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Sur un groupe remarquable de difféomorphismes du cercle

ETIENNE GHYS et VLAD SERGIESCU

Introduction

L’étude de la cohomologie du groupe discret des difféomorphismes du cercle
est motivée par son lien avec les problemes de classification homotopique des
feuilletages de codimension 1 (voir par exemple [Ser]). Pour détecter des classes
de cohomologie non triviales, on est ramené a la recherche de sous-groupes dont
I’homologie est calculable. A part les groupes abéliens, les sous-groupes étudiés
jusqu’a présent se construisent essentiellement a partir de I’action projective de
SL(2, R) sur le cercle S'=P'(R). ([Bot], [Tsul], [Tsu2]...). Dans ce travail,
nous nous intéressons aux propriétés homologiques et dynamiques d’un groupe
de nature différente.

Soit G le groupe des homéomorphismes g de R vérifiant les propriétés
suivantes:

1. gx+1)=gx)+1

2. g est affine par morceaux.

3. Si x est un point de discontinuité de la dérivée de g, alors x et g(x) sont des
nombres dyadiques, c’est-a-dire des rationnels du type p - 27 avec p et q entiers
relatifs.

4. En tout point, les dérivées a gauche et a droite de g sont des puissances
entieres de 2.

5. g(0) est un nombre dyadique.

La propriété 1 montre qu'un élément de G définit naturellement un
homéomorphisme du cercle S, identifié 4 R/Z. On désigne par G le groupe des
homéomorphismes de S' ainsi obtenu.

On note F le sous-groupe de G formé des éléments qui fixent 0 (mod Z) et F’
le sous-groupe de F constitué des éléments dont le germe en 0 est trivial.

Ces groupes sont apparus dans plusieurs contextes: logique, algebre, topol-
ogie. R. J. Thompson [MK-TH], [?]), motivé par le “probléeme des mots”, a
construit un groupe infini, simple de présentation finie, plongé dans le groupe des
homéomorphismes du cercle. Il s’avere que I'image de ce plongement n’est autre
que G (bien que nous n’utiliserons pas ce fait). Le groupe F est reli€ au probléme
des idempotents homotopiques [Dyd], [Fr-He]; récemment K. Brown et R.
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186 E. GHYS ET V. SERGIESCU

Geoghegan ont démontré que F est un groupe de type FP., de dimension
cohomologique infinie, bien que sans torsion ([Br—Ge] et [Br]). Par ailleurs F ne
contient pas de sous-groupes libres a deux générateurs [Br-Sq].

L’étude que nous proposons du groupe G est basée sur la dynamique de son
action sur le cercle. Nous verrons que des méthodes apparues précédemment en
théorie des feuilletages permettent le calcul explicite de la cohomologie de G et
éclairent sa structure. Inversement, les propriétés algébriques et homologiques de
G sont reliées a d’intéressantes propriétés qualitatives des feuilletages qui leur
sont associés.

Les discussions et la correspondance que nous avons eues avec plusieurs
mathématiciens nous ont constamment stimulées. D. Sullivan nous a suggéré
d’étudier ce groupe d’un point de vue dynamique. Nous avons utilisé avec profit
les preprints que P. Greenberg et S. Jekel nous ont communiqués. C’est grace a
R. Geoghegan et R. Strebel que nous avons eu connaissance, entre autres, de [?].
D. McDuff et A. Haefliger se sont intéressés a ce travail et nous ont encouragés
durant sa rédaction.

Nous les remercions tous pour leur gentillesse.

Le premier auteur remercie par ailleurs 'THES pour son hospitalité.

I. Enoncé des résultats

Tel que nous I’avons défini, le groupe G est un groupe d’homéomorphismes
du cercle. Le théoreme suivant montre qu’il est possible de “lisser”” ce groupe
sans changer sa dynamique topologique.

THEOREME A. [l existe un homéomorphisme h du cercle tel que hGh™" est
constitué de difféomorphismes de classe C* de S.

Nous verrons plus loin qu’il existe un grand nombre de tels homéomorphismes
h. Par ailleurs, nous construirons d’autres plongements de G dans le groupe
Diff% (') des difféomorphismes de S, de classe C*, qui respectent ’orientation.

Un théoréeme fondamental de J. Mather établit une équivalence homologique
entre le classifiant du groupe discret Diff; (R) des difféomorphismes C~ de R a
support compact d’une part, et I’espace des lacets du classifiant BI'T des
I'structures de Haefliger de codimension 1 d’autre part ([Mat]). W. Thurston a
donné une version de ce théoréme pour le groupe Diff> (S'), revétement
universel de Diff; (S'). Une approche de ces théorémes et de certaines
généralisations, basée sur I'utilisation des monoides de plongements, est due a D.
McDuff et G. Segal [McD 1}, [Seg 3]. Nous étendons cette méthode aux groupes
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qui nous intéressent. En utilisant un théoréme récent de P. Greenberg sur le
classifiant des pseudo-groupes linéaires par morceaux, nous explicitons des
espaces simples ayant le méme type d’homologie que les espaces d’Eilenberg-
Maclane BG, BG et BF'. Notre démarche est en quelque sorte inverse de celle
de J. Mather et W. Thurston qui utilisaient I’équivalence d’homologie pour
analyser BI'T a partir du groupe Diff7(R).

Si X est un espace topologique pointé, nous noterons £2X I’espace des lacets
pointés et LX I’espace X*' des lacets libres. Le groupe S' opére sur LX de fagon
naturelle; nous noterons £X le “‘quotient homotopique”, c’est-a-dire le quotient
de LX X ES' par l'action diagonale de S' (ou ES' désigne I’espace total du
S'-fibré universel).

THEOREME B. [l existe des applications continues

BF' — QS?
BG— LS?
BG — ¥5°

qui induisent des isomorphismes en homologie entiére.

Ce théoréme permet la détermination des anneaux de cohomologie des
groupes F, F', G, G. Rappelons d’abord quelques notations. Si A est un anneau
commutatif, on note A[x] la A-algébre graduée des polyndmes en une variable x
de degré pair |x|. Soit A(u) la Z-algebre extérieure engendrée par un générateur
u de degré impair |u|. Enfin, on note I'[x] 'anneau gradué des puissances divisées
engendré par un générateur x de degré pair; c’est par définition I’anneau libre
engendré par des éléments x, (n = 1) tels que x, =x et

_(n+p)!
~ alp!

n " Ap n+p-

La cohomologie entiere de £S> n’est pas connue. C’est pour cette raison que
nous n’explicitons que la structure rationnelle de la cohomologie de G. Voir

cependant [Hin] pour des informations sur la cohomologie de £S* a coefficients
dans Z,.

COROLLAIRE C. Les anneaux de cohomologie entiére de F, F', G sont
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respectivement:

H*(F;Z)=A(uy, uy) @ I'a] avec |uj|=|u,|=1 et |a|=2
H*(F',Z)=TI[a] avec |a|=2
H*(G;Z)=T[a] ® A(B) avec |a|=2 et |B|=3.

De plus, on a:
HY(G;Z7)=0.

Le groupe H*(G; Z) est isomorphe a Z ® Z. 1l existe des générateurs « et y de
H*(G; Z), naturels dans H*(¥S>;7), tels que:

H*(G;Q)=Qla, x)/a-x=0 avec |a|=2 e |x|=2.

Par une méthode différente, K. Brown et R. Geoghegan avaient déja calculé
la structure additive de H*(F; Z) ([Br-Ge]).

En prenant des coefficients réels, ces résultats présentent une analogie
surprenante avec les cohomologies continues (ou de Gelfand—Fuchs) de Diff; (R)
et Diff (S§'). Rappelons que celles-ci sont respectivement isomorphes a R{gv] et
R[gv, eu]/gv - eu =0 ot gv est la classe de Godbillon—Vey (intégrée sur la fibre)
et eu est la classe d’Euler [Ha 2]. Il est naturel d’interpréter les générateurs a et x
a partir de cette analogie.

THEOREME D. L’élément x de H*(G; Z) n’est autre que la classe d’Euler de
Iextension )

0-7Z—>G—->G—1.

Les puissances de la classe d’Euler sont non nulles dans H*(G; Q) et donc dans
H*(Diff; (5); Q). (D’apres le théoréme A).

La non nullité des puissances de la classe d’Euler dans H*(Diff% (S'), Q) est
un résultat de S. Morita [Mor]. Il nous semble intéressant de retrouver ce
phénomeéne dans un groupe explicite aussi “petit” que G.

L’interprétation de la classe « est plus délicate. Rappelons tout d’abord que la
classe de Godbillon-Vey dans H*(Diff} (§'), R) peut étre représentée par le
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“2-cocycle de Bott—Thurston” suivant (voir [Bott]):

1

gu(u,v) =3 |

Log Dv Log D(u-°v) .
DLogDv D LogD(uev)|

Ce cocycle, bien qu’ayant un sens si u et v sont deux éléments de G est
évidemment nul dans ce cas car D Log Du est alors nul presque partout.

La classe a apparait cependant comme un analogue discrétisé de gv ou la
différentielle D est remplacée par une différence finie. Plus précisément, si
@:S'—>R est une fonction admettant des limites latérales en tout point, on
notera A@:S'— R la fonction définie par A@(x) = ¢(x.) — ¢(x_). En notant u),
la dérivée a droite, on a

THEOREME E. La fonction gu:G X G — Z définie par,

_ Lo i Log, (uov)!
Z0(u, v) = 2 g2Vy g ( )a

res' IALog, vy ALog, (u°ov), ()

est un cocycle dont la classe de cohomologie est I’élément 2a de H*(G; Z) décrit
dans le corollaire C.

On remarquera que la somme définissant gu est en fait finie.

Pour un plongement de G dans Diff; (§') donné par le théoréme 1, on
pourrait étre tenté d’interpréter & comme €tant I'image réciproque de la classe de
Godbillon-Vey par ce plongement. Il n’en est rien, comme le montre le théoréme
suivant.

THEOREME F. Soit ¢:G— Diffi (S') un morphisme quelconque. Alors
limage de Iinvariant de Godbillon—Vey par ¢* est nulle dans H*(G; R).

Nous abordons maintenant I’étude qualitative des actions de G sur le cercle.

Rappelons que si un groupe agit sur le cercle, sa dynamique topologique peut
étre de trois types différents (voir par exemple [He-Hi]):
1. Il existe une orbite finie.
2. Toutes les orbites sont denses.
3. 1l existe une orbite dont ’adhérence est un ensemble de Cantor, appelé
minimal exceptionnel.
Il est clair que les actions de G sur S' fournies par le théoréme A ont toutes
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leurs orbites denses. Nous verrons qu’une action non triviale de G sur S' ne peut
avoir d’orbite finie. Par contre, le cas 3 peut effectivement se produire:

THEOREME G. Il existe des représentations ¢ : G— Diff* (S') possédant un
minimal exceptionnel.

Il résulte facilement des théoremes D et F et de la formule de Hopf qu’il
existe une surface compacte orientée 2 et une représentation ¢ :mx(2)— Diff}
(S') ayant un minimal exceptionnel et telle que le nombre d’Euler est non nul.
Nous avons réussi a construire un exemple explicite:

THEOREME H. Soit X, la surface compacte orientée de genre 12. 1l existe
une représentation ¢ :m(2,)— Diff* (S') qui a un minimal exceptionnel et telle
que le nombre d’Euler du S'-fibré associé est égal a 1.

Ce théoréme contraste avec le résultat de [Gh 1] ou il est montré que la classe
d’Euler rationnelle d’'un groupe de difféomorphismes analytiques du cercle est
nulle en présence d’un minimal exceptionnel. Remarquons que si ¢ :7x,(2)—
Diff; (S') posséde un minimal exceptionnel, alors son nombre d’Euler eu(¢)
satisfait I'inégalité de Milnor—-Wood “forte” |eu(¢)| < |x(2)| [Gh 1]. On pourrait
se demander dans quelle mesure cette derniere inégalité est optimale.

Le théoreme G entraine le résultat suivant:

COROLLAIRE 1. Les groupes F et G sont isomorphes a des sous-groupes
discrets de Diff. (R) et Diff}, (S'), munis de la topologie C'.

Ainsi F et G sont des sous-groupes discrets de ‘“groupes de Lie” simples de
dimension infinie; ceci pourrait étre relié au fait qu’ils sont de type FP. (voir
[Br-Ge)).

Une conséquence d’un théoréme classique de Denjoy et du théoréme G est le

COROLLAIRE J. Tous les éléments de G ont un nombre de rotation
rationnel. Par ailleurs, tout rationnel est le nombre de rotation d’un élément de G.

Enfin, nous nous intéressons a la classification des actions de G sur S'.
Rappelons que si ¢, et ¢, sont deux représentations de G dans Homéo* (S'),
on dit que ¢, est semi-conjugué a ¢, s’il existe une application continue
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monotone h de S' dans S' de degré 1 telle que, pour tout g de G, on a

he¢y(g) = ¢a(g)°h.

THEOREME K. Soit ¢ : G— Diff? (S§") une représentation non triviale. Alors,
¢ est semi-conjuguée a linjection de G dans Homéo (S).

En fait, nous donnerons une description précise de toutes les représentations
¢ : G — Diff” (S') (r =2) a C"-conjugaison preés (voir théoréme III-3-17).

COROLLAIRE L. Il existe des représentations non triviales de G dans
Diff” (S') (r =2) qui sont semi-structurellement stables dans le sens suivant: toute
représentation ¢' proche de ¢ est semi-conjuguée a ¢.

Ce corollaire nous semble intéressant car ces actions stables sont de nature
différente des exemples déja connus: essentiellement les groupes abéliens et les
groupes fuchsiens.

