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A local method in group cohomology

P. J. Webb

1. Introduction

Let G be a finite group. The classical approach to the local control of the

cohomology of G is described in the book of Cartan and Eilenberg [5] and relies

on the fact that for any prime p the Sylow p-subgroup of Hn(G, M) is isomorphic
to the subgroup of &quot;stable éléments&quot; of Hn(P, M) under the action of G, where
P is a Sylow p-subgroup of G. In some situations the computation of the stable

éléments has been reduced to a local problem, as in for example [14] and [16].
When this is done it is usual to make restrictions that the action of G on M is

trivial, and either that G has a spécial structure or that the prime p is sufficiently
large. However, in the most gênerai situation it seems hard to make this method
work, the problem being to compute the conjugation action of G on Hn(Pf M).
We présent a completely différent approach to the local calculation of cohomology

which avoids thèse restrictions. Our method has some connections with
equivariant cohomology in that we consider a group acting on a simplicial
complex and we obtain the cohomology of G in terms of the cohomology of the

isotropy groups. But our approach is mostly algebraic, and we seem to obtain

sharper results than are usually obtained with equivariant cohomology.
Our first theorem concerns the abstract situation of a finite group G acting on

a simplicial complex A, and we later go on to give the applications to particular
cases. We assume G acts simplicially, and dénote the isotropy group {g e

G | og a} by Go. Assume further that Go fixes the vertices of o pointwise. This

can always be achieved by passing to a barycentric subdivision if necessary.
Throughout this paper we will let &lt;g dénote the collection of subgroups H of G
which hâve a normal p-subgroup with a cyclic p&apos; quotient, that is

% {H ^ G | H/OP(H) is cyclic}.

The subgroups in &lt;€ are sometimes called &quot;cyclic mod/?.&quot;

THEOREM A. Let G act simplicially on the simplicial complex A, suppose
for each simplex o the isotropy group Go fixes a pointwise, and let p be a fixed
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136 P J WEBB

prime. Assume that one of the following conditions holds:
(a) for each H e&lt;€ with OP(H) =é 1 the fixed point complex A&quot; has Euler

characteristic x(AH) 1

or (b) for each cyclic subgroup H of order p, AH is acyclic. Then for any
ZG-module M and integer n,

Hn(G M\ Y (—Î^^^HnfG M}II \*-*j )p — * J \ / V cr&gt; )p&apos;

ag AlG

In the statement of Theorem A we use the suffix p to indicate the Sylow
p-subgroup of the corresponding cohomology group. The sum on the right is

taken over a set of représentatives for the orbits of G on A and the alternating
sum is to be understood in the Grothendieck group of finite abelian groups with
relations given by direct sum décompositions. It can also be interpreted by
transferring the groups with négative sign over to the left hand side with a

corresponding positive coefficient. There is then an isomorphism between the
direct sums of the groups on either side. It is plain that this is sufficient to
détermine the isomorphism type of Hn(G, M)p provided M is a finitely generated
ZG-module, since then ail the cohomology groups are finite. In fact condition (b)
implies a condition (a), as we shall see, but it is usually easier to verify, for
example by showing that AH is contractible if \H\ =p. The conclusion of Theorem
A does not hold in this generality for the ordinary H° and /f0; instead we must
take Tate cohomology, which of course includes the usual homology groups in
dimensions ^ — 2.

In the applications of Theorem A the simplicial complex A always arises from
a partially ordered set in the following standard fashion: if 5 is a poset, the
associated simplicial complex has as its n-simplices the chains so&lt;- • -&lt;sn of
length n -f 1 of éléments of S. The faces of such an n-simplex are the subchains of
shorter length. If G acts on 5 there is an induced action on the simplicial
complex, and it is clear that the isotropy group Go will stabilize ail the vertices of
a, since it must fix ail éléments of 5 in the chain o. We will use the symbols si to
dénote the poset of ail non-identity elementary abelian p -subgroups of G and &amp;&gt;

to dénote the poset of non-identity p-subgroups of G. We regard thèse also as

simplicial complexes by the above construction, and G acts on ail of them by
means of conjugating the subgroups. Our results apply to thèse simplicial
complexes and also to the Tits building of a finite Chevalley group. This can be

regarded as the simplicial complex obtained from the poset of proper parabolic
subgroups of G. For each of thèse complexes the condition that AH is contractible
and hence acyclic when \H\=p has been verified by Quillen. We therefore
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obtain:

THEOREM B. The cohomology formula in Theorem A is a valid when

A siy ify or A is the Tits building of a finite Chevalley group in defining
characteristic p.

In the case of a Tits building, if we choose the simplices to be the proper
parabolic subgroups themselves, rather than chains of subgroups, the formula

adopts the following form.

COROLLARY C. Let G be a finite Chevalley group in defining characteristic

p and let B be a fixed Borel subgroup. Then

Hn(G,M)p= 2 (-lTdnk(P)Hn(P, N)p.

The sum hère is taken over ail parabolic subgroups containing B. By the rank of a

parabolic subgroup P we mean that integer m so that P Pm &lt; Pm_ ,&lt;•••&lt; Px &lt; Po

is a chain of proper parabolics of maximum length. Maximal parabolic subgroups
thus hâve rank 0.

In many cases évaluation of the formula for cohomology in Theorem A can be

quite straightforward. If A arises from a poset of subgroups of G as in Theorem B
then the simplices of dimension zéro are just the subgroups themselves, and the
stabilizers Go are the normalizers of the subgroups. In gênerai, if a is a simplex
//()&lt;•• &lt;Hn where the Ht are subgroups of G, then Ga Na(Hx) fl • • • n
NG(Hn). Observe that for each of the posets sd and ïf, the maximal p-local
subgroups always appear amongst the isotropy groups Gay because for example
with sAy a /?-IocaI subgroup always normalizes some elementary abelian /?-

subgroup. We can say in gênerai that the /7-part of the cohomology of G is

determined by the cohomology of certain p-local subgroups, and their intersections.

However, if G has a normal /?-subgroup then G itself will appear on the

right hand side of the cohomology formula with thèse three posets, and Theorem
B is of less use. In this situation we can apply a différent réduction theorem which

émerges as a step in the proof of Theorem A.

THEOREM D. Let X be a class of subgroups of G which is closed under

taking conjugates and forming subgroups, and with X 3 &lt;€. Then

/T(G, M)p 2 îTrtïï &quot;W M)n
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for any integer n and ZG-module M, where f:X-*Zis the function defined by the

équations

l forevery Je

This theorem works both for Tate and ordinary cohomology and homology (the
only différence between the two being the groups H°, Ho and the corresponding
Tate groups H° and H&apos;1).

There is another way to view the function /; if we let X be the poset X U {°o}
where » is an artificial maximal élément, then /(//) -fi(H, 0°), where \i is the
Môbius function. It is often an elementary but time-consuming matter to compute
the values of/from the defining équations in Theorem D. Evidently if H is a

maximal member of X then f(H) 1, and by working down through chains of
subgroups from thèse maximal members we may build up further values of /.
Because the Môbius function is zéro except on intersections of maximal éléments,
thèse intersections are the only subgroups we need consider. At the end of §2 we

présent a formalized version of the inductive computation procédure just hinted
at, and this may be suitable for machine computation.

