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A local method in group cohomology

P. J. WEBB

1. Introduction

Let G be a finite group. The classical approach to the local control of the
cohomology of G is described in the book of Cartan and Eilenberg [S] and relies
on the fact that for any prime p the Sylow p-subgroup of H"(G, M) is isomorphic
to the subgroup of “stable elements” of H"(P, M) under the action of G, where
P is a Sylow p-subgroup of G. In some situations the computation of the stable
elements has been reduced to a local problem, as in for example [14] and [16].
When this is done it is usual to make restrictions that the action of G on M is
trivial, and either that G has a special structure or that the prime p is sufficiently
large. However, in the most general situation it seems hard to make this method
work, the problem being to compute the conjugation action of G on H"(P, M).
We present a completely different approach to the local calculation of cohomol-
ogy which avoids these restrictions. Our method has some connections with
equivariant cohomology in that we consider a group acting on a simplicial
complex and we obtain the cohomology of G in terms of the cohomology of the
isotropy groups. But our approach is mostly algebraic, and we seem to obtain
sharper results than are usually obtained with equivariant cohomology.

Our first theorem concerns the abstract situation of a finite group G acting on
a simplicial complex A, and we later go on to give the applications to particular
cases. We assume G acts simplicially, and denote the isotropy group {ge
G | og = o} by G,. Assume further that G, fixes the vertices of o pointwise. This
can always be achieved by passing to a barycentric subdivision if necessary.
Throughout this paper we will let € denote the collection of subgroups H of G
which have a normal p-subgroup with a cyclic p’ quotient, that is

¢ ={H<G|H/O,(H) is cyclic}.
The subgroups in € are sometimes called “cyclic mod p.”

THEOREM A. Let G act simplicially on the simplicial complex A, suppose
for each simplex o the isotropy group G, fixes o pointwise, and let p be a fixed
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136 P. J. WEBB

prime. Assume that one of the following conditions holds:
(a) for each H e € with O,(H)+#1 the fixed point complex A" has Euler
characteristic (A7) =1
or (b) for each cyclic subgroup H of order p, A" is acyclic. Then for any
ZG-module M and integer n,

A"(G, M), = > (-1)"@A"(G,, M),.

oeA/G

In the statement of Theorem A we use the suffix p to indicate the Sylow
p-subgroup of the corresponding cohomology group. The sum on the right is
taken over a set of representatives for the orbits of G on A and the alternating
sum is to be understood in the Grothendieck group of finite abelian groups with
relations given by direct sum decompositions. It can also be interpreted by
transferring the groups with negative sign over to the left hand side with a
corresponding positive coefficient. There is then an isomorphism between the
direct sums of the groups on either side. It is plain that this is sufficient to
determine the isomorphism type of A"(G, M ), provided M is a finitely generated
ZG-module, since then all the cohomology groups are finite. In fact condition (b)
implies a condition (a), as we shall see, but it is usually easier to verify, for
example by showing that A” is contractible if |H| = p. The conclusion of Theorem
A does not hold in this generality for the ordinary H® and H,; instead we must
take Tate cohomology, which of course includes the usual homology groups in
dimensions = — 2.

In the applications of Theorem A the simplicial complex A always arises from
a partially ordered set in the following standard fashion: if S is a poset, the
associated simplicial complex has as its n-simplices the chains so<---<s, of
length n + 1 of elements of S. The faces of such an n-simplex are the subchains of
shorter length. If G acts on S there is an induced action on the simplicial
complex, and it is clear that the isotropy group G, will stabilize all the vertices of
o, since it must fix all elements of S in the chain 0. We will use the symbols & to
denote the poset of all non-identity elementary abelian p-subgroups of G and &
to denote the poset of non-identity p-subgroups of G. We regard these also as
simplicial complexes by the above construction, and G acts on all of them by
means of conjugating the subgroups. Our results apply to these simplicial
complexes and also to the Tits building of a finite Chevalley group. This can be
regarded as the simplicial complex obtained from the poset of proper parabolic
subgroups of G. For each of these complexes the condition that A” is contractible
and hence acyclic when |H|=p has been verified by Quillen. We therefore
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obtain:

THEOREM B. The cohomology formula in Theorem A is a valid when
A=, or A is the Tits building of a finite Chevalley group in defining
characteristic p.