En conclusion, ces résultats semblent confirmer 'idée de K. Brown et R.
Geoghegan suivant laquelle G est I'analogue d’un sous-groupe arithmétique I
d’un groupe de Lie simple H de R-rang supérieur a 2. Dans notre cas, Diff' (S')
joue le role de H (Corollaire I) et I’action de G sur S’ est analogue a ’action de I’
sur H/P ou P est un sous-groupe parabolique. La théorie des groupes
arithmétiques montre que les propriétés de I sont proches de celles de H (voir
[Zim]). Par exemple, I est “résiduellement simple” (de méme de G est simple).
Il existe un rapport étroit entre la cohomologie de I" et la cohomologie continue
de H (de méme la cohomologie de G est analogue a la cohomologie de
Guelfand-Fuchs de S'). De la méme fagon, le théoréme K est semblable au
théoreme de Margulis affirmant que sous des conditions trés générales, un
morphisme de I' < H dans H se prolonge a H. 1l serait intéressant de trouver un
cadre général qui puisse contenir les groupes arithmétiques ainsi que des groupes
tels que G. Par ailleurs, cette analogie souléve naturellement quelques
problemes: F est-il moyennable ([Br-Sq]), G posséde-t-il la propriété T de
Kazhdan?

Cet article est organisé de la facon suivante. Dans la partie II, consacrée aux
questions cohomologiques, nous démontrons successivement les théoremes B, C,
D, E. La partie III est consacrée aux propriétés qualitatives; on y démontre les
théoremes A, G, J, H, I, K, L, F, E. Bien que la partie III s’appuie sur la partie
II; sa lecture pourrait étre faite directement aprés avoir pris connaissance des
notations générales en II-1.
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I1. Propriétés quantitatives

I1.1. Préliminaires

Dans cette section nous fixons des notations et nous faisons quelques rappels.
Notons Q, =R 'ensemble des nombres dyadiques et soit GA(Q,) le groupe
affine dyadique, c’est-a-dire le groupe des bijections affines de R du type

x>2%+L2  avec n, p, q entiers relatifs.

29

Si x est un réel, nous noterons 7, la translation d’amplitude x. Soit R, la
rotation de S' correspondant a T,.

On désigne par I'(R) le pseudo-groupe des homéomorphismes locaux de R
qui sont GA(Q,) par morceaux: k& € I'(R) si pour toute composante connexe [ de
son domaine de définition il existe une suite strictement croissante de nombres
dyadiques (x,),ez sans point d’accumulation et une suite (v,),ez d’éléments de
GA(Q,) tels que A | [x,, Xp1] = Yn | [Xns Xns1]-

Le monoide des auto-plongements de R qui appartiennent a I'(R) est noté
M(R). 1 est clair que le groupe G défini dans I'Introduction est contenu dans
M(R). Soit PL,(R) le groupe des homécmorphismes de R qui appartiennent a
' (R).
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On définit de méme le pseudo-groupe I'(S'). Le monoide M(S') qui lui
correspond est alors précisément le groupe G.

Un argument dans [McD 1] p. 436 montre que les classifiants BI'(R) et
BI'(S') ont méme type d’homotopie que nous noterons parfois BI" simplement.

Passons a quelques rappels sur I’homologie et ’'homotopie des monoides (voir
aussi [McD 2] et [Seg 1], [Seg 2], [Seg 3]).

Soit M un monoide topologique qui agit a gauche sur un espace topologique
X. On désigne par €(M \\ X) la catégorie topologique dont I’espace des objets est
X et celui des morphismes est M X X; le morphisme (m, x) ayant x comme source
et mx comme but. Soit M\ X la réalisation géométrique du nerf de €(M\X)
c’est-a-dire du complexe semi simplicial associ€é. On note BM = M\ * le classifiant
du monoide M. Lorsque M est un groupe discret, BM est une espace
d’Eilenberg—MacLane K(M, 1).

Dans la suite les réalisations géométriques sont prises au sens fin sauf pour les
classifiants BI" des groupoides ou en relation avec eux (voir [McD2] §3 et [Seg 2]
Ap. A pour des détails sur ceci ainsi que sur des questions connexes). En
particulier, si e est ’élément neutre d’un monoide M alors Be —« BM est le point
base de BM.

Avant de rappeler deux résultats sur les classifiants des monoides, intro-
duisons les notions clé de fibrations homologiques et homotopiques.

Soit B un espace connexe pointé en b, p: E— B une application continue et
F c p~'(b,) un sous-espace de p~'(by).

DEFINITION 1.1. La donnée F— EZ>B est une fibration homologique
(resp. homotopique) si Uinclusion naturelle de F dans la fibre homotopique de p en

b, est une équivalence d’homologie entiere (resp. une équivalence d’homotopie
faible).

En particulier, une suite spectrale relie les homologies des espaces F, E et B.
La propostion suivante est due a G. Segal et D. McDuff.

PROPOSITION 1.2 [MD-Se]. Si le monoide M agit sur I’espace X par des
équivalences d’homologie (resp. d’homotopie faible) alors

X—>M\X—> M\*
est une fibration homologique (resp. homotopique). 0O

En considérant des actions a droite, nous obtenons des notions duales et 1.2
reste vrai.
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En particulier, soit K un sous-monoide discret M et soit M//K le classifiant
de ’action droite de K sur M.

COROLLAIRE 1.3 [Seg 3]. Si M//K est un espace contractile alors I’inclusion
BK— BM est une équivalence d’homotopie. Ceci a lieu en particulier si la
condition suivante est vérifiée:

(*) Le monoide M est régulier a gauche (i.e. mn, = mn, entraine n, = n,) et,
pour my, my e M, il existe m e M, k,, k, € K tels que mk, =m, et mk,=m,.

Une deuxi¢eme conséquence trés utile de 1.2 est:

COROLLAIRE 1.4. [Seg3]. Soit 1-> K-> M % N—1 une suite exacte de
monoides discrets (i.e. i injective, 7 est surjective et Im(i) = 1~ '(e)) telle que:

(i) Pour n € N, il existe s, € M tel que lapplication k— s,k de K dans n~'(n)
est bijective.

(i) L’endomorphisme C,:K— K défini par la relation ks, =s,C,(k) est une
équivalence d’homologie. (Cette condition est vérifiée si pour k,, ..., k,e K il
existe k € K inversible tel que C,(k)=k™'kk (i=1,...,p). Alors, BK— BM —
BN est une fibration homologique.

Dans la suite, les équivalences et le type d’homotopie sont considérés au sens
faible.

11.2. Des espaces ayant méme homologie que les groupes F', G et G.

Dans cette section, nous commencons la démonstration du théoréeme B. Nous
nous inspirons des techniques employées par D. McDuff et G. Segal dans leur
démonstration du théoréme de Mather—Thurston et de ses généralisations.

Nous nous proposons d’établir des équivalences homologiques entre I’espace
BF' (resp. BG) et ’espace QBT (resp. LBT).

La situation présente differe de celle traitée par D. McDuff et G. Segal dans
la mesure ou les groupes qui nous intéressent sont dénombrables et ne possédent
pas de topologie “continue” comme c’est les cas pour Diff (S') par exemple.
Cependant si on considére que la version “‘continue” du groupe G est le groupe
de tous les homéomorphismes du cercle, les arguments de [McD 1] et [McD 2]
peuvent s’adapter a notre situation.

Nous avons cherché toutefois & rendre la démonstration accessible au lecteur
qui n’est pas familier avec [Seg 3] et [McD 1] d’autant que le fait que nous nous
intéressons a des groupes qui agissent sur le cercle ou sur la droite simplifie
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sensiblement de nombreux arguments. Cette section pourrait étre donc aussi
considérée comme une introduction a [McD 1].

Nous remercions D. McDuff pour nous avoir aidé spontanément dans la
présentation de cette section.

Nous commengons avec une proposition qui exprime une connexité faible
dans le pseudo-groupe I'(R). Elle permet de lui appliquer certains raisonnements
qui dans [McD 1] et [Seg 3] sont faits pour le pseudogroupe C~.

PROPOSITION 2.1. Soient o, <a,, B, <, quatre nombres dyadiques. Il
existe @ € PL,(R) tel que @(a;)=p;, i=1, 2.

Démonstration. Quitte a composer avec des translations dyadiques, nous
pouvons supposer que &, = f3; = 0. Il suffira alors de construire pour un dyadique
y >0, un homéomorphisme @, € PL,(R) tel que ¢,(0) =0 et @,(1) = y. En effet,
le composé @g o@,) enverra alors a, sur f8,. De plus, on peut supposer que
y <1, en utilisant eventuellement pour ceci une homothétie.

Ecrivons alors

Posons

@, (x)=x pour x=0,

@, (x)=x—-1+vy pour x=1

et définissons ¢, sur [0, 1] en imposant que sa pente soit égale a 1/2*~*~' sur
les intervalles [1—1/2%, 1—-1/2%""], 0<k=n-1 et a 1/2*7" sur lintervalle
[1-1/2%, 1. O

Nous allons maintenant décrire une équivalence d’homologie entre les espaces
BF' et QBI. Nous identifions librement F' au sous-groupe des éléments de
PL,(R) dont le support est contenu dans |0, 1{.

Notons Iy=]—, 0] et I; =[1, o[ et soit M(R, I, rel l,) le sous-monoide de
M(R) formé des plongements @ tels que @ =id au voisinage de I, et ¢(l,) < I,.
Soit M(I;) le monoide des germes au voisinage de I; des plongements de I'(R)
qui envoient I, dans I,. Ainsi si ¢;, ¢, € M(l,) alors ¢, = @, s'il existe un ouvert
V o1 tel que @ (x) = @,(x) pour x e V.
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Un morphisme de monoides
M(R: Il: rel IO) e M(Il)
est défini par restriction. Il est clair que son noyau est exactement F'.

PROPOSITION 2.2. La suite des monoides discrets 1—F'—
M(R, L, rel )% M(I,))— 1 est exacte et induit une fibration homologique des
espaces classifiants.

Démonstration. Soit P € M(I,). On choisit deux dyadiques 0< o, < a,<1
tels que 9 est défini au voisinage de Ja,, [. D’aprés 2.1, il existe ¢ € PL,(R) tel
que @(a;) = ay, et @(ay) = YP(a,). L’élément de M(R, I, rel L) qui est égal a id.
(resp. @, 1/’) sur |-, ay] (resp. [a;, @], [a,, +[) se projette sur w par
'application p. La suite de monoides est donc exacte.

La deuxieme affirmation est une application de 1.4. (voir [Seg2]). Soit
@1, € M(R, I, rel L)). Si p(@,) = p(p,) alors @;'o@, est bien définie ce qui
assure la condition 1.4.i.

Sisy,...,s, eF', pe M(R, I, rel Iy), on choisit a I'aide de 2.1 un élément
Y € F' qui coincide avec @ sur @~ '(U-;supps;). Ainsi ¢ 's;o =y !5,y et la
condition 1.4.ii est vérifiée. [J

La proposition 2.2 est utile grace au:
LEMME 2.3. L’espace M(R, I, rel L)) est contractile.

Démonstration (voir [Seg3]). Rappelons qu’une catégorie est filtrante si les
deux conditions suivantes sont vérifiées:

1. Si f et g sont deux morphismes entre les objets y et z, il existe un objet x
et un morphisme h:x—y tels que feh =goh.

2. Si x et y sont deux objets, il existe un objet z et deux morphismes f:z—x
etg:z—y.

La classifiant d’une catégorie filtrante est contractile (Voir [Qui]).

Le monoide M(R, rel ;) des éléments de M(R) qui fixent un voisinage de I, a
un classifiant contractile. En effet, la catégorie €(M (R, rel [,)\\*) est filtrante.

Il résulte de 1.3(*) que linclusion M(R, I, rel ) = M(R, rel I,) est une
équivalence d’homotopie. Ainsi, BM(R, 1, rel [;) est contractile. O

Rappelons qu’un résultat fondamental de Segal ([Seg 3 prop. 1.3]) assure que
le classifiant du monoide discret des autoplongements C* de R a méme type
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d’homotopie que le classifiant de Haefliger BI'.. Ce résultat et sa démonstration
restent vrais pour le monoide M(R) et le pseudo-groupe I'(R).
On arrive alors a la description de type d’homologie de F'.

THEOREME 2.4. 1l existe une équivalence d’homologie entre les espaces BF'
et $2BI.

Démonstration. 11 est assez simple de montrer que I’espace BM(I,) a méme
type d’homotopie que le classifiant des autoplongements de ]1, [, donc que
BM(R).

Il résulte de 2.2, 2.3 et du résultat de Segal cité plus haut qu’il existe une
fibration homologique d’espace total contractile, d’espace de base équivalent a
BI'(R) et dont la fibre est équivalente a BF'. Dans cette situation, il est classique
que BF' a méme type d’homologie que BT

Remarquons que dans la suite (cf. 2.10) nous allons expliciter une équivalence
d’homologie entre ces deux espaces. [J

Dans la derniére partie de cette section nous construisons une €équivalence
d’homologie entre ’espace BG et ’espace des lacets libres LBI. Pour un modele
convenable, cette équivalence sera munie d’une propriété d’équivariance qui
permettra d’en déduire une équivalence d’homologie BG — £BI.

Dans un premier temps, nous relions ’homologie des groupes F' et G. Il n’est
pas possible de plonger F' dans G comme sous-groupe normal. Cependant, il
existe une fibration homologique dont la fibre et I’espace total ont les homologies
des groupes F' et G.

Soit I lintervalle ] —3%, i[ et M(R, I) le sous-monoide de G formé des
éléments qui préservent I. La proposition qui suit joue un role essentiel. C’est
une version de 2.1 de [McD 2]. Sa démonstration est repoussée a la fin de cette
section.

PROPOSITION 2.5. L’inclusion M(R,I)c G induit une équivalence
d’homotopie entre les classifiants.

Soit I I'image de l'intervalle [ par la projection R— S'. Notons M(S', rel 1),
M(S', I), (resp. M(I)) les sous-monoides de G formé des éléments qui sont
égaux a id au voisinage de I, qui préservent I (resp. le monoide des germes en /
des plongements (V, I)— (S, I) ou V est un voisinage de I).