We prove Theorem A by obtaining an isomorphism between direct sums of
certain permutation modules. Let Zp dénote the p-adic integers, and if H is a

subgroup of G, write uH for the corresponding permutation module Zp ®ZpHZpG
over ZPG.

THEOREM A&apos;. uG Ea^/G (-l)dim(a)uGo (modulo projectives).

Hère the alternating sum is taken in the Green ring of finitely generated
ZpG-modules, but it may also be treated in a similar manner to the sum in
Theorem A. The congruence modulo projectives means that we may achieve

equality by adding a suitable finitely generated projective module to each side.
There is a theorem analogous to Theorem D concerning permutation modules.

THEOREM D&apos;. With X and f defined as in Theorem D,

u -y u ML

The above équation holds in the Green ring defined over Q of Z^G-modules.
The formula in Theorem A reminds one of an tsuler characteristic, and in
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particular the theorem of Brown (as improved by Quillen) [3, p. 267] that

X(G)- S (-l)dimaX(Ga) (modZp)
oeMIG

valid for certain groups with vcd (G) &lt; &lt;*&gt;, where si is the complex of elementary
abelian p-subgroups. In §§5 and 6 we investigate the connection between our
approach and the method which Brown used, namely equivariant cohomology. It
would be satisfying to prove Theorem A using the spectral séquence of
equivariant cohomology, but I hâve been unable to do this in gênerai without
assuming some further properties of the simplicial complex on which G acts.

Under slightly stronger conditions on A than those in Theorem A we prove that
A has thèse further properties, provided A is a graph. This happens for A - si
when G has p-rank 2, that is, the largest elementary abelian p-subgroup of G is

CpxCp. The properties we require are summarised in the next resuit, and they
immediately give a proof of Theorem A in this case.

THEOREM E. Let G be a group ofp-rank 2, and let A^si or &lt;f. Then for
each r the p-adic completion Hr(A)p is a projective ZpG-modulef where Hr dénotes

reduced homology. If C\ -^-» Cq is the chain complex of sa then both of the short
exact séquences

0^ H,(si)p -&gt; (Ç,),- Im {d)p -&gt; 0

and

0-&gt; Im (d)p -&gt; (Co)p -&gt; HO(M)P -&gt; 0

are split as séquences ofZpG-modules.

In 5.1 as a stage in the proof of Theorem E we state a similar resuit valid for
arbitrary connected graphs A under a certain contractibility hypothesis. This
resuit seems to be known, but it is perhaps of some combinatorial interest since

group actions on graphs of the required kind do arise in practice, an important
example being a finite Chevalley group acting on a Tits building when this is a

graph. In this case the fact that the first homology group is projective at the prime
p is well-known, because it is the Steinberg module. Theorem 5.1 can be regarded
as an extension of this fact for arbitrary groups. A straightforward conséquence is

that the rank of HX(A) is divisible by the order of a Sylow p-subgroup of G.
In §7 we calculate the isotropy groups in the formula in Theorem A for

various spécifie cases, and in several of thèse the information given about the
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cohomology is new. We conclude in §8 with some formulae which hâve the nature
of an Euler characteristic and involve numbers such as the group order, or convey
certain local information about G.

This work has benefited from the interest shown by many people over a long
period, and I would like to thank them ail. In particular I thank K. S. Brown and
J. Thévenaz.

2. Réduction to local subgroups and the proof of Theorem D

The proofs we shall give of Theorems A and D hâve rather little to do with
cohomology, and rely on establishing Theorems A&apos; and D&apos;, which are results in
représentation theory. We first make some remarks about the Grothendieck

groups in which the équations in thèse theorems are supposed to hold. To handle
the équations between permutation modules we work in the représentation ring
of ZpG-modules. This is the vector space A(G) over the rational numbers with
the set of isomorphism classes of finitely generated indécomposable ZpG-modules
as a basis, allowing both torsion and torsion free modules. If M MY © • • • © Mn
is any finitely generated ZpG-module where the M, are indécomposable, we
associate to M the corresponding élément Mx + • • • + Mn in A (G). We will fail to
distinguish in our notation between a module and its isomorphism class. Because

of the Krull-Schmidt theorem (see [26]) the choice of the élément Mx + • • • -f Mn

representing M is uniquely determined. There is a product in A(G) defined on
basis éléments by M • N M ®Zp N, and the identity élément is Zp. Our aim is to
obtain an alternative expression for Zp) and we do this using Conlon&apos;s induction
theorem and a formula for idempotents in A(G) which arise from the Burnside
algebra. The expressions involving sums of cohomology groups on the right hand
sides of the équations in Theorems A and D hold inside the Grothendieck group
of finite abelian p-groups with respect to direct sum décompositions, tensored up
to Q. This is a subspace of ^4(1), and it was the observation that Hn(Gy
préserves finite direct sums and hence induces a homomorphism

Hn(G, ):A(G)-»A(l)

which provided a starting point for this research. A similar observation was made

by Roggenkamp and Scott [20].
Continuing with the notation for permutation modules mw Z/7®ZhZpG

used in the Introduction, we indicate how Theorems A and D may be deduced
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from A&apos; and D&apos;. It dépends on the isomorphisms

ExtZpG (uH, Mp) Extz,G (Zp ®ZpH ZPG, Mp) s ExtZp// (Zp, Mp)

s Extz// (Z, M) &lt;g&gt;z Zp Hn(H, M)p.

The penultimate isomorphism where we take the completion at p outside the Ext
term is valid because Z is finitely presented as a Z//-module, and completion at/?
is an exact functor [12, p. 233]. If we thus apply ExtZpG » Mp) to both sides of
Theorem D&apos; we immediately obtain Theorem D, at least when n ^ 1. For the zéro
cohomology and homology groups the formula follows in the same way using the
functors Homz G ,MP) and ®ZpGMp. We may deduce the resuit for Tate

groups Hn{G, M) when n =^0 by applying dimension shifting, as in the formula
Hn(G, M) Hn+s{G, Qs{M))y where Q is the Heller operator (see [26]). Thus
for n ^ 0 we take s -n + 1 and the desired formula for Hn(G, M) is identical
with the corresponding formula for Hl(G, Q~n+l(M)). We should note in passing
that Q commutes up to projective summands (on which H1 vanishes) with
restricting M to H. Theorem A follows similarly from Theorem A&apos;, except that
hère we start off with a congruence modulo projectives. We obtain an equality in
cohomology because the Ext groups which hâve a projective module in the first
place are ail zéro. The dimension shifting argument works again to get the

négative Tate groups, but note that Theorem A does not hold in gênerai for H°
and Ho.

In the remainder of this section we give a proof of Theorem D&apos; and discuss its
uses. We introduce the Burnside algebra, B(G), which Burnside considered in his
book. This is the Q-vector space with the set of équivalence classes of transitive
G-sets as a basis. A transitive G-set is a set of cosets H\G, and H\G is équivalent
to K\G if and only if H and K are conjugate subgroups of G. The product on
B(G) is given on the basis éléments by taking the direct product of the

corresponding G-sets and expressing it as a disjoint union of transitive G-sets.
This détermines a linear combination of the basis éléments according to the
multiplicities with which they occur in the disjoint union, and this is defined to be
the product. We will use the same symbol uH for the G-set H\G that we
previously used for the corresponding permutation module Zp(H\G) Zp®ZpH
ZPG, even though it may happen that uH uK in A(G) but uHi=uK in B(G) for
différent subgroups H and K [Scott, unpublished]. There is, however, a

homomorphism B(G)—&gt;A(G) sending uH as H\G to uH as the permutation
module ZP(/AG). B(G) is a semisimple algebra [22], and for each subgroup

there is an idempotent eH lying in the span of {uk\K^H}. Thèse
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idempotents are given by the following formula:

2.1. THEOREM (Gluck [11], Yoshida [25]). In B(G),

2

where \k is the Môbius function on the lattice of subgroups of G with defining
property

2 fi(K, H) ôJH for ail subgroups H, J of G

(Kronecker delta).

