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Sur un groupe remarquable de difféomorphismes du cercle

Etienne Ghys et Vlad Sergiescu

Introduction

L&apos;étude de la cohomologie du groupe discret des difféomorphismes du cercle
est motivée par son lien avec les problèmes de classification homotopique des

feuilletages de codimension 1 (voir par exemple [Ser]). Pour détecter des classes

de cohomologie non triviales, on est ramené à la recherche de sous-groupes dont
l&apos;homologie est calculable. A part les groupes abéliens, les sous-groupes étudiés
jusqu&apos;à présent se construisent essentiellement à partir de l&apos;action projective de

5L(2, R) sur le cercle Sl^P\R). ([Bot], [Tsul], [Tsu2].. Dans ce travail,
nous nous intéressons aux propriétés homologiques et dynamiques d&apos;un groupe
de nature différente.

Soit G le groupe des homéomorphismes g de R vérifiant les propriétés
suivantes:

1. g(* + l)=g(*) + l
2. g est affine par morceaux.
3. Si x est un point de discontinuité de la dérivée de g, alors x et g(x) sont des

nombres dyadiques, c&apos;est-à-dire des rationnels du type p • 2q avec p et q entiers
relatifs.

4. En tout point, les dérivées à gauche et à droite de g sont des puissances
entières de 2.

5. g(0) est un nombre dyadique.
La propriété 1 montre qu&apos;un élément de G définit naturellement un

homéomorphisme du cercle S1, identifié à R/Z. On désigne par G le groupe des

homéomorphismes de S1 ainsi obtenu.
On note F le sous-groupe de G formé des éléments qui fixent 0 (mod Z) et F&apos;

le sous-groupe de F constitué des éléments dont le germe en 0 est trivial.
Ces groupes sont apparus dans plusieurs contextes: logique, algèbre, topol-

ogie. R. J. Thompson [MK-TH], [?]), motivé par le &quot;problème des mots&quot;, a

construit un groupe infini, simple de présentation finie, plongé dans le groupe des

homéomorphismes du cercle. Il s&apos;avère que l&apos;image de ce plongement n&apos;est autre

que G (bien que nous n&apos;utiliserons pas ce fait). Le groupe F est relié au problème
des idempotents homotopiques [Dyd], [Fr-He]; récemment K. Brown et R.
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186 E GHYS ET V SERGIESCU

Geoghegan ont démontré que F est un groupe de type FP^&gt; de dimension

cohomologique infinie, bien que sans torsion ([Br-Ge] et [Br]). Par ailleurs F ne

contient pas de sous-groupes libres à deux générateurs [Br-Sq].
L&apos;étude que nous proposons du groupe G est basée sur la dynamique de son

action sur le cercle. Nous verrons que des méthodes apparues précédemment en
théorie des feuilletages permettent le calcul explicite de la cohomologie de G et
éclairent sa structure. Inversement, les propriétés algébriques et homologiques de
G sont reliées à d&apos;intéressantes propriétés qualitatives des feuilletages qui leur
sont associés.

Les discussions et la correspondance que nous avons eues avec plusieurs
mathématiciens nous ont constamment stimulées. D. Sullivan nous a suggéré
d&apos;étudier ce groupe d&apos;un point de vue dynamique. Nous avons utilisé avec profit
les preprints que P. Greenberg et S. Jekel nous ont communiqués. C&apos;est grâce à

R. Geoghegan et R. Strebel que nous avons eu connaissance, entre autres, de [?].
D. McDuff et A. Haefliger se sont intéressés à ce travail et nous ont encouragés
durant sa rédaction.

Nous les remercions tous pour leur gentillesse.
Le premier auteur remercie par ailleurs l&apos;IHES pour son hospitalité.

I. Enoncé des résultats

Tel que nous l&apos;avons défini, le groupe G est un groupe d&apos;homéomorphismes

du cercle. Le théorème suivant montre qu&apos;il est possible de &quot;lisser&quot; ce groupe
sans changer sa dynamique topologique.

THEOREME A. // existe un homéomorphisme h du cercle tel que hGh~l est

constitué de difféomorphismes de classe C00 de S1.

Nous verrons plus loin qu&apos;il existe un grand nombre de tels homéomorphismes
h. Par ailleurs, nous construirons d&apos;autres plongements de G dans le groupe
Diff!£ (S1) des difféomorphismes de S1, de classe C00, qui respectent l&apos;orientation.

Un théorème fondamental de J. Mather établit une équivalence homologique
entre le classifiant du groupe discret Diff^(IR) des difféomorphismes Cx de M à

support compact d&apos;une part, et l&apos;espace des lacets du classifiant BF^ des

f-structures de Haefliger de codimension 1 d&apos;autre part ([Mat]). W. Thurston a
donné une version de ce théorème pour le groupe Dïff£ (S1), revêtement
universel de Diff^ (S1). Une approche de ces théorèmes et de certaines
généralisations, basée sur l&apos;utilisation des monoïdes de plongements, est due à D.
McDuff et G. Segal [McD 1], [Seg3]. Nous étendons cette méthode aux groupes
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qui nous intéressent En utilisant un théorème récent de P Greenberg sur le

classifiant des pseudo-groupes linéaires par morceaux, nous explicitons des

espaces simples ayant le même type d&apos;homologie que les espaces d&apos;Eilenberg-

Maclane BG, BG et BFf Notre démarche est en quelque sorte inverse de celle
de J Mather et W Thurston qui utilisaient l&apos;équivalence d&apos;homologie pour
analyser BT~ à partir du groupe Diff&quot;(R)

Si X est un espace topologique pointé, nous noterons QX l&apos;espace des lacets

pointés et LX l&apos;espace Xsl des lacets libres Le groupe S1 opère sur LX de façon
naturelle, nous noterons !£X le &quot;quotient homotopique&quot;, c&apos;est-à-dire le quotient
de LX x ES1 par l&apos;action diagonale de S1 (où ES1 désigne l&apos;espace total du
S^-fibré universel)

THEOREME B // existe des applications continues

BF&apos;-*QS3

BG-+LS3

qui induisent des isomorphismes en homologie entière

Ce théorème permet la détermination des anneaux de cohomologie des

groupes F, F&apos;, G, G Rappelons d&apos;abord quelques notations Si A est un anneau

commutatif, on note A[x] la A-algèbre graduée des polynômes en une variable x
de degré pair |jc| Soit A{u) la Z-algèbre extérieure engendrée par un générateur
u de degré impair \u\ Enfin, on note F[x] l&apos;anneau gradué des puissances divisées

engendré par un générateur x de degré pair, c&apos;est par définition l&apos;anneau libre

engendré par des éléments xn (n ^ 1) tels que xx x et

La cohomologie entière de ££S3 n&apos;est pas connue C&apos;est pour cette raison que
nous n&apos;explicitons que la structure rationnelle de la cohomologie de G Voir
cependant [Hm] pour des informations sur la cohomologie de ££S3 à coefficients
dans Z2

COROLLAIRE C Les anneaux de cohomologie entière de F, F&apos;, G sont
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respectivement:

H*(F;I)^A(ulfu2)®r[a] avec |m1| |m2| 1 et \a\

H*(Ff,Z)~r[a] avec |&lt;r| 2

H*(G;Z)~r[a]®A(P) avec \a\=2 et |j3| 3.

De plus, on a:

Le groupe H2(G; Z) est isomorphe à Z © Z. // existe des générateurs a et % de

H\G\ Z), naturels dans H2(£S3; Z), tels que:

H*(G;Q)~Q[a, x]/&lt;x-X O avec \a\ 2 et |*| 2.

Par une méthode différente, K. Brown et R. Geoghegan avaient déjà calculé

la structure additive de H*(F; Z) ([Br-Ge]).
En prenant des coefficients réels, ces résultats présentent une analogie

surprenante avec les cohomologies continues (ou de Gelfand-Fuchs) de DifÇ (IR)

et Diff^ (S1). Rappelons que celles-ci sont respectivement isomorphes à U[gv] et

R[gv, eu]/gv - eu 0 où gv est la classe de Godbillon-Vey (intégrée sur la fibre)
et eu est la classe d&apos;Euler [Ha 2]. Il est naturel d&apos;interpréter les générateurs oc et %

à partir de cette analogie.

THEOREME D. Vêlement % de H2(G; Z) n&apos;est autre que la classe d&apos;Euler de

Vextension

Les puissances de la classe d&apos;Euler sont non nulles dans H*(G; Q) et donc dans

H*(DifC (S1); Q). (D&apos;après le théorème A).

La non nullité des puissances de la classe d&apos;Euler dans //*(Diff^ (S1), Q) est

un résultat de S. Morita [Mor]. Il nous semble intéressant de retrouver ce

phénomène dans un groupe explicite aussi &quot;petit&quot; que G.

L&apos;interprétation de la classe oc est plus délicate. Rappelons tout d&apos;abord que la
classe de Godbillon-Vey dans H2(DiSl (S1), R) peut être représentée par le
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&quot;2-cocycle de Bott-Thurston&quot; suivant (voir [Bott]):

u,v) -
2* hx

Log Du Log D{u°v)
DLogDv D LogD{u°v)

Ce cocycle, bien qu&apos;ayant un sens si m et u sont deux éléments de G est
évidemment nul dans ce cas car D Log Du est alors nul presque partout.

La classe oc apparait cependant comme un analogue discrétisé de gv où la
différentielle D est remplacée par une différence finie. Plus précisément, si

(p:S{-+M est une fonction admettant des limites latérales en tout point, on
notera Açp :Sl-+ U la fonction définie par Acp(x) ç?(jc+) - (p{xJ). En notant u&apos;d

la dérivée à droite, on a

THEOREME E. La fonction gv:GxG-&gt;Z définie par;

gv(u, v)
xeS1 ALog2vd

est un cocycle dont la classe de cohomologie est Vêlement 2a de H2(G; Z) décrit
dans le corollaire C.

On remarquera que la somme définissant ~gv est en fait finie.
Pour un plongement de G dans Diff^ (S1) donné par le théorème 1, on

pourrait être tenté d&apos;interpréter a comme étant l&apos;image réciproque de la classe de

Godbillon-Vey par ce plongement. Il n&apos;en est rien, comme le montre le théorème
suivant.

THEOREME F. Soit &lt;p:G—?Diff^ (S1) un morphisme quelconque. Alors
l&apos;image de l&apos;invariant de Godbillon-Vey par (/&gt;* est nulle dans H2(G; U).

Nous abordons maintenant l&apos;étude qualitative des actions de G sur le cercle.

Rappelons que si un groupe agit sur le cercle, sa dynamique topologique peut
être de trois types différents (voir par exemple [He-Hi]):

1. Il existe une orbite finie.
2. Toutes les orbites sont denses.

3. Il existe une orbite dont l&apos;adhérence est un ensemble de Cantor, appelé
minimal exceptionnel.

Il est clair que les actions de G sur S1 fournies par le théorème A ont toutes
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leurs orbites denses. Nous verrons qu&apos;une action non triviale de G sur S1 ne peut
avoir d&apos;orbite finie. Par contre, le cas 3 peut effectivement se produire:

THEOREME G. // existe des représentations &lt;p : G -&gt; DifT (S1) possédant un
minimal exceptionnel,

II résulte facilement des théorèmes D et F et de la formule de Hopf qu&apos;il

existe une surface compacte orientée S et une représentation 0 • n\(Z)-&gt; Diff^
(S1) ayant un minimal exceptionnel et telle que le nombre d&apos;Euler est non nul.
Nous avons réussi à construire un exemple explicite:

THEOREME H. Soit X12 la surface compacte orientée de genre 12. // existe

une représentation (^^(I^)—?DifT (S1) qui a un minimal exceptionnel et telle

que le nombre d&apos;Euler du S1-fibré associé est égal à 1.

Ce théorème contraste avec le résultat de [Gh 1] où il est montré que la classe
d&apos;Euler rationnelle d&apos;un groupe de difféomorphismes analytiques du cercle est
nulle en présence d&apos;un minimal exceptionnel. Remarquons que si (p&apos;.jt^)^

Diff^ (S1) possède un minimal exceptionnel, alors son nombre d&apos;Euler eu{&lt;t&gt;)

satisfait l&apos;inégalité de Milnor-Wood &quot;forte&quot; \eu(4&gt;)\ &lt; \x(Z)\ [Gh 1]. On pourrait
se demander dans quelle mesure cette dernière inégalité est optimale.

Le théorème G entraîne le résultat suivant:

COROLLAIRE I. Les groupes F et G sont isomorphes à des sous-groupes
discrets de Diffè (M) et Diff}. (S1), munis de la topologie C1.

Ainsi F et G sont des sous-groupes discrets de &quot;groupes de Lie&quot; simples de

dimension infinie; ceci pourrait être relié au fait qu&apos;ils sont de type FPX (voir
[Br-Ge]).

Une conséquence d&apos;un théorème classique de Denjoy et du théorème G est le

COROLLAIRE J. Tous les éléments de G ont un nombre de rotation
rationnel. Par ailleurs, tout rationnel est le nombre de rotation d&apos;un élément de G.

Enfin, nous nous intéressons à la classification des actions de G sur S1.

Rappelons que si &lt;f&gt;i et &lt;t&gt;2 sont deux représentations de G dans Homéo+ (S1),

on dit que &lt;px est semi-conjugué à &lt;t&gt;2 s&apos;il existe une application continue
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monotone A de 51 dans S1 de degré 1 telle que, pour tout g de G, on a

THEOREME K. Soit (p : G-^Diff2 (S1) une représentation non triviale. Alors,
0 est semi-conjuguée à Vinjection de G dans Homéo (S1).

En fait, nous donnerons une description précise de toutes les représentations
(j&gt; : G-* Diffr (S1) (r &gt; 2) à Cr-conjugaison près (voir théorème IH-3-17).

COROLLAIRE L. // existe des représentations non triviales de G dans

DifT (S1) (r &gt; 2) qui sont semi-structurellement stables dans le sens suivant: toute

représentation (/&gt;&apos; proche de (p est semi-conjuguée à 4&gt;.

Ce corollaire nous semble intéressant car ces actions stables sont de nature
différente des exemples déjà connus: essentiellement les groupes abéliens et les

groupes fuchsiens.
En conclusion, ces résultats semblent confirmer l&apos;idée de K. Brown et R.

