, of
section 5.3 are not isomorphic to the quasihomogeneous hyperbolic singularities
with links I'\ M;, we shall need the structure equations for the CR structures M;.
M, corresponds to the point [0, 1, is] € P,(C). As a representative in su(1, 1), we
take

E,=s""(E+isE;)  O0<s=1
We have
(&, E1=-2i&,  [&, L]=ial, +ibL,,
a=3(s+3) o=306-3)
Choose left invariant 1-forms a, w,, @, on SU(1, 1)~ dual to &,, &,, C,. Then
da =2iw, A @, do, = (iac;)s —ibd,) A a.
Now suppose that (Z;, p) is isomorphic to the corresponding quasihomoge-

neous singularity. Then for s close to 1, the R™* action gives the germ of an R™
action on Z;,. So for some &>0, there exists a complex structure J on
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Z =(I'\M,) X (—¢, €) such that

(a) I'\M;— I'\M, x {0} is a CR embedding, and

(b) 3,, te(—¢, €), is an infinitesimal biholomorphic mapping.
(a) and (b) imply that &, is a (1, 0) vector field on Z. As a second (1, 0) vector
field, we take one of the form

n=ifi& +J(fi5)

where f; is real and nowhere 0. We choose f; so that
J(fLE1) =3, + £,E + g8, + &,

with f; real. Thus
n=38+fE+gL+8L., f=H+if

(b) implies that f and g do not depend on ¢. Now

[Cs’ 77] = (Csf)gl +f[§s’ gl] + (ng)C + (ng)Zs +g—[§s’ Zs]
= (Cf —2i8)E:1 + (L8 — iaf) L, + (8 — ibf) L,

Therefore integrability implies that

Cf =2ig, &8 =ibf,

and thus
&3f = —2bf
Now
C?fa'/\ws/\d)s= - d(gsfa/\a)s)=0
M, '\M;

On the other hand,

2fa A W, A @, = —2b fanw A, #0

M, M,

since f; = im f vanishes nowhere and b # 0 for 0 <s < 1. Therefore the singularity
(Z;, p) is not quasihomogeneous.
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7. Links of surface singularities

We now prove the first theorem in the introduction.

THEOREM 7.1. A normal surface singularity (X, x) has a locally homoge-

neous link if and only if
(1) (X, x) is a quotient singularity, or

(1) (X, x) is a simple elliptic singularity or a rational quotient thereof, or

(iii)) (X, x) is a quasihomogeneous hyperbolic singularity, or

(iv) (X, x) is a non-quasihomogeneous hyperbolic singularity, or

(v) (X, x) is a cusp or a quotient of a cusp by an involution.
The locally homogeneous links are the CR space forms (i)-(v) respectively in
theorem 5.1.

Proof. Suppose (X, x) is a normal surface singularity with a locally homoge-
neous link. The classification of CR space forms in section 5 shows that (X, x)
must be one of the singularities in the list above.

Conversely let (X, x) be one of the singularities in this list. If (X, x) is a cusp,
then it has a link of type (v) in theorem 5.1 (cf. [H]). A non-quasi-homogeneous
hyperbolic singularity has a link of type (iv) by definition. Suppose now that
(X, x) is a quasihomogeneous hyperbolic singularity. We shall show that (X, x)
has a canonical link which is a CR space form of type (iii).

Let R be a Riemann surface of genus =2 with the standard metric. We have

T.R(1)=m,R\PSU(1, 1) = (7,R),\SU(1, 1),

where (,R), = SU(1, 1)” is the extension of ;R with (7 ,R), N Z(SU(1, 1)) =
Z. More generally, the unit circle bundle of (T,R)" for meZ, m>0 is
isomorphic to (7,R),,\SU(1, 1)~ where (7,R),, = Autcg (SU(1,1)7) is the
extension of ;R with (x,R),, "R = (1/m)Z. Now suppose L'— R is a flat line
bundle. L' is given by a character x:m,R—S' which lifts to a character
Xm: (T R),,— R. If we consider R as Z(Autcg (SU(1, 1)7)), we can twist the
embedding of (,R),, with x,,, in Autcg (SU(1, 1)7) to obtain a new embedding
of (7t;R),, in Autcg (SU(1, 1)7). Given an arbitrary negative line bundle L— R,
there exist a unique flat bundle L’ and positive integers m and n such that

L"=L'® (T,R)"

The n-fold covering L— L' @ (T ,R)™ determines a subgroup (7t,R),.,, = (7T,R),,
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of index n such that the unit circle bundle L(1) satisfies
L(1)=(mR),...\SU(1, 1)".

Now a quasihomogeneous hyperbolic singularity is of the form (I'\L/R, 0) where
I'is a finite group of automorphisms of L. The action of I lifts to T, R. This gives
an actionof 'on L'=L" @ (T,R)™™. Because L' is uniquely determined, I" must
preserve the flat structure on L’. Therefore L(1) is invariant under I' and
I'\L(1), which is a link of (I'\L/R, 0), is a CR space form of type (iii).