PROPOSITION 2.6. Il existe une suite exacte de monoides 1— M(S', rel [)—
M(S', I)— M(I)— 1 qui induit une fibration homologique.
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Démonstration. L’exactitude de la suite se démontre comme dans 2.2 a l'aide
de 2.1. De méme la propriété homologique est une application de 1.4. O

Notons #(S', rel ), #(S',I) (resp. #(I)) les monoides de tous les
homéomorphismes de S' définis de fagon similaire 2 M(S*, rel I), M(S*, I) (resp.
le monoide des autoplongements continus de I) et munis de leurs topologies
naturelles.

COROLLAIRE 2.7. Il existe une fibration homologique:
M(S?, rel D\ F(S, rel [)—> M(S*, D\ (S, I)— M)\ %(I)

Démonstration. 11 suffit de comparer cette suite d’espaces a celle de la
proposition précédente compte tenu de 1.2 et de la contractibilité des monoides
H(S', rel 1), #(S', I) et #(I). O

Soit j:S'— BI'(S') l'application naturelle qui envoie x € S' sur 'objet {x} de
la catégorie associée a I'(S'). Désignons par L(BI'(S'), rell) I'espace des
applications §'— BI'(S') qui coincident avec j, sur un voisinage de I.

On a une fibration homotopique

L(BI'(SY), rel I)— LBI'(S")— Map (I, BI'(S"))

ou les fleches sont I'inclusion et la restriction. Puisque [ est contractile, il s’agit
essentiellement de la fibration:

QBI'- LBI'— BI'

Dans la proposition 2.8 toutes les réalisations géométriques sont supposées
épaissies (ceci ne change pas le type d’homotopie des espaces qui interviennent
dans 2.7) voir [MD 2] p. 108 et Appendice.

Nous allons la comparer a la fibration de 2.7. Soit # le groupe des
homéomorphismes du cercle qui respectent ’orientation.

PROPOSITION 2.8. Il existe une application @:(G\¥) X S'— BI'(S") qui
induit des applications f;, i =1, 2; 3 et le diagramme commutatif:

M(S?, rel DNF(S!, rel I) —> M(S', rel DN\F(S’, rel I) - M(D)\¥(I)

| | |

L(BT, rel I) > LBT > Map (I, BI')
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Démonstration. Le groupe G agit sur ¥ X S' par g - (h, 8) = (gh, 6). Les
espaces (G\ %) x §' et G\ (¥ x S') sont homéomorphes.

Rappelons qu’au pseudo-groupe I'(S'), on associe la catégorie topologique
€(I'(S') dont les objets sont les points et les morphismes sont les germes
d’homéomorphismes locaux de I'(S'). Il suffira de définir un foncteur continu
d: E(G\K x S1)— €(I'(S")). Pour un objet (h, 6) € ¥ x S' on pose ®(h, 0) =
h(8). Si g:(h, 8)— (h', ) est un morphisme, on définit P(g) comme étant le
germe g en h(6). On vérifie alors que @ induit naturellement les applications f;,
f> et f5 qui font commuter le diagramme de 2.8. O

Remarque 2.9. Considérons I’application f: G\ #— LBI'(S") induite par ®.
Le groupe S' agit naturellement a droite sur G\ ¥ et sur LBI'(S'). Pour
AeLBI(S"), 0eS'onpose A-0=A°R,. Sihe ¥ onpose h-0=hoR,etsig
est un morphisme de £ a h', on pose g6 =g: on a en effet, gohoRg =h'oR,.

L’application f est équivariante par rapport a I’action de S'. La vérification est
immédiate a partir de la définition du foncteur &.
On peut maintenant démontrer le

THEOREME 2.10. L’application f induit une équivalence d’homologie
G\ — LBI'(S"). Par ailleurs, les espaces BG et G\¥ ont méme type
d’homotopie.

Démonstration. Montrons d’abord que I’application f,: M(S*, )\ (S", I)—
LBI est une équivalence d’homologie. En effet, #,(BI') =0 par un argument
direct ou bien en utilisant le fait (voir II 3) que BI est une sphére S°. On peut
alors appliquer le théoréme classique de comparaison des suites spectrales,
pourvu que f; et f; soient des équivalences d’homologie. Le fait que f; est une
équivalence d’homotopie est essentiellement le résultat de Segal BM(R) =
BI'(R).

Nous avons vu dans 2.4 que BF' et Q2BI ont méme type d’homologie. La
preuve donnée s’adapte pour montrer que f; est une équivalence d’homologie.
Notons pour ceci Jy, J; et J 'image sur S' des intervalles [3, 3], [— 4, — ] et [3, &)
Le preuve de 2.2 donne une fibration homologique

BM(J, rel J, UJ,)— BM(J, J,, rel Jo)— BM(J,).
L’application f permet de la comparer a la fibration suivante comme en 2.8:

Map (J, rel J,U J,, BI')— Map (J, rel J,, BI')— Map (J,, BI').
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(Les notations sont similaires a celles déja utilisées). Le méme argument basé sur
le théoreme de comparaison des suites spectrales et sur 2.3, 2.4, donne alors que
fi est une équivalence d’homologie.

Nous avons donc montré que f:M(S', )\#(S', I)> LBl est une
équivalence d’homologie. Pour terminer, montrons que linclusion naturelle
M(S', D\ ¥(S', I)> G\ H induit une équivalence d’homotopie. D’aprés 2.5,
inclusion M(R,)c G et une équivalence d’homotopie. Par ailleurs, les
monoides M(R, I) et M(S', I) sont évidemment isomorphes. Si # désigne le
groupe (contractile) des homéomorphismes de R qui commutent avec la
translation T;, il suffit de montrer qu’il existe une équivalence d’homotopie
G\ #— G\ ¥. Le lecteur se persuadera lui méme de ceci en considérant le
diagramme naturel suivant dans lequel les fleches horizontales sont des
équivalences et les colonnes sont des fibrations

H — IN\F —> 7\ *

Lo

G\K «— G\ —> G\ *
G\ * G\ * G\x 0O

COROLLAIRE 2.11. L’espace classifiant BG et I’espace ¥BI” ont méme type
d’homologie.

Démonstration. Nous avons déja remarqué que l'application f:G\¥ —
LBI'(S") est équivariante par rapport a ’action naturelle de S'. Elle induit alors
un morphisme de fibrations:

G\¥ ——> LBI

l l

(G\%)//S' —> LBI//S"

1 1

*//ST —>  x//§!

D’apres le théoréme précédent, et en comparant les suites spectrales des deux
fibrations, il résulte que (G\%)//S'— LBI'/S" est une équivalence homolo-
gique. On conclut en remarquant que (G\%)//S' =G\ (%#//S') =G \* et que
LBI'//S' est un modele pour I'espace £BI" comme il est bien connu. [

Nous terminons ce paragraphe avec la démonstration de la proposition 2.5,
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Cest-a-dire du fait que Dlinclusion BM(R, I)—> BG est une équivalence
d’homotopie. Pour ceci, nous montrons que I’espace M(R, /)\G est contractile.
Malheureusement, la condition * de 1.3 n’est pas vérifiée, ce qui complique la
démonstration.

Démonstration de 2.5. Considérons I’action diagonale de M (R, I ) sur le
produit I x G. Il suffit de montrer que I’espace M(R, /)\1 X G est contractile: en
effet, la projection naturelle induit une équivalence d’homotopie M(R, )\ x G
- MR, \G.

Soit x: M(R, I)\I X G— R Papplication induite qui envoie I'objet (x, g) sur
g 'x. Nous allons voir que & est une équivalence d’homotopie.

Tout d’abord la fibre de & en un point x e R est contractile. En effet, elle
s’identifie a la réalisation de la sous-catégorie pleine €, c €(M(R, I)\G) dont
les objets sont les éléments g € G tels que x € g~'(I). Montrons que %, est une
catégorie filtrante. Il suffit de produire pour g, h € 0b€ un objet k et des
morphismes de k 4 g et h. Pour ceci, choisissons k € G tel que x e k™ '(I) c
g ' )Nh'(I) a l'aide de la prop. 2.1. Alors ke0b%, et gk 'e MR, I),
hk~'e M(R, I) sont les morphismes cherchés.

Pour montrer que ;t est une équivalence d’homotopie, nous allons utiliser
[Seg 3] A.S5 qui assure que ceci est vrai dés que les fibres vérifient une condition
de régularité locale.

Plus précisément, soit @: ¢(M(R, /)\G)— Top R le foncteur a valeurs dans
les ouverts de R défini ainsi: pour g € G on pose F(g) =g '(I); si m:g— mg est
un morphisme, alors F(m) est I'inclusion g~'(I) cg~'m~'(J).

Soit @\\ € la réalisation de la catégorie dont les objets sont les couples (g, x)
avec x € ®(g) = g~ '(I) et les morphismes de (g, x) 4 (g', x') forment un ensemble
vide si x #x' et égal a hom (g, g') si x =x'. Il est immédiat que @\ € s’identifie a
€(M(R, H\I x G) et d’apreés [Seg 3] A.5 on conclut que I'application 7 est une
équivalence. [

I1.3. La cohomologie des groupes F', F, G, G

Dans cette section, nous démontrons le théoréeme B et C. Nous présentons
d’abord un théoreme de P. Greenberg sous une forme qui nous est convenable.
Un corollaire de ce théoreme sera le fait que le classifiant BI' a le type
d’homotopie de la sphere S°.

Soit K un groupe d’homéomorphismes de R qui préservent I'orientation et
agit analytiquement sur R c’est-a-dire tel que pour tout ouvert U, si g | U =id,
alors g = id.

Soit I'“ le pseudo groupe des restrictions des éléments de K a des ouverts de
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R. Soit I'” le pseudo-groupe des homéomorphismes locaux qui sont “I'* par
morceaux”’. Plus précisément heI” s’il existe un ensemble discret de

“singularités” appartenant a I'orbite K(0) en dehors duquel # est un élément de

re.
Désignons par K| le stabilisateur de K en 0 et par I'g le groupe des germes en
0 des éléments de I'” qui fixent 0. Le lemme suivant est clair.

LEMME 3.1. If est isomorphe a K, X K,.

Soient p, et p, les projections naturelles de I'y sur K,. Désignons par R le
“push out” homotopique du diagramme c’est-a-dire le double ‘“mapping cylin-
der” qui lui est associé.

BIrz 2", BK,

del :
L 2

BK, ----> R

Considérons les applications naturelles BK,— BIf et BK,— BK. A l'aide du
diagramme précédent, elles donnent lieu au diagramme:

BK() E— R

ok 1

BK

THEOREME 3.2 (P. Greenberg) [Gr-2]. L’espace classifiant BI” a le méme
type d’homotopie faible que le “push-out” homotopique du diagramme **.

Supposons a partir de maintenant qu K et le groupe affine dyadique GA(Q;).

LEMME 3.3. L’espace R, “‘push out” du diagramme

Brz 2=, gk,

* Bp, 1

BK,

est une sphere S>

Démonstration. 11 est clair que K,=27, I'f=7Z® Z. 1l est classique que le
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“double mapping cylinder”” du diagramme

S'xS§'—> §!

l

Sl
est une sphére S°. O

Pour déterminer le type d’homotopie du classifiant BI" il nous reste, d’apres
le théoréme 3.2 et le lemme précédent a déterminer le ‘“push-out homotopique™
du diagramme:

BK'()';'SI—"_"RQS3

ok’ J’

BK

COROLLAIRE 3.4. L’espace BI a le type d’homotopie de S*

Démonstration. Appliquons au ‘‘double mapping-cylinder” les théorémes de
van-Kampen et de Mayer-Vietoris.

Montrons d’abord que &;(BI')=0. Il suffit pour cela de prouver que le
sous-groupe normal engendré par K, est tout le groupe dyadique K = GA(Q,).
Soit N(K,) ce sous-groupe. Il est clair que la conjugaison intérieure de
’homothétie x — 2x par la translation x + 1/2" n =0 est dans &'(K,). C’est dire
que l’application x—2(x + 1/2") —1/2" =2x + 1/2" est dans N(K,), d’ou x—
x +1/2" est dans ¥ (K,). Donc X¥(K,) = K.

Montrons maintenant que l'inclusion K,— K est une équivalence d’homologie
entiere. La suite de Wang de I’extension:

0—-Q,—»>K—>7Z—0 donne:
A—idy
> H(Qy) —— Hi(@2)— Hi(K)— Hy_((Qy)— - -
ou A :Q,— @, est la multiplication par 2.

Si k =2 le groupe H,(Q,) est nul car tout sous-groupe de type fini de Q, est
cyclique. On en déduit que H,(K) =0 pour k =3.
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Puisque A —id = id, la suite exacte

0— H,(K)— H,(Q,)— H,(Q,)— H,(K)— Hy(Q,)— Hy(Q,)

donne H,(K)=0 et H)(K)=Z. 1l en résulte que I'inclusion BK,— BK est une
équivalence d’homologie.

Finalement, I’application S*=R— BI' déduite du diagramme **' est une
équivalence d’homotopie; ceci résulte de la suite de Mayer—Vietoris de ',
compte tenu de la 1-connexité de BI et de I’équivalence d’homologie BK,—
BK. O

Remarque 3.5. 1l résulte de 2.4 et de [Gr 1] qu’une équivalence homotopique
$*— BT est obtenue en classifiant le “feuilletage de Reeb affine” sur S°.

Nous arrivons a la:
Démonstration du théoreme B. Elle résulte de 2.4, 2.10, 2.11 et 3.4. O

Dans la seconde partie de la section nous démontrons le théoréme C.

Nous précisons d’abord la cohomologie des groupes F’' et G. D’apres le
théoréme B, le premier a ’homologie de I’espace des lacets 2S°. Le deuxiéme a
méme homologie que l’espace des lacets libres LS°. Remarquons que LS’
s’identifie 2 Q5> x $* a l'aide de la structure multiplicative de S°. Puisque la
cohomologie de I'espace QS est une algebre de puissances divisées ([Spa] Chap
IX) engendrée par un générateur de degré 2, on en déduit la:

PROPOSITION 3.6. La cohomologie H*(F'; Z) est isomorphe a ’algébre des
puissances divisées I'|«] avec |a| = 2.