Geoghegan suivant laquelle G est l&apos;analogue d&apos;un sous-groupe arithmétique F
d&apos;un groupe de Lie simple H de IR-rang supérieur à 2. Dans notre cas, Diff1 (S1)

joue le rôle de H (Corollaire I) et l&apos;action de G sur 5l est analogue à l&apos;action de F
sur H/P où P est un sous-groupe parabolique. La théorie des groupes
arithmétiques montre que les propriétés de F sont proches de celles de H (voir
[Zim]). Par exemple, Test &quot;résiduellement simple&quot; (de même de G est simple).
Il existe un rapport étroit entre la cohomologie de F et la cohomologie continue
de H (de même la cohomologie de G est analogue à la cohomologie de

Guelfand-Fuchs de S1). De la même façon, le théorème K est semblable au
théorème de Margulis affirmant que sous des conditions très générales, un
morphisme defc// dans H se prolonge à H. Il serait intéressant de trouver un
cadre général qui puisse contenir les groupes arithmétiques ainsi que des groupes
tels que G. Par ailleurs, cette analogie soulève naturellement quelques
problèmes: F est-il moyennable ([Br-Sq]), G possède-t-il la propriété T de

Kazhdan?
Cet article est organisé de la façon suivante. Dans la partie II, consacrée aux

questions cohomologiques, nous démontrons successivement les théorèmes B, C,
D, E. La partie III est consacrée aux propriétés qualitatives; on y démontre les

théorèmes A, G, J, H, I, K, L, F, E. Bien que la partie III s&apos;appuie sur la partie
II; sa lecture pourrait être faite directement après avoir pris connaissance des

notations générales en II-l.
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II. Propriétés quantitatives

II. 1. Préliminaires

Dans cette section nous fixons des notations et nous faisons quelques rappels.
Notons Q2c:&apos;R l&apos;ensemble des nombres dyadiques et soit GA(Q2) le groupe

affine dyadique, c&apos;est-à-dire le groupe des bijections affines de M du type

x-» 2nx + ^ avec n, p, q entiers relatifs.

Si x est un réel, nous noterons Tx la translation d&apos;amplitude x. Soit Rx la

rotation de S1 correspondant à Tx.

On désigne par F(U) le pseudo-groupe des homéomorphismes locaux de M

qui sont GA(Q2) par morceaux: h e F(U) si pour toute composante connexe / de

son domaine de définition il existe une suite strictement croissante de nombres
dyadiques (xn)neZ sans point d&apos;accumulation et une suite (yn)nez d&apos;éléments de

GA(Q2) tels que h \ [xn, xn+x] yn \ [xn, xn+l].
Le monoïde des auto-plongements de IR qui appartiennent à F(IR) est noté

M(R). Il est clair que le groupe G défini dans l&apos;Introduction est contenu dans

M(R). Soit PL2(U) le groupe des homéomorphismes de IR qui appartiennent à

r(R).
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On définit de même le pseudo-groupe F(Sl). Le monoïde M(Sl) qui lui
correspond est alors précisément le groupe G.

Un argument dans [McD 1] p. 436 montre que les classifiants BF(U) et

BF(Sl) ont même type d&apos;homotopie que nous noterons parfois BF simplement.
Passons à quelques rappels sur l&apos;homologie et Phomotopie des monoïdes (voir

aussi [McD 2] et [Segl], [Seg2], [Seg3]).
Soit M un monoïde topologique qui agit à gauche sur un espace topologique

X. On désigne par &lt;€(M\\X) la catégorie topologique dont l&apos;espace des objets est

X et celui des morphismes est M x X; le morphisme (m, x) ayant x comme source
et mx comme but. Soit M\\X la réalisation géométrique du nerf de ^(M^X)
c&apos;est-à-dire du complexe semi simplicial associé. On note BM Àf\\* le classifiant
du monoïde M. Lorsque M est un groupe discret, BM est une espace
d&apos;Eilenberg-MacLane K(M, 1).

Dans la suite les réalisations géométriques sont prises au sens fin sauf pour les

classifiants BF des groupoïdes ou en relation avec eux (voir [McD2] §3 et [Seg 2]

Ap. A pour des détails sur ceci ainsi que sur des questions connexes). En

particulier, si e est l&apos;élément neutre d&apos;un monoïde M alors Be c BM est le point
base de BM.

Avant de rappeler deux résultats sur les classifiants des monoïdes,
introduisons les notions clé de fibrations homologiques et homotopiques.

Soit B un espace connexe pointé en 60, p:E-+ B une application continue et

Fczp~l(b{)) un sous-espace de p~l(b()).

DEFINITION 1.1. La donnée F—&gt;£^»B est une fibration homologique
(resp. homotopique) si Vinclusion naturelle de F dans la fibre homotopique de p en

bç) est une équivalence d&apos;homologie entière (resp. une équivalence d&apos;homotopie

faible).

En particulier, une suite spectrale relie les homologies des espaces F, E et B.

La propostion suivante est due à G. Segal et D. McDuff.

PROPOSITION 1.2 [MD-Se]. Si le monoïde M agit sur l&apos;espace X par des

équivalences d&apos;homologie (resp. d&apos;homotopie faible) alors

est une fibration homologique (resp. homotopique).

En considérant des actions à droite, nous obtenons des notions duales et 1.2

reste vrai.
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En particulier, soit K un sous-monoïde discret M et soit M//K le classifiant
de l&apos;action droite de K sur M.

COROLLAIRE 1.3 [Seg 3]. Si M//K est un espace contractile alors Vinclusion
BK—*BM est une équivalence d&apos;homotopie. Ceci a lieu en particulier si la
condition suivante est vérifiée:

(*) Le monoïde M est régulier à gauche (i.e. mnx — mn2 entraîne nx n2) et,

pour mXy m2e M, il existe m e M, kXy k2e K tels que mkx — mx et mk2 m2.

Une deuxième conséquence très utile de 1.2 est:

COROLLAIRE 1.4. [Seg3]. Soit 1-^K-^M^N^l une suite exacte de

monoides discrets {Le. i injectivey n est surjective et Im(i) n~l{e)) telle que:
(i) Pour neNy il existe sneM tel que l&apos;application k-+snk de K dans Ji~l{n)

est bijective.
(ii) Uendomorphisme Cn:K—&gt;K défini par la relation ksn snCn{k) est une

équivalence d&apos;homologie. {Cette condition est vérifiée si pour kXy kpe K il
existe k e K inversible tel que Cn{kl) k~lktk {i 1, p). Alors, BK-&gt; BM-&gt;

BN est une fibration homologique.

Dans la suite, les équivalences et le type d&apos;homotopie sont considérés au sens

faible.

II.2. Des espaces ayant même homologie que les groupes F&apos;, G et G.

Dans cette section, nous commençons la démonstration du théorème B. Nous
nous inspirons des techniques employées par D. McDuff et G. Segal dans leur
démonstration du théorème de Mather-Thurston et de ses généralisations.

Nous nous proposons d&apos;établir des équivalences homologiques entre l&apos;espace

BF&apos; (resp. BG) et l&apos;espace &amp;£F(resp. LBT).
La situation présente diffère de celle traitée par D. McDuff et G. Segal dans

la mesure où les groupes qui nous intéressent sont dénombrables et ne possèdent

pas de topologie &quot;continue&quot; comme c&apos;est les cas pour Difl^S1) par exemple.
Cependant si on considère que la version &quot;continue&quot; du groupe G est le groupe
de tous les homéomorphismes du cercle, les arguments de [McD 1] et [McD2]
peuvent s&apos;adapter à notre situation.

Nous avons cherché toutefois à rendre la démonstration accessible au lecteur
qui n&apos;est pas familier avec [Seg 3] et [McD 1] d&apos;autant que le fait que nous nous
intéressons à des groupes qui agissent sur le cercle ou sur la droite simplifie
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sensiblement de nombreux arguments. Cette section pourrait être donc aussi

considérée comme une introduction à [McD 1],

Nous remercions D. McDuff pour nous avoir aidé spontanément dans la

présentation de cette section.
Nous commençons avec une proposition qui exprime une connexité faible

dans le pseudo-groupe r((R). Elle permet de lui appliquer certains raisonnements

qui dans [McD 1] et [Seg 3] sont faits pour le pseudogroupe C00.

PROPOSITION 2.1. Soient ocx&lt;oc2i pl&lt;P2 quatre nombres dyadiques. Il
existe cp e PL2(U) tel que &lt;p{acx) fr, i 1, 2.

Démonstration. Quitte à composer avec des translations dyadiques, nous

pouvons supposer que ax — /31 0. Il suffira alors de construire pour un dyadique

y &gt; 0, un homéomorphisme &lt;pr e PL2(U) tel que &lt;py(0) 0 et (py(l) y. En effet,
le composé 9/32°^â21 enverra alors a2 sur j32. De plus, on peut supposer que
y &lt; 1, en utilisant éventuellement pour ceci une homothétie.

Ecrivons alors

Posons

cpr(x) x pour jc^O,

(pr(x) x - 1 + y pour x &gt; 1

et définissons cpY sur [0,1] en imposant que sa pente soit égale à 1/2&apos;*&quot;&quot;*&quot;1 sur
les intervalles [1-1/2*, 1 -1/2*+1], 0&lt;fc&lt;n-l et à 1/21-&quot;11 sur l&apos;intervalle

[1 - l/2n, 1].

Nous allons maintenant décrire une équivalence d&apos;homologie entre les espaces
BF&apos; et QBF. Nous identifions librement F&apos; au sous-groupe des éléments de

PL2(U) dont le support est contenu dans ]0,1[.
Notons /0 ]-», 0[ et lx [1, &lt;*&gt;[ et soit Af(R, Iu rel/0) le sous-monoïde de

Af(R) formé des plongements &lt;p tels que cp id au voisinage de /0 et (p{Ix) czlx.
Soit M{IX) le monoïde des germes au voisinage de Ix des plongements de JT(R)

qui envoient Ix dans /a. Ainsi si &lt;j&gt;l9 &lt;p2e M(/i) alors q&gt;x q&gt;2
s&apos;il existe un ouvert

V 3 /j tel que &lt;Pi(x) &lt;p2(x) pour x e F.
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Un morphisme de monoïdes

M(U, Iu ici Içd^MVO

est défini par restriction. Il est clair que son noyau est exactement F1.

PROPOSITION 2.2. La suite des monoïdes discrets 1-»F&apos;-*

M (M, Ilf rélI0)£*M(I1)&apos;-* 1 est exacte et induit une fibration homologique des

espaces classifiants.

Démonstration. Soit xj) e M (A). On choisit deux dyadiques 0 &lt; ocx &lt; oc2 &lt; 1

tels que \j&gt; est défini au voisinage de ]a2, °°[. D&apos;après 2.1, il existe cp e PL2(U) tel

que &lt;p{&lt;xx) ocu et &lt;p(a2) ty{(x2). L&apos;élément de M(U, Iu rel /0) qui est égal à id.
(resp. &lt;p, $) sur ]-oo, ax] (resp. [alf &lt;x2\ [a2, +oo[) se projette sur ^ par
l&apos;application p. La suite de monoïdes est donc exacte.

La deuxième affirmation est une application de 1.4. (voir [Seg2]). Soit

q)lf q&gt;2eAi(tt,Il9 rel/0). Si p(q&gt;\) =/?(ç?2) alors q)Tl°&lt;Po est bien définie ce qui
assure la condition 1.4.i.

Si Sx,. sp eF1&apos;, q) e Af(R, Ix, rel/0), on choisit à l&apos;aide de 2.1 un élément
xjteF&apos; qui coïncide avec &lt;p sur &lt;p~&quot;1(Uf=iSupp.sl). Ainsi (p~1slç xp~lslxp et la
condition 1.4.ii est vérifiée.

La proposition 2.2 est utile grâce au:

LEMME 2.3. Uespace Af(R, Iu rel/0) est contractile.

Démonstration (voir [Seg3]). Rappelons qu&apos;une catégorie est filtrante si les

deux conditions suivantes sont vérifiées:
1. Si / et g sont deux morphismes entre les objets y et z, il existe un objet x

et un morphisme h:x—&gt;y tels que/°/i g°h.
2. Si x et y sont deux objets, il existe un objet z et deux morphismes /: z -&gt; x

etg:z-»y.
La classifiant d&apos;une catégorie filtrante est contractile (Voir [Qui]).
Le monoïde M((R, rel Jo) des éléments de M(R) qui fixent un voisinage de /0 a

un classifiant contractile. En effet, la catégorie ¥(ilf(R, rel/0)\\*) est filtrante.
Il résulte de 1.3(*) que l&apos;inclusion M(R, Iu rel I0)czM(M, rel /0) est une

équivalence d&apos;homotopie. Ainsi, BM(R, Ilf rel/0) est contractile. D

Rappelons qu&apos;un résultat fondamental de Segal ([Seg3 prop. 1.3]) assure que
le classifiant du monoïde discret des autoplongements C°° de IR a même type
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cThomotopie que le classifiant de Haefliger BFl. Ce résultat et sa démonstration
restent vrais pour le monoïde M (M) et le pseudo-groupe F((R).

On arrive alors à la description de type d&apos;homologie de F&apos;.

THEOREME 2.4. // existe une équivalence d&apos;homologie entre les espaces BF&apos;

et QBF.

Démonstration. Il est assez simple de montrer que l&apos;espace BM(Ii) a même

type d&apos;homotopie que le classifiant des autoplongements de ]1,°°[, donc que
BM(U).

Il résulte de 2.2, 2.3 et du résultat de Segal cité plus haut qu&apos;il existe une
fibration homologique d&apos;espace total contractile, d&apos;espace de base équivalent à

BF(U) et dont la fibre est équivalente à BF&apos;. Dans cette situation, il est classique

que BF&apos; a même type d&apos;homologie que QBF.

Remarquons que dans la suite (cf. 2.10) nous allons expliciter une équivalence
d&apos;homologie entre ces deux espaces.

Dans la dernière partie de cette section nous construisons une équivalence
d&apos;homologie entre l&apos;espace BG et l&apos;espace des lacets libres LBF. Pour un modèle
convenable, cette équivalence sera munie d&apos;une propriété d&apos;équivariance qui
permettra d&apos;en déduire une équivalence d&apos;homologie BG —» !£BF.

Dans un premier temps, nous relions l&apos;homologie des groupes F&apos; et G. Il n&apos;est

pas possible de plonger F&apos; dans G comme sous-groupe normal. Cependant, il
existe une fibration homologique dont la fibre et l&apos;espace total ont les homologies
des groupes F&apos; et G.

Soit / l&apos;intervalle ]-\, \[ et M(U, /) le sous-monoïde de G formé des

éléments qui préservent /. La proposition qui suit joue un rôle essentiel. C&apos;est

une version de 2.1 de [McD2]. Sa démonstration est repoussée à la fin de cette
section.

PROPOSITION 2.5. Uinclusion Àf(R,/)crG induit une équivalence
d&apos;homotopie entre les classifiants.