In the case of a Tits building, if we choose the simplices to be the proper
parabolic subgroups themselves, rather than chains of subgroups, the formula
adopts the following form.

COROLLARY C. Let G be a finite Chevalley group in defining characteristic
p and let B be a fixed Borel subgroup. Then

A7(G, M), = 3, (=1)*™PHa"(P, N),.
PoB
The sum here is taken over all parabolic subgroups containing B. By the rank of a
parabolic subgroup P we mean that integermsothat P=PF, <P, <--- <P, <P,
is a chain of proper parabolics of maximum length. Maximal parabolic subgroups
thus have rank 0.

In many cases evaluation of the formula for cohomology in Theorem A can be
quite straightforward. If A arises from a poset of subgroups of G as in Theorem B
then the simplices of dimension zero are just the subgroups themselves, and the
stabilizers G, are the normalizers of the subgroups. In general, if o is a simplex
H,<::- <H, where the H; are subgroups of G, then G,=Ngs(H,)N---N
Ns(H,). Observe that for each of the posets & and &, the maximal p-local
subgroups always appear amongst the isotropy groups G,, because for example
with &, a p-local subgroup always normalizes some elementary abelian p-
subgroup. We can say in general that the p-part of the cohomology of G is
determined by the cohomology of certain p-local subgroups, and their intersec-
tions. However, if G has a normal p-subgroup then G itself will appear on the
right hand side of the cohomology formula with these three posets, and Theorem
B is of less use. In this situation we can apply a different reduction theorem which
emerges as a step in the proof of Theorem A.

THEOREM D. Let & be a class of subgroups of G which is closed under
taking conjugates and forming subgroups, and with Z > €. Then

H'(G, M), = 3 L b, ),
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for any integer n and ZG-module M, where f:Z — Z is the function defined by the
equations

Y f(K)Y=1 forevery Je.

J=<Ke¥X

This theorem works both for Tate and ordinary cohomology and homology (the
only difference between the two being the groups H°, H, and the corresponding
Tate groups H° and H7Y).

There is another way to view the function f; if we let & be the poset & U {oo}
where o is an artificial maximal element, then f(H) = —u(H, ©), where u is the
Maobius function. It is often an elementary but time-consuming matter to compute
the values of f from the defining equations in Theorem D. Evidently if H is a
maximal member of & then f(H) =1, and by working down through chains of
subgroups from these maximal members we may build up further values of f.
Because the Mobius function is zero except on intersections of maximal elements,
these intersections are the only subgroups we need consider. At the end of §2 we
present a formalized version of the inductive computation procedure just hinted
at, and this may be suitable for machine computation.

We prove Theorem A by obtaining an isomorphism between direct sums of
certain permutation modules. Let Z, denote the p-adic integers, and if H is a
subgroup of G, write uy for the corresponding permutation module Z, ®z 1 Z,G
over Z,G.

THEOREM A’. ug =Y cac (—1)*™Pug, (modulo projectives).

Here the alternating sum is taken in the Green ring of finitely generated
Z,G-modules, but it may also be treated in a similar manner to the sum in
Theorem A. The congruence modulo projectives means that we may achieve
equality by adding a suitable finitely generated projective module to each side.
There is a theorem analogous to Theorem D concerning permutation modules.

THEOREM D’. With ¥ and f defined as in Theorem D,

v S, uy L)

Uy———=.
He¥ lik?:fﬂ

The above equation holds in the Green ring defined over Q of Z,G-modules.
The formula in Theorem A reminds one of an Euler characteristic, and in
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particular the theorem of Brown (as improved by Quillen) [3, p. 267] that

x(G)= 2, (-1)"°%(G,) (modZ,)

oedA/G

valid for certain groups with ved (G) <, where o is the complex of elementary
abelian p-subgroups. In §85 and 6 we investigate the connection between our
approach and the method which Brown used, namely equivariant cohomology. It
would be satisfying to prove Theorem A using the spectral sequence of
equivariant cohomology, but I have been unable to do this in general without
assuming some further properties of the simplicial complex on which G acts.
Under slightly stronger conditions on A than those in Theorem A we prove that
A has these further properties, provided A is a graph. This happens for A =
when G has p-rank 2, that is, the largest elementary abelian p-subgroup of G is
C, X C,. The properties we require are summarised in the next result, and they
immediately give a proof of Theorem A in this case.