The eH form a complète set of primitive idempotents in B{G), and we hâve

H

the sum taken over ail conjugacy classes of subgroups H. Applying the

homomorphism from B(G) to A(G) we obtain an identical formula there. In
A(G) we may perforai some simplification, because many of the eH are zéro.

As in §1 we define

% {H ^ G | H/OP(H) is cyclic}

and call the subgroups in &lt;€&gt;&gt; &quot;cyclic modp&quot;, If âf is any class of subgroups of G
closed under conjugation, let âf* dénote a set of représentatives for the conjugacy
classes. Note that % is itself closed under taking subgroups (and under

conjttgation).

2.2. THEOREM (Conlon [8]). Under the canonical homomorphism B(G)-+
A(G) the idempotent eH is mapped to zéro if and only if H $%.

This allows us to throw away terms in the expression ug Yah^h and we obtain

2.3. COROLLARY. Suppose âf is a class of subgroups of G closed under
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conjugation and with X 3 %. Then in A(G),

We may evidently substitute the formula for eH given in 2.1 into the expression in
2.3 to obtain our identity between the uH in A(G). By doing this and rearranging
the double sum we obtain Theorem D&apos;.

Proof ofTheorem D&apos;

uG= 2 eH= S 777^ S I*{K, H) • \K\ • uK

^K H^ ^ U/c

We now define f(K) E^//e* jti(^, H). Then for any fixed / e X,

and it is apparent that thèse équations suffice to détermine the values of /
completely. This proves Theorem D&apos;.

Remark. If H and K are conjugate subgroups of G then uH uK. Thus uH

appears \G:NG(H)\ times in the sum in Theorem D&apos;, and hence we may rewrite
it as

° hUt &quot;\No(H):H\

A similar modification to Theorem D is possible.
The computation of values of the function / is a rather mechanical process and

can profitably be done with computer assistance. The author has found the

following scheme to be quite economical. For each pair of subgroups /, K in X,
define CJK to be the number of conjugates of K which contain /. This number
does not dépend on the choice of / or K within their conjugacy classes. Then for a

fixed / e X the defining équation
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If we define the matrix C (CjK)jtKe%* and the column vector / (f(K))K(ESe*,
the last équation is

The problem is now to compute the matrix C, and this is usually best done by
noting that

„ \G:NC(K)\ „,

where Cj# is the number of conjugates of J contained in K. This latter équation
may be verified by considering the bipartite graph whose vertices are the
conjugates of / and the conjugates of K, and /* is joined to Ky if and only if
J* c Ky. The number of edges in the graph may be computed in two ways as

CJK \G:NG(J)\ and C&apos;JK \G:NG(K)\. Finally, the solution of the matrix équation is

elementary, since by placing the éléments of âf* in non-decreasing order, C is a

triangular matrix.
We give an example of the above calculation when G 24, p 2 and âf c€.

Représentatives of the conjugacy classes of % are A4, DH, V
&lt;(12)(34), (13)(24)&gt;, &lt;(12), (34)), C4, C3, &lt;(12)&gt;, &lt;(12)(34)&gt; and with rows and
columns corresponding to thèse subgroups in the given order we hâve

1

0 1

1 3 1

r= 0 1 0 1

0 10 0 1

10 0 0 0 1

0 10 10 0 1

13 10 10 0 1
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The upper triangle is zéro. Solving the équation C-/ (l, 1)&apos; gives

/ (1, 1, -3, 0, 0, 0, 0, 0)&apos;, so that the vector with entries f(K)l \NG(K):K\ is

(i 1, -i 0,0,0,0,0)&apos;. The statement of Theorem B&apos; is

Passing to cohomology we obtain

Hn(Z4, M)2 \Hn{AA, M)2 + Hn(DH, M)2 - \Hn(V, M)2.

Some simplifications of the above procédure are possible. If we are only
interested in cohomology it is a waste of time to compute the uH where /?^|//|,
since thèse are projective Z^G-modules and hâve trivial cohomology. Thus we

might as well omit such subgroups from the matrix C. Secondly, one sees that

f(K) 0 except when K is expressible as an intersection of maximal members of
âf. The shortest way to establish this is to interpret/as a Môbius function, as was
indicated in §1. We let Ê be the poset â?U {&lt;»}, where °° is greater than every
member of âf. The Môbius function on Ê is then defined by

0 for every /

and evidently thèse équations are satisfied if we take fx{Ky °°) —f{K). This
Môbius function should not be confused with the Môbius function on the lattice
of subgroups of G. It was proved by Philip Hall [13] that fj,(K, °°) 0 unless K is

an intersection of maximal éléments, hence our assertion. With this observation
we could hâve said immediately that A4, DH and V are the only subgroups which
make a non-zero contribution in the calculation for 2V

We wish to conclude this section by describing another way in which formulae
for ua can be obtained. If G is not itself cyclic modp (i.e. G/OP(G) is not cyclic)
then eG 0 in A(G) by Conlon&apos;s Theorem 2.2. In Gluck&apos;s and Yoshida&apos;s

expression for eG (Theorem 2.1) the coefficient of uc is ju(G, G) 1, so we may
write

G) ¦ uK.
K&lt;G
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We obtain

2.4. PROPOSITION. /T(G, M)p -1/|G| Lk&lt;g \K\ ia(K9 G)Hn(K, M)p for
every prime p such that G/OP(G) is non-cyclic. Observe that we also obtain this
resuit from Theorem D on taking X ail proper subgroups of G.

In [13], Hall used the notation ju(AT) for our Môbius function fj,(Kt G), and he

computed values of [i(K) for some particular groups. Thus, for example, he gives
the following Môbius inversion formula for GL(3, 2) G168:

0(Gi68&gt; o(G168) - 7a(O24) - 7a(O24) - 8a(M7,3) + 21a(O8)

+ 28a(D6) + 56a(C3) - 84a(C2).

Hall&apos;s notation for the subgroups of GL(3, 2) is 024 for the octahedral group of
order 24, M7&gt;3 for the non-abelian group of order 21, O8 for dihedral of order 8,

D6 for dihedral of order 6, and C3, Q for cyclic groups. We hâve written
—14(7(0^) as —7a(O24) — 7a(O24) because there are two conjugacy classes of
thèse subgroups. Hall did not need to distinguish between the conjugacy classes

in this way. To explain the rest of his notation it is sufficient for our purposes to

say that there are (for example) 8 maximal subgroups of type M7&gt;3, for each of
which ju(Af73)= — 1, so we obtain a term —8a(Af73) in the above expression.
Hère (/&gt; and a are functions defined on the subgroups of G168 satisfying

0(H) Y,K^H&lt;f&gt;(K)&apos; We immediately read off the following formula in
cohomology:

/f (G, M)2 îfe[7.24/f (O24, M)2 + 7.24/T(O24, M)2 - 21.8/f (O8, M)2

- 28.6/f (D8, M)2 + 84.2//w(C2, M)2]

- Hn(O24, M)2 + Hn(O24, M)2 - Hn(Os, M)2 - Hn(D6, M)2

+ /T(Ç2,M)2.