Soit / l&apos;image de l&apos;intervalle /par la projection R—^S1. Notons M(S{, rel/),
M(S1f /), (resp. M(l)) les sous-monoïdes de G formé des éléments qui sont
égaux à id au voisinage de /, qui préservent / (resp. le monoïde des germes en /
des plongements (V, /)-* (51, /) où V est un voisinage de /).

PROPOSITION 2.6. // existe une suite exacte de monoïdes 1-&gt;M(S\ rel /)-?
M (S1, /)-»M(/)-» 1 qui induit une fibration homologique.
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Démonstration. L&apos;exactitude de la suite se démontre comme dans 2.2 à l&apos;aide

de 2.1. De même la propriété homologique est une application de 1.4.

Notons %(S\ rel/), 2e(S\l) (resp. W(I)) les monoïdes de tous les

homéomorphismes de S1 définis de façon similaire à M (S1, rel/), M (S1, /) (resp.
le monoïde des autoplongements continus de /) et munis de leurs topologies
naturelles.

COROLLAIRE 2.7. // existe une fibration homologique:

M(S\

Démonstration. Il suffit de comparer cette suite d&apos;espaces à celle de la

proposition précédente compte tenu de 1.2 et de la contractibilité des monoïdes

X(Sl, rel/), X(S\ I) et X(l). D

Soit j.S1-* BF(Sl) l&apos;application naturelle qui envoie x eS1 sur l&apos;objet {x} de

la catégorie associée à F(Sl). Désignons par L(BF(Sl), rel/) l&apos;espace des

applications S1 —&gt; BF(S1) qui coïncident avec;0 sur un voisinage de /.
On a une fibration homotopique

LiBFiS1), re\I)-»LBF(Sl)-»Map(I, BF(S1))

où les flèches sont l&apos;inclusion et la restriction. Puisque / est contractile, il s&apos;agit

essentiellement de la fibration:

QBF-»LBF-»BF

Dans la proposition 2.8 toutes les réalisations géométriques sont supposées

épaissies (ceci ne change pas le type d&apos;homotopie des espaces qui interviennent
dans 2.7) voir [MD 2] p. 108 et Appendice.

Nous allons la comparer à la fibration de 2.7. Soit 3€ le groupe des

homéomorphismes du cercle qui respectent l&apos;orientation.

PROPOSITION 2.8. // existe une application &lt;P:(G^W)x S1-»BF(Sl) qui
induit des applications fn i 1,2, 3 et le diagramme commutatif:

M(S\ rel l)\\ar(S\ rel I) &gt; M(S\ rel iy\X{S\ rel I)-

L(Br, rel /) *¦ LBr * Map (/, Bf)
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Démonstration. Le groupe G agit sur StxS1 par g • (h, 6) (gh, 6). Les

espaces (G\\3if) x S1 et G\\(3ff x S1) sont homéomorphes.
Rappelons qu&apos;au pseudo-groupe F(S1)f on associe la catégorie topologique

^(/&quot;(S1) dont les objets sont les points et les morphismes sont les germes
d&apos;homéomorphismes locaux de F(S1). Il suffira de définir un foncteur continu
4&gt;: «(GWSif x S1)-* «(IXS1)). Pour un objet (h, 0) e 3T x S1 on pose 4&gt;(/*, 0)
h(6). Si g:(/i, 0)—»(/*&apos;, 6) est un morphisme, on définit &lt;P(g) comme étant le

germe g en h{6). On vérifie alors que &lt;P induit naturellement les applications flt
fi et h qui f°nt commuter le diagramme de 2.8.

Remarque 2.9. Considérons l&apos;application f :G\\2e-&gt; LBr(Sl) induite par &lt;P.

Le groupe S1 agit naturellement à droite sur G\\$f et sur LBriS1). Pour
A e LBriS1), de S1 on pose A • 0 A°/?0. Si /* e 3if on pose h • 0 h °Re et si g
est un morphisme de h à /i&apos;, on pose gd =g: on a en effet, g°h°Rd h&apos;°Re.

L&apos;application/est équivariante par rapport à l&apos;action de S1. La vérification est

immédiate à partir de la définition du foncteur 0.
On peut maintenant démontrer le

THEOREME 2.10. L&apos;application f induit une équivalence d&apos;homologie

G\\W^&gt;LBr(Sl). Par ailleurs, les espaces BG et GWSif ont même type
d&apos;homotopie.

Démonstration. Montrons d&apos;abord que l&apos;application f2:M(S1, /JW^S1, /)—»

LBT est une équivalence d&apos;homologie. En effet, nx(BT} — § par un argument
direct ou bien en utilisant le fait (voir II3) que BT est une sphère S3. On peut
alors appliquer le théorème classique de comparaison des suites spectrales,

pourvu que fx et /3 soient des équivalences d&apos;homologie. Le fait que /3 est une

équivalence d&apos;homotopie est essentiellement le résultat de Segal BM(U) —

Br(R).
Nous avons vu dans 2.4 que BF&apos; et QBF ont même type d&apos;homologie. La

preuve donnée s&apos;adapte pour montrer que fx est une équivalence d&apos;homologie.

Notons pour ceci /0, Jx et / l&apos;image sur S1 des intervalles [J, J], [- J, -1] et [|, |].
Le preuve de 2.2 donne une fibration homologique

BM(J, rel /0 U Jx) -&gt; BM(J, Jx, rel /0) -» BM(JX).

L&apos;application / permet de la comparer à la fibration suivante comme en 2.8:

Map(/, relJO\JJU Bf)-? Map(/, relJo, Bf)-+ Map(JY, BF).
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(Les notations sont similaires à celles déjà utilisées). Le même argument basé sur
le théorème de comparaison des suites spectrales et sur 2.3, 2.4, donne alors que
fi est une équivalence d&apos;homologie.

Nous avons donc montré que f2:M(S\ /JW^S1,I)-*LBF est une
équivalence d&apos;homologie. Pour terminer, montrons que l&apos;inclusion naturelle

M{Sl,I)\%e{Slfl)-*G\H induit une équivalence d&apos;homotopie. D&apos;après 2.5,
l&apos;inclusion M(R, ï)cG et une équivalence d&apos;homotopie. Par ailleurs, les

monoïdes M(R,Ï) et M(S1,1) sont évidemment isomorphes. Si §C désigne le

groupe (contractile) des homéomorphismes de R qui commutent avec la
translation Tif il suffit de montrer qu&apos;il existe une équivalence d&apos;homotopie

G\\$f—»G\\$f. Le lecteur se persuadera lui même de ceci en considérant le

diagramme naturel suivant dans lequel les flèches horizontales sont des

équivalences et les colonnes sont des fibrations

Z\\#

G\\ *

M «Z\\#&gt;Z\\
i i i

I I I
G\\*==G\\* G\\* D

COROLLAIRE 2.11. Vespace classifiant BG et Vespace ^BF ont même type
d&apos;homologie.

Démonstration. Nous avons déjà remarqué que l&apos;application /:G\\$f—»
LBF{S1) est équivariante par rapport à l&apos;action naturelle de S1. Elle induit alors

un morphisme de fibrations:

cwar —» LBr

i I
*//$&gt; —&gt; *//s!

D&apos;après le théorème précédent, et en comparant les suites spectrales des deux
fibrations, il résulte que (G\\X)//Sl-^&gt;LBr//Sl est une équivalence homolo-
gique. On conclut en remarquant que (G^Xy/S1 ^G\\(^//51)=- G\\* et que
LBF//S1 est un modèle pour l&apos;espace !£BF comme il est bien connu.

Nous terminons ce paragraphe avec la démonstration de la proposition 2.5,
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c&apos;est-à-dire du fait que l&apos;inclusion BM(M,Ï)-*BG est une équivalence
d&apos;homotopie. Pour ceci, nous montrons que l&apos;espace Af (R, 7)\\G est contractile.

Malheureusement, la condition * de 1.3 n&apos;est pas vérifiée, ce qui complique la

démonstration.

Démonstration de 2.5. Considérons l&apos;action diagonale de Af(R,7) sur le

produit / x G. Il suffit de montrer que l&apos;espace Af (R, /)\\/ x G est contractile: en

effet, la projection naturelle induit une équivalence d&apos;homotopie Àf(R, 7)\\/x G

-»M(R,7)\\G.
Soit jt:M(R, 7)\\7x G—&gt;R l&apos;application induite qui envoie l&apos;objet (x, g) sur

g~lx. Nous allons voir que k est une équivalence d&apos;homotopie.

Tout d&apos;abord la fibre de n en un point x e M est contractile. En effet, elle
s&apos;identifie à la réalisation de la sous-catégorie pleine %x c ^(M(IR, 7)\\G) dont
les objets sont les éléments g e G tels que x eg~l(I). Montrons que % est une

catégorie filtrante. Il suffit de produire pour g, h e Qb% un objet k et des

morphismes de k à g et h. Pour ceci, choisissons keG tel que xek~l(I)cz
g-l(I)nh-\l) à l&apos;aide de la prop. 2.1. Alors keQb&lt;€x et gk~l e Àf(R, /),
hk~l e Af(R, /) sont les morphismes cherchés.

Pour montrer que n est une équivalence d&apos;homotopie, nous allons utiliser
[Seg3] A.5 qui assure que ceci est vrai dès que les fibres vérifient une condition
de régularité locale.

Plus précisément, soit &lt;£: &lt;g(*f(R, 7)\\G)—&gt;Top R le foncteur à valeurs dans
les ouverts de R défini ainsi: pour g e G on pose F(g) g~l(ï); si m :g-^&gt;mg est

un morphisme, alors F{m) est l&apos;inclusion g~1(/)czg~Im~1(/).
Soit ^W^ la réalisation de la catégorie dont les objets sont les couples (g, x)

avec x € &lt;2&gt;(g) g~l(!) et les morphismes de (g, jc) à (g&apos;, jc&apos;) forment un ensemble

vide si x =£x&apos; et égal à hom (g, g&apos;) si x xf. Il est immédiat que &lt;2&gt;\\ ^ s&apos;identifie à

^(A^R, /)\\/x G) et d&apos;après [Seg3] A.5 on conclut que l&apos;application n est une

équivalence.

IL3. La cohomologie des groupes F&apos;, F, G, G

Dans cette section, nous démontrons le théorème B et C. Nous présentons
d&apos;abord un théorème de P. Greenberg sous une forme qui nous est convenable.
Un corollaire de ce théorème sera le fait que le classifiant BF a le type
d&apos;homotopie de la sphère S3.

Soit K un groupe d&apos;homéomorphismes de R qui préservent l&apos;orientation et
agit analytiquement sur R c&apos;est-à-dire tel que pour tout ouvert U, si g | U id\v
alors g id.

Soit F0 le pseudo groupe des restrictions des éléments de K à des ouverts de
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R. Soit Fp le pseudo-groupe des homéomorphismes locaux qui sont &apos;Ta par
morceaux&quot;. Plus précisément h e Fp s&apos;il existe un ensemble discret de
&quot;singularités&quot; appartenant à l&apos;orbite K(Q) en dehors duquel h est un élément de

r.
Désignons par Ko le stabilisateur de K en 0 et par JTg le groupe des germes en

0 des éléments de Fp qui fixent 0. Le lemme suivant est clair.

LEMME 3.1. Tg est isomorphe à Ko x Ko.

Soient pd et pg les projections naturelles de Tg sur Ko. Désignons par R le
&quot;push out&quot; homotopique du diagramme c&apos;est-à-dire le double &quot;mapping cylin-
der&quot; qui lui est associé.

H ï
BK0 - * R

Considérons les applications naturelles BKQ-* BFft et BK0-* BK. A l&apos;aide du

diagramme précédent, elles donnent lieu au diagramme:

BK0 &gt;R

** 1

BK

THEOREME 3.2 (P. Greenberg) [Gr-2]. L&apos;espace classifiant BTP a le même

type d&apos;homotopie faible que le &quot;push-out&quot; homotopique du diagramme **.

Supposons à partir de maintenant qu K et le groupe affine dyadique GA(Q2).

LEMME 3.3. L&apos;espace R, &quot;push ouf du diagramme

* Bpd[

BKQ

est une sphère S3

Démonstration. Il est clair que K()^Z, Fg-Z©Z. Il est classique que le
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&quot;double mapping cylinder&quot; du diagramme

S&apos;xS1 &gt;Sl

i
S1

est une sphère S3.

Pour déterminer le type d&apos;homotopie du classifiant BF il nous reste, d&apos;après

le théorème 3.2 et le lemme précédent à déterminer le &quot;push-out homotopique&quot;

du diagramme:

j
BK

COROLLAIRE 3.4. L&apos;espace Br a le type d&apos;homotopie de S3

Démonstration. Appliquons au &quot;double mapping-cylinder&quot; les théorèmes de

van-Kampen et de Mayer-Vietoris.

Montrons d&apos;abord que jz^BF) 0. Il suffit pour cela de prouver que le

sous-groupe normal engendré par Ko est tout le groupe dyadique K GA(Q2).
Soit N(KQ) ce sous-groupe. Il est clair que la conjugaison intérieure de
l&apos;homothétie x—&gt;2x par la translation x + 1/2&quot; n &gt;0 est dans Jf(K0). C&apos;est dire

que l&apos;application Jt-»2(x + l/2n) - 1/2&quot; 2x + l/2rt est dans ^(*:0), d&apos;où x~*
x + H2n est dans N{K0). Donc Jf(K0) K.

Montrons maintenant que l&apos;inclusion Ko-+K est une équivalence d&apos;homologie

entière. La suite de Wang de l&apos;extension:

0-+Q2-*K-*Z^&gt;0 donne:

où A : Q2&quot;-* Q2 est la multiplication par 2.

Si k ^2 le groupe Hk(Q2) est nul car tout sous-groupe de type fini de Q2 est

cyclique. On en déduit que Hk(K) — 0 pour k ^ 3.
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Puisque A — id idf la suite exacte

H0(Q2)

donne H2(K) 0 et HX(K)^Z. Il en résulte que l&apos;inclusion BK0-*BK est une
équivalence d&apos;homologie.

Finalement, l&apos;application S3 — R—&gt;BF déduite du diagramme **&apos; est une

équivalence d&apos;homotopie; ceci résulte de la suite de Mayer-Vietoris de **&apos;,

compte tenu de la 1-connexité de BF et de l&apos;équivalence d&apos;homologie BK0-+
BK. D

Remarque 3.5. Il résulte de 2.4 et de [Gr 1] qu&apos;une équivalence homotopique
S3-» BFest obtenue en classifiant le &quot;feuilletage de Reeb affine&quot; sur S3.

Nous arrivons à la:

Démonstration du théorème B. Elle résulte de 2.4, 2.10, 2.11 et 3.4.

Dans la seconde partie de la section nous démontrons le théorème C.