La cohomologie H*(G; Z) est isomorphe au produit tensoriel T'[a]® A(B),
|| =2, |Bl =3, d’une algébre de puissances divisées et d’une algébre extérieure.

Nous explicitons maintenant la cohomologie enti¢re de F.
PROPOSITION 3.7. Pour toutn=1, ona H'(F;Z)=7Z ®D Z.
Démonstration. Considérons‘la suite exacte:

1>F ->F->7Z®7Z—-0.

Ramarquons d’abord que Z® Z opére trivialement sur H*(F';Z). Ceci
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résulte du fait qu’il existe des élements de F dont la dérivée en 0 (resp. 1) est
égale a 2 et dont le support est arbitrairement proche de 0 (resp. 1).
Le terme E, de la suite spectrale de I’extension considérée est:

H*F2) 2172 7 o

0({0 0 O
Z|\7* 7 0
0j0 0 O

27 00 HZ®Z2

La proposition en résulte car la suite spectrale dégénere au terme E,. 0O

COROLLAIRE 3.8. Le groupe H'(F;Z) est engendré par les préimages u;,
u, des générateurs de H'(Z® Z;Z). Le groupe H*(F;Z) est engendré par la
préimage u,u, du générateur de H(Z® Z;Z) et par un élément qui est la
restriction a F du générateur o de H*(G; 7).

Démonstration. La premiére affirmation est une conséquence immédiate de la
suite exacte

0—H¥Z®Z;7)— H¥(F;Z)— HF';Z)—0.

Le groupe F se plonge naturellement dans G. L’inclusion F'— G correspond en
homologie a I’application H,(2S>; Z)— H,(LS>; Z). C’est donc un isomorphisme
en dimension paire. Il en résulte que la restriction du générateur a de H*(G; Z)
et ’élément u,u, engendrent H*(F;Z). O

Remarque 3.9. Dans la suite, on notera « le générateur de H*(G; Z) et ses
restrictions a F et F'. Remarquons que «"/n! existe dans H*(F, Z) également.

La proposition qui suit donne la structure multiplicative de H*(F; Z).

PROPOSITION 3.10. L’anneau de cohomologie entiere H*(F;Z) est iso-
morphe au produit tensoriel A(uy, uy) ® I'a] oit |uy| =|u,| =1et |a| =2.

Démonstration. Nous devons montrer que pour k =0,

ak a*
H**Y(F; Z) est engendré par u, P
k a/k+1

H***(F; Z) est engendré par uluz% et T
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La suite spectrale donne un isomorphisme:
H**\(F;2)=E:*=E.°Q EX*=H'(Z ®Z,7) @ H*(F'; Z).

Il en résulte facilement que u,(a*/k!) et u,(a*/k!) engendrent H**(F; Z).
Considérons maintenant la suite exacte:

0__’ EEJZk—’ H2k+2(F; Z)_)Eg,2k+2___) 0.

L’image de a**'/(k + 1)! dans E2?**2= H?**%(F'; 7) engendre ce groupe. Pour
terminer, il suffit de remarquer que I'élément u,u,(a*/k!) est un générateur de
E2*=E2°QE%*. O

Nous nous intéressons enfin a la cohomologie de G. Nous savons déja, d’apres
le théoréme B, que I’espace BG a la méme homologie que £S°. Soit y la classe
d’Euler du fibré S'— LS> X ES'— ¥5°.

PROPOSITION 3.11. Le groupe H'(G;Z) est nul. Le groupe H*(G;Z) est
isomorphe a Z® Z.

Démonstration. Puisque LS®= QS>Xx §* est simplement connexe, £S> I’est
également et donc H'(G;Z) =0. De plus la suite de Gysin:

0— HY(¥S%; 7) = H*(¥£S?% Z)—> H*(LS?,Z2)— 0

montre que H*(#S>; Z) est un groupe abélien libre A deux générateurs. O

Considérons le générateur B du groupe cyclique H>(LS>; Z).

PROPOSITION 3.12. H*(¥S>; Z) est engendré par x et par I'image a = fB oi
f:H¥LS?, 2)— H*(¥S>; Z) est lintégration sur la fibre.

Démonstration. 11 résulte de la suite de Gysin que y et a engendrent

H*(£53,Z) pourvu que le composé Z = H*(LS?;Z)— H* (<S> 7)Z5 HA(LS%; 7)
= 7 soit un isomorphisme.

Soit &: T,5°— S° le fibré tangent unitaire 4 $°. Une application f: 7,5°— LS?
est définie en associant 2 un élément (x, v) € T, S> la géodésique issue de x dans la
direction v. 1l est facile de voir que f est équivariante par rapport aux actions de
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S' sur T;5° et LS? et induit un diagramme commutatif:

7 = Hy(T,S% 7) 2> H)T;8%/S";Z) <> Hy(T,8%2)=2Z

| | |

7=Hy(LS*2) 2> Hy(£5%7) —L— Hy(LS*2)=1Z

Ramarquons que 7;S> est homéomorphe a S X S°.

Nous allons montrer que f, et le composé Hy(T,S°;Z)— H,(T,S*/S';7)—
Hy(T,S?; Z) sont des multiplications par 2 et que f; est un isomorphisme. Ceci
implique que le composé H,(LS?; Z)— H,(¥S’; Z)— Hs(LS>; Z) est un isomor-
phisme et démontre la proposition.

Considérons une fibre S =x""(x,) comme générateur de H,(T,S>;Z). 1l est
clair que f|s:S— LS> envoie un élément (x,, v) € S sur la géodésique issue en x,
dans la direction v. Il résulte de [Spa], théoreme 8.5.9 que f(S) représente le
double d’un générateur de H,(LS?; Z) = H,(£2S?; Z). L’application f, est donc
bien la multiplication par *2.

Le fait que f; soit isomorphisme résulte du triangle commutatif:

Hy(T; 8% Z) —> Hy(LS? 7)

NI

Hy(S?; 2)

dans lequel les projections sur S” induisent des isomorphismes.

Finalement, justifions que le composé H,(T,S*; Z)— Hy(T,S°/S"; 2)—
H,(T,S3; Z) est la multiplication par £2. L’image de la fibre S = 7~'(x,) par ce
composé est égale au S'-saturé de S. En utilisant P'involution o:7;$’>— T;S> qui
est Dapplication antipodale dans chaque fibre, on vérifie que le nombre
d’intersection de S avec son S'-saturé est égal a2 +2. Donc, le composé
H,(T,S?, Z)— Hy(T,S*/S'; Z) > Hy(T,S>; Z) est la multiplication par +2. Ceci
acheve la démonstration de 3.12. O

Considérons maintenant la classe y € H*(£S>; Q).

PROPOSITION 3.13. Pour k =1, les puissances x* € H*(Z£S>; Q) sont non
nulles.

Démonstration. 11 s’agit d’'un argument classique. L’action de S' sur LS> a
des points fixes, i.e. les lacets constants. Soit {w} un tel lacet. Le diagramme
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commutatif:
BS'={w} x ES' —> ¥§°
BS' > BS'

produit une section de P’application £S°>— BS' et le résultat suit de la structure
multiplicative de CP*. O

Le théoreme suivant est en fait connu. Nous en donnons une démonstration
élémentaire.

THEOREME 3.14. Les classes « et y engendrent librement la cohomologie
H*(£5%; Q) modulo la relation « - x = 0.

Démonstration. 11 est clair, d’aprés la suite de Gysin, que y Ua =y UfB =0.
Montrons par récurrence que

H*" (%5 =0 pour n=1
H*'(£S>) est engendré par x” et a” pour n =0.

(tous les coefficients dans Q). Supposons que ceci soit vrai pour n < p. La suite de
Gysin donne:

H?~!(£85%)— H?*'(£5%) — H**(LS*) 5 H> (£5%).

Comme H¥~!(£5%) =0, il suffit de montrer que f est injective. Ceci résulte de ce
que fBp*(a®~')=a” est non-nulle d’aprés I'’hypothése de récurrence. Donc
H**Y(£8%) =0. )

Pour déterminer H**?(¥S$?), on considére la suite exacte

H?*\(LS*)— H (£5%) %> H**(£5%) 2 H? (LS — 0

Il est clair que p*(a®*')#0. D’aprés Phypothése de récurrence et 3.13,
'image H¥(¥5%) 4 H***(¥S?) est engendrée par I'élément non-nul x"*!.
Finalement, a*' et x**' engendrent librement H***(¥S%). O

Démonstration du théoréme C. Elle résulte du théoreme B et de 3.6, 3.10 et
3.14. O
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Enfin, signalons brievement que les résultats de cette section permettent de
retrouver la simplicité des groupes F’ et G qui sera utilisée dans la partie III.

THEOREME 3.15. Les groupes F' et G sont simples.

Démonstration. 1l résulte de 3.6 et de 3.11 que F’ et G sont des groupes
parfaits. L’argument classique de Higman—Epstein [Eps], appliqué a I'aide de
2.1, montre que ces groupes sont simples. O

I1.4. L’Interprétation des générateurs de la cohomologie du groupe G.

Dans cette section, nous démontrons les théorémes D et E.

Rappelons que le second groupe de cohomologie H*(G; Z) est engendré par
les générateurs « et . Le résultat suivant identifie le générateur y et prouve le
théoréme D.

THEOREME 4.1. Le générateur x est exactement la classe d’Euler de I’action
de G sur S'. Ses puissances sont non-nulles dans H*(G; Q).

Démonstration. 11 suffit d’utiliser la naturalité de la classe d’Euler et les
diagramme considérés a la fin de la preuve de 2.10 et dans 2.11 pour identifier
I’élément x. La non-nullité des puissances de y et une conséquence de 3.11. [J

L’identification de la classe a € H*(G; Z) est liée a la classe de Godbillon-Vey
et au cocycle correspondant en cohomologie des groupes.

Faisons d’abord quelques conventions jusqu’a la fin de cette section. Nous
allons considérer la cohomologie des groupes a I'aide des cochaines normalisées
homogénes ou non homogénes. Les conventions habituelles sont respectées a
I’exception du fait que nous travaillons avec des cochaines homogenes a droite.
Le passage d’une n-cochaine homogene ¢ a la n-cochaine non-homogene, c sera
alors donné par

c(@i,--.,8)=C(81, . 18828+ »8&n»€)

Pour un groupe K nous notons €*(K) (resp. €*(K)) les cochaines homogenes
a droite (resp. non homogenes).
La différentielle d : €"(K)— €"*'(K) est donnée par la formule

n

dé(ko, ..., kns1) =2, (=1)e(ko, ..., ki, ..., kns1)

i=0
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La différentielle 8: 6" (K)— €"*'(K) est

oclky, ..., kns1)=clks, ..., kpiy)+ ;nl (—Dfcky, ..., kicy, kikivyy oo Kpit)
+(—1)"*e(ky, . . ., k).

Rappelons la suite exacte de Gysin—Hochschild—Serre de I’extension centrale

0-Z->G5HG—1.

PROPOSITION 4.2 [Ho-Se]. Il existe une longue suite exacte
— H*Y(G;2) % H*(G;2) %5 H*(G; 2)5 HY(G; 1)~ H*X(G; Z) - - .

Remarque 4.3. 1l sera important pour la suite de bien contrdler la définition
de Iintégrale sur la fibre f: H**}(G; Z)— H*(G; Z).

La description suivante peut-étre extraite de [Ho-Se].

Soit [p] € H**'(G; Z). En utilisant la suite spectrale de I’extension

0-Z5G->G-1,

On peut choisir le cocycle non-homogeéne ¢ tel qu’il soit indentiquement nul
dés que deux arguments se trouvent dans le centre Z. C’est dire que @ est de
filtration 2.

Considérons la cochaine non homogene @(i(1), . . .) € €%(G; 2).

Il résulte de [Ho—-Se] p. 132 et 125 que cette cochaine est en fait un cocycle et
se trouve dans €%(G; Z) - €*(G; Z). Sa classe de cohomologie est bien définie et
est égale a flep]. O

Nous allons définir maintenant une famille de cocycles dans H*(G; Z).

Soit [p)e H(Z®D Z;Z) la classe de cohomologie d’un cocycle homogene
normalisé @. Il est immédiat qu’on peut choisir @ dans une classe donnée tel que
sa restriction au sous-groupe diagonal Z— Z @ Z soit identiquement nulle. Avec
ce choix, on a:

PROPOSITION 4.4. Soit Ap € € (G, Z) la cochaine normalisée donnée par:

Ay(f, 8 h)= Z

xEQz/Z

(Logz fe(x) Log, ge(x) Log, hy(x ))
Log, fa(x) Log,ga(x) Log, hi(x)/

Alors A, est bien définie. C’est en fait un cocycle de G.
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Démonstration. 11 est clair qu’en dehors d’un nombre fini de points x, les
dérivées a gauche et a droite de f, g, h sont respectivement égales. Puisque ¢
s’annulle sur le sous-groupe diagonal Z— Z @ Z, la somme qui définit A est en
fait finie.

Montrons que la cochaine A, est homogene. Si k € G, on a:

A (fok, gok, hok) =

3 Log, fg(k(x)) + Log, ky(x), Log, gg(k(x)) + Log, kg(x), Log, hy(k(x)) + Log, k{;(x))
ez \LOg, fi(k(x)) + Log, k(x), Log, gi(k(x)) + Log, ka(x), Log, hi(k(x)) + Log, k4(x)

Puisque @ est homogene, cette somme est égale a:

(p(Lng felk(x)) Log, g,(k(x)) Log, h;(k(x))>
xeayz  \Log, fa(k(x)) Log, ga(k(x)) Log, hy(k(x)) .

I1 est donc clair que
Ap(fok,gok, hok)=A,(f g h)

Le fait que A, soit un cocycle est immédiat a partir du fait que, pour
chaque x, A, est un cocycle. O

COROLLAIRE 4.5. La cochaine non-homogéne guv € €*(G; Z) définie par:

e Log; g;(x) Log, (fog)e(x)
89G.8)= 2 |Log, i) Log (Fog)utx)

est un cocycle.