Since we hâve decided to compute the 2-parts of cohomology groups we hâve

omitted the terms with subgroups of odd order. It is well known, and easy to

prove, that Hn(D6, M)2:=zHn(C2, Af)2, so the last two terms above cancel, and

we obtain

H&quot;(Gf M)2 Hn(O24, M)2 + Hn(O24f M)2 - Hn(O8t M)2

\H\A4i M)2 + \Hn{A4) M)2 + Hn(OSt M)2 - \Hn(Vy M)2

-x2Hn(V,M)2.

The second Une is obtained by inserting the formula previously obtained for O24.
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Hère V Q x Q&gt; and repeated terms with the same subgroup indicate différent
conjugacy classes. Using a formula such as this one may readily compute the
Poincaré séries of the cohomology ring (&amp;™=QHn(Gf F2).

3. Proof of Theorems A and A&apos;

As explained in §2, Theorem A follows from Theorem A&apos; by applying
Ext5pG( Mp) to both sides of the congruence of Theorem A&apos;. Since Ext is zéro
on projective modules, the congruence becomes an equality between cohomology

groups. We therefore prove Theorem A&apos;.

The idea behind the proof of Theorem A&apos; is as follows. For each term uGa

which appears in the congruence we hâve to verify, we obtain by Theorem D&apos; an
expression in terms of the uH where H is cyclic modp and is a subgroup of Go.

We will substitute thèse expressions into both sides of the congruence in Theorem
A&apos; and after some rearrangement of the terms we will show that the two sides are
equal. With this end in view we use the notation ^(Ga) for those subgroups of Ga

which are cyclic mod/?, so that ^(G) &lt;g. Evidently ^(Ga) « H {ail subgroups
of Ga}. For each subgroup GCT there will be a function / defined on ^(GCT). We
now dénote this function by^, retaining the symbol/for the function on c€. For
each subgroup Go Theorem D&apos; gives an identity

j _ y fa{H) fGa
He&lt;€(Ga) V^o&apos;n\

in A{Ga). We use the up arrow to dénote induction. Inducing this up to G we
obtain

UGa Zj 1^ .rrj UH

in A(G). The right hand side of the équation in Theorem A&apos; is

2 (-i)dm ua ^j \r&lt;. r&gt;

oeA/G oeA |v* • ^a

oeA \GlGa\ He&lt;€(Ga)\Ga:H\

S ÏG^flf Uh

oeA

y Uh y (_
He&lt;€(G) \G \H\ \Ga^H

oeA
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By Theorem D\ the left hand side of the équation in Theorem A&apos; is

H€&lt;€(G) l

We will show that provided OP(H) # 1 and H e «(G),

This will suffice to prove Theorem A&apos;, since the two sides of the congruence in
the theorem differ by at most a linear combination of the uH, H e (€{G)y where

OP(H) 1. Such a subgroup H has order prime to p, so uH is projective.
To verify the last équation above we check that the right hand side satisfies

the defining property of/, namely

for ail

provided that OP(H) # 1. We wish to use this to define f(H) inductively when

OP{H) # 1 and when f(K) has already been defined if H &lt; K e ^(G). This is

valid, since in this situation OP{K)^\. Note that the condition GO^H in the

équation to be verified is équivalent to saying o is fixed by H, i.e. a e AH. We
calculate

2 S f() 2
oeAH H^K^Ga oeAH

by the defining property of fa. This last quantity is the Euler characteristic
and if we assume condition (a) in the statement of Theorem A then it is 1 if
OP(H) # 1, H e ^(G). This complètes the proof of Theorems A and A&apos; on the
assumption that (a) holds.

We finish with the observation that (b) implies (a). \iHe% with OP(H)* 1

then H has a subnormal séries HX&lt;^H2&lt;\H where Hx has order p, H2 is a

p-group and H/H2 is cyclic. Now AH* is acyclic by hypothesis, and hence
Z//?Z-acyclic, thus by a theorem of Smith ([23], or VII, 10.5(b) in [3])
AH2 (4Hi)H2 is also Z//?Z-acyclic. Therefore AH* is Q-acyclic and since AH is the
fixed points on AH* under the action of the cyclic group H/H2, x(AH)
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by the Lefshetz trace formula. This complètes the proof. The argument just
indicated can also be found in Proposition 2 of [17].

It is interesting to compare the various rival conditions on A under which
results like Theorem A are proved. A fréquent condition in theorems proved by
equivarient cohomology is that AH is acyclic for ail /?-subgroups H of G.

Evidently this implies condition (6), and in gênerai it is a more stringent
condition, as explained in [17]. In order to prove that Theorem A holds in the

présence of (b), the condition (a) which we worked with in the actual proof has

to be suitably weak. For example, if we replaced (a) by &quot;AH is Z/pZ-acyclic for
ail H e &lt;€&quot; then we would not be able to deduce (a) from (b) (see [17]).

4. Proof of Theorem B and Corollary C

Quillen showed in [18] that if A si, Sf, or the Tits building of a Chevalley

group and H ^ G is a p-group then AH is contractible, from which condition (b)
of Theorem A follows. Clearly, for any simplicial complex arising from a poset of
subgroups, Go will always fix a pointwise since the vertices of a are subgroups
ordered by inclusion. Hence Theorem A applies to si, iFy and buildings.

In fact a slight extension of Quillen&apos;s argument shows that when A si or &amp;*

and H e ïf with OP(H) =£ 1 then AH is contractible, as we now demonstrate in the
case A-si. Write HP OP(H) and put C £2(£(/fp)), the largest central

elementary abelian subgroup of Hp. Then 1=éC char HP&lt;H, so C&lt;H. Let
A e sdH be any non-trivial elementary abelian p-subgroup normalized by H. Then
AHp is non-trivial and is normalized by H since Hp &lt;\ H. Hence the assignments

take place inside séH and give a contraction of sdH [3, p. 268].

Suppose now that A is the Tits building of a finite Chevalley group in
characteristic p. We may take the parabolic subgroups of rank n to be the

simplices of dimension n, and then if B is a Borel subgroup the parabolic
subgroups containing B form a set of représentatives for A/G. Since the isotropy
group or stabilizer of a parabolic subgroup is its normalizer, and parabolic
subgroups are self normalizing, we obtain Corollary C.

5. Structure of the complex of elementary abelian /?-subgroups

We first establish the conclusion of Theorem E for an arbitrary graph with
similar fixed point properties to s&amp;y but under the hypothesis of connectivity. This
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was essentially proved by Oliver [17], and the situation is very similar to one
analysed by Quillen [18]. We give an algebraic proof for the benefit of the reader.

5.1. THEOREM. Let A be afinite connectée graph on which G acts and let p
be a fixed prime. Suppose that G acts without inversions (i.e. any élément of G
which fixed an edge, fixes its two end vertices) and thatfor every subgroup P^G
of order p, Ap is a non-empty tree. Then the p-adic completion HX(A)P is a

projective ZpG-module. Furthermore, if Cx -^ Q is the chain complex of A then

both of the short exact séquences

and

are split as séquences ofZpG-modules.