Nous précisons d&apos;abord la cohomologie des groupes F&apos; et G. D&apos;après le
théorème B, le premier a l&apos;homologie de l&apos;espace des lacets QS3. Le deuxième a

même homologie que l&apos;espace des lacets libres LS3. Remarquons que LS3

s&apos;identifie à QS3 x S3 a l&apos;aide de la structure multiplicative de S3. Puisque la

cohomologie de l&apos;espace QS3 est une algèbre de puissances divisées ([Spa] Chap
IX) engendrée par un générateur de degré 2, on en déduit la:

PROPOSITION 3.6. La cohomologie H*(F&apos;;Z) est isomorphe à l&apos;algèbre des

puissances divisées F[a] avec \a\ 2.

La cohomologie H*(G;Z) est isomorphe au produit tensoriel F[a]® A((i),
|cr| 2, \fî\ 3, d&apos;une algèbre de puissances divisées et d&apos;une algèbre extérieure.

Nous explicitons maintenant la cohomologie entière de F.

PROPOSITION 3.7. Pour tout n&gt;\, on a Hn(F; Z) « Z © Z.

Démonstration. Considérons la suite exacte:

Ramarquons d&apos;abord que Z©Z opère trivialement sur H*(F&apos;;Z). Ceci



Sur un groupe remarquable de difféomorphismes du cercle 205

résulte du fait qu&apos;il existe des éléments de F dont la dérivée en 0 (resp. 1) est

égale à 2 et dont le support est arbitrairement proche de 0 (resp. 1).
Le terme E2 de la suite spectrale de l&apos;extension considérée est:

H*(F&apos;;\
z&apos;

0

z
0

z2

0

z2

0

z2

z
0

z
0

z

0

0

0

0

0 0 //*(Z0Z;Z)
La proposition en résulte car la suite spectrale dégénère au terme E^.

COROLLAIRE 3.8. Le groupe Hl(F\Z) est engendré par les préimages ulf
u2 des générateurs de Hl(Z@Z\Z). Le groupe H2(F;Z) est engendré par la

préimage uxu2 du générateur de //2(Z©Z;Z) et par un élément qui est la

restriction à F du générateur a de H2(G; Z).

Démonstration. La première affirmation est une conséquence immédiate de la
suite exacte

0-»//2(Z © Z; Z)-h&gt;//2(F; Z)-+H2(Fr; Z)-»0.

Le groupe F se plonge naturellement dans G. L&apos;inclusion F&apos;—* G correspond en

homologie à l&apos;application H*(QS3\ Z)—»//*(LS3; Z). C&apos;est donc un isomorphisme
en dimension paire. Il en résulte que la restriction du générateur a de H2(G; Z)
et l&apos;élément uxu2 engendrent H2(F; Z).

Remarque 3.9. Dans la suite, on notera oc le générateur de H2(G;Z) et ses

restrictions à F et F&apos;. Remarquons que ocnln\ existe dans H* (F, Z) également.

La proposition qui suit donne la structure multiplicative de H*(F; Z).

PROPOSITION 3.10. Vanneau de cohomologie entière H*(F;Z) est

isomorphe au produit tensoriel A(uït u2) ® f[a] où \ui\ \u2\ 1 et \oc\ 2.

Démonstration. Nous devons montrer que pour k ^ 0,

ock ak
H2k*l(F; Z) est engendré par ux — et u2 —

H2k+2(F;Z) est engendré par ux u2j^ et *
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La suite spectrale donne un isomorphisme:

H2k+\F; Z) - Eh2k - El0 ® E%2k - H\Z © Z; Z) ® //2*(F&apos; ; Z).

Il en résulte facilement que ux(ocklk\) et u2(ak/k\) engendrent H2k+\F\ Z).
Considérons maintenant la suite exacte:

0— El2k^ H2k+\F\ Z)-&gt; £E&apos;2*+2^ 0.

L&apos;image de ak+1/(k + l)\ dans £°&apos;2*+2-H2*+2(F&apos;;Z) engendre ce groupe. Pour
terminer, il suffit de remarquer que l&apos;élément uxu2{cxklk\) est un générateur de

£M* «£2.0® £0.2* Q

Nous nous intéressons enfin à la cohomologie de G. Nous savons déjà, d&apos;après

le théorème B, que l&apos;espace BG a la même homologie que J£S3. Soit x la classe
d&apos;Euler du fibre Sl-+LS3 x ES&apos;-^gS3.

PROPOSITION 3.11. Le groupe H\G;I) est nul. Le groupe H2(G\I) est

isomorphe à Z © Z.

Démonstration, Puisque LS3 QS3 x S3 est simplement connexe, ££S3 l&apos;est

également et donc Hl{G\ Z) 0. De plus la suite de Gysin:

; Z) ^U H2(£S3; Z)-+H2(LS3; Z)^ 0

montre que H2(3?S3; Z) est un groupe abélien libre à deux générateurs.

Considérons le générateur j8 du groupe cyclique H3(LS3; Z).

PROPOSITION 3.12. H2(£S3; Z) est engendré par x et par l&apos;image a=f/5où
f:H3(LS3f Z)-»H2(&lt;eS3; Z) est l&apos;intégration sur la fibre.

Démonstration. Il résulte de la suite de Gysin que x et &lt;* engendrent

H2(£S3;Z) pourvu que le composé Z~H3(LS3;Z)-+H2(&lt;eS3;Z)^&gt;H2(LS3;Z)
=* Z soit un isomorphisme.

Soit n: T^-^S3 le fibre tangent unitaire à S3. Une application/: TXS3-*LS3
est définie en associant à un élément (x, v) e TxS3 la géodésique issue de x dans la

direction v. Il est facile de voir que / est équivariante par rapport aux actions de
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S1 sur TXS3 et LS3 et induit un diagramme commutatif:

Z - H2(TXS3; Z) ~^+ H2(TXS3ISX\ Z) -U H3(TXS3; Z) - Z

h i &quot;i

Z-//2(L53;Z) -^ H2(5£S3\Z) —f—+ //3(L53;Z)-Z

Ramarquons que TXS3 est homéomorphe à 52 x S3.

Nous allons montrer que f2 et le composé H2(TXS3&apos;,Z)~*H2{TXS31Sl\Z)-+

H3(TXS3\ Z) sont des multiplications par ±2 et que f3 est un isomorphisme. Ceci

implique que le composé H2(LS3;Z)-^&gt;H2(&lt;eS3;Z)-*H3(LS3;Z) est un isomorphisme

et démontre la proposition.
Considérons une fibre S jï~1(x0) comme générateur de H2(TXS3;Z). Il est

clair que /|S:S—»LS3 envoie un élément (jc0, v)eS sur la géodésique issue en x{)

dans la direction v. Il résulte de [Spa], théorème 8.5.9 que f(S) représente le
double d&apos;un générateur de H2(LS3; Z)) H2(QS3; Z). L&apos;application f2 est donc
bien la multiplication par ±2.

Le fait que f3 soit isomorphisme résulte du triangle commutatif:

H3(TXS3,Z) &gt;H3(LS3,Z)

H3(S3;Z)

dans lequel les projections sur S3 induisent des isomorphismes.
Finalement, justifions que le composé H2(T2S3\Z)^&gt; H2{TxS3ISl\Z)-+

H3{TXS3\Z) est la multiplication par ±2. L&apos;image de la fibre S ji~1(x0) par ce

composé est égale au 5^saturé de 5. En utilisant l&apos;involution o: TxS3—&gt; TXS3 qui
est l&apos;application antipodale dans chaque fibre, on vérifie que le nombre
d&apos;intersection de 5 avec son 5^saturé est égal à ±2. Donc, le composé
H2(T1S3;Z)^&gt;H2(TlS3/Sl;Z)^&gt;H3(TlS3;Z) est la multiplication par ±2. Ceci

achève la démonstration de 3.12.

Considérons maintenant la classe x e H2(3?S3; Q).

PROPOSITION 3.13. Pour k^l, les puissances %k e H2k(£S3; Q) sont non
nulles.

Démonstration. Il s&apos;agit d&apos;un argument classique. L&apos;action de S1 sur LS3 a

des points fixes, i.e. les lacets constants. Soit {w} un tel lacet. Le diagramme
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commutatif:

BSl {a)} x ES1 &gt; £S3

¦i j
nrl ld \ nclDO p Do

produit une section de l&apos;application ££S3-+BSl et le résultat suit de la structure
multiplicative de CP°°. D

Le théorème suivant est en fait connu. Nous en donnons une démonstration
élémentaire.

THEOREME 3.14. Les classes a et x engendrent librement la cohomologie
H*{Ï£S3\ Q) modulo la relation or • # 0.

Démonstration. Il est clair, d&apos;après la suite de Gysin, que x U a — X U/j8 0.

Montrons par récurrence que

0 pour *&gt;1

H2n(&lt;£S3) est engendré par %n et an pour n &gt;0.

(tous les coefficients dans Q). Supposons que ceci soit vrai pour n &lt;/?. La suite de

Gysin donne:

H^-&apos;i^S3)^ H2p+\Ï£S3)-* H2p+l(LS3)-^ H2p(&lt;eS3).

Comme H2p~l(t£S3) 0, il suffit de montrer que/est injective. Ceci résulte de ce

que ffip*((xp~1) ocp est non-nulle d&apos;après l&apos;hypothèse de récurrence. Donc

Pour déterminer H2p+2(3!S3), on considère la suite exacte

II est clair que p*(ap+l)¥&apos;0. D&apos;après l&apos;hypothèse de récurrence et 3.13,
l&apos;image H2p(&lt;eS3)**H2p+2(£S3) est engendrée par l&apos;élément non-nul xp+l-
Finalement, ocp+l et xp+1 engendrent librement H2p+2(£S3). D

Démonstration du théorème C. Elle résulte du théorème B et de 3.6, 3.10 et
3.14. D
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Enfin, signalons brièvement que les résultats de cette section permettent de

retrouver la simplicité des groupes F&apos; et G qui sera utilisée dans la partie III.

THEOREME 3.15. Les groupes F&apos; et G sont simples.

Démonstration. Il résulte de 3.6 et de 3.11 que F1 et G sont des groupes
parfaits. L&apos;argument classique de Higman-Epstein [Eps], appliqué à l&apos;aide de

2.1, montre que ces groupes sont simples.

II.4. L&apos;Interprétation des générateurs de la cohomologie du groupe G.

Dans cette section, nous démontrons les théorèmes D et E.
Rappelons que le second groupe de cohomologie H*(G;Z) est engendré par

les générateurs a et x- Le résultat suivant identifie le générateur % et prouve le

théorème D.

THEOREME 4.1. Le générateur % est exactement la classe d&apos;Euler de Vaction
de G sur S1. Ses puissances sont non-nulles dans H*(G; Q).

Démonstration. Il suffit d&apos;utiliser la naturalité de la classe d&apos;Euler et les

diagramme considérés à la fin de la preuve de 2.10 et dans 2.11 pour identifier
l&apos;élément %. La non-nullité des puissances de x et une conséquence de 3.11.

L&apos;identification de la classe a e H2(G; Z) est liée à la classe de Godbillon-Vey
et au cocycle correspondant en cohomologie des groupes.

Faisons d&apos;abord quelques conventions jusqu&apos;à la fin de cette section. Nous
allons considérer la cohomologie des groupes à l&apos;aide des cochaînes normalisées

homogènes ou non homogènes. Les conventions habituelles sont respectées à

l&apos;exception du fait que nous travaillons avec des cochaînes homogènes à droite.
Le passage d&apos;une n-cochaîne homogène c à la n-cochaîne non-homogène, c sera
alors donné par

C(gl&gt; • • • y Sn) C(gl&gt; - &apos;

&gt; gn&gt; gl - • - gn, - - &gt; gn&gt; &lt;0«

Pour un groupe K nous notons C$*(K) (resp. &lt;ë*(AT)) les cochaînes homogènes
à droite (resp. non homogènes).

La différentielle d : &lt;$n(K)-+ &lt;%n&quot;~\K) est donnée par la formule

dc(kQ, kn+l)
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La différentielle ô : &lt;€&quot;(K)^ &lt;$n+\K) est

n

ôc(ku kn+x) c(k2, kn+l) + 2 (-l)&apos;c(fci, *,_!, A:,A:I+1, /crt

+(-irc(^...,u
Rappelons la suite exacte de Gysin-Hochschild-Serre de l&apos;extension centrale

0-&gt;Z-*GA&gt;G^l.

PROPOSITION 4.2 [Ho-Se]. // existe une longue suite exacte

Remarque 4.3. Il sera important pour la suite de bien contrôler la définition
de l&apos;intégrale sur la fibre f:Hk+1(G; Z)-+Hk(G; Z).

La description suivante peut-être extraite de [Ho-Se].
Soit [qp] 6 Hk*l{G\ Z). En utilisant la suite spectrale de l&apos;extension

0-&gt;Z-^G^G—1,

On peut choisir le cocycle non-homogène y tel qu&apos;il soit indentiquement nul
dès que deux arguments se trouvent dans le centre Z. C&apos;est dire que &lt;p est de

filtration 2.

Considérons la cochaîne non homogène &lt;p(*(l),. e ^(G; Z).
Il résulte de [Ho-Se] p. 132 et 125 que cette cochaîne est en fait un cocycle et

se trouve dans &lt;#*(G; Z) &lt;-&gt; c€k(G; Z). Sa classe de cohomologie est bien définie et
est égale à f[q&gt;]. O

Nous allons définir maintenant une famille de cocycles dans H2(G; Z).
Soit [q&gt;] € H2(Z © Z; Z) la classe de cohomologie d&apos;un cocycle homogène

normalisé (p. Il est immédiat qu&apos;on peut choisir cp dans une classe donnée tel que
sa restriction au sous-groupe diagonal Z—»Z©Z soit identiquement nulle. Avec
ce choix, on a:

PROPOSITION 4.4. Soit A(p e &lt;£2(G; Z) la cochaîne normalisée donnée par:

U&gt;g2g&apos;g{x) Log2h&apos;g{x)\

U&gt;g2g&apos;d(x) Log2h&apos;d(x)r

Alors Ay est bien définie. C&apos;est en fait un cocycle de G.
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Démonstration. Il est clair qu&apos;en dehors d&apos;un nombre fini de points x, les

dérivées à gauche et à droite de /, g, h sont respectivement égales. Puisque cp

s&apos;annulle sur le sous-groupe diagonal ZC-&gt;Z©Z, la somme qui définit A est en
fait finie.