Démonstration. Remarquons tout d’abord que ce cocycle est bien celui décrit
dans I’énoncé des résultats. Il suffit pour cela de soustraire la premiére ligne a la
seconde dans le déterminant.

Soit ¢ € €(Z @ Z) la cochaine

1 1 1
Xy X2 X3
(P(y y y)= X, X2 X3f.
A P N

On vérifie sans peine que @ est un cocycle et la cochaine non homogéne qui lui
correspond est précisément gv. O
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La démonstration du théoréme E, c’est-a-dire du fait que [gv]=2a dans
H*(G; Z) se fait en plusieurs temps.

LEMME 4.6. Il existe un entier p tel que [gv]=p - a.

Démonstration. Considérons I'intégrale sur la fibre;
f:HG;Z)- H¥G; 2).

De par sa définition (section II-3), « est l'image par f du générateur de
H*(G;Z)=Z. Pour montrer le lemme, il suffit donc de montrer que gu est aussi
dans I'image de f. Pour cela, nous allons construire un cocycle w de €°*(G, Z) tel
que f[w] = [gv] dans H¥(G; Z).

Considérons tout d’abord la cochaine & € €°*(G; Z) définie par:

1 1 1 1

A ) U@l kW k@ k)]
008 hi)= 2 |1opfix) Logglx) Loghi(x) Logkl(x)
Logfi(x) Loggi(x) Loghl(x) Logki(x)

ou [ ] désigne ici la partie entiere. Comme précédemment, on vérifie que @ est
un cocycle. Il en résulte que la cochaine non homogéne w associée a @, est un
cocycle:

1 1 1 1

S [fgh(x)] [gh(x)] [A(x)]  [x]
reamnionf | Log (fgh)s(x) Log(gh)y(x) Loghg(x) 0
Log (fgh)a(x) Log(gh)a(x) Logha(x) O
Une vérification immédiate montre que w est de filtration 2, c’est-a-dire,

s’annulle des que deux arguments se trouvent dans le centre Z < G. D’apres la
remarque 4.3 f[w] est la classe de cohomologie du cocycle:

w(f, g h)=

(f, g~ oix+1,f1g),
c’est-a-dire:

1 1 1 1

[fe(x)] +1 [fg(x)] [ex)]  [x]
Log (fg)s(x) Log(fg),(x) Loggg(x) 0O
Log (fg)a(x) Log(fg)i(x) Loggu(x) O

(f,8)—> 2 =gu(f, 8). U
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Pour montrer le théoreme E, c’est-a-dire que [gv] = 2@, nous allons évaluer
chaque membre de ’égalité [gv] = pa sur un cycle bien choisi.

Considérons les €léments u et v de F' dont les graphes sont les suivants:
1

1

7/8}
3/4}

12 1/2

1/4
1/8

0178 3/8 112 1 0

1725/8 1/8 1
Comme u et v commutent, la chaine o= (u, v) — (v, u) est un cycle (non
homogeéne).

LEMME 4.7. La classe d’homologie de o est un générateur de H,(F'; 7).

Démonstration. Soit ¢ € €*(Z D Z) un cocycle choisi comme dans la proposi-
tion 4.3 et tel que [@] € HX(Z ® Z; Z) soit le générateur qui vaut 1 sur le cycle

1 0
non-homogene (e, e,) — (e,, €;) ol e; = (O) ete,= (1)
Soit /iqp la cochaine non homogene associée a @ par 4.3. Alors
- Log (u°v),(x), Logvy(x), 0
A, ((u, v) = (v, u)) = ( & 8 )
ol )~ ( )) xe%z/l A Log (u°v)a(x), Log vy(x), 0

-3 (LOg (vou)y(x), Log uy(x), 0)
xeQy/Z LOg (U ° u):l(x)’ LOg u:i(X), 0

Puisque Supp (u) NSupp (v) =3, et que le cocycle @ est normalisé, la
sommation se réduit a sa valeur en x = 3.

On obtient alors:

_ 100 110
A -@w=g(; | J-e(; o o)=1
d’apres le choix de . [

Le lemme suivant, joint a 4—6, termine la démonstration du théoréme E car o
n’est défini qu’au signe pres.
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LEMME 4.8. On a gu(o) =2 et a(o) = 1.

Démonstration. La premiére égalité est un calcul semblable a celui du lemme
précédent. Quant a I’égalité a(o)=x1, nous avons déja vu que Pinclusion
F'— G induit un isomorphisme entre H*(G;Z) et H*(F';Z). Comme, d’aprés
11-3, 'application HX(G; Z)— H*(G; Z) envoie «a sur le générateur de H*(G; Z),
il résulte que « définit un générateur de H*(F';Z)=Z. Par conséquent
a(o)==1. O

III. Propriétés qualitatives

II1.1. Construction des lissages

Le but de cette section est de démontrer les théorémes A et G, c’est-a-dire de
construire des morphismes du groupe G dans Diff* (S').

Soit f:R— R un homéomorphisme vérifiant les propriétés suivantes:

(I) Pour tout réel x, on a f(x + 1) =f(x) + 2.

11 f)=0.

Nous nous proposons d’associer a chaque homéomorphisme f satisfaisant (I)
et (II) une représentation @; de G dans Homéo (S'). L’image de ¢y sera
constituée de difféomorphismes de classe C* si f vérifie une condition
supplémentaire décrite plus bas. Dans le cas particulier ou f(x)=2x, la
représentation g, sera I'inclusion canonique de G dans Homéo (S").

Rappelons que nous avons noté respectivement (J,, GA(Q,) et PL,(R) les
groupes des nombres dyadiques, des bijections affines dyadiques et des
homéomorphismes qui sont GA(Q,) par morceaux (voir II-1). La transformation
x—2"x +p/2?7 de GA(Q,) est notée (27, p/2?). En identifiant un nombre
dyadique x a la translation 7,, on obtient les inclusions naturelles:

Q, < GA(Q,)  PL,(R).

Nous allons tout d’abord construire une représentation 6, de PL,(R) dans

Homéo (R). Celle ci sera définie sur Q, puis étendue successivement 3 GA(Q,) et
a PL,(R). )

LEMME 1.1. L’application

Gf:%e Q,—f % T,°f? e Homéo (R)

est bien définie et donne un morphisme de groupes.
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Démonstration. 11 s’agit tout d’abord de vérifier que 6,(p/2?) ne dépend que
du rationnel p/29. Pour cela, nous devons montrer que 6,(p/27) = 6,(2p/279*")
c’est-a-dire:

f-qupoffI—_:fw—loszofq“
T'p:f_loszof

Oou €ncore

fex+p)=£x)+2p.

Ceci est une conséquence de la propriété (I).
Le fait que 6, est un morphisme est clair:

p. P - : -
9( ) =f 9T, ,oft=f 90T, 0T ofTof 90T of4

2‘]
—g.(P p’
_ef(zq)+9f(2q). O

Remarque 1.2. La propriété (I) et la définition de 6, montrent que si p est un
entier, alors 6;(p) =T,

Nous étendons maintenant 6, a GA((Q,):

LEMME 1.3. L’application:
<2" ~a ) € GA(Qy)— Hf( )of" € Homéo (R)

est un morphisme de groupes que nous noterons encore 0.

Démonstration. Ceci résulte immédiatement de la propriété suivante que I'on
vérifie sans difficulté

foef(x)of-‘=ef(§) s xeQ, O

Enfin, nous étendons 6; a PL,(R). Soit h € PL,(R). Par définition, il existe



216 E. GHYS ET V. SERGIESCU

une suite strictement croissante et sans points d’accumulation (x,,),.z de nombres
dyadiques et une suite y,, dans GA(Q),) telles que:

h [[x,,,x,,“] =%Yn I[xn-an]'

Cette suite n’est pas unique pour un A fixé: il est toujours possible d’ajouter de
nouveaux points dans un intervalle [x,, x,.,], méme si 4 est affine sur cet
intervalle. Notons x, le réel 6,(x,)(0).

LEMME 1.4. La suite de réels x, est strictement croissante et sans points
d’accumulation dans R.

Démonstration. Puisque f est un homéomorphisme strictement croissant de
R, la définition de 6, montre que si p/2? est positif, on a:

Hf(%)(x) > x pour tout réel x.

Par conséquent, si x; et x, sont deux nombres dyadiques tels que x;, >x,, on a
Gf(xl)(o) < af(xz)(O)‘ U

Nous définissons alors une application 8;(h):R— R, a priori discontinue, de
la fagon suivante:

Gf(h)ufn-fn+l[ = Bf()/n)“fmfnﬂl'
Il est clair que 0;(h) est bien défini et ne dépend pas du choix de la suite x,,. Il est
tout aussi clair que 6, est une extension de la représentation préalablement
définie 6,: GA(Q,)— Homéo (R).

LEMME 1.5. Si h € PLy(R), l'application 6,(h) est continue.

Démonstration. 1l s’agit de vérifier la continuité de 6,(h) au point x,. Nous
devons montrer que:

ef(Yn)(x-n) = Gf(Yn-—l)(x—n)’

c’est-a-dire:

6¢(Yn° T, )(0) = 04(¥n-1°T,,)(0)
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ou encore:
ef(T——x,.o ‘)/;11 °Yn® 7;c,,)(O) = 0'

Puisque & est continue, on a y,(x,) = Y,-1(x,) et T_, ey 1;°y,°T, est donc un
élément de GA(Q,) qui fixe 0, c’est-a-dire un élément du type (2, 0). L’égalité
que nous voulons montrer est alors claire car:

6p(2~, 0) =f"
et f fixe 0 d’apres (II). O
LEMME 1.6. 6;: PL,(R)— Homéo (R) est un morphisme de groupes.

Démonstration. En effet, pour évaluer 6,(h,°h,), on peut choisir une suite x,
telle que h, est affine sur les intervalles [x,, x,,.1] et h; est affine sur les intervalles
[A2(x,), ha(x,+1)]. La définition de 6, montre alors que 6q(h,)° 6p(h,) = 6p(h,°
hy). O

LEMME 1.7. Si g € G, c’est-a-dire si § € PL,(R) et g(x + 1) =g(x) + 1, alors
6:(8)(x +1) = 6,(8)(x) + 1.

Demonstration. Ceci est une conséquence, d’une part, du fait que 6; est un
morphisme et, d’autre part, de la remarque 1.2 suivant laquelle 6;(p)=T7,. O

D’apres le lemme précédent, 6, permet de définir, par passage au quotient,
une représentation @; de G dans Homéo (S'). Avant de décrire plus précisément
les propriétés de ¢, nous allons montrer qu’il est possible de choisir f pour que
@f(G) soit constitué de difféomorphismes du cercle.

Considérons la propriété suivante (1=r=wx): (III,) f est de classe C’,
f'0)=1et fP0)=0pour2=k=r.

LEMME 1.8. Si f vérifie la condition (111,), alors I’image de 6; (et donc de ¢y)
est constituée de difféomorphismes de classe C'.

Démonstration. En reprenant les notations de la démonsration du lemme 1.5,
il s’agit de montrer que, pour 1=k <r, on a:

Gf(Yn )(k)(x—n) = ef(Yn—l)(k)(fn)'
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Ceci est une conséquence du fait que le r*™ jet de 6(T_, oy, 1°V,°T,)=f"
est celui de I'identité au point 0. O

Nous montrons maintenant que toutes les représentations ¢y que nous venons
de construire sont semi-conjuguées a linclusion canonique de G dans
Homéo (S'). Le lemme suivant est bien connu.

LEMME 1.9. Soit f:R— R un homéomorphisme vérifiant les conditions (I) et
(II). Alors, il existe une application continue croissante H:R — R telle que:

Hx+1)=H(x)+1
H(f(x)) =2H(x).

Démonstration. Nous avons déja observé que I'application i:Q,— R définie
par i(x) = 6,(x)(0) est strictement croissante:

Soit H:i(Q,)— Q, < R I'inverse de i. Puisque H est strictement croissante, H
se prolonge en une application croissante, encore notée H, de i(Q,) dans R.
Comme Q, est dense dans R, lapplication H:i(Q,)—R est continue. On
prolonge alors H a R en imposant & H d’étre constante sur les composantes
connexes de R —i(Q,). On obtient ainsi une application H continue croissante de
R sur R. Le fait que H vérifie les propri€tés requises provient du fait que:

i(x + 1) = 8;(x + 1)(0) = 6;(1) ° 8,(x)(0) = B,(x)(0) + 1 =i(x) + 1
i(2x) = 05(2x)(0) = f° 64(x)(0) = f(i(x)). O

COROLLAIRE 1.10. Si f vérifie les conditions (1) et (1), la représentation ¢y
est semi-conjuguée a linjection canonique de G dans Homéo (S").

Démonstration. L’application H donnée par le lemme précédent définit une
application continue H de S' dans S'. Par construction méme de ¢, et puisque
H(f(x)) =2H(x), cette application H est une semi-conjugaison entre @, et
I'injection canonique de G dans Homéo (S'). O

Pour démontrer le théoréme A, il faut montrer qu’il est possible de choisir f
vérifiant (I), (II) et (III) et tel que I'application H donnée par le lemme 1-9 est
un homéomorphisme. Pour montrer ce fait, nous allons d’abord montrer que les
orbites de @, peuvent s’obtenir simplement a partir de f.

Si f vérifie (I) et (II), f définit évidemment une application continue f:5'— S
de degré topologique 2. Par “relation d’équivalence engendrée par f”, nous
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entendons la relation d’équivalence ~ sur S' engendrée par x ~ f(x) pour tout x
de S'.

LEMME 1.11. Les orbites de @ sont exactement les classes d’équivalences de
la relation d’équivalence engendrée par f.

Démonstration. 11 est évident que les classes d’équivalences de la relation
engendrée par f sont les projections sur S' des classes d’équivalence de la relation
R, sur R engendrée par x ~x + 1 et f(x) ~ x. Nous allons montrer que les classes
d’équivalences de %, sont exactement les orbites de la représentation 6, de G
dans Homéo (R).