Proof. Let Q by a Sylow p-subgroup of G. Since ZpG-modules are projective
and morphisms split if and only if, respectively, they are projective and split on
restriction to Q, it suffices to assume G Q is a p-group. Now for each

Î=£//=^G, AH is contractible. This is because if P&lt;\H is a normal subgroup of
order p then Ap is a non-empty tree on which H acts and any finite group acting
on a tree has a fixed point (Serre), so AH (AP)H is also a non-empty tree. Thus

Ui#//«g àH has the homology of the poset of subgroups of G [3, IX, 11.2], and

this is contractible since the poset has a maximal élément [18,1.5]. Hence the
chain complex Dt—&gt; D() of Ui#/y^G AH has the homology ç&gt;f a point, and since this

subcomplex consists of those points where the action is not free we can write
Q Dt © P, for i l,2 where the P, are free modules. By examining the long
exact séquence associated with the séquence of chain complexes 0—»£&gt;. —»C. —»

P.—»0 we see that C. and P. hâve the same reduced homology, so there is an

exact séquence

This splits since Po is projective, so HX{A) is projective.
It remains to show that the short exact séquences split. The first one splits

because HX{A)P is projective, and Im (d)p is torsion free, being a subgroup of
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(Co)p. For the second séquence, G has been assumed to be a p-group and we
hâve seen that AG is a non-empty tree. Thus at least one of the transitive
permutation summands of (Cq)p is just Zp and the restriction of the map
(Ç))p—? Zp to this summand is the identity Zp—»Zp. The inverse of this map gives
the desired splitting.

We now turn our attention to the connectivity of st. Since st and Sf are

homotopy équivalent, they hâve the same number of components and evidently
the action of G on them is the same. Let si be a connected component of si and
G the set of éléments of G which préserve si, so the permutation représentation
of G on the components of si is the action on the cosets of G in G, since G

permutes the components transitively. We state the following for a group of
p-rank &lt;5.

5.2. LEMMA. Let C.-Cx^C^be the chain complex of si. Then

(i) the chain complex of si is C. C. fg, obtained by applying the induction
functor to C.

(ii) Hr(si) s Hr(sï) fg as ZG-modules, for r 1, 2.

Proof. (i) si is (équivalent to) the induced G-poset Ug€G\G^g defined in an
obvious way as the disjoint union of pairwise incomparable copies of si indexed
by the cosets G\G. Evidently passing to the associated chain complex commutes
with the process of induction.

(ii) This is because ZG is projective, and hence flat as a ZG-module, so that
taking homology commutes with tensoring.

Proof of Theorem E. Since the inclusion map st &lt;-* Sf is a homotopy
équivalence [18] it suffices to prove the resuit for si. Projectivity of Hx(si) follows from
5.1 and 5.2 (ii). Since

and

both split, and this is preserved under induction, the corresponding séquences for
si split as well. It remains to show that H0(si)p is projective. Now HQ{si)p is the

permutation module Zp f %. We will show that the augmentation mapZp f g-»
splits with a projective kernel. In [18] Quillen showed that G is self-Zp
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normalizing and is a strongly p-embedded subgroup of G, which means that for
every x e G either G* Ci G G or Gx n G contains no éléments of order p. It
follows that G contains a Sylow p-subgroup of G, and it suffices to show (by the

theory of relative projectivity) that on restriction to G the augmentation map
splits with a projective kernel. By Mackey&apos;s theorem,

GxG

where the sum is taken over double cosets, and for each double coset apart from
G itself, \GX fl G\ is prime to p. Hence ail summands on the right are projective
apart from a single copy of Zp corresponding to the double coset G. On this
summand the map HP-^&gt;1LP is the identity, so the inverse gives a splitting for the

augmentation as a G-map, and the kernel is isomorphic to the sum of the

remaining summands, which is projective.
The only extra complication in Theorem E over Theorem 5.1 is that si might

not be connected. But then the stabilizer G of a component of si is self-

normalizing and strongly p-embedded, and as far as cohomology is concerned we

might just as well work with G as with G. This is shown in the next resuit.

5.3. PROPOSITION. The restriction map res:H&quot;(G, M)p-*Hn(G, M)p is an
isomorphism.

Proof. By [5] res is mono, and

cores.res 2 cx &apos; resgnc* &apos; coresgnc*
GxG

Every map on the right is zéro on the p-part of cohomology, except for the
summand with G x G G. This is because the other maps factor through
Ên(Gx n G, M), and this has trivial p-part because p\ \GX D G\ if x &lt;£ G. Hence

cores.res 1 and res is epi on the p-part of cohomology.
There is a group-theoretical interprétation of 5.1 and 5.2 which we now

mention. We return to the situation of 5.1 where G acts on a graph A without
inversions. The quotient graph AJG acquires the structure of a graph of groups
by choosing a connected lifting of A/G to A and assigning as vertex or edge

groups of AIG the stabilizers in G of the liftings of the vertices or edges to A. For
the application to si in case G has p-rank 2, we should replace si by a connected

component si if necessary, and G by G. In any case, si /G si/G. Let G dénote
the fundamental group of this graph of groups. There is a unique homomorphism
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G-+G which is an isomorphism on corresponding vertex or edge stabilizers, and
since A is connected it is surjective, by Bass-Serre theory [21]. The kernel N of
this homomorphism may be identified as the fondamental group Jti(A)f and it is

the free group on a fundamental set of cycles in A. Thus N/Nf is a free abelian

group, and it is acted upon by G by means of conjugation within G. Since N itself
acts trivially on N/Nf, this free abelian group becomes a ZG-module, and one
sees that N/Nf HX(A) as ZG-modules. Thus we hâve:

5.4. COROLLARY. With the hypothèses of 5.1, (N/N&apos;)p is a projective
ZPG-module.

This kind of situation was considered by Brown on p. 67 of [2]. There is a

Mayer-Vietoris séquence giving the equivariant cohomology of G on A, and also

a Mayer-Vietoris séquence for the cohomology of G [7]. Thèse both hâve the
form

&gt;Hn(G, M)-* ®Hn(Gvy M)-
veV eeE

in the case of G, or the same séquence with the G term replaced by Hg(A;M)
for equivariant cohomology. Hère V and E are the vertex and edge sets of A, and

we will always work with Farrell-Tate cohomology, denoted by H. As Brown
observed, it follows that for ZG-modules M, inf: Hn(G, M)p^&gt;Ên(G, M)p is

an isomorphism, since Hg(A; M)p =Hn(G, M)p and because we hâve isomorph-
isms on the vertex and edge groups. Because of the information about Ên(G, M)p
in Theorem A we also obtain:

5.5. THEOREM. Let M be a ZG-module and G the fundamental group ofthe
graph of groups A/G, with A as in 5.1. Then at the prime p the Mayer-Vietoris
séquence for the cohomology of G with coefficients in M is the splice of split short
exact séquences of the form

0-^Hn(G, Af)p-&gt; 0 Hn(Gv, M)p-&gt; © Hn(Gef M)p-*0
veV eeE

Proof The isomorphism Hn(G, M)p^Hn(Gf M)p and the formula of
Theorem A show that the middle term in the above séquence is isomorphic to the
direct sum of the two outer terms. By counting composition lengths it immed-
iately follows that the above is a short exact séquence. It splits because of the
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following much more gênerai theorem of Miyata:

THEOREM (Miyata [27]). Let R be a ring with a Noetherian subring Z
contained in the centre of R such that R is a finitely generated Z-module. Let
0-» ,4-_&gt;#-»£—»q \ye a short exact séquence of finitely generated R-modules. If
B=A®C then the séquence splits.