Montrons que la cochaîne A^ est homogène. Si k e G, on a:

(Log2f&apos;g(k(x)) + Log2 k&apos;g(x), Log2 gg(k(x)) + Log2 k&apos;g(x), Log2 h&apos;g(k(x)) + Log2 k&apos;g(x)\

WJ fa &apos; &apos; &apos; d(x)J
g g g g g

Log2 kfa), Log2 g&apos;d(k(x)) + Log2 k&apos;d(x), Log2 h&apos;d(k(x)) + Log2 kd(x)J

Puisque q) est homogène, cette somme est égale à:

XeQ2Œ\

Log2f&apos;g(k(x)) Log2g&apos;g(k(x)) Log2h&apos;g(k(x))\

&apos;d(k(x)) hOg2g&apos;d(k(x)) L0g2h&apos;d(k(x)))&apos;

II est donc clair que

Le fait que A^ soit un cocycle est immédiat à partir du fait que, pour
chaque jc, A^ est un cocycle.

COROLLAIRE 4.5. La cochaîne non-homogène gv e

v Log2g;(x) Log2(fog)&apos;g(x)

; Z) définie par:

X€Q2/Z Loë2{fogyd{x)

est un cocycle.

Démonstration. Remarquons tout d&apos;abord que ce cocycle est bien celui décrit
dans l&apos;énoncé des résultats. Il suffit pour cela de soustraire la première ligne à la
seconde dans le déterminant.

Soit &lt;p e &lt;t(Z © Z) la cochaîne

x2 x2
1 1 1

On vérifie sans peine que &lt;p est un cocycle et la cochaîne non homogène qui lui
correspond est précisément gv.
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La démonstration du théorème E, c&apos;est-à-dire du fait que [gv] - 2a dans

H2(G; Z) se fait en plusieurs temps.

LEMME 4.6. // existe un entier p tel que [gv] =p • a.

Démonstration. Considérons l&apos;intégrale sur la fibre;

De par sa définition (section II-3), a est l&apos;image par / du générateur de

H3(G; Z) Z. Pour montrer le lemme, il suffit donc de montrer que gv est aussi

dans l&apos;image de /. Pour cela, nous allons construire un cocycle w de ^3(G, Z) tel

que f[co] &amp;] dans H\G\ Z).
Considérons tout d&apos;abord la cochaîne â) e ^3(G; Z) définie par:

1 1 11

[/(*)] \g(x)) [h(x)) [*(*)]
Log/;(x) Logg;(*) Logh&apos;g(x) Logkfg(x)
Logffd(x) Logg&apos;d(x) Loghfa) Logkfd(x)

où [ ] désigne ici la partie entière. Comme précédemment, on vérifie que co est

un cocycle. Il en résulte que la cochaîne non homogène (o associée à d), est un
cocycle:

col
jceQ2n[0,l[

1 1

[gh(x)]

1 1

[x]
Log (fgh)&apos;g(x) Log(gh)&apos;g(x) Logh&apos;g(x) 0

Log(fgh)&apos;d(x) Log(gh)&apos;d(x) Logh&apos;d(x) 0

Une vérification immédiate montre que co est de filtration 2, c&apos;est-à-dire,

s&apos;annulle dès que deux arguments se trouvent dans le centre Z &lt;-» G. D&apos;après la

remarque 4.3 f[co] est la classe de cohomologie du cocycle:

c&apos;est-à-dire:

\g(*)]
x) o

Log(fg)&apos;d(x) U&gt;g(fg)&apos;d(x) U&gt;gg&apos;d(x) 0

gv(f,g). D
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Pour montrer le théorème E, c&apos;est-à-dire que [gv] 2a, nous allons évaluer
chaque membre de l&apos;égalité [gv] =pa sur un cycle bien choisi.

Considérons les éléments u et v de F&apos; dont les graphes sont les suivants:

0 1/8 3/8 1/2 1/2 5/8 7/8 1

Comme u et v commutent, la chaîne a (u, v) - (u, u) est un cycle (non
homogène).

LEMME 4.7. La classe d&apos;homologie de o est un générateur de H2(F&apos;;Z).

Démonstration. Soit cp e %2{JL © Z) un cocycle choisi comme dans la proposition

4.3 et tel que [cp] e H2(Z © Z; Z) soit le générateur qui vaut 1 sur le cycle

-homogène (elf e2) - (e2, ex) où ex Ij et e2 L j.non

Soit Ày la cochaîne non homogène associée à cp par 4.3. Alors

v)-(v u))-v) (v, u)) -
Log(t/oH);(x), Log „;(*), o\

&apos;d(x), OJv°u)&apos;d(x), Log u&apos;d(

Puisque Supp (m) n Supp (v) \, et que le cocycle q&gt; est normalisé, la
sommation se réduit à sa valeur en x \.

On obtient alors:

d&apos;après le choix de (p. U

Le lemme suivant, joint à 4-6, termine la démonstration du théorème E car oc

n&apos;est défini qu&apos;au signe près.



214 E GHYS ET V SERGIESCU

LEMME 4.8. On a gv(a) 2 et a(a) ±1.

Démonstration, La première égalité est un calcul semblable à celui du lemme

précédent. Quant à l&apos;égalité a(a)=±l, nous avons déjà vu que l&apos;inclusion

F&apos;-» G induit un isomorphisme entre H\G\T) et H2(F&apos;;Z). Comme, d&apos;après

II-3, l&apos;application H2(G; Z)-*H\G\ 1) envoie a sur le générateur de H2(G;Z),
il résulte que oc définit un générateur de //2(F&apos;;Z)^Z. Par conséquent

or(a) ±l.

III. Propriétés qualitatives

III. 1. Construction des lissages

Le but de cette section est de démontrer les théorèmes A et G, c&apos;est-à-dire de

construire des morphismes du groupe G dans DifT (S1).

Soit/:R-»R un homéomorphisme vérifiant les propriétés suivantes:

(I) Pour tout réel x, on a f(x + 1) =f(x) + 2.

(II)/(0) 0.

Nous nous proposons d&apos;associer à chaque homéomorphisme / satisfaisant (I)
et (II) une représentation q?f de G dans Homéo (S1). L&apos;image de &lt;py sera
constituée de difféomorphismes de classe Cx si / vérifie une condition
supplémentaire décrite plus bas. Dans le cas particulier où f(x) 2x, la

représentation çy sera l&apos;inclusion canonique de G dans Homéo (S1).

Rappelons que nous avons noté respectivement Q2, GA(Q2) et PL2(U) les

groupes des nombres dyadiques, des bijections affines dyadiques et des

homéomorphismes qui sont GA(Q2) par morceaux (voir H-l). La transformation
x-*2nx+pl2q de GA(Q2) est notée (2nfp/2q). En identifiant un nombre
dyadique x à la translation Tx, on obtient les inclusions naturelles:

Q2cGA(Q2)œPL2(U).

Nous allons tout d&apos;abord construire une représentation 6f de PL2(U) dans
Homéo (R). Celle ci sera définie sur Q2 puis étendue successivement à GA(Q2) et
à PL2(U).

LEMME 1.1. L&apos;application

^/&apos;^Q2^r°r/f 6Homéo(R)

est bien définie et donne un morphisme de groupes.
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Démonstration. Il s&apos;agit tout d&apos;abord de vérifier que df(p/2q) ne dépend que
du rationnel p/2q. Pour cela, nous devons montrer que df(p/2q) 0f(2p/2q+l)
c&apos;est-à-dire:

ou encore

f(x+p)=f(x) + 2p.

Ceci est une conséquence de la propriété (I).
Le fait que 8f est un morphisme est clair:

™ 2q) lP+P&apos; J J lP l p I J ° l p°J

-*(£)?&lt;)• °

Remarque 1.2. La propriété (I) et la définition de 6f montrent que si p est un
entier, alors 6f(p) Tp.

Nous étendons maintenant 6fà GA(Q2):

LEMME 1.3. L&apos;application:

(ln, Çj 6 GA(®2) -&gt; ef(£&gt;) °f&quot; e Homéo (R)

est un morphisme de groupes que nous noterons encore 6f.

Démonstration. Ceci résulte immédiatement de la propriété suivante que l&apos;on

vérifie sans difficulté

si xeQ2.

Enfin, nous étendons 6f à PL2(U). Soit h ePL2(U). Par définition, il existe
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une suite strictement croissante et sans points d&apos;accumulation (xn)neZ de nombres

dyadiques et une suite yn dans GA(Q2) telles que:

Cette suite n&apos;est pas unique pour un h fixé: il est toujours possible d&apos;ajouter de

nouveaux points dans un intervalle [xn, xn+1], même si h est affine sur cet
intervalle. Notons xn le réel 6f(xn)(0).

LEMME 1.4. La suite de réels xn est strictement croissante et sans points
d&apos;accumulation dans R.

Démonstration. Puisque / est un homéomorphisme strictement croissant de

R, la définition de df montre que si p/2q est positif, on a:

^J(x) &gt; x pour tout réel x.

Par conséquent, si xx et x2 sont deux nombres dyadiques tels que xx &gt;x2, on a

ef(Xl)(0)&lt;df(x2)(0). a

Nous définissons alors une application df(h):M-*R, à priori discontinue, de

la façon suivante:

II est clair que 6/{h) est bien défini et ne dépend pas du choix de la suite xn. Il est

tout aussi clair que 6f est une extension de la représentation préalablement
définie 6f :GA(Q2)~&gt;Homéo (R).

LEMME 1.5. Si A e PL2(R), Vapplication df(h) est continue.

Démonstration. Il s&apos;agit de vérifier la continuité de 0f(h) au point xn. Nous
devons montrer que:

c&apos;est-à-dire:

6f(yn°TXn)(0)
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ou encore:

Puisque h est continue, on a yn(xn) yn-\{xn) et T^Xn&lt;&gt;y~}:1oynoTXn est donc un
élément de GA(Q2) qui fixe 0, c&apos;est-à-dire un élément du type (2N, 0). L&apos;égalité

que nous voulons montrer est alors claire car:

df(2N,0)=fN

et/fixe 0 d&apos;après (II).

LEMME 1.6. 6f : PL2(IR)—? Homéo (R) est un morphisme de groupes.

Démonstration. En effet, pour évaluer df(hioh2), on peut choisir une suite xn
telle que h2 est affine sur les intervalles [xn, xn+1] et hx est affine sur les intervalles
[h2(xn)&gt; h2(xn+1)]. La définition de df montre alors que df{hx)Qdf(h2) 6f(h1°
h2). U

LEMME 1.7. Si geG, c&apos;est-à-dire si g e PL2(U) et g(x + 1) g(x) + 1, alors

Démonstration. Ceci est une conséquence, d&apos;une part, du fait que df est un
morphisme et, d&apos;autre part, de la remarque 1.2 suivant laquelle 6f(p) Tp.

D&apos;après le lemme précédent, 6f permet de définir, par passage au quotient,
une représentation cpf de G dans Homéo (S1). Avant de décrire plus précisément
les propriétés de q&gt;fi nous allons montrer qu&apos;il est possible de choisir / pour que
(Pf(G) soit constitué de difféomorphismes du cercle.

Considérons la propriété suivante (l&lt;r&lt;o°): (IIIr) / est de classe Cr,
/&apos;(0) 1 et f(k\0) 0 pour 2 &gt; k &lt; r.

LEMME 1.8. Si fvérifie la condition (IIIr), alors r image de 6f {et donc de &lt;py)

est constituée de difféomorphismes de classe Cr.

Démonstration. En reprenant les notations de la démonsration du lemme 1.5,

il s&apos;agit de montrer que, pour 1 &gt; fc &lt; r, on a:
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Ceci est une conséquence du fait que le rème jet de 0/(r_XM°y~l1oyrt°7^) =fN
est celui de l&apos;identité au point 0.

Nous montrons maintenant que toutes les représentations q&gt;f que nous venons
de construire sont semi-conjuguées à l&apos;inclusion canonique de G dans

Homéo (S1). Le lemme suivant est bien connu.

LEMME 1.9. Soit f:U —» R un homéomorphisme vérifiant les conditions (I) et

(II). Alors, il existe une application continue croissante // : R —» R telle que:

//(/(*))

Démonstration. Nous avons déjà observé que l&apos;application i:Q2—»R définie

par i(x) 6f(x)(0) est strictement croissante:
Soit H:i(Q2)—&gt;Q2c-*U l&apos;inverse de i. Puisque //est strictement croissante, H

se prolonge en une application croissante, encore notée //, de i(Q2) dans R.
Comme Q2 est dense dans R, l&apos;application H:i(Q2)—&gt;U est continue. On
prolonge alors H à R en imposant à H d&apos;être constante sur les composantes
connexes de (R — i(Q2). On obtient ainsi une application H continue croissante de
R sur R. Le fait que H vérifie les propriétés requises provient du fait que:

i(x +1) 0f(x + l)(0) 0,(1) ° */(*)(0) 0f(x)(0) + 1 i(x) + 1

i(2x) 6K2*)(0) =/o df(x)(0) =/(/(x)). D

COROLLAIRE 1.10. Si /vérifie les conditions (I) et (II), la représentation cpf

est semi-conjuguée à Vinjection canonique de G dans Homéo (S1).

Démonstration. L&apos;application H donnée par le lemme précédent définit une

application continue H de S1 dans S1. Par construction même de &lt;py et puisque

H{f{x))-2H{x)t cette application H est une semi-conjugaison entre q&gt;f et
l&apos;injection canonique de G dans Homéo (S1).

Pour démontrer le théorème A, il faut montrer qu&apos;il est possible de choisir /
vérifiant (I), (II) et (III) et tel que l&apos;application H donnée par le lemme 1-9 est

un homéomorphisme. Pour montrer ce fait, nous allons d&apos;abord montrer que les
orbites de &lt;py peuvent s&apos;obtenir simplement à partir de /.