Considérons tout d’abord deux points x, et x, de R qui sont dans la méme
orbite de G. Il existe donc un élément § de G tel que x,=6,(g)(x,). Par
définition de G, il existe un intervalle fermé contenant x, tel que la restriction de
0:,(g) a cet intervalle est égale a la restriction d’'un homéomorphisme du type
0:(y) ot y € GA(Q,). Comme 6,(GA(Q,)) est engendré par f et par la translation
T,, les orbites de 8,(G) sont contenues dans les classes d’équivalence de %y.

Réciproquement, considérons I’élément ¢ de G dont la restriction
I’intervalle [0, 1] est donnée par le graphe suivant:

1 1

3 4f

0 14 12 1

Sur Pintervalle [0, §], & coincide avec I’application x — 2x. Par conséquent, sur
Pintervalle [0, ], ¢;(g) coincide avec f. (Rappelons que nous avons noté
% = 6;(x)(0)). Par conséquent, si x € [0, ], x et f(x) sont dans la méme orbite de
@;(G). Si x €[4, 3], on considere I'élément §'=T,,°8°T;4 de G. Celui-ci
coincide avec I'application x — 2x sur I'intervalle [4, 3] et on conclut de la méme
fagon. On proceéde de maniere similaire sur [4, 3],[3,1],.... Par conséquent,
pour tout x de R, les points x et f(x) sont dans la méme orbite de 6,(G).
Puisque, par ailleurs, x +1=6,(T))(x), les classes d’équivalence de %, sont
contenues dans les orbites de 6,(G). O

LEMME 1.12. Supposons que f vérifie les conditions (1), (I1) et la condition
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(IV) ci-dessous:
(V) If(x) =f(y)| > |x —y| pour tout couple de réels distincts (x, y). Alors,
Iapplication H fournie par le lemme 1-9 est un homéomorphisme.

Démonstration. Cette condition (IV) signifie que f est “topologiquement
expansive”’ (voir [Shu]).

Nous avons déja vu que H est surjective. Supposons que H n’est pas injective
et notons £ c R la réunion des intervalles ouverts maximaux sur lesquels H est
constante. Supposons £ non vide. D’apres 1-9, on a:

()=«
()= Q.

D’aprés la premiére égalité, le maximum des longueurs des composantes
connexes de €2 est atteint. Soit £, une composante de longueur maximale.
D’aprés la seconde égalité, f(£2,) est aussi une composante connexe de L. Mais
la condition (IV) montre que la longueur de f(£2,) est strictement supérieure a
celle de £,, ce qui est contraire au choix de £,. O

Nous avons donc montré le théoréme A:

THEOREME 1.13. Si f vérifie les conditions (1), (II), (Ill.) et (IV), alors ¢
est une représentation de G dans Diff* (S') qui est topologiquement conjuguée a
Pinclusion canonique de G dansHoméo (S*).

Démonstration. En effet, d’aprés 1.12, la semi-conjugaison H est en fait une
conjugaison topologique. [

Nous montrons maintenant que ¢, peut posséder un minimal exceptionnel,
c’est-a-dire le théoreme G.

PROPOSITION 1.14. Supposons que f :R — R vérifie les conditions 1, 11 et la
condition V suivante:

(V) f posséde au moins deux points fixes.
~ Alors, @ posséde un minimal exceptionnel.

Démonstration. La condition (I) montre que si « et B sont deux points fixes
de f, alors | — a| < 1. L’intervalle ]a, B[ de R se projette alors injectivement sur
un ouvert V de S' tel que f*(V)=V pour tout n =0. Observons que 'ouvert
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f~Y(V) est la réunion de deux composantes connexes dont I'une est V. De la
méme fagon, f~"(V) est la réunion de 2" intervalles disjoints dont 2"~' forment
f~"=D(V). Par conséquent, la réunion Q =J;_of (V) est un ouvert de S' qui
n’est pas S! tout entier. Comme il est clair que f(2)=Q et f~}(R2)=£, on en
déduit que £ est un ouvert propre de S' saturé par la relation d’équivalence
engendrée par f et donc invariant par @;(G) d’aprés 1.11. En particulier, les
points de S' —  ont une orbite non dense. Comme, par ailleurs, @, ne peut avoir
d’orbite finie d’aprés 1.10, c’est donc que ¢y possede un minimal
exceptionnel. [J

II1.2. Corollaires de ’existence de minimaux exceptionnels

Le premier corollaire immédiat est le corollaire J.

THEOREME 2.1. Si geG, alors le nombre de rotation de
I’homéomorphisme g de S' est rationnel.

Démonstration. Deux homéomorphismes du cercle qui sont semi-conjugués
ont le méme nombre de rotation. I suffit donc de montrer que ¢;(g) a un nombre
de rotation rationnel. Si f satisfait les conditions I, II, III, et V alors ¢;(g) est un
difftomorphisme de § 1" de classe C?, dont les orbites ne peuvent étre denses,
d’aprés 1.14. Le théoréme est alors une conséquence du théoréme de Denjoy
selon lequel un difféomorphisme du cercle de classe C> dont le nombre

de rotation est irrationnel a toutes ses orbites denses (voir par exemple
[He-Hi]). O

PROPOSITION 2.1. Pour tout nombre rationnel, il existe un élément de G
dont le nombre de rotation est égal a ce rationnel.

Démonstration. Soit n un entier supérieur ou égal a 0. On considére ’élément
g» de G dont le graphe est le suivant:

1 1
g —"" 1-27""

{1-27"

0 2 y2-nt
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Le graphe de g, est particulier:

12

0 1/2 1

Le lecteur vérifiera aisément que g, est un élément dont 'ordre est exactement
n + 2. (L’idée de considérer ces éléments g, provient de [?]). Par conséquent, les
puissances de g, fournissent des éléments dont les nombres de rotation sont les
éléments de Q/Z du type p/(n +2) mod Z. On obtient ainsi tous les éléments de
Q/z. O

Nous abordons maintenant la démonstration du corollaire I. Nous allons
montrer que @;(G) est discret dans Diff' (S') muni de la topologie C' pour un
choix tres particulier de f. Le méme résultat resterait vrai pour une classe plus
générale de difféomorphismes f, mais nous faisons ce choix pour simplifier les
calculs. Choisissons donc f du type suivant:

2

74f-—--—--—- A

14f--

Le difféomorphisme f est affine de pente 3 sur [%, 3] et vérifie les propriétés (1),
(I1), (I1L,), et (V).

THEOREME 2.3. Si f est du type décrit ci-dessus, alors @;(G) (resp. @;(F))
est discret dans Diff} (S') (resp. Diff; (R)) muni de la topologie C'.
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Démonstration. Soit K = [0, 1] ’ensemble de Cantor ‘‘standard’ construit sur
Iintervalle [,3]. Précisément K est obtenu de la fagon suivante; on définit
inductivement des ouverts £, par ,= et Q,,, est la réunion des intervalles
ouverts I, dont les centres sont les centres des composantes connexes J; de
[3,3] — 2, et dont les longueurs || sont les tiers des longueurs |J;| des intervalles
correspondants. L’ensemble de Cantor K est alors [§, 3] —Ui_o £2,. Soit K  S!
I’ensemble de Cantor obtenu par projection de [0, 1]= R sur R/Z. L’examen du
graphe de f montre que K est invariant (positivement et négativement) par f.
Rappelons que nous avons noté f I’application de degré 2 induite par f sur le
cercle. En fait, on peut vérifier que K est I'unique minimal exceptionnel de
@7(G).

Observons que la dérivée de f sur K est égale a 3. On en déduit que, si g € G,
alors la dérivée de @g(g) sur K ne prend comme valeurs que des puissances
entieres de 3. Plus précisément, soit h:S'—S' la semi-conjugaison entre
@;: G — Diff (') et I'inclusion naturelle de G dans Homéo™ (S') donnée par le
corollaire 1.10. Si x est un point de K qui est un point d’accumulation bilatéral de
K (i.e. x ¢ 3(S' — K)), alors h(x) est un point de S' qui n’est pas dans Q,/Z. On a
alors la propriété suivante: La dérivée de g en h(x) (qui existe car h(x) ¢ Q,/7)
est 2" si et seulement si la dérivée de ¢@,(g) en g est 3".

Nous devons montrer que @;(G) est discret dans Diff} (S'). D’apres
I'observation précédente, si la dérivée de @;(g) est uniformément proche de 1 sur
S', elle est nécessairement égale a 1 sur K. La dérivée de g aux points non
dyadiques de S’ est alors elle aussi égale a 1 ce qui signifie que g est une rotation.

Il nous reste a montrer que si g est une rotation telle que @g(g) est
suffisamment C'-proche de I'identité, alors g est I'identité. Nous n’utiliserons en
fait que la C’-proximité. Notons que laffirmation correspondante pour le
plongement canonique de G dans Homéo™ (S') serait fausse: Les rotations
dyadiques forment évidemment un sous-groupe non discret de Homéo* (S').
Supposons donc @(g) suffisamment C’-proche de I'identité: Observons que @;(g)
permute les composantes connexes de S' — K qui sont de longeur 1(1/3") (n e N).
L’intervalle de longueur maximale de S'— K est unique: Cest I=]-4, +i[
(mod Z) et sa longueur est + 3. Si @;(g) est C-proche de I'identité: ¢;(g)({) est
un intervalle de S' — K de longueur proche de 4 et donc de longueur 4. Dans ce
cas @,(g)(I) ne peut qu’étre égal a I. Par conséquent, g fixe I'imae de I par & qui
est un point car h “écrase” les composantes connexes de S' — K sur un point.
Puisqu’une rotation ayant un point fixe est I'identité, ceci termine la
démonstration du théoréme dans le cas de @;(G). Le cas de ¢;(F) est tout a fait
similaire. [

Avant de démontrer le théor¢me H, montrons tout d’abord le résultat
suivant:
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PROPOSITION 2.4. Il existe une surface compacte orientée X et une
représentation @ : t,(2)— Diff* (S') ayant les propriétés suivantes:

i) @ posséde un minimal exceptionnel.
ii) Le nombre d’Euler du fibré en cercles au dessus de X associé a @ est égal a 1.

Démonstration. Nous savons que laclasse d’Euler y est non nulle dans G. Il existe
donc, d’apres le théoreme de Hopf, une surface orientée X et un morphisme
i:m(2)— Gtels quel’évaluation de i* x sur la classe fondamentale de Z'est égale a 1.
Si f vérifie les conditions I, 11, 111, la représentation @ = @, i vérifie évidemment la
propriétéii). Si, de plus, f vérifie les conditions V, ¢(r,(2)) preserve un ensemble de
Cantor contenu dans S'. Pour montrer que X vérifie la condition i), il nous reste a
montrer que @(7;(2)) ne peut pas avoir d’orbite finie. Mais, sans une telle situation,
I’orbite finie fournirait une “section multiforme”” pour le S'-fibré associé au dessus de
Xetle nombre d’Euler de ce fibré serait nul contrairement a ce qu’affirme la propriété
ii), O

La démonstration précédente n’est pas constructive et ne donne aucune
informationsurle genrede X'. L’intérét du théoréme H parrapport a la proposition2.4
est donc son aspect explicite.

Soient A et B les éléments de G dont les graphes sont les suivants:

15/16 15,16
7/8 7/8
58
3/8
1/8 A 1/8 B
78 38 5/8 1/8 " 1/161/8 5/8 7/8

On pose:

A1=As=A;=A;;=Ry3AR_y3
Ay =As=Ag=A,=R_13AR 4
A3=Ao=Rs5AR 55 |
As=A10=R33AR 3.

On définit de méme B; (1 <i=12) en remplagant A par B dans les formules
précédentes.
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THEOREM 2.5. Avec les notations précédentes, on a:

12

Z [Ai’ Bi] = ld

i=1

Cette égalité définit une représentation i du groupe fondamental de la surface X'y, de
genre12dans G. Laclasse d’ Euleri* y évaluée surla classe fondamentale de Zestégalea
+1.

Démonstration. Evidemment, le lecteur pourra vérifier par lui-méme 1’égalité
annoncée! Nous allons nous contenter d’indiquer la méthode utilisée pour obtenir
cette représentation explicite.

Soit g € G I’élément dont le graphe est le suivant:

1

34t s

121 7

0 14 12 1

On vérifie immédiatement que (gR,,)’ = id, ce qui peut s’écrire

gR128R_128 =Ry (1)

Par conséquent,

[8(R128R_12)g) = id (2)

Si 'on parvient a écrire g comme un produit de deux commutateurs, 1’égalité
précédente fournit un produit de douze commutateurs égal a I'identité. Vérifions
tout d’abord que le nombre d’Euler de la représentation i:m,(X,)—> G
correspondant a cette relation est non nul. Pour cela, rappelons I’algorithme de
Milnor (voir [He—Hi], par exemple), permettant de calculer le nombre d’Euler
associé 2 une représentation du type [I., [a;, b;] = id dans Diff, (S'). On choisit
des relevés 4, et b; de a; et b, dans Diff, (S') et on forme le produit [T, [4;, 5;).
Celui ci ne dépend pas des choix de & et b;; c’est une translation entiere.
L’amplitude de cette translation est le nombre d’Euler cherché.

Dans notre cas, si g est un produit [a,, b,][a,, b;] notre relation s’écrit
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12, [a;, b;] = id ou les a;, b; sont obtenus simplement a partir de la relation (2).
Par exemple a; = R;,a;R_,, et b3=R;,b;R_,5,. Si I'on choisit un relevé a,, by,
d,, b, pour a;, by, a,, by, on en déduit des relevés “naturels” @, b; pour a;, b,
(1=i=12). Par exemple, on pose d3;=7T,,a,T_,, ou T, est la translation
d’amplitude 1/2. Dans ces conditions, la quantité [1;2, [@;, b;] que nous cherchons
a évaluer est le carré de IS, [4;, b;] car d¢,;,=a; et bo,;=b;, (1=i=<6). Par
ailleurs, la relation (1) montre que II¢_,[d;, b;] est une translation du type
x—>x+n+1/2 (avec neZ). Son carré est donc une translation d’amplitude
impaire et donc non nulle comme nous voulions le montrer.