THEOREM E. Let G be a group of p-rank 2, and let A= s or &. Then for
each r the p-adic completion H,(A), is a projective Z,G-module, where H, denotes

reduced homology. If C,-%> C, is the chain complex of s then both of the short
exact sequences

0— Hl(&g)p —* (Cl)p — Im (d)p —0
and

0—> Im (), = (Co), — Ho(st), =0
are split as sequences of Z,G-modules.

In 5.1 as a stage in the proof of Theorem E we state a similar result valid for
arbitrary connected graphs A under a certain contractibility hypothesis. This
result seems to be known, but it is perhaps of some combinatorial interest since
group actions on graphs of the required kind do arise in practice, an important
example being a finite Chevalley group acting on a Tits building when this is a
graph. In this case the fact that the first homology group is projective at the prime
p is well-known, because it is the Steinberg module. Theorem 5.1 can be regarded
as an extension of this fact for arbitrary groups. A straightforward consequence is
that the rank of H,(A) is divisible by the order of a Sylow p-subgroup of G.

In §7 we calculate the isotropy groups in the formula in Theorem A for
various specific cases, and in several of these the information given about the
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cohomology is new. We conclude in §8 with some formulae which have the nature
of an Euler characteristic and involve numbers such as the group order, or convey
certain local information about G.

This work has benefited from the interest shown by many people over a long
period, and I would like to thank them all. In particular I thank K. S. Brown and
J. Thévenaz.

2. Reduction to local subgroups and the proof of Theorem D

The proofs we shall give of Theorems A and D have rather little to do with
cohomology, and rely on establishing Theorems A’ and D', which are results in
representation theory. We first make some remarks about the Grothendieck
groups in which the equations in these theorems are supposed to hold. To handle
the equations between permutation modules we work in the representation ring
of Z,G-modules. This is the vector space A(G) over the rational numbers with
the set of isomorphism classes of finitely generated indecomposable Z,G-modules
as a basis, allowing both torsion and torsion free modules. f M =M, D --- D M,
is any finitely generated Z,G-module where the M; are indecomposable, we
associate to M the corresponding element M, + - - - + M, in A(G). We will fail to
distinguish in our notation between a module and its isomorphism class. Because
of the Krull-Schmidt theorem (see [26]) the choice of the element M, + - - - + M,
representing M is uniquely determined. There is a product in A(G) defined on
basis elements by M - N =M ®; N, and the identity element is Z,. Our aim is to
obtain an alternative expression for Z,, and we do this using Conlon’s induction
theorem and a formula for idempotents in A(G) which arise from the Burnside
algebra. The expressions involving sums of cohomology groups on the right hand
sides of the equations in Theorems A and D hold inside the Grothendieck group
of finite abelian p-groups with respect to direct sum decompositions, tensored up
to Q. This is a subspace of A(1), and it was the observation that H"(G, )
preserves finite direct sums and hence induces a homomorphism

H™(G, ):A(G)—A(1)

which provided a starting point for this research. A similar observation was made
by Roggenkamp and Scott [20].

Continuing with the notation for permutation modules uy =27, ®z 4 2,G
used in the Introduction, we indicate how Theorems A and D may be deduced
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from A’ and D’. It depends on the isomorphisms

Extzpc (uH, Mp) = Ext%pa (Zp ®ZPH Zp G, Mp) = EXt%pH (Zp, Mp)
= Extly; (Z, M) ®, Z, = H*(H, M),