6. The connection with equivariant cohomology

The approach of equivariant cohomology is to obtain the cohomology of G
in ternis of the cohomology of the isotropy groups in an action of G on some
suitable space. In our situation of G acting on A, if AH is acyclic for ail
p-subgroups l^H^G then the p-part of the equivariant cohomology Hg{A, M)
is isomorphic to the p-part of H*(G, M) [3, p. 292], and there is a spectral

séquence whose El page is

r (O,)P^£S(A,M)P (6.1)
o€ArIG

[3, p. 173] where Ar is the set of simplices in dimension r. It would be interesting
to prove Theorem A using this spectral séquence, but I hâve not been able to do

so in gênerai. The case where I can do it is the one treated in Theorem E, when
A is a graph. Hère the splitting of the differential and the projective homology
immediately imply Theorem A&apos;, and hence Theorem A, but Theorem E also
demonstrates that the p -torsion part of the equivariant cohomology spectral

séquence terminâtes at the £2 page.

6.2. PROPOSITION. Let G and A be as in Theorem E. The p-torsion
equivariant cohomology spectral séquence (6.1) has E^-E^ and the E^ page is

zéro except on the fibre E®&apos;.

Proof The spectral séquence arises from the double complex
homZpG {0&gt;, homZp (C.(A)pf Mp), where SP is a ZPG projective resolution of Zp.
Since the reduced homology Èr(A)p is always projective, it splits off from C.(A)P
and the remaining differential on C.(A)P is then split (by Theorem E). It follows
that homZp (C.(A)P, Mp) also has projective homology and split differential so
that when we take homology along the columns of the double complex the
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projective homology groups contribute nothing, and what remains is the E{ page

0 H\Go,M)p-±* 0 H\GaiM)p
aeA\/G

H°(Ga,M)p-±* © Û°(GO,M)P

where each of the maps d is induced by the differential of C.(A) and is thus split
epi. Hence £2 is only non-zero on the fibre, and the spectral séquence stops
there.

I am in fact able to show that the conclusion of Proposition 6.2 holds without
restriction on the dimension of A, namely that the rows in the Ex page of the
above spectral séquence are ail split acyclic, except at the left hand-end where the

homology is H*(G, M)p. I hope to return to this in another paper.
It is also just conceivable that the following question might always hâve an

answer in the affirmative. This would immediately imply Theorems A and A&apos;.

6.3. Let A iP be the complex of p-subgroups of G and

be its chain complex. Is it true that for every r the reduced homology completed
at p, Hr(A)p is a projective Z^G-module, and the séquence

0^ ker (dr)p -&gt; (Cr)p- Im (dr)p -* 0

is split?

7. Cohomology of some spécifie groups

In this section we use Theorems A and D to give réduction formulae for the
cohomology of certain spécifie groups in terms of the cohomology of their
subgroups. As well as being valid for arbitrary ZG-modules M we give more
detailed results when M has the trivial action, and for this we consider the
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Poincaré séries of the cohomology ring with ¥p coefficients:

PG(/)=Zrndim//&quot;(G,Fp)

The results for the Poincaré séries when p 2 are summarised in the following
table

Group PG(t)

A4
1 +

(l-&apos;3)&lt;

1

(11+

same

t3

as I4

A5 same as A4

A6 same as A4

A7 same as A4

PSL2(q), q odd same as A4

t5

(1 - t3)(l -14)
1 + f5

PSL3(q), q odd

Mu

(1 H- /5)(1 -f f6)
1 /1 ^3\/i ^4\/i

The above groups will be taken in order through this section, where further
formulae will appear with détails of the calculations. From 7.4 onwards where the
formulae become more complicated we will omit the coefficient module M from
our notation; thus Hn(G)2 will mean Hn(G, Af)2. The formulae still work for
arbitrary modules M. Many of the above Poincaré séries would be regarded as

known, in particular the first two.
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The séries for A4 may be obtained from the fact that Hn(A4, F2) is isomorphic
under the restriction map to the fixed points Hn(V, F2)C3 where V is the Sylow
2-subgroup of A4 [5]. Now (Bn=oHn(V,¥2) is a polynomial ring with two
generators in degree 1, and the action of C3 is induced by that on Hl{V, F2),

which is the dual of the action of C3 on V. The Poincaré séries of the ring of
invariants may now be computed using Molien&apos;s Theorem [24].

When G D2m is a dihedral 2-group the Poincaré séries may be obtained from
the description of the kernels in a minimal projective resolution of F2 provided by
Butler and Shahzamanian [4]. From their description, the dimension of the
maximal semisimple quotient of the nth kernel is n +1, and this is

dim/f (D2«, F2). Hence

tn dim Hn (D2m, F2) 1 + 2t + 3t2 + 4t3 + • • ¦
2

We will treat the gênerai dihedral group in 7.3.

From time to time we will use the following elementary but rather powerful
observation.

7.1. LEMMA. (1) Suppose 1—»iV—&gt;G—*Q —&gt;1 is a short exact séquence of
groups and uQ SkKuK in A(Q) where the sum is taken over various subgroups

K^Q. Let K be the inverse image of K in G. Then uG 2XkUk in A(G), and

Hn(G, M)p ZXKHn(K, M)p.

(2) Suppose G Ax B and uA 2kHuH in A(A), uB HXKuK in A{B), for
subgroups H^A and K^B. Then uG IkHkKuHxK and Hn(G,M)p
IkHXKHn(H x K, M)p.

Proof The cohomology formulae follow from those for permutation modules
as explained in §2.

(1) We regard uQ 2XKuK as an équation of ZpG-modules via the homo-

morphism G -» Q.

(2) uG uA ® uB 2kHk

7.2. G 2*4,/? 2

We apply Theorem D with âf c€f the subgroups of 24 which are cyclic
(mod 2). The maximal members of * are A4 and three copies of D8. Every pair of
thèse intersects in the four group V which is normal in I4 so thèse are the only
subgroups which arise as intersections of maximal members. As explained in §2,
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the function / of Theorem D is only non-zero on thèse subgroups, and we hâve

f(A4) =/(D8) 1, f(V) -3. Theorem D becomes

Hn(24, M)2 \Hn{A4, M)2 + Hn(D8, M)2 - \Hn{Vf M)2

where V&lt;Z4. The Poincaré séries is now computed as

7.3. G D2rm where m is odd, p 2

The procédure is the same as for S4. Maximal members of ^:C2&apos;-im and Dr
(m copies). Thèse intersect only in the subgroup C2&apos;-k Therefore /(C2&apos;-im)

f(D2r) 1, /(CV1) — m. The indices of thèse subgroups in their normalizers are,
respectively, 2, 1 and 2m. Hence by Theorem D

Hn(Drm, M)2 Hn{D2ry M) + è[/T(CV-im, M)2 - HH(Qr*, M)]

7.4. G X5,P 2

We apply Theorem A. The quotient graph sâjG may be represented as

follows:

This means that there are two conjugacy classes of subgroups of type QxQ,
and two of type Q. The normalizers of the corresponding subgroups are 24, D8,

Ds and Q x 23. For each conjugacy class of subgroups Q and QxQ there is at
most one orbit of edges QçQxQ, and the edge stabilizers are shown adjacent
to the edges. Reading from left to right, typical représentatives of the C2xC2
subgroups are ((12)(34), (13)(24)), ((12), (34)); and of the Q subgroups are
((12)(34)) and ((12)). AH of the Ds subgroups shown are the same. It follows by
Theorem A that

Hn(G)2 Hn(I4)2 + 2Hn(Dg) + Hn(C2 x I3)2 - 2Hn(Ds) - H&quot;^ x C2)

- Hn(24)2 -h H^Q x I3)2 - tf«(Q x Q)2.