Il nous reste donc & exprimer g comme un produit de deux commutateurs. On
vérifie que g est le produit des deux éléments «, B de G dont les graphes sont:

3/4

T

3/4

T

1/2F

174}

174 34 1 R, 1
o B

Il est clair que RysaR g€t R_;5BR 5 s0nt tous les deux égaux a I’élément y suivant:

7/8}

5/8}

1/8}
0 /8 378 7/81

Pour terminer, il nous suffit donc de montrer que y est une commutateur. Dans
[Fr—He], il est montré que F' est le premier groupe de commutateurs de F. La
démonstration de ce fait est suffisamment constructive et permet effectivement
d’exprimer y comme un commutateur ce qui permet finalement de terminer la
détermination de la représentation ¢:m,(X;)— G que nous cherchions. Pour
terminer, disons simplement que le caractére explicite de cette construction permet
d’évaluer précisément le nombre d’Euler associé (nous avons vu qu’il est impair). Le
résultat est celui annoncé dans le théoréme, c’est-a-dire 1. O
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II1.3. “Unicité” des lissages

L’essentiel de cette section consiste a démontrer le théoréme K, c’est-a-dire
qu’une représentation non triviale de G dans Diff? (S') est semi-conjuguée a
Pinclusion canonique de G dans Homéo (S*).

Fixons donc un morphisme non trivial ¢ : G — DiffZ (S') (r=2). Puisque G
est simple (voir II-3.15), @ est injective. Nous identifions souvent Q,/Z au
sous-groupe de G (et donc de Homéo (S')) formé des rotations d’angle dyadique.
Pour simplifier ’exposition, nous commencerons par faire I’hypothése suivante:

(H) Pour tout x de S', l'orbite de x par ¢(Q,/Z) est dense dans S'.

PROPOSITION 3.1. Si [P’hypothese (H) est wvérifiée, il existe un
homéomorphisme h de S' tel que h > ¢ o h™'(Q,/Z) est formé de rotations du
cercle d’angles dyadiques.

Démonstration. Puisque @(Q,/Z) est un sous-groupe abélien de Homéo (S"),
il préserve une mesure de probabilité u sur S'.

Sous I’hypothése (H), u est sans atomes et son support est le cercle tout entier.
Si I’on utilise u pour paramétrer le cercle, on obtient alors un homéomorphisme &
de S' tel que ho @ oh™'(Q,/Z) est formée de rotations. En considérant I’angle de
ces rotations, on obtient un morphisme p de Q,/Z dans R/Z. Il est immédiat que
I'image d’un tel morphisme est contenue dans Q,/Z. 0O

Remarquons que p:Q,/Z— Q,/Z - R/Z est injectif. On vérifie qu’une telle
injection est nécessairement un automorphisme de Q,/Z.

LEMMA 3.2. L‘automorphisme p de Q,/Z est égal a +id ou —id. En
composant éventuellement h avec une symétrie, I’'image de la rotation R, de Q,/Z
par ho@oh™" est donc précisément cette méme rotation R,.

Ce lemme sera une conséquence rapide du suivant:

LEMME 3.3. Soit eu la classe d’Euler dans H*(Diff’.(S"); Z). Pour démontrer
le théoreme K, on peut toujours supposer que @*(eu) = ty.

Demonstration de 3.2 a partir de 3.3. D’aprés 3.3., p se reléve en un
morphisme p:Q,— @, tel que p(1) = £1. On a donc p(x) = +x. O

Demonstration de 3.3. Nous savons que @(eu)=na+p-x (n,peZ)
(théoreme C). Montrons que n est nul. Soit o = (u, v) — (v, u) le 2-cycle de G
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dérit en II. 4-8. Nous avons vu que «(o) = t1. Puisque toute représentation de
Z ® Z dans Homéo™(S") a une classe d’Euler nulle (voir par exemple [He—-Hi]),
les entiers @*(eu)(o) et x(o) sont nuls. L’égalité @*(eu) = na + py évaluée sur o
donne alors n =0.

Supposons que p # +1, et considérons le revétement a p feuillets de Diff’, (S')
identifié au groupe Diff’, (S', R,,,) formé des difféomorphismes commutant avec
R,,. Dans ces conditions, ¢ se releve en un morphisme ¢, de G dans
Diff", (§?, R;;,). On a évidemment @j(eu) = ty. Si I'on démontre le théoréme K
pour les représentations telles que ¢*(eu)=xyx, on en déduira que @, est
semi-conjuguée a l'inclusion de G dans Homéo™ (S'). Mais ceci est impossible car
un groupe semi-conjugué a G ne peut évidemment pas commuter avec la rotation
non trivale Ry,. 0

Soit I un intervalle fermé de S' dont les deux extrémités sont dyadiques (i.e.
éléments de Q,/Z). Notons G, le sous-groupe de G formé des éléments dont le
support est contenu dans I'intérieur de I. Ces sous-groupes G, sont sans torsion et
simples car ils sont évidemment isomorphes & F' (voir II 3.15). L’observation de
base est la suivante: les intérieurs de deux intervalles I, et I, sont disjoints si et
seulement si tous les éléments de G; commutent avec tous les éléments de G,,.
Une telle situation est analysée par le lemme suivant:

LEMME 3.4. Soint I; et I, deux sous-groupes simples, non triviaux et sans
torsion de Diff* (S'). On suppose que les éléments de I, commutent avec ceux de
L. Alors, si y, €1, et x € S sont tels que y,(x) # x, on a nécessairement y,(x) = x
pour tout y, de I.

Démonstration. Nous utiliserons un théoréeme de N. Koppel [Kop] dont une
version peut s’exprimer de la fagon suivante [Tsu 1]; si y; et y, sont deux
difféomorphismes de S, de classe C?, qui commutent et tels que Fix (y,) #J et
Fix (y,) #, alors 3(Fix (y,))  Fix (y,).

Commengons par supposer que tous les éléments de I et de I; ont des points
fixes. Fixons un élément y; de I et considérons I'ouvert S* — 3(Fix (y,)). Les
composantes connexes de cet ouvert sont de deux types: ou bien y, est I'identité
sur cette composante, ou bien y; n’a pas de point fixe sur cet intervalle. Notons
A, les composantes du premier type et B; celles du second; on a S' — 3 Fix (y,)) =
(UA;) U (UB)). Si y;€ I, le théoréeme de N. Kopell montre que 3(Fix (y;)) est
formé de points fixes de y,. Par conséquent, I, opére sur chacune des
composantes A; et B;. En fixant j, on obtient ainsi une représentation:

¥2 € I v, 5, € Diff (Bj)'
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Comme I, commute avec y,, I'image de ce morphisme est contenue dans le
groupe des difféomorphismes de l'intervalle B; qui commutent avec Y118 Comme
Y115 'a pas de point fixe, ce dernier groupe est abélien (c’est aussi un corollaire
du théoréme de N. Koppel, voir [Tsu 1]). Puisque I; est simple, ce morphisme
est trivial, ce qui montre que y, est I'identité sur les intervalles o y, n’est pas
I'identité et c’est précisément ce que nous voulions montrer.

Il nous reste & montrer que I’hypothése suivant laquelle tous les éléments de
I et I ont des points fixes est inutile.

Montrons d’abord qu’un élément y de I} ou de I; a nécessairement un point
périodique. Dans le cas contraire, d’aprés le théoreme de Denjoy, y serait
conjugué a une rotation irrationnelle et le groupe des homéomorphismes de S’
qui commutent avec y serait donc conjugué au groupe des rotations et donc
abélien. Or le commutant d’un élément de I (resp. I3) n’est certainement pas
abélien, car il contient le groupe simple I; (resp. I).

Soit ¥, un élément non trivial de I5. D’apres ce que nous venons de voir, une
puissance non triviale y4 de y, posséde un point fixe. Comme I; commute avec
I;, le groupe I, préserve globalement Fix (y9) et donc J(Fix (y9)) (qui est non
vide car I est sans torsion). On obtient ainsi un morphisme:

Y : I;— Homéo (3 Fix (v9)).

Si y, est un élément non trivial de I, une de ses puissances y; a un point fixe et
on peut donc appliquer le lemme de N. Koppel a2 y| et y{. On obtient ainsi
w(y)) =id et y n’est donc pas injective (I} est sans torsion). Puisque I, est
simple, y est trivial, ce qui montre que tous les éléments de I} ont des points
fixes (au moins 3 Fix (y3)). Ceci termine la démonstration du lemme. O

Appliquons ce lemme 2 la situation qui nous intéresse. Notons ¢’ =he@oh™!
ou h désigne encore I’homéomorphisme donné par 3-1. Si I est un intervalle
fermé de S' d’extrémités dyadiques, on note

U={xeS'|3yeG, ¢'(y)(x)#x} =S

Le lemme précédent montre que si /; et I, sont deux intervalles dont les intérieurs
sont disjoints, alors U, et U, sont deux ouverts (non vides) et disjoints.

Les lemmes suivants résultent de la définition de U, et d’une observation
précédente.

LEMME 3.5. Si geG et si I est un intervalle fermé de S' d’extrémités
dyadiques, on a Uy, = @' (g)(U)).
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LEMME 3.6. Si x € Q,/Z et I est un intervalle, on a U,NU,,, =D.

C’est cette dernie¢re propriété qui permet essentiellement de caractériser ces
ouverts U,. Le lemme suivant est élémentaire, nous en laissons la démonstration
au lecteur.

LEMME 3.7. Soit I=S' un intervalle fermé de longueur |I| strictement
inférieure a % et 2 un ouvert de S' ayant la propriété suivante:

IN( +x) = si et seulement si QN (2 +x) =D (x € Q,/2).

Alors, il existe un unique intervalle fermé J de longueur minimale qui contient S et
la longueur de J est égale a celle de I.

Revenant a notre situation, on voit que, si |I] <3, il existe un unique intervalle
fermé V; contenant U, et de longueur |/|. 11 est clair que si I; = I, alors V; c V..

LEMME 3.8. Quitte a conjuguer @' par une rotation, on a V, =1 pour tout 1
tel que |I| <3.

Démonstration. L’intervalle V1,4 est de longueur . En conjugant ¢’ par

une rotation, on peut donc supposer que Vg 4= [0, 3]. On a alors V{y4 12)=

V[0,1/4]+1/4=%+ [0, 4]=1[4, 3] d’aprés 3.5 et 3.2. De méme Vi, 3/4] =3, 3] et
Vizu = [3, 1]. Les deux intervalles V[(,,l,s] et V(y/s,1,4) SONt de longueur 3, différent
I’un de I’autre par la rotation d’angle 3 et sont contenus dans Vo, 1,4 = [0, 1] Cest
donc que Vg 15 =[0, g8l et Vigaa= =[§, 3]. Par des arguments similaires, on
montre que V; = I pour tout intervalle / d’extrémités dyadiques tel que |/|<3. O

PROPOSITION 3.9. Si @ vérifie ’hypothése (H), @ est topologiquement
conjugué a Dinjection de G dans Homéo (S").

Démonstration. Nous allons montrer que ¢’ =id. Soit g€ G, x e Q,/Z et I un
intervalle fermé d’extrémités dyadlques dont I’extrémité gauche est x et tel que
[I| <3 et |g(I)| < 4. On a:

Veay =8(1) (lemme 3.8)
=¢'(g)(V))  (lemme 3.5)
=@'(g)(]) (lemme 3.8).
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Puisque g(I) = @'(g)(I), leurs extrémités gauches sont égales, c’est-a-dire que
@'(g)(x) = x. Par densité de Q,/Z dans S', on conclut que ¢’ =id. O

Nous cherchons maintenant a nous débarasser de I’hypothese (H).

LEMME 3.10. Soit @ : G— Diff* (S') une représentation quelconque. Alors, il
existe un point x de S' fixe par @(F).

Démonstration. Soit I, l'intervalle [277,1-27"] de S' et U, l'ouvert de S’
défini par:

U,={xeS" |3y eG,, p(y)(x)#x}.

Le fermé S' — U, est non vide car il contient les points non fixes de ¢(g) ol g est

a support dans [0, 27"*'] d’apres 3.4. Soit K = S’ I'intersection décroissante de ces

fermés S' — U,. La définition méme de K montre que @(F') est I'identité sur K.
Soient g, et g, les deux éléments de G dont les graphes sont les suivants:

16/8
158
1/2} 112
3/8}
14
1 1037
8 4 2 2 4 8

Comme In Cgl(ln) CIn—l et In ch(In) = In—l (n 22)’ on a Un = ‘p(gl)(Un) < Un—l
et U,cp(g)(U,) = U,_;. 1l en résulte que @(g,) et @(g,) préservent globale-
ment K. Comme nous avons vu que @(g;) et ¢(g,) ont au moins un point fixe
(voir la démonstration de 3.4), et comme ¢@(g;) et ¢(g,) commutent, on en
déduit que ¢(g,) et @(g,) ont un point fixe commun x, dans K. Observons
maintenant que tout élément de F s’écrit sous la forme g7g7'g ou g € F'. Comme
p(g.) et ¢(g,) fixent x, et que @(F’) est I'identité sur K, on conclut que x, est
fixé par (F). O

LEMME 3.11. Soit @:G — Diff* (S') une représentation non triviale. Alors
@(G) posséde un unique minimal dans S' qui est aussi I’'unique minimal de

@(Q,/2Z).
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Démonstration. Montrons tout d’abord que @(G) ne peut avoir d’orbite finie.
En effet, une telle orbite fournirait une représentation de G sur un groupe fini
cyclique et la simplicité de G entraine alors que l’orbite finie devrait €tre un point
fixe. Mais le groupe des homéomorphismes de S' qui fixent un point est un
groupe sans torsion, de sorte que ce groupe ne peut contenir @(G) dont la torsion
est non triviale.