Si /vérifie (I) et (II),/définit évidemment une application continue/: S1-» S1

de degré topologique 2. Par &quot;relation d&apos;équivalence engendrée par /&quot;, nous
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entendons la relation d&apos;équivalence ~ sur S1 engendrée par x ~/(jc) pour tout x
de S1

LEMME 1 11 Les orbites de cpfsont exactement les classes d&apos;équivalences de

la relation d&apos;équivalence engendrée par f
Démonstration II est évident que les classes d&apos;équivalences de la relation

engendrée par/sont les projections sur S1 des classes d&apos;équivalence de la relation
£%fSur M engendrée par x —x +1 et/(x) ~x Nous allons montrer que les classes

d&apos;équivalences de % sont exactement les orbites de la représentation 0f de G
dans Homéo(IR)

Considérons tout d&apos;abord deux points x, et x2 de M qui sont dans la même
orbite de G II existe donc un élément g de G tel que x2- Of{g){xx) Par
définition de G, il existe un intervalle fermé contenant xx tel que la restriction de

Of(g) à cet intervalle est égale à la restriction d&apos;un homéomorphisme du type
6f(y) où y e GA(Q2) Comme 6f(GA(Q2)) est engendré par/et par la translation
7i, les orbites de 0/(G) sont contenues dans les classes d&apos;équivalence de 3tf

Réciproquement, considérons l&apos;élément g de G dont la restriction à

l&apos;intervalle [0,1] est donnée par le graphe suivant

Sur l&apos;intervalle [Ô, J], g coïncide avec l&apos;application x-*2x Par conséquent, sur
l&apos;intervalle [Ô, J], (pf(g) coïncide avec / (Rappelons que nous avons noté
x 6f(x)(0)) Par conséquent, si x e [Ô, J], x et/(x) sont dans la même orbite de

%{G) Si Jte[i|], on considère l&apos;élément g&apos; TV2°g°Tu\ de G Celui-ci
coïncide avec l&apos;application x^&gt;2x sur l&apos;intervalle [i, ^et on conclut de la même
façon On procède de manière similaire sur [5, 3], [4,1], Par conséquent,
pour tout jc de R, les points x et f(x) sont dans la même orbite de 6f{G)
Puisque, par ailleurs, x + 1 dt{Tx){x)y les classes d&apos;équivalence de 9lf sont
contenues dans les orbites de 6f(G) O

LEMME 1 12 Supposons que f vérifie les conditions (I), (II) et la condition
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(IV) ci-dessous:

(IV) \f(x)-~f(y)\ &gt; \x-y\ pour tout couple de réels distincts (x,y). Alors,
Vapplication H fournie par le lemme 1-9 est un homéomorphisme.

Démonstration. Cette condition (IV) signifie que / est &quot;topologiquement

expansive&quot; (voir [Shu]).
Nous avons déjà vu que H est surjective. Supposons que H n&apos;est pas injective

et notons Q c U la réunion des intervalles ouverts maximaux sur lesquels H est

constante. Supposons Q non vide. D&apos;après 1-9, on a:

D&apos;après la première égalité, le maximum des longueurs des composantes
connexes de Q est atteint. Soit Qo une composante de longueur maximale.
D&apos;après la seconde égalité, /(fi0) est aussi une composante connexe de Q. Mais
la condition (IV) montre que la longueur de f(Q0) est strictement supérieure à

celle de £?0, ce qui est contraire au choix de QQ.

Nous avons donc montré le théorème A:

THEOREME 1.13. Si f vérifie les conditions (I), (II), (IIL) et (IV), alors cpf

est une représentation de G dans Diff00 (S1) qui est topologiquement conjuguée à

Vinclusion canonique de G dansWoméo (S1).

Démonstration. En effet, d&apos;après 1.12, la semi-conjugaison H est en fait une
conjugaison topologique.

Nous montrons maintenant que q)f peut posséder un minimal exceptionnel,
c&apos;est-à-dire le théorème G.

PROPOSITION 1.14. Supposons quef:U-»U vérifie les conditions l,llet la

condition V suivante:
(V) fpossède au moins deux points fixes.

Alors, (pf possède un minimal exceptionnel.

Démonstration. La condition (I) montre que si a et fi sont deux points fixes

de/, alors |/3 - a\ &lt; 1. L&apos;intervalle ]&lt;x, fi[ de M se projette alors injectivement sur
un ouvert V de S1 tel que fn(V) V pour tout n &gt; 0. Observons que l&apos;ouvert
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/ \V) est la réunion de deux composantes connexes dont l&apos;une est V. De la

même façon, f~n(V) est la réunion de 2&quot; intervalles disjoints dont 2n~l forment
y-(«-D(y) par conséquent, la réunion Q U«=o/&quot;n(^) est un ouvert de S1 qui
n&apos;est pas S1 tout entier. Comme il est clair que f(£2) Q et f~l{Q) - £2, on en
déduit que Q est un ouvert propre de S1 saturé par la relation d&apos;équivalence

engendrée par / et donc invariant par cpf{G) d&apos;après 1.11. En particulier, les

points de S1 - Q ont une orbite non dense. Comme, par ailleurs, çy ne peut avoir
d&apos;orbite finie d&apos;après 1.10, c&apos;est donc que çy possède un minimal
exceptionnel.

III.2. Corollaires de Vexistence de minimaux exceptionnels

Le premier corollaire immédiat est le corollaire J.

THEOREME 2.1. 5i geG, alors

Vhoméomorphisme g de S1 est rationnel.
le nombre de rotation de

Démonstration. Deux homéomorphismes du cercle qui sont semi-conjugués
ont le même nombre de rotation. Il suffit donc de montrer que çy(g) a un nombre
de rotation rationnel. Si/satisfait les conditions I, II, III2 et V alors çy(g) est un
diffèomorphisme de S1, de classe C2, dont les orbites ne peuvent être denses,
d&apos;après 1.14. Le théorème est alors une conséquence du théorème de Denjoy
selon lequel un diffèomorphisme du cercle de classe C2 dont le nombre
de rotation est irrationnel a toutes ses orbites denses (voir par exemple
[He-Hi]).

PROPOSITION 2.1. Pour tout nombre rationnel, il existe un élément de G
dont le nombre de rotation est égal à ce rationnel.

Démonstration. Soit n un entier supérieur ou égal à 0. On considère l&apos;élément

gn de G dont le graphe est le suivant:

1-2&quot;

1/2 1/2~n&quot;1 1
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Le graphe de g0 est particulier:

1 2

0 1/2 1

Le lecteur vérifiera aisément que gn est un élément dont l&apos;ordre est exactement
n + 2. (L&apos;idée de considérer ces éléments gn provient de [?]). Par conséquent, les

puissances de gn fournissent des éléments dont les nombres de rotation sont les

éléments de Q/Z du type p/(n + 2) mod Z. On obtient ainsi tous les éléments de

Nous abordons maintenant la démonstration du corollaire I. Nous allons

montrer que &lt;fy(G) est discret dans Diff1 (S1) muni de la topologie C1 pour un
choix très particulier de /. Le même résultat resterait vrai pour une classe plus
générale de difféomorphismes /, mais nous faisons ce choix pour simplifier les

calculs. Choisissons donc/du type suivant:

0 14 12 34 1

Le difféomorphisme / est affine de pente 3 sur [*, |] et vérifie les propriétés (I),
(II), (IIL), et (V).

THEOREME 2.3. Si f est du type décrit ci-dessus, alors (pf(G) (resp. (pf(F))
est discret dans Diff+ (S1) (resp. Diff^ (R)) muni de la topologie C1.
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Démonstration. Soit K &lt;= [0, 1] l&apos;ensemble de Cantor &quot;standard&quot; construit sur
l&apos;intervalle [4,4]. Précisément K est obtenu de la façon suivante; on définit
inductivement des ouverts Qn par Qo 0 et Qn+X est la réunion des intervalles
ouverts /, dont les centres sont les centres des composantes connexes /, de
[4% |] — Qn et dont les longueurs |/f| sont les tiers des longueurs |/,| des intervalles
correspondants. L&apos;ensemble de Cantor K est alors [4, i] — U«=o^«- Soit KczS1
l&apos;ensemble de Cantor obtenu par projection de [0,1] c M sur R/Z. L&apos;examen du

graphe de / montre que K est invariant (positivement et négativement) par /.
Rappelons que nous avons noté / l&apos;application de degré 2 induite par / sur le
cercle. En fait, on peut vérifier que K est l&apos;unique minimal exceptionnel de

&lt;Pf(G).

Observons que la dérivée de /sur K est égale à 3. On en déduit que, si g e G,
alors la dérivée de çy(g) sur K ne prend comme valeurs que des puissances
entières de 3. Plus précisément, soit h:S1-*S1 la semi-conjugaison entre
çy:G-&gt;Diff(S1) et l&apos;inclusion naturelle de G dans Homéo+ (S1) donnée par le

corollaire 1.10. Si x est un point de K qui est un point d&apos;accumulation bilatéral de

K (i.e. x $ d(S1 — K)), alors h(x) est un point de S1 qui n&apos;est pas dans Q2/Z. On a

alors la propriété suivante: La dérivée de g en h (x) (qui existe car h(x) $ Q2/Z)
est 2n si et seulement si la dérivée de çy(g) en g est 3&quot;.

Nous devons montrer que &lt;P/(G) est discret dans Diff+ (S1). D&apos;après

l&apos;observation précédente, si la dérivée de (pf{g) est uniformément proche de 1 sur
S1, elle est nécessairement égale à 1 sur K. La dérivée de g aux points non
dyadiques de S1 est alors elle aussi égale à 1 ce qui signifie que g est une rotation.

Il nous reste à montrer que si g est une rotation telle que (Pf(g) est
suffisamment C^proche de l&apos;identité, alors g est l&apos;identité. Nous n&apos;utiliserons en
fait que la C°-proximité. Notons que l&apos;affirmation correspondante pour le

plongement canonique de G dans Homéo+ (S1) serait fausse: Les rotations
dyadiques forment évidemment un sous-groupe non discret de Homéo* (S1).

Supposons donc (Pf(g) suffisamment C°-proche de l&apos;identité: Observons que çy(g)
permute les composantes connexes de S1 — K qui sont de longeur ^(1/3&quot;) (n e N).
L&apos;intervalle de longueur maximale de S1 - K est unique: C&apos;est / ]~4, +i[
(modZ) et sa longueur est + 5. Si &lt;£y(g) est C°-proche de l&apos;identité: &lt;P/(g)(/) est

un intervalle de S1 - K de longueur proche de \ et donc de longueur J. Dans ce

cas q&gt;f(g)(l) ne peut qu&apos;être égal à I. Par conséquent, g fixe l&apos;imae de I par h qui
est un point car h &quot;écrase&quot; les composantes connexes de S1 — K sur un point.
Puisqu&apos;une rotation ayant un point fixe est l&apos;identité, ceci termine la

démonstration du théorème dans le cas de &lt;pf{G). Le cas de (P/(F) est tout à fait
similaire. D

Avant de démontrer le théorème H, montrons tout d&apos;abord le résultat
suivant:
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PROPOSITION 2.4. // existe une surface compacte orientée I et une
représentation &lt;p : jïi(2)—» DifT (S1) ayant les propriétés suivantes:

i) &lt;p possède un minimal exceptionnel.

ii) Le nombre d&apos;Euler du fibre en cercles au dessus de S associé à y est égal à 1.

Démonstration. Nous savons que la classe d&apos;Euler % est non nulle dans G. Il existe

donc, d&apos;après le théorème de Hopf, une surface orientée 2 et un morphisme
i ; fti(2) —» G tels que l&apos;évaluation de i*x sur la classe fondamentale de Zest égale à 1.

Si/vérifie les conditions I, II, IIL, la représentation &lt;p q&gt;f ° i vérifie évidemment la

propriété ii). Si, de plus,/vérifie les conditions V, ^{n^Z)) préserve un ensemble de

Cantor contenu dans S1. Pour montrer que 2 vérifie la condition i), il nous reste à

montrer que ^(n^I!)) ne peut pas avoir d&apos;orbite finie. Mais, sans une telle situation,
l&apos;orbite finie fournirait une &quot;section multiforme&quot; pour le S^fibré associé au dessus de

Xet le nombre d&apos;Euler de ce fibre serait nul contrairement à ce qu&apos;affirme la propriété
ii). D

La démonstration précédente n&apos;est pas constructive et ne donne aucune
information sur le genre de I. L&apos;intérêt du théorème Hpar rapport à la proposition 2.4

est donc son aspect explicite.
Soient A et B les éléments de G dont les graphes sont les suivants:

15/16
7/8

58

/
1/8

//
3/8

A

5/8 7/8

15 16
7/8

3 8

1/8

/r
1/16 V8

B

5/8 7/8

On pose:

At A5 « A7 An
A2 Œ A6 Ag A12 R-i/gARm

A3 A9 R5mAR-5m

On définit de même Bt (1&lt; / &lt; 12) en remplaçant A par B dans les formules
précédentes.
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THEOREM 2.5. Avec les notations précédentes, on a:

225

12

1 1

Cette égalité définit une représentation i du groupe fondamental de la surface Si2 de

genre Yldans G. La classe d&apos;Euleri*x évaluée sur la classefondamentale de Sestégale à

+ 1.

Démonstration. Evidemment, le lecteur pourra vérifier par lui-même l&apos;égalité

annoncée! Nous allons nous contenter d&apos;indiquer la méthode utilisée pour obtenir
cette représentation explicite.

Soit g eG l&apos;élément dont le graphe est le suivant:

0 14 12

On vérifie immédiatement que (gRm)3 id, ce qui peut s&apos;écrire

Par conséquent,

[g(RmgR-m)g]2 i

(1)

(2)

Si l&apos;on parvient à écrire g comme un produit de deux commutateurs, l&apos;égalité

précédente fournit un produit de douze commutateurs égal à l&apos;identité. Vérifions
tout d&apos;abord que le nombre d&apos;Euler de la représentation /&apos;.^(En)^ G

correspondant à cette relation est non nul. Pour cela, rappelons l&apos;algorithme de

Milnor (voir [He-Hi], par exemple), permettant de calculer le nombre d&apos;Euler

associé à une représentation du type lîf=1 [an bt] id dans Diff+ (S1). On choisit
des relevés ât et bt de at et bl dans DÏÏ+ (S1) et on forme le produit nf=i [ât, bt].
Celui ci ne dépend pas des choix de ât et 6t; c&apos;est une translation entière.
L&apos;amplitude de cette translation est le nombre d&apos;Euler cherché.

Dans notre cas, si g est un produit [au &amp;i][û2&gt; b2] notre relation s&apos;écrit
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FIi^i [fli&gt; bt] id où les an bt sont obtenus simplement à partir de la relation (2).
Par exemple a3 RmaiR-.m et b3 RmbiR-m. Si l&apos;on choisit un relevé âu bu
â2, b2 pour ax, bïf a2, b2, on en déduit des relevés &quot;naturels&quot; âlf bl pour an b,

(1&lt;/&lt;12). Par exemple, on pose â3-TV2âxT.y2 où T1/2 est la translation
d&apos;amplitude 1/2. Dans ces conditions, la quantité n,1^ [ân bt] que nous cherchons

à évaluer est le carré de Il?=i[â,, 6,] car âb+l ât et S6+l bl (l&lt;/&lt;6). Par

ailleurs, la relation (1) montre que II?=i [ân bt] est une translation du type
x —* x H- n + 1/2 (avec n e Z). Son carré est donc une translation d&apos;amplitude

impaire et donc non nulle comme nous voulions le montrer.
Il nous reste donc à exprimer g comme un produit de deux commutateurs. On

vérifie que g est le produit des deux éléments oc, /? de G dont les graphes sont:

1

3/4

1/2Y
1/4

s*y
3/4 1

II est clair que Ry%aR _i/8 et R -v$PRi/8 sont tous les deux égaux à l&apos;élément y suivant:

1/8

0 1/8 7/8 1

Pour terminer, il nous suffit donc de montrer que y est une commutateur. Dans

[Fr-He], il est montré que F&apos; est le premier groupe de commutateurs de F. La
démonstration de ce fait est suffisamment constructive et permet effectivement
d&apos;exprimer y comme un commutateur ce qui permet finalement de terminer la
détermination de la représentation q&gt;:n1(2l2)-*G que nous cherchions. Pour
terminer, disons simplement que le caractère explicite de cette construction permet
d&apos;évaluer précisément le nombre d&apos;Euler associé (nous avons vu qu&apos;il est impair). Le
résultat est celui annoncé dans le théorème, c&apos;est-à-dire 1.
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III.3. &quot;Unicité&quot; des lissages

L&apos;essentiel de cette section consiste à démontrer le théorème K, c&apos;est-à-dire

qu&apos;une représentation non triviale de G dans Diff2 (S1) est semi-conjuguée à

l&apos;inclusion canonique de G dans Homéo (S1).