The penultimate 1somorphism where we take the completion at p outside the Ext
term is valid because Z is finitely presented as a ZH-module, and completion at p
is an exact functor [12, p. 233]. If we thus apply Ext7 c ( , M,) to both sides of
Theorem D' we immediately obtain Theorem D, at least when n = 1. For the zero
cohomology and homology groups the formula follows in the same way using the
functors Homz  ( , M,) and ®zcM,. We may deduce the result for Tate
groups A"(G, M) when n <0 by applying dimension shifting, as in the formula
H"(G, M) = H"**(G, Q°(M)), where Q is the Heller operator (see [26]). Thus
for n <0 we take s = —n +1 and the desired formula for H"*(G, M) is identical
with the corresponding formula for H'(G, "*!(M)). We should note in passing
that © commutes up to projective summands (on which H' vanishes) with
restricting M to H. Theorem A follows similarly from Theorem A’, except that
here we start off with a congruence modulo projectives. We obtain an equality in
cohomology because the Ext groups which have a projective module in the first
place are all zero. The dimension shifting argument works again to get the
negative Tate groups, but note that Theorem A does not hold in general for H°
and H,.

In the remainder of this section we give a proof of Theorem D' and discuss its
uses. We introduce the Burnside algebra, B(G), which Burnside considered in his
book. This is the QQ-vector space with the set of equivalence classes of transitive
G-sets as a basis. A transitive G-set is a set of cosets H\G, and H\G is equivalent
to K\G if and only if H and K are conjugate subgroups of G. The product on
B(G) is given on the basis elements by taking the direct product of the
corresponding G-sets and expressing it as a disjoint union of transitive G-sets.
This determines a linear combination of the basis elements according to the
multiplicities with which they occur in the disjoint union, and this is defined to be
the product. We will use the same symbol u, for the G-set H\G that we
previously used for the corresponding permutation module Z,(H\G) =7, ®z 4
Z,G, even though it may happen that uy = ux in A(G) but uy # ug in B(G) for
different subgroups H and K [Scott, unpublished]. There is, however, a
homomorphism B(G)— A(G) sending uy as H\G to uy as the permutation
module Z,(H\G). B(G) is a semisimple algebra [22], and for each subgroup
H <G there is an idempotent ey lying in the span of {u, | K<H)}. These
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idempotents are given by the following formula:
2.1. THEOREM (Gluck [11], Yoshida [25]). In B(G),

1
ey =r—— K, H): K|l -u

where p is the Mobius function on the lattice of subgroups of G with defining
property

> u(K,H)=08,y for all subgroups H, J of G

J<K=<H

(Kronecker delta).

The ey form a complete set of primitive idempotents in B(G), and we have
Ug = 1= E €y
H

the sum taken over all conjugacy classes of subgroups H. Applying the
homomorphism from B(G) to A(G) we obtain an identical formula there. In
A(G) we may perform some simplification, because many of the e are zero.

As in §1 we define

€ ={H<G|H/O,(H) is cyclic}
and call the subgroups in €, ‘“‘cyclic mod p”’, If 2 is any class of subgroups of G
closed under conjugation, let Z* denote a set of representatives for the conjugacy

classes. Note that € is itself closed under taking subgroups (and under
conjugation).

2.2. THEOREM (Conlon [8]). Under the canonical homomorphism B(G)—
A(G) the idempotent ey, is mapped to zero if and only if H ¢ €.

This allows us to throw away terms in the expression ug = Y5 e, and we obtain

2.3. COROLLARY. Suppose Z is a class of subgroups of G closed under
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conjugation and with & o €. Then in A(G),

Ug = 2 €y.

HeX*

We may evidently substitute the formula for e given in 2.1 into the expression in

2.3 to obtain our identity between the uy in A(G). By doing this and rearranging
the double sum we obtain Theorem D’.

Proof of Theorem D'

Ug = 2 ey = Z . Z ,u(K,H)-IK|-uK

HeZ* HeX* ING(H)| K<H
1 1
- ’ K)H K U
ngeg"G:NG(HN |Ng(H)| u( ) K uk

1 1 /
=11, > u(K,H)|K|uK=,—G—IzuK-|K1-( S u(K, H)).
K<He¥ KeXx K<He¥*

We now define f(K) = Y x<pgex u(K, H). Then for any fixed J € Z,

Z f(K)= Z u(K, H) = 2 O =1,

J<KeZ J<K=He¥% J<sHeX

and it is apparent that these equations suffice to determine the values of f
completely. This proves Theorem D’.