If (X, x) is a simple elliptic singularity, then (X, x) = (L/R, 0) where R is an
elliptic curve and L is a negative line bundle over R. L has a canonical metric
such that L(1) is a space form of type (ii) (cf. [B-S], p. 237). If I'is a finite group
of automorphisms of L, then I" will preserve the metric, so that (I"'\ L/R, 0) also
has a link which is a space form of type (ii). The case (i) is straightforward.

8. Deformations

8.1. Local Homogeneity.

Our definition of a locally homogeneous CR manifold (2.1) raises the
following question. Suppose any two points in M have neighbourhoods which are
CR isomorphic. Is M then locally homogeneous? In this section we point out that
if the curvature R of M is not 0, then the answer is yes, but that there exist
spherical manifolds which are not locally homogeneous. On the other hand, we

shall see in 8.2 that among spherical CR-manifolds, local homogeneity is
preserved by deformation.

THEOREM 8.1. Let M be a compact, connected, non-degenerate CR
manifold. Suppose that any two points of M have neighbourhoods which are CR
isomorphic, and that the curvature R of M is not 0. Then M is locally
homogeneous, i.e. a space form.

Proof. Since R is not 0, M has a canonical Riemannian metric (cf. [W]). With
respect to this metric, the local CR automorphisms are isometries. Therefore M is
a locally homogeneous Riemannian manifold, and M is complete and homoge-
neous as a Riemannian manifold. Each local CR automorphism on M extends to
a global isometry. The subset of M on which this isometry is a CR mapping is
analytic and contains an open set. Therefore the isometry is a CR automorphism.
So Autcg (M) < Is(M) has dimension at least 3, and acts transitively on M.

Here are examples due to D. Burns of compact spherical M which are not
locally homogeneous. Let N*=N-{0}. N* is simply connected, and
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Autcg (N*)=C*. So N* is not homogeneous. Choose z € C* with |z| #1 and let
I'={z"|neZ}c=C*. Then M =TI\N* is compact, in fact diffeomorphic to
S'x S% It is a hypersurface in a Hopf surface. Many other non-locally-
homogeneous examples can be constructed by the observation in [B-S], p. 245,
that connected sums can be formed in the category of manifolds with spherical
CR structure.

It is not hard to show that among spherical CR manifolds, small deformations
of “Hopf hypersurfaces’ are still Hopf hypersurfaces and small deformations of
connected sums are still connected sums. The next theorem gives the analogous
result for space forms.

8.2. Deformation of space forms.

THEOREM 8.2. Let M, be a space form and let M,, t € T be a deformation of
M, such that each CR manifold M, is locally homogeneous in the weak sense (any
two points have isomorphic neighbourhoods). Then all M, for t near 0 are space
forms.

Proof. By the discussion in sections (5.1), (5.4), and (5.5), the theorem holds
for space forms M, of type S°, S, and S’, so we will restrict ourselves to the other
cases. If any M, is aspherical, then it is a space form by Theorem 8.1; moreover,
we may continuously deform the parameter s of theorem 5.1 to s =1, thereby
deforming the CR structure to a spherical space form structure. We may thus
assume that all the M, are spherical and M, is a space form of type N or
SU(1, 1)

For M, of type N, the result is proposition 5.10 of [B-S], who prove it by
computing the infinitesimal deformations. It can also be seen more simply by
observing that if one deforms the defining homomorphism f:I'— Autcg (N) <
PSU(2, 1) to a homomorphism g: I'— PSU(2, 1), then the Zariski closure of the
image of g will still be solvable and contained in a conjugate of Autcg (N).

For M, of type SU(1, 1)~ the desired result is theorem 4 of W. Goldman [G],
which was generalized to higher dimensions by W. Goldman and J. Millson
[G-M]. In this case it is not just a theorem about infinitesimal deformations; the
second order obstruction to a deformation is used.

Remark. If one takes a fixed simply connected homogeneous CR manifold as
“model”’, then our results show that the space of deformations of a CR space
form M with this universal cover is obtained simply by deforming the subgroup
I'=m,(M) in Autcg (M). In cases (1), (ii), and (iii) of theorem 5.1 it is thus the
“universal Jacobian” of the base orbifold of the Seifert fibering of M (i.e. the
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total space of the fibration over the moduli space of the orbifold with fibers the
Jacobian varieties; cf. remarks following Theorem 5.1). In cases (iv) and (vi) of
theorem 5.1 it is just the moduli space of the base orbifold, and it is R, in case
(v).

In the cases where M bounds a singularity (case (i) to (v) of theorems 5.1 and
7.1), this deformation space is the parameter space of singularities of the given
type with link homeomorphic to M (i.e. different CR space forms with
isomorphic universal covers bound different singularities) except in case (v),
where the singularity is rigid and the R, family corresponds to expanding and
shrinking the link about the singularity. (Expanding and shrinking the link has no
effect on the CR structure in the quasihomogeneous case and corresponds to
varying the parameter s of theorem 5.1 in case (iv).)