Fixons donc un morphisme non trivial &lt;p:G—»Diff+ (S1) (r^2). Puisque G
est simple (voir II-3.15), cp est injective. Nous identifions souvent Q2/Z au

sous-groupe de G (et donc de Homéo (S1)) formé des rotations d&apos;angle dyadique.
Pour simplifier l&apos;exposition, nous commencerons par faire l&apos;hypothèse suivante:

(H) Pour tout x de S1, l&apos;orbite de x par &lt;p(Q2/Z) est dense dans S1.

PROPOSITION 3.1. Si l&apos;hypothèse (H) est vérifiée, il existe un
homéomorphisme h de S1 tel que h ° &lt;p ° h~l(Q2/Z) est formé de rotations du
cercle d&apos;angles dyadiques.

Démonstration. Puisque &lt;p(Q2/Z) est un sous-groupe abélien de Homéo+(S1),
il préserve une mesure de probabilité \i sur S1.

Sous l&apos;hypothèse (//), \i est sans atomes et son support est le cercle tout entier.
Si l&apos;on utilise \i pour paramétrer le cercle, on obtient alors un homéomorphisme h
de S1 tel que hoq&gt;°h~l(Q2/Z) est formée de rotations. En considérant l&apos;angle de

ces rotations, on obtient un morphisme p de Q2/Z dans IR/Z. Il est immédiat que
l&apos;image d&apos;un tel morphisme est contenue dans Q2/Z.

Remarquons que p:Q2/Z-*Q2/Z&lt;-&gt;M/Z est injectif. On vérifie qu&apos;une telle
injection est nécessairement un automorphisme de Q2/Z.

LEMMA 3.2. &amp; automorphisme p de Q2/Z est égal à +id ou —id. En

composant éventuellement h avec une symétrie, Vimage de la rotation Rx de Q2/Z

par h°çpoh~l est donc précisément cette même rotation Rx.

Ce lemme sera une conséquence rapide du suivant:

LEMME 3.3. Soit eu la classe d&apos;Euler dans H2(Diïï+(Sl); Z). Pour démontrer
le théorème K, on peut toujours supposer que &lt;p*(eu) ±x&gt;

Démonstration de 3.2 à partir de 3.3. D&apos;après 3.3., p se relève en un
morphisme p : Q2—? Q2 tel que p(l) ±1. On a donc p(x) ±x. D

Démonstration de 3.3. Nous savons que q&gt;(eu) noc+p - % (n,pel)
(théorème C). Montrons que n est nul. Soit a (w, v) — (u, u) le 2-cycle de G
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dérit en IL 4-8. Nous avons vu que a(a) ±1. Puisque toute représentation de

Z©Z dans Homéo+(51) a une classe d&apos;Euler nulle (voir par exemple [He-Hi]),
les entiers &lt;p*(ew)(a) et %{°) sont nuls. L&apos;égalité q)*(eu) ~noc+p% évaluée sur a
donne alors n 0.

Supposons que p =£ ±1, et considérons le revêtement à p feuillets de Diff+ (S1)

identifié au groupe Diff+ (S1, RVp) formé des difféomorphismes commutant avec

R1/p. Dans ces conditions, &lt;p se relève en un morphisme ^ de G dans

Diffi^ (S1, Ryp). On a évidemment q&gt;t{eu) ±x- Si l&apos;on démontre le théorème K
pour les représentations telles que cp*(eu) ±#, on en déduira que q&gt;x est

semi-conjuguée à l&apos;inclusion de G dans Homéo+ (S1). Mais ceci est impossible car

un groupe semi-conjugué à G ne peut évidemment pas commuter avec la rotation
non trivale R1/p. D

Soit / un intervalle fermé de S1 dont les deux extrémités sont dyadiques (i.e.
éléments de Q2/Z). Notons Gr le sous-groupe de G formé des éléments dont le

support est contenu dans l&apos;intérieur de /. Ces sous-groupes G7 sont sans torsion et

simples car ils sont évidemment isomorphes à F&apos; (voir II 3.15). L&apos;observation de

base est la suivante: les intérieurs de deux intervalles Ix et 12 sont disjoints si et
seulement si tous les éléments de Gh commutent avec tous les éléments de Gh.
Une telle situation est analysée par le lemme suivant:

LEMME 3.4. Soint J] et F2 deux sous-groupes simples, non triviaux et sans

torsion de Diff2 (S1). On suppose que les éléments de Fx commutent avec ceux de

r2. Alors, si y1eF1et x e S1 sont tels que yx(x) # jc, on a nécessairement y2(x) x
pour tout y2de F2.

Démonstration. Nous utiliserons un théorème de N. Koppel [Kop] dont une
version peut s&apos;exprimer de la façon suivante [Tsu 1]; si yt et y2 sont deux

difféomorphismes de S1, de classe C2, qui commutent et tels que Fix (yx) ^ 0 et
Fix (y2) # 0, alors 3(Fix (yO) cz Fix (y2).

Commençons par supposer que tous les éléments de Fx et de F2 ont des points
fixes. Fixons un élément yx de Fx et considérons l&apos;ouvert S1 - 3(Fix (yO). Les

composantes connexes de cet ouvert sont de deux types: ou bien yx est l&apos;identité

sur cette composante, ou bien yt n&apos;a pas de point fixe sur cet intervalle. Notons
Ai les composantes du premier type et B} celles du second; on a S1 - 9 Fix (yx))
(UAi) U (UBj). Si y2 6 F2, le théorème de N. Kopell montre que 9(Fix (yO) est

formé de points fixes de y2. Par conséquent, F2 opère sur chacune des

composantes At et Br En fixant j, on obtient ainsi une représentation:
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Comme F2 commute avec yx, l&apos;image de ce morphisme est contenue dans le

groupe des difféomorphismes de l&apos;intervalle B, qui commutent avec yx\B,- Comme

Yi\b n&apos;a pas de point fixe, ce dernier groupe est abélien (c&apos;est aussi un corollaire
du théorème de N. Koppel, voir [Tsu 1]). Puisque F2 est simple, ce morphisme
est trivial, ce qui montre que y2 est l&apos;identité sur les intervalles où yx n&apos;est pas
l&apos;identité et c&apos;est précisément ce que nous voulions montrer.

Il nous reste à montrer que l&apos;hypothèse suivant laquelle tous les éléments de

Fx et F2 ont des points fixes est inutile.
Montrons d&apos;abord qu&apos;un élément y de Fx ou de F2 a nécessairement un point

périodique. Dans le cas contraire, d&apos;après le théorème de Denjoy, y serait

conjugué à une rotation irrationnelle et le groupe des homéomorphismes de S1

qui commutent avec y serait donc conjugué au groupe des rotations et donc
abélien. Or le commutant d&apos;un élément de Fx (resp. F2) n&apos;est certainement pas
abélien, car il contient le groupe simple F2 (resp. fj).

Soit y2 un élément non trivial de F2. D&apos;après ce que nous venons de voir, une

puissance non triviale y? de y2 possède un point fixe. Comme Fx commute avec

F2, le groupe rx préserve globalement Fix (yf) et donc &lt;9(Fix (y?)) (qui est non
vide car F2 est sans torsion). On obtient ainsi un morphisme:

\p : Fx -&gt; Homéo (d Fix (y?)).

Si yx est un élément non trivial de FXy une de ses puissances y[ a un point fixe et

on peut donc appliquer le lemme de N. Koppel à y\ et y?. On obtient ainsi
ii&gt;(y[) id et ijj n&apos;est donc pas injective (Fx est sans torsion). Puisque Fx est

simple, ip est trivial, ce qui montre que tous les éléments de Fx ont des points
fixes (au moins d Fix (y2)). Ceci termine la démonstration du lemme.

Appliquons ce lemme à la situation qui nous intéresse. Notons q&gt;&apos; h°q)°h~l
où h désigne encore l&apos;homéomorphisme donné par 3-1. Si / est un intervalle
fermé de S1 d&apos;extrémités dyadiques, on note

U^lxeS^Eyed, &lt;p&gt;{y)(x)*x} a S1.

Le lemme précédent montre que si Ix et l2 sont deux intervalles dont les intérieurs
sont disjoints, alors Ulx et (7/2 sont deux ouverts (non vides) et disjoints.

Les lemmes suivants résultent de la définition de U, et d&apos;une observation

précédente.

LEMME 3.5. Si geG et si I est un intervalle fermé de S1 d&apos;extrémités

dyadiques, on a Ugi0 (p&apos;(g)(Uj).
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LEMME 3.6. Si x e Q2/Z et I est un intervalle, on a Utn U/+x 0.

C&apos;est cette dernière propriété qui permet essentiellement de caractériser ces

ouverts i/7. Le lemme suivant est élémentaire, nous en laissons la démonstration
au lecteur.

LEMME 3.7. Soit IczS1 un intervalle fermé de longueur \l\ strictement

inférieure à \ et Q un ouvert de S1 ayant la propriété suivante:

ï H (J + x) 0 si et seulement si QH(Q + x) 0 (x e Q2/Z).

Alors, il existe un unique intervalle fermé J de longueur minimale qui contient Q et

la longueur de J est égale à celle de I.

Revenant à notre situation, on voit que, si |/| &lt; \, il existe un unique intervalle
fermé F/ contenant Ut et de longueur |/|. Il est clair que si Ix a I2, alors Vh c Vh.

LEMME 3.8. Quitte à conjuguer (p1 par une rotation, on a Vj I pour tout I
tel que \I\ &lt; \.

Démonstration. L&apos;intervalle V|0fi/4] est de longueur \. En conjugant &lt;p&apos; par
une rotation, on peut donc supposer que V[0&gt;1/4j [0, J]. On a alors V[i/4A/2]

VÏOfi/4]+i/4 i + [0,i] [iè] d&apos;après 3.5 et 3.2. De même F(1/2,3/4] [i 5] et

^[3/4,i] ^ [h !]• Les deux intervalles V^o.i/s] et V[i/8,i/4] sont de longueur |, différent
l&apos;un de l&apos;autre par la rotation d&apos;angle i et sont contenus dans Fl0,i/4] [0, J]. C&apos;est

donc que V[0ty8] [0, |] et F[i/8,3/4] [h !]• Par des arguments similaires, on

montre que Vt / pour tout intervalle / d&apos;extrémités dyadiques tel que |/| &lt;\.

PROPOSITION 3.9. Si cp vérifie Vhypothèse (//), &lt;p est topologiquement
conjugué à l&apos;injection de G dans Homéo (S1).

Démonstration. Nous allons montrer que q)&apos; id. Soit g e G, jc e Q2/Z et / un
intervalle fermé d&apos;extrémités dyadiques dont l&apos;extrémité gauche est x et tel que

(lemme 3.8)

(lemme 3.5)

* (p&apos;(gM (lemme 3.8).
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Puisque g(/) &lt;p&apos;(g)(/), leurs extrémités gauches sont égales, c&apos;est-à-dire que
&lt;P&apos;(g)(x) x. Par densité de Q2/Z dans S1, on conclut que &lt;p&apos; id.

Nous cherchons maintenant à nous débarasser de l&apos;hypothèse (H).

LEMME 3.10. Soit &lt;p:G—»Diff2(S1) une représentation quelconque. Alors, il
existe un point x de S1 fixe par q&gt;(F).

Démonstration. Soit In l&apos;intervalle [2&quot;n, l-2&quot;n] de S1 et Un l&apos;ouvert de S1

défini par:

U^ixeS&apos;lByeG^ &lt;p{y){x)*x).

Le fermé S1 — Un est non vide car il contient les points non fixes de ç&gt;(g) où g est
à support dans [0,2~n+1] d&apos;après 3.4. Soit K a S1 l&apos;intersection décroissante de ces

fermés S1 - Un. La définition même de K montre que (p(F&apos;) est l&apos;identité sur K.
Soient gx et g2 les deux éléments de G dont les graphes sont les suivants:

1

1/2

3/8
1/4 /

1

8

1

4

//// /
1 1

2 2

3

4

/

7

8

i

6/8
5 8

1/2

Comme Inczgx{In) c/^ et /„ c=g2(4) &lt;=/«-i («^2), on a [/„ &lt;=

et Un cz (p(g2)(Un) a Un-!. Il en résulte que &lt;p(gi) et &lt;p(g2) préservent globalement

K. Comme nous avons vu que (p(g\) et &lt;p(g2) on* ^u moins un point fixe

(voir la démonstration de 3.4), et comme (p(gi) et &lt;p(g2) commutent, on en
déduit que (p(gi) et q&gt;(g2) ont un point fixe commun x0 dans K. Observons
maintenant que tout élément de F s&apos;écrit sous la forme gïgTg où g e F&apos;. Comme
q&gt;(gi) et &lt;p(g2) fixent jc0 et que (p(Fr) est l&apos;identité sur K, on conclut que jc0 est

fixé par &lt;p(F).

LEMME 3.11. Soit (p:G~»Diff2(51) une représentation non triviale. Alors
(p{G) possède un unique minimal dans S1 qui est aussi l&apos;unique minimal de
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Démonstration. Montrons tout d&apos;abord que &lt;p(G) ne peut avoir d&apos;orbite finie.
En effet, une telle orbite fournirait une représentation de G sur un groupe fini
cyclique et la simplicité de G entraîne alors que l&apos;orbite finie devrait être un point
fixe. Mais le groupe des homéomorphismes de S1 qui fixent un point est un

groupe sans torsion, de sorte que ce groupe ne peut contenir (p(G) dont la torsion
est non triviale.