We are now omitting the coefficient module M from our notation. This équation
holds for arbitrary coefficients M. Some simplification of the last two terms is
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possible using Theorem D. We know by Theorem D&apos; that
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So that by Lemma 7.1, MQxl3 wQxc2 + 2(Mc2xc3 ~ &quot;c2). Hence

Hn(G)2 Hn(I4)2 + H&quot;(C2 x Q) + |[/T(Q x C3)2 - JP

/T(Z4)2 + è[/f (Q x Q2 &quot;

By the Kùnneth formula, the F2-cohomology ring for QxC3 has the same
Poincaré séries as for Q, and so PG(t) P^XO-

7.5. G Z6,/? 2

To describe jtf/G is rather complicated, since there are 3 conjugacy classes of
Q subgroups, 5 classes of Q x Q, and 2 classes of Q x Q x Q, and indeed, this
is not the best approach. Up to conjugacy the maximal 2-local subgroups hâve the
form I4 x C2 where £4 permutes four of the letters, and NG(((l2), (34), (56))).
This latter group has the structure C2 x Qx Q^| Z3, since the three transpositions

shown are the only ones in the group they generate, and this set of three
éléments is preserved. We apply Theorem D with X {ail 2-local subgroups},
i.e. subgroups of Z4 x C2, Q x C2 x Q g S3, and their conjugates. Thèse are the
maximal éléments of X. A calculation shows that the possible intersections of
thèse hâve the form

1. 24xQ
2. QxQ
3. 2*3 permuting 3 of the letters
4. D8xQ with D8 permuting 4 letters
5. &lt;(12),(34),(56)&gt;

6. &lt;(12)(34),(13)(24),(56)&gt;
7. &lt;(12)&gt;

Intersections which hâve odd order hâve been omitted. Taking the rows and
columns to correspond to thèse subgroups in the above order, the matrix C
discussed in section 2 is

C

-1
0

4
1

3

1

_7

1

3

1

1

3

3

1

0
0
0
4

1

3

3

9

1

0
3

1

1 1-
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solving the équation C •/ (1,..., 1)&apos; gives /= (1 1-6-100 24)&apos;, and the

vector with entries f(K)/\NG(K):K\ is (1 1 -1 -1 0 0 1)&apos;. Therefore by
Theorem D,

Hn{Z6)2 Hn(I4 x Q)2 + /f (Q x Q

- /f (Z&gt;8 XQ- #&quot;(2:3)2 +

Note that in the last two terms, Q may be chosen to be a subgroup of 2&quot;3, and
since Hn(Z3)2 //&quot;(Q), the last two terms cancel. Some further simplification of
the remaining terms is possible, but we must take care to distinguish non-conjugate
subgroups which are abstractly isomorphic. Since ul4 uDh+2*(uA4-uC2XC2), by
Lemma 7.1 we obtain //&quot;(^ x Q)2 //&quot;(D8 x Q +1[//&quot;(&gt;14 x ^ - //&quot;(Q x
Q x Q)]&gt; and since uZ3 uCl + 2(uC3 - ux) we hâve

Substituting this into the formula for Hn(I6)2 gives

/T(26)2 Hn(D8 XQ) + è[/T044 x Q2 - /f (Q x Q x C2)

Q x Q x C2 ^ C3)2 - Hn(C2 x Q x Q]

In this formula, one of the groups QxQxQ is ((12), (34), (56)) while the
other is ((12)(34), (13)(24), (56)). Extending each of thèse groups by the 3-cycles

(135)(246) and (123), respectively, we obtain the groups denoted by Q x Q x
Ci % C3 and A4 x Q, which are abstractly isomorphic. The formula holds for
arbitrary coefficient modules M.

7.6. G A5, A6 or A7,p 2

When G~A5, a Sylow 2-subgroup P is a 77 set and so Hn(G,M)2
Hn(NG(P), M)2 by [S]. If G =^6 Then G PSL(2, 9), and this will be covered

by the discussion of the groups PSL(2, q). Now let G =A7. We apply Theorem
A. si/G is

A

A,

(A4 x Q) 3 Q (Q x Q x C3) (] Q

with vertex and edge stabilizers of si as shown.
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A copy of the group (Q x Q x C3) ^] Q is generated by the éléments

(12)(34), (13)(24), (567), (12)(56),

and représentatives of the two conjugacy classes of four-groups are Vi
&lt;(12)(34), (13)(24)&gt; and V2= &lt;(12)(34), (12)(56)&gt;. Hence /T(,47)2 /f (£4)2 +
Hn((A4x C3)(\C2)2- Hn(Ds)2.

We may reduce this further by applying the formula already obtained for 24,
and applying Theorem D to (A4 x C3) (\ Q, as follows. In Theorem D we take âf

to be ail subgroups of A4 x C3 and D8, and conjugates of thèse. Then âf 3 &lt;€, and

the maximal members of X are A4 x C3 and 9 copies of D8, any two of which
intersect in exactly Q x C2. Hence f(A4 x C3) =/(A0 1, /(Q xQ -9, and
the indices of thèse subgroups in thein normalizers are 2, 1 and 18 respectively.
By Theorem D,

Hn((A4 x C3) 3 Q)2 /T(D8)2 + \Hn(A4 x C3)2 - è/f (C2 x ty2.

We substitute this and the formula for I4 into the formula given above for A7 to
obtain

H&quot;(A7)2 \H&quot;(A4)2 + \H\A, X Q)2 + H&quot;(D8) - hH&quot;{Vx) - |/T(V2).

The first group A4 hère normalizes the second four-group V2, and A4 x C3 acts as

A4 on {1,2,3,4} and as C3 on {5, 6, 7}. Since A4 and /14 x C3 hâve the same

cohomology with F2 coefficients (by the Kûnneth formula), the Poincaré séries is

PAl{t) PAf(t) + PoJit) ~ PC2xcX0 PaXO-

7.7. G PSL(2, q), q odd, p 2.

The structure of si/G is as follows:

±3(mod8)

(see [9]). In thèse diagrams r is the integer such that D2r is the centralizer of an
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involution.

Hn(A4)2 + H%D2r)2-H&quot;(C2xC2)2 if 9 ±

Hn(G)2 Hn(S4)2 + H&quot;(S4)2 + H&quot;(£&gt;2r)2 - Hn(Ds) - Hn(D8) if q - ± 1 (mod 8).

We repeat groups according to the différent conjugacy classes.