Note that these parameter spaces of singularities are not in general complex
analytic deformation spaces for the singularities; though they give complex
analytic families of the resolved singularities, the resolutions cannot in general be
simultaneously blown down. For example, in case (iii) the Gorenstein sing-
ularities correspond to a discrete set in the Jacobian of the base orbifold with a
given structure. Since a deformation of a Gorenstein singularity is Gorenstein,
other points in the Jacobian do not correspond to deformations of such a
singularity.

REFERENCES

[B-S] BuURNs, D. JR. and SHNIDER, S., Spherical hypersurfaces in complex manifolds. Inv. Math. 33,
233-246 (1976).

[C] CARTAN, E., Sur la géométrie pseudoconforme des hypersurfaces de deux variables complexes,
I. Oeuvres II, 2, 1231-1304.

[D-G] DEBIARD, A. and GAVEAU, B., Equations de Cauchy—-Riemann sur SU(2) et spectres associés.
C.R. Acad. Sc. Paris, t. 299, Serie I, 741-744 (1984).

[D1] DOLGACHEV, 1., Automorphic forms and quasihomogeneous singularities. Funct. Anal. Apl.
9:2, 67-68 (1975).

[D2] DOLGACHEV, ., On the link space of a Gorenstein quasihomogeneous surface singularity,
Math. Ann. 265, 529-540 (1983).

[G] GOLDMAN, W. M., Representations of fundamental groups of surfaces. Geometry and
Topology, Proceedings, University of Maryland 1983-1984, Springer Lecture Notes 1167,
95-117 (1985).

[G-M] GoLDpMAN, W. M. and MILLSON, J. J., Local rigidity of discrete groups acting on complex
hyperbolic space, preprint 1985.

[H-L] HARVEY, F. R. and LAwsoN, H. B., On the boundaries of complex analytic varieties I. Ann.
Math. 102, 223-290 (1975).

[H] HIRZEBRUCH, F., Hilbert modular surfaces. L’Enseignement Mathematique 19, 183-281
(1973).

K] KARRAS, U., Klassification 2-dimensionaler Singularititen mit auflésbaren lokalen Fundamen-
talgruppen. Math. Ann. 213, 231-255 (1975).



264

(L]
[Lo]

M1]
(M2]
(N1]
[N2]
[N3]
[N-R]
RV
(R]
(8]

W]

F. EHLERS, W. D. NEUMANN AND J. SCHERK

LAUFER, H., Taut two-dimensional singularities. Math. Ann. 205, 131-164 (1973).
LOOUENGA, E., Isolated singular points on complete intersections. L.M.S. Lecture Notes
Series 77, Cambridge Univ. Press (1984).

MILNOR, J., On the 3-dimensional Brieskorn manifold M(p, q, r). Ann. of Math. Studies, No.
84, Princeton Univ. Press, 1975.

MILNOR, J., Curvatures of left invariant metrics on Lie groups. Advances in Math. 21,
293-329 (1976).

NEUMANN, W. D., Brieskorn complete intersections and automorphic forms. Inv. Math. 42,
285-293 (1977).

NEUMANN, W. D., Abelian Covers of quasihomogeneous surface singularities. Proc. Symp.
Pure Math. v. 40, 2, 233-243 (1983).

NEUMANN, W. D., Geometry of quasihomogeneous surfaces singularities. Proc. Symp. Pure
Math. v. 40, 2, 245-257 (1983).

NEUMANN, W. D. and RAYMOND, F., Seifert manifolds, plumbing, w-invariant and orientation
reversing maps. Proc. Alg. and Geom. Topology (Santa Barbara, 1977), Springer Lecture
Notes 644, 163-196 (1978).

PINKHAM, H., Normal surface singularities with C* action. Math. Ann. 227, 183-193 (1977).
RAYMOND, F. and VASQUEZ, A., 3-manifolds whose universal coverings are Lie groups. Top.
and its Appl. 12, 161-179 (1981).

Rossi, H., Homogeneous strongly pseudoconvex hypersurfaces. Rice Univ. Studies 59, (3),
131-145 (1973).

SCHERK, J., CR structures on the link of an isolated singular point, C.M.S. Proceedings, vol. §
(1985).

WEBSTER, S. M., Pseudo-Hermitian structures on a real hypersurface. J. Diff. Geom. 13,
25-41. (1978).

Mathematisches Institut
Rheinsprung 21,
CH-4051 Basel
Switzerland

Dept. of Mathematics,
University of Maryland,
College Park, Md. 20742

US.A.

Dept. of Mathematics,
University of Toronto,
Toronto, Ontario
M5S 1A 1 Canada

Received February 28, 1986



	Links of surface singularities and CR space forms.