Deux cas sont alors possibles:

i) Les orbites de &lt;p(G) sont denses dans S1, i.e. &lt;p(G) possède un unique
minimal M qui est S1.

ii) &lt;p(G) possède un unique minimal exceptionnel M c S1.

Dans les deux cas M est contenu dans l&apos;ensemble des points d&apos;accumulations

de n&apos;importe quelle orbite de &lt;p(G).

Les actions effectives de Q2/Z sur le cercle peuvent être décrites de la façon
suivante:

a) L&apos;action possède un unique minimal Jf c S1.

b) II existe une semi-conjugaison h:S1-*S1 entre l&apos;action considérée et une
action de Q2/Z sur S1 par rotations.

c) Si Jf¥^Sl et si y est un élément non trivial de Q2/Z, alors y envoie une

composante connexe de S1 - Jf sur une composante connexe distincte.
Ces trois propriétés se montrent facilement en utilisant une mesure de

probabilité \i sur S1 invariante par Q2/Z. Le support de ju est le minimal Jf et
l&apos;intégrale de \i définit la semi-conjugaison h.

La propriété c) montre que si x e S1, l&apos;orbite de x par Q2/Z ne peut contenir
qu&apos;au plus un point dans chaque composante de S1 — Jf. Il en résulte que, pour
tout x de S1, l&apos;ensemble des points d&apos;accumulation de l&apos;orbite de x par Q2/Z
coïncide avec Jf.

Soit x0 un point de S1 fixé par &lt;p(F) (lemme 3.8). Comme tout élément de G
s&apos;écrit sous la forme gt • g2 où gt e Q2/Z et g2 e F, on a q&gt;(G)(x0) - qp(Q2/Z)(jt0).
En considérant les point d&apos;accumulation de &lt;p(Q2/Z)(jt0), on obtient Mczjf.
Comme Jf est clairement contenu dans M, on obtient l&apos;égalité cherchée
M Jf. D

Nous pouvons démontrer le théorème K.

THEOREME 3.12. Toute représentation non triviale &lt;p:G-*Diff2 (S1) est

semi-conjuguée à Vinclusion canonique de G dans Homéo (S1).

Démonstration. Si les orbites de &lt;p(G) sont denses, le lemme précédent
montrent que &lt;p vérifie la propriété (H) et nous avons déjà montré le théorème

(3.9).
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Si cp(G) possède un minimal exceptionnel M, on considère une application
continue monotone h\Sl—»S* de degré topologique 1, telle que h(M) Sl et h

est constante sur les composantes connexes de S1 - M. On peut alors construire
une représentation ç&gt;&apos;:G—&gt;Homéo (S1) qui est semi-conjugée à &lt;p par h.

Evidemment, les orbites de &lt;p&apos; sont denses dans S1.

On vérifie qu&apos;un groupe d&apos;homéomorphismes se S1 qui est semi-conjugué à un

groupe de difféomorphismes de classe C2 vérifie lui aussi le théorème de N.
Koppel. Tous les arguments précédents peuvent donc s&apos;appliquer à cp1 de sorte

que cp&apos; est topologiquement conjugué à l&apos;inclusion de G dans Homéo (S1).

Pour terminer cette section, nous allons décrire les représentations de G dans

Diff2(51) à conjugaison différentiable près et non pas seulement à semi-

conjugaison près. Le cas où les orbites de &lt;p(G) sont denses est facile.

THEOREME 3.13. Soit cp:G^&gt;Diffr+ (S1) (r&gt;2) une représentation non
triviale telle que toutes les orbites de (p(G) sont denses. Alors, il existe un

difféomorphisme f de R satisfaisant les conditions (I), (II) et (IIIr) tel que q&gt; et cpf

sont conjugués par une rotation.

Démonstration. L&apos;application m :x e Sl-*2x e S1 n&apos;est pas un élément de G,
mais il existe un recouvrement de S1 par des intervalles ouverts /, et des éléments

gt de G tels que ra,/f gt|/&lt;. Soit h une conjugaison topologique entre cp et
l&apos;inclusion naturelle de G dans Homéo (5l) et soit /: S1 —» S1 l&apos;application définie

par/)* -i(/i) &lt;p(gi)|/i &gt;(/,)• II est c&apos;a*r que/est bien défini et ne dépend pas du choix
des It et des g,. De plus, / est évidemment de classe Cr. Evidemment,
f(h~l(0)) /i~1(0), de sorte que, en conjugant cp par une rotation, on peut
supposer que / fixe 0. Le relevé / de / à M tel que /(0) 0 satisfait alors les

condition I, II, et IIIr. Les constructions précédentes montrent alors que, après

conjugaison par une rotation, on a &lt;p cpf.

Les représentations cp qui ne sont que semi-conjuguées à l&apos;inclusion de G dans

Homéo (S1) sont plus délicates à décrire complètement. Commençons par
montrer un lemme:

LEMME 3.14. Soit &lt;p:G—?Diff2^1) une représentation non triviale et h une

semi-conjuaison entre (p et Vinclusion de G dans Homéo (S1). Soit I un intervalle

fermé de S1 d&apos;extrémités dyadiques et g un élément de G tel que g\t — id. Alors
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Démonstration. Soit M l&apos;unique minimal de (p(g). On pose:

La semi-conjugaison montre que:

Pour simplifier, prenons / [0, \] et considérons alors l&apos;élément gx de G dont le

graphe est le suivant:

1/2

Soit g € G tel que g\t id. Les éléments &lt;p(gi) et q?(g) commutent et préservent
l&apos;intervalle / h~lQ0, |[). Par aileurs, &lt;p(gi) n&apos;a pas de points fixes sur / alors que
&lt;p(g) fixe tous les points de MDJ. On peut donc appliquer le théorème de N.

Koppel pour conclure que (p(g)\j id et donc que &lt;p{g)\h-\t) id. D

Le théorème suivant montre que les représentations cp ayant une orbite non
denses sont &quot;presque&quot; conjuguées à une représentation du type cpf.

THEOREME 3.15. Soit (p:G-&gt;Diffr (S1) (r&gt;2) une représentation non
triviale ayant une orbite non dense et h une semi-conjugaison entre cp et Vinclusion
de G dans Homéo (S1). // existe un difféomorphisme f de R satisfaisant les

conditions (I), (II) et (IHr) et une rotation R de S1 ayant la propriété suivante. Si

g 6 G et si xXf x2, • xk sont les points de S1 où g n&apos;est pas différentiablef alors
&lt;p(g) et RcpfR~1(g) coïncident sur S1 - h~l{xlf x2,. xk).

Démonstration. On reprend les notations de la démonstration du théorème
3.13. Le lemme précédent montre précisément que l&apos;application/:51—&gt;51 définie

par /(/i-^/,) &lt;p(gi)\h-\td es* bien définie et ne dépend pas du choix des It et de gt.
Cette application est de classe Cr et nous verrons plus bas qu&apos;il existe un point
fixe pour/tel que le rème jet de/en ce point est celui de l&apos;identité. En conjugant
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q&gt; par une rotation R, on peut donc supposer qu&apos;un relevé / de / à R satisfait les

propriétés (I), (II), et (IIIr). Le fait que &lt;p(g) et Rq)fR~1(g) coïncident sur
S1 — h~1{xiy x2y. xk} résulte alors de la définition de /.

II nous reste à décrire &lt;p(g) sur h~1{x1, x2,. xk}. Remarquons que h&quot;1^)

est la projection dans S1 de l&apos;intervalle maximal / de R dont les extrémités sont
des points fixes de /.

LEMME 3.16. On se place dans les conditions du théorème 3.15. Si g eF, le

difféomorphisme q)(g) de Vintervalle J h~l(O) [or, /?] ne dépend que des

dérivées à gauche et à droite de g en 0. Ceci définit donc une représentation ip de

Z © Z dans Diff (/) ayant les propriétés suivantes:

i) Le rème jet de tp(m, n) en a est celui de fm en a.

ii) Le rème jet de xp(m, n) en j3 est celui de fm en j8.

iii)

Démonstration. La première assertion est une conséquense du lemme 3.14; si

g\ et g2 sont des éléments de F ayant mêmes dérivées à droite et à gauche en 0,
alors le germe de g\lg2 en 0 est trivial et le germe de &lt;p(gï1g2) au voisinage de

h&apos;1^) est donc lui aussi trivial. Les propriétés i) et ii) résultent du théorème 3.15;
si g est un élément de F dont les dérivées à gauche et à droite en 0 sont 2m et 2&quot;,

alors d&apos;après 3.13, cp{g) coïncide avec/m sur un &quot;demi-voisinage gauche&quot; de oc et
avec/&quot; sur un &quot;demi-voisinage droit de j8&quot;. La propriété iii) résulte aussi de 3.15;
si les dérivées à gauche et à droite de g e F en 0 sont égales à 2, alors g est

différentiable en 0 et &lt;p(g) coïncide donc avec &lt;P/(g) au voisinage de h~l(0),
c&apos;est-à-dire avec/ au voisinage de h&apos;1^) [a, p], D

Si un Cr-difféomorphisme de [0,1] ne possède pas de point fixe où son rème jet
est celui de l&apos;identité, il en est de même pour tout difféomorphisme non trivial qui
commute avec lui (voir [Tsu 1]). Comme le jet de ip(0,1) est trivial en oc, cette

remarque montre qu&apos;il existe au moins un point de [a, p] fixe par / et tel que le
rème jet de / en ce point est trivial. C&apos;est cette affirmation qui manquait à la

démonstration de 3.15.

Nous pouvons décrire maintenant les représentations non triviales &lt;p:G—&gt;

Diff (S1) à conjugaison différentiable près.

THEOREME 3.17. A conjugaison par une rotation près, la donnée d&apos;une

représentation non triviale &lt;p de G dans DifT (S1) est équivalente à la donnée des

deux objets suivants:
1) Un difféomorphisme f de R satisfaisant I, II, et IIIr.
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2) Un morphisme ip:Z® Z-*DiflT ([a, j8]) (où [a, )3] est Vintervalle maximal

fixe par f) vérifiant i), ii) et iii).
La donnée de 2) est inutile lorsque les orbites de q&gt;(G) sont denses car alors

Démonstration. Nous avons déjà vu comment associer un couple (f, tp) à une
représentation &lt;p. Montrons comment construire cp à partir d&apos;un tel couple. Soit h

une semi-conjugaison entre / et x eS1-^2x eS1 (Lemme 1.9). Soit geG et

{xlf x2i. xk) les points de S1 où g n&apos;est pas différentiable. Posons yl -gix^.
Sur X Sl-h~l{xl9 xk), on pose (p(s),;r &lt;Pf(g)\x- H nous reste à définir
&lt;p(g) sur les intervalles du type h~\xx). Observons que R^yxgRXx est un élément
de F et que R-yi et RXi sont différentiables partout, de sorte que cp(RXx) et

(p(R-yx) sont déjà définis. Pour définir &lt;p(g) sur h~1(x1)f il nous suffit donc de

définir q?(g) sur h&apos;1^) [a, (5] lorque g eF. On pose alors q&gt;(g)\h-\o) V(m&gt; n)
où 2m et 2n sont les dérivées à gauche et à droite de g en 0. Il est facile de vérifier

que l&apos;on définit bien ainsi une représentation (p de G dans DifT (S1).

III.4. Corollaires du théorème K

Le corollaire L est maintenant clair: si &lt;p:G-»DifT (S1) est topologiquement
conjugué à l&apos;inclusion canonique de G dans Homéo (S1), alors cp est évidemment
semi-structurellement stable.

Nous démontrons maintenant le théorème F relatif à l&apos;invariant de Godbillon-
Vey. Commençons par quelques rappels concernant cet invariant. Soit BF\ le

classifiant de Haefliger des T-structures transversalement orientées, de codimen-
sion 1 et de classe C2. L&apos;invariant de Godbillon-Vey est une classe de

cohomologie, que nous notons GV, dans H3(BFl;U). Le 5x-fibré au-dessus de

BDtfP+(Sl) associé à l&apos;action de Diff^S1) sur S1 a le type d&apos;homotopie de

B Difl^. (S1). Ce fibre est muni d&apos;une restructure &quot;horizontale&quot; qui est classifiée

par une application q:BDif^r(Sl)-^BF\ défine à homotopie près. L&apos;image

réciproque q*GV est une classe de cohomologie, notée encore GV dans

/f3(BDif^(S1);R)-/f3(Difg^(51);lR). L&apos;image^de GV par le morphisme
d&apos;intégration sur la fibre i/3(Diffi (S1); R)-*#2(Diffi (S1); R) est une classe de

cohomologie que nous notons gv (voir par exemple [Mi~TS] ou [Mor]). Nous
nous proposons de montrer que, pour toute représentation &lt;p : G-» Diff^. (S1), on
a cp*(gv) 0 dans H2(G; R). Soit eu la classe d&apos;Euler dans H2(Dif?+ (S1); Z).

LEMME 4.19. Si &lt;p:G-»Diff^_ (S1) est un morphisme non trivial, on a
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Démonstration. La façon la plus rapide de montrer ce lemme est d&apos;utiliser le
théorème K et d&apos;observer que la classe d&apos;Euler est invariante par semi-congaison

respectant l&apos;orientation (voir [Gh2]).

Quitte à conjuguer cp par une symétrie, nous pouvons donc supposer que
cp*(eu) x- Nous avons donc un diagramme commutatif:

0 0

i I
Z -^ Z

l ï
G -*-&gt; Diff^S1)
1 1

G -*U Diff2+ (S1)

ï ï
1 1

LEMME 4.10. Pour toute représentation cp : G^&gt; Diff+ (S1), il existe un réel k
tel que (p*(gv) ka dans H2(G; R).

Démonstration. On peut supposer que cp est non trivale. La naturalité de

l&apos;intégration sur la fibre montre que (p*(gv) est aussi l&apos;image de cp*(GV) par
l&apos;intégration sur la fibre H3(G; M)-*H2(G; M). Comme H3(G;U) est engendré

par la classe /? et que l&apos;intégrale sur la fibre de P n&apos;est autre que a e H2(C; R), on
obtient le résultat.

Nous terminons maintenant la démonstration du théorème F.

THEOREME 4.11. Pour toute représentation &lt;p:G-+Diff+(Sl), on a

Démonstration. Utilisons de nouveau le cycle a (w, v) — (v, u) fourni par le
lemme II.4.8. Comme l&apos;invariant de Godbillon-Vey d&apos;une représentation de
Z © Z dans Diff^_ (S1) est nul (voir [Her]), on a &lt;p*(gv)(o) 0. Par ailleurs, nous
savons que a(a) 1 (lemme H.4.8). En évaluant l&apos;égalité &lt;p*(gv) ka sur a, on
obtient alors que k est nul.
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