Deux cas sont alors possibles:

i) Les orbites de @(G) sont denses dans S, i.e. ¢(G) posséde un unique
minimal # qui est S'.

iil) @(G) posséde un unique minimal exceptionnel # c S'.

Dans les deux cas A est contenu dans ’ensemble des points d’accumulations
de n’importe quelle orbite de @(G).

Les actions effectives de Q,/Z sur le cercle peuvent étre décrites de la fagon
suivante:

a) L’action posséde un unique minimal & < §'.

b) Il existe une semi-conjugaison h:S'— S' entre I’action considérée et une
action de Q,/Z sur S' par rotations.

c) Si ¥#S' et si y est un élément non trivial de Q,/Z, alors y envoie une
composante connexe de S' — N sur une composante connexe distincte.

Ces trois propriétés se montrent facilement en utilisant une mesure de
probabilité u sur S' invariante par @Q,/Z. Le support de u est le minimal & et
I'intégrale de u définit la semi-conjugaison .

La propriété c) montre que si x € ', Porbite de x par @,/Z ne peut contenir
quwau plus un point dans chaque composante de S' — . Il en résulte que, pour
tout x de S', ’ensemble des points d’accumulation de ’orbite de x par Q,/Z
coincide avec N.

Soit x, un point de S fixé par @(F) (lemme 3.8). Comme tout élément de G
s’écrit sous la forme g, - g, ou g, € Q,/Z et g, € F, on a ¢(G)(xy) = ¢(Q,/Z)(xy).
En considérant les point d’accumulation de @(Q,/Z)(x,), on obtient M c N.
Comme N est clairement contenu dans J{, on obtient 1’égalité cherchée
M=N. O

Nous pouvons démontrer le théoréme K.

THEOREME 3.12. Toute représentation non triviale @:G— Diff*(S') est
semi-conjuguée a linclusion canonique de G dans Homéo (S").

Démonstration. Si les orbites de @(G) sont denses, le lemme précédent
montrent que @ vérifie la propriété (H) et nous avons déja montré le théoréme
(3.9).
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Si @(G) possede un minimal exceptionnel #, on considére une application
continue monotone h:S'— S' de degré topologique 1, telle que h(M#M)=S" et h
est constante sur les composantes connexes de S' — . On peut alors construire
une représentation ¢':G— Homéo (S') qui est semi-conjugée a ¢ par h.
Evidemment, les orbites de ¢’ sont denses dans S'.

On vérifie qu’un groupe d’homéomorphismes se S' qui est semi-conjugué 4 un
groupe de difféomorphismes de classe C? vérifie lui aussi le théoréme de N.
Koppel. Tous les arguments précédents peuvent donc s’appliquer a @’ de sorte
que @' est topologiquement conjugué a I'inclusion de G dans Homéo (S'). O

Pour terminer cette section, nous allons décrire les représentations de G dans
Diff* (S') a conjugaison différentiable prés et non pas seulement a semi-
conjugaison pres. Le cas ou les orbites de ¢(G) sont denses est facile.

THEOREME 3.13. Soit ¢:G— Diff’, (S') (r=2) une représentation non
triviale telle que toutes les orbites de @(G) sont denses. Alors, il existe un
difféeomorphisme f de R satisfaisant les conditions (1), (II) et (I11,) tel que @ et @y
sont conjugués par une rotation.

Démonstration. L’application m:x € S'—2x € §' n’est pas un élément de G,
mais il existe un recouvrement de S' par des intervalles ouverts /; et des éléments
g de G tels que m,;=g;,. Soit h une conjugaison topologique entre ¢ et
I'inclusion naturelle de G dans Homéo (S') et soit f:S'— S' I’application définie
par fiu-11) = @(8)m-1r)- 11 est clair que f est bien défini et ne dépend pas du choix
des I et des g. De plus, f est évidlemment de classe C". Evidemment,
f(h~'(0))=h"'(0), de sorte que, en conjugant ¢ par une rotation, on peut
supposer que f fixe 0. Le relevé f de f 2 R tel que f(0) =0 satisfait alors les
condition I, II, et III,. Les constructions précédentes montrent alors que, apres
conjugaison par une rotation, on a ¢ = ¢, [

Les représentations ¢ qui ne sont que semi-conjuguées a l'inclusion de G dans
Homéo (S') sont plus délicates a décrire complétement. Commengons par
montrer un lemme:

LEMME 3.14. Soit @:G— Diff*(S') une représentation non triviale et h une
semi-conjuaison entre @ et l'inclusion de G dans Homéo (S'). Soit I un intervalle
fermé de S' d’extrémités dyadiques et g un élément de G tel que g, = id. Alors

@(8)n-1(h) = id.
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Démonstration. Soit M I'unique minimal de @(g). On pose:
W,={xeS'|VgeG, gy =id> p(g)(x) =x}

La semi-conjugaison montre que:
W,NM=h"'I)N M.

Pour simplifier, prenons I = [0, 3] et considérons alors I’élément g, de G dont le
graphe est le suivant:

1/2F

0 2 1

Soit g € G tel que g, =id. Les €éléments ¢(g,) et ¢(g) commutent et préservent
intervalle J = h~'(J0, [). Par aileurs, ¢(g,) n’a pas de points fixes sur J alors que
@(g) fixe tous les points de # NJ. On peut donc appliquer le théoréme de N.
Koppel pour conclure que ¢(g),, = id et donc que @(g)-1h=id. O

Le théoréme suivant montre que les représentations @ ayant une orbite non
denses sont ‘“‘presque”’ conjuguées a une représentation du type @y.

THEOREME 3.15. Soit ¢ :G—Diff” (§') (r=2) une représentation non
triviale ayant une orbite non dense et h une semi-conjugaison entre @ et ’inclusion
de G dans Homéo (S'). Il existe un diffeomorphisme f de R satisfaisant les
conditions (1), (I1) et (I11,) et une rotation R de S' ayant la propriété suivante. Si
geG et sixy, Xy, ...,xsontles points de S' ot g n’est pas différentiable, alors
@(g) et RpR™(g) coincident sur S*' —h™'{x,, x5, . . ., x}.

Démonstration. On reprend les notations de la démonstration du théoréme
3.13. Le lemme précédent montre précisément que I’application f : S'— S! définie
par fix-1u) = ©(8:)n-1q, €st bien définie et ne dépend pas du choix des I; et de g;.
Cette application est de classe C” et nous verrons plus bas qu’il existe un point
fixe pour f tel que le 7*™ jet de f en ce point est celui de I'identité. En conjugant
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@ par une rotation R, on peut donc supposer qu’un relevé f de fa R satisfait les
propriétés (I), (II), et (III,). Le fait que ¢(g) et RepR~'(g) coincident sur
S'—h™ x4, x,, . . ., Xx} résulte alors de la définition de f. O

Il nous reste a décrire @(g) sur A~ '{x,, x,, . . ., x,}. Remarquons que h~'(0)
est la projection dans S' de I'intervalle maximal J de R dont les extrémités sont
des points fixes de f.

LEMME 3.16. On se place dans les conditions du théoréme 3.15. Si g€ F, le
difféeomorphisme @(g) de Ulintervalle J=h"'(0)=[a, B] ne dépend que des
dérivées a gauche et a droite de g en 0. Ceci définit donc une représentation  de
Z ® Z dans Diff (J) ayant les propriétés suivantes:

i) Le r®™ jet de y(m, n) en « est celui de f™ en a.

ii) Le r*™ jet de y(m, n) en B est celui de f™ en B.

i) Y(1, 1) = fla,p)-

Démonstration. La premiére assertion est une conséquense du lemme 3.14; si
g: et g, sont des éléments de F ayant mémes dérivées a droite et a gauche en 0,
alors le germe de gi'g, en 0 est trivial et le germe de @(g;'g,) au voisinage de
h~'(0) est donc lui aussi trivial. Les propriétés i) et ii) résultent du théoréme 3.15;
si g est un élément de F dont les dérivées a gauche et a droite en 0 sont 2™ et 27,
alors d’aprés 3.13, @(g) coincide avec f™ sur un ‘““‘demi-voisinage gauche” de « et
avec f" sur un “‘demi-voisinage droit de B". La propriété iii) résulte aussi de 3.15;
si les dérivées a gauche et a droite de g € F en 0 sont égales a 2, alors g est
différentiable en 0 et @(g) coincide donc avec @(g) au voisinage de hA~'(0),
c’est-a-dire avec f au voisinage de h7'(0) =[a, B]. O

Si un C’-difféomorphisme de [0, 1] ne posseéde pas de point fixe ou son r*™ jet
est celui de I'identité, il en est de méme pour tout difféomorphisme non trivial qui
commute avec lui (voir [Tsu 1]). Comme le jet de y(0, 1) est trivial en «, cette
remarque montre qu’il existe au moins un point de [, B] fixe par f et tel que le
r*™ jet de f en ce point est trivial. Cest cette affirmation qui manquait 2 la
démonstration de 3.15.

Nous pouvons décrire maintenant les représentations non triviales ¢ : G —
Diff” (S') a conjugaison différentiable pres.

THEOREME 3.17. A conjugaison par une rotation pres, la donnée d’une
représentation non triviale ¢ de G dans Diff” (S') est équivalente a la donnée des
deux objets suivants:

1) Un difféomorphisme f de R satisfaisant 1, 11, et 111,.
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2) Un morphisme  :Z D Z— Dift” ([a, B]) (ou [«, B] est Uintervalle maximal

fixe par f) vérifiant i), ii) et iii).
La donnée de 2) est inutile lorsque les orbites de @(G) sont denses car alors

a=p.

Démonstration. Nous avons déja vu comment associer un couple (f, y) a une
représentation ¢. Montrons comment construire @ a partir d’un tel couple. Soit A
une semi-conjugaison entre f et x e S'—>2x € S' (Lemme 1.9). Soit ge G et
{x1, X2, ..., x¢} les points de S' ol g n’est pas différentiable. Posons y; = g(x,).
Sur X=8"-h"Yx,,...,xc}, on pose @(s)x=@s(g)x- Il nous reste a définir
@(g) sur les intervalles du type A~ '(x,). Observons que R_, gR,, est un élément
de F et que R_,, et R,, sont différentiables partout, de sorte que @(R, ) et
®(R_,,) sont déja définis. Pour définir ¢(g) sur A~ '(x,), il nous suffit donc de
définir @(g) sur A7'(0) =[a, B] lorque g € F. On pose alors @(g)u-10) = Y (m, n)
ol 2™ et 2" sont les dérivées a gauche et a droite de g en 0. Il est facile de vérifier
que ’on définit bien ainsi une représentation ¢ de G dans Diff” (S'). O

I11.4. Corollaires du théoreme K

Le corollaire L est maintenant clair: si ¢ : G — Diff” (S') est topologiquement
conjugué a l'inclusion canonique de G dans Homéo (S'), alors @ est évidemment
semi-structurellement stable.

Nous démontrons maintenant le théoréme F relatif a I'invariant de Godbillon-
Vey. Commengons par quelques rappels concernant cet invariant. Soit BI'} le
classifiant de Haefliger des I'-structures transversalement orientées, de codimen-
sion 1 et de classe C> L’invariant de Godbillon-Vey est une classe de
cohomologie, que nous notons GV, dans H*(BI'}; R). Le S'-fibré au-dessus de
B Diff} (§') associé a l'action de Diff} (S') sur S' a le type d’homotopie de
B let2 ($Y). Ce ﬁbré est muni d’une I3-structure “horizontale” qui est classifiée
par une application ¢q:B Difi2 (§Y)— BI'; défine a homotopie prés. L’image
réciproque ¢*GV est une classe de cohomologie, notée encore GV dans
H? (B Diff2 (§Y); R) = H3(Dif2 % (S');R). L'image de GV par le morphisme
d’intégration sur la fibre H*(Diff2 (5'); R)— H3(Diff2 (S1); R) est une classe de
cohomologie que nous notons gu (voir par exemple [Mi-TS] ou [Mor]). Nous
nous proposons de montrer que, pour toute représentation ¢ : G — Diff3 (S'), on
a ¢*(gv) =0 dans H*(G; R). Soit eu la classe d’Euler dans H*(Diff2 (S'); Z).

LEMME 4.19. Si ¢:G— DiffZ (S') est un morphisme non trivial, on a
@*(eu) = *y.



Sur un groupe remarquable de difféomorphismes du cercle 237

Démonstration. La fagon la plus rapide de montrer ce lemme est d’utiliser le
théoréme K et d’observer que la classe d’Euler est invariante par semi-congaison
respectant ’orientation (voir [Gh2]). O

Quitte a conjuguer @ par une symétrie, nous pouvons donc supposer que
@*(eu) = x. Nous avons donc un diagramme commutatif:

LEMME 4.10. Pour toute représentation @ :G— Diff% (S'), il existe un réel k
tel que @*(gv) = ka dans H*(G; R).

Démonstration. On peut supposer que @ est non trivale. La naturalité de
I'intégration sur la fibre montre que @*(gv) est aussi I'image de ¢*(GV) par
I'intégration sur la fibre H*(G; R)— H*(G;R). Comme H*(G;R) est engendré
par la classe 8 et que I'intégrale sur la fibre de 8 n’est autre que o € H*(C; R), on
obtient le résultat. [J

Nous terminons maintenant la démonstration du théoréme F.

THEOREME 4.11. Pour toute représentation ¢:G— Diff’ (S'), on a
®*(gv) =0.

Démonstration. Utilisons de nouveau le cycle o = (u, v) — (v, u) fourni par le
lemme 11.4.8. Comme l'invariant de Godbillon-Vey d’une représentation de
Z ® 7 dans Diff% (S') est nul (voir [Her]), on a ¢*(gv)(o) = 0. Par ailleurs, nous
savons que &(o) =1 (lemme I1.4.8). En évaluant I’égalité ¢*(gv) = ka sur o, on
obtient alors que k est nul. O
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