7.8. G PSL(3, q), q odd, p 2

The structure of sî/G is

GL(2,q)

(see [1]). Hence

Hn(PSL(3, q))2

H&quot;(GL(2, q))2 + H&quot;(Cq^ X C,_, ^ 2:3)2 - //&quot;(C,_, x C,

We may reduce the middle term on the right using Theorem B. With
G (C,_! x C,_x) ^] 2&quot;3, take â? to consist of ail subgroups of (Q_, x C,_]) (| C3,

(C,_! x C,_i) g Q and their conjugates. Thèse are the maximal éléments of âf
and any two of them intersect in C,_i x C,.t. Hence/((C,., xCrl)^C3)=l

,_x x C,_0 ^ Q), /(C,_, x &lt;:,_,) -3.

)2x C,_t) ^ ^3)2 èH&quot;((C,_. x C,_,) d C3)2

-, x C,_,) d C2)2 - i//&quot;(C,_, x

Therefore

Hn(PSL(3, q))2

Hn(GL(2, q))2 + è[/f&quot;(C,_, x C,_, ^ C3)2 - /f»(C,_, x

We can use this to détermine the Poincaré séries for PSL(3, q) over F2. By work
of Quillen,
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(see [19] or [10]). The cohomology ring of Cq-X x Cq-X is a polynomial ring in two
variables, and that of Cq-Xx Cq-x(\C3 is the fixed points under the action of C3

on this ring [5]. Cq_x x Cq_x (\ C3 thus has the same Poincaré séries as A4&gt; and

1 +13 1 f 1 +13 1

f5

7.9. Mn /tas the same 2-local structure as F5L(3, 3)
The graph si/G for Mu is

GL(2, 3)

7.10. G=JU p 2

Because Sylow 2-subgroups are abelian the 2-cohomology with trivial
coefficients may be computed using Swan&apos;s theorem, the détails being given in
Chapman [6]. Chapman gives the expression for PG(t)&gt; anc* this may be shown to
be correct using Molien&apos;s Theorem. The normalizer of a Sylow 2-subgroup has

the structure N (Q x C2 x Q) (\ (Q (| C3), and for trivial coefficients

Hn(G, M)2 Hn(N, M)2. This resuit should be modified for arbitrary coefficient
modules M, as we shall see.

By [15], si/G has the structure

with vertex and edge stabilizers as shown. Therefore by Theorem A, and after
some cancellation,

Hn(G)2 Hn(N)2 + Hn{C2 x A5)2 - Hn(C2 x A4)2.
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Some simplification of the last two ternis is possible. By Theorem D,

and so by Lemma 6.1, uCixa, &quot;c2xa4 + 2(«c2xc, - uC2xc3)- Hence

Hn(G)2 Hn(N)2 + |(/T(C2 x C5)2 - /T(Q x C3)2).

Some réduction of Hn(N)2 is also possible with Theorem D, but we do not give
this.

8. Euler characteristic formulée

It was proved by K. S. Brown (see [2]) that the Euler characteristic of M
satisfies

This was significant in his investigation of the Euler characteristic of G, and was

reproved by Quillen [18] and Gluck [11]. In this section we show that our own
Theorem A&apos; contains this congruence, and prove some other formulae of a

similar nature. We work in the generality of a group acting on a simplicial
complex so that condition (a) of Theorem A is satisfied, and this includes the

cases se and ST. The condition is: (a) for ail H e &lt;€ with p\\H\, x(AH) 1-

8.1. THEOREM. Let G act on the simplicial complex A so that (a) holds.

Then

Proof. Take ranks of both sides in Theorem A&apos;. We obtain

1- 2 (-l)d&quot;n(&lt;J)|G:Ga|=x(^)(mod|GU
aeA/G

the congruence arising because every finite rank projective ZpG -module has rank
divisible by \G\P.

In the next resuit we impose the further condition that ail isotropy groups
hâve order divisible by p. This is satisfied when A — si or if, since if
a Eq &lt;• - - &lt;En is a simplex then Eq is a non-identity p-group with Eq c Ga.
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8.2. PROPOSITION. Let G act on the simplicial complex A so that (a) holds
and for ail a e A, p\\GQ\.

(i) Let AIG dénote the quotient complex of A by the action of G. Then

(ii) \G\P IU4/G \Ga\&lt;p-»&quot;m° and \G(G&apos;\P

Proof. (i) Recall from [5] that H°(G, Z) is cyclic of order \G\. Substituting
this into Theorem A we obtain

oeAIG

We may take the négative terms over to the left hand side and take the rank of
both sides as /?-groups to obtain

dlma1= S (-l)dl
oeA/G

after returning the négative terms to the right hand side. This is now precisely

(ii) Instead of taking the rank of both sides in (i), take the order of both sides

to obtain the first formula. The second formula follows in a similar way using the

(co)homology group H~2{G, Z) Hx{Gy Z) G/G&apos;. Evidently a formula of the

type in 8.2 (ii) will hold for the order of any cohomology group, for example the
Schur multiplier.

8.3. COROLLARY. // G has p-rank 2 then se/G is a tree.

Proof. si/G is a connected graph with Euler characteristic 1.

The last resuit is a statement about the p-local structure of groups of p-rank 2.

For example, it implies that in such a group, if x and y are commuting éléments of
order p with (xy y) Cpx Cp and (x) is conjugate to (y) in G, then {x) is

conjugate to (y) in NG((x, y)). This is because in si there are edges

(jc) c (*,)&gt;) and (y c (x, y) whose end points fuse in si /G. Because si/G is a

tree, there is only one edge between thèse two vertices of sî/Gf so the above two
edges of si are conjugate. This means there is an élément g e G with (x)8 (y)
and (x, y)8 (x,y). It seems, however, that the overall /?-local information
conveyed by 8.3 is of a more subtle nature than this. It is interesting also that
Corollary 8.3 retains some force even when G is a/?-group, in contrast to many of
the results in this paper.
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The approach adopted in 8.2 can also be applied to Theorem D to yield a

number of similar results. We use the notation of Theorem D.

8.4. PROPOSITION. Let % be any class of subgroups of G which is closed

under conjugation and taking subgroups, and which contains the class &lt;€ of
subgroups which are cyclic mod p.

(i) 2 /(#) 1; 2 fW - 1 (mod \G\P)
HeX
P\\H\

y=1 y£*\G:H\
L&apos; £*\G:H\

P\\H\

P\\H\

Proof. (i) The équation is really included for completeness, because it is one
of the defining équations for /. We may also verify it by taking ranks of both sides

of the équation in Theorem D&apos;. This is how we prove the second formula, except
that on omitting the terms for which p \ \H\ we obtain a congruence mod \G\P&gt;

since for such H, rank uH is divisible by \G\P.

(ii) The formula in Theorem D&apos; is équivalent to an isomorphism between two
direct sums of modules. Taking fixed points and then ranks of both sides gives the
first équation. For the second we use the expression in Theorem D for
Ê°{G, T)p C\G\p and take the rank of each side as a p-group.

(iii) Follows by taking the order of both sides of the équation for H°(G, Z)p.
A similar formula holds for the order of any other cohomology group.

Remark. The sums in 8.4 are often more easily evaluated if taken over a set

âf* of représentatives of conjugacy classes of subgroups in âf, and factors

\G:NG(H)\ are introduced. Thèse identities hâve a use as a check on the

accuracy of one&apos;s calculation of the values of the function /, computed, for
example, as described in §2.
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