Remark. If H and K are conjugate subgroups of G then uy =ug. Thus uy

appears |G : Ng(H)| times in the sum in Theorem D’, and hence we may rewrite
it as

_ f(H)
4o = 2 Un TN D) ]

A similar modification to Theorem D is possible.

The computation of values of the function f is a rather mechanical process and
can profitably be done with computer assistance. The author has found the
following scheme to be quite economical. For each pair of subgroups J, K in &,
define C,x to be the number of conjugates of K which contain J. This number
does not depend on the choice of J or K within their conjugacy classes. Then for a
fixed J € & the defining equation

> f(K)=1

J=<Ke¥
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becomes

2 f(K)CJK = 1.

J<KeX*

If we define the matrix C = (C)x); kee+ and the column vector f = (f(K))kex-,
the last equation is

C-f=

The problem is now to compute the matrix C, and this is usually best done by
noting that

_|G:No(K)|

k=G NQ))

4
: CJK

where C,x is the number of conjugates of J contained in K. This latter equation
may be verified by considering the bipartite graph whose vertices are the
conjugates of J and the conjugates of K, and J* is joined to K” if and only if
J* € K”. The number of edges in the graph may be computed in two ways as
Cix |G :Ng(J)| and Cjx |G : No(K)|. Finally, the solution of the matrix equation is
elementary, since by placing the elements of £* in non-decreasing order, C is a
triangular matrix.

We give an example of the above calculation when G =2, p=2and = §.
Representatives of the conjugacy classes of € are A, Dg, V=
((12)(34), (13)(24)), ((12), (34)), G4, G5, ((12)), ((12)(34)) and with rows and
columns corresponding to these subgroups in the given order we have

=1 —

1

0 1

1 3 1

0101
C“01001

1 000 01

0101001

1 310100 1_
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The upper triangle is zero. Solving the equation C-f=(1,...,1) gives
f=@1,1,-3,0,0,0,0,0), so that the vector with entries f(K)/|Ng(K):K]| is
1.1,-1,0,0,0,0,0). The statement of Theorem B’ is

= 1 1
u24 bl zuA4 +uDs—' Zuv.

Passing to cohomology we obtain

H"(Z,, M), =3H"(A4, M), + H"(Dy, M), — H"(V, M),.

Some simplifications of the above procedure are possible. If we are only
interested in cohomology it is a waste of time to compute the uy where pt|H|,
since these are projective Z,G-modules and have trivial cohomology. Thus we
might as well omit such subgroups from the matrix C. Secondly, one sees that
f(K) =0 except when K is expressible as an intersection of maximal members of
Z. The shortest way to establish this is to interpret f as a Mobius function, as was
indicated in §1. We let & be the poset U {}, where = is greater than every
member of . The Mobius function on & is then defined by

> u(K,©)=0 forevery J#

J=sK=x

p(x, ®) =1

and evidently these equations are satisfied if we take u(K, ©)= —f(K). This
Mobius function should not be confused with the Mobius function on the lattice
of subgroups of G. It was proved by Philip Hall [13] that u(K, ) =0 unless K is
an intersection of maximal elements, hence our assertion. With this observation
we could have said immediately that A,, Dy and V are the only subgroups which
make a non-zero contribution in the calculation for X,. |
We wish to conclude this section by describing another way in which formulae
for ug can be obtained. If G is not itself cyclic mod p (i.e. G/O,(G) is not cyclic)
then ez =0 in A(G) by Conlon’s Theorem 2.2. In Gluck’s and Yoshida’s

expression for e (Theorem 2.1) the coefficient of ug is u(G, G) =1, so we may
write

c=—|—é~l S K| (K, G) - ux.

K<G

u
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We obtain

2.4. PROPOSITION. H™"(G, M), = -1/|G| Ex<¢ |K| u(K, G)H"(K, M), for
every prime p such that G/O,(G) is non-cyclic. Observe that we also obtain this
. result from Theorem D on taking & = all proper subgroups of G.

In [13], Hall used the notation u(K) for our Mobius function u(K, G), and he
computed values of u(K) for some particular groups. Thus, for example, he gives
the following Mobius inversion formula for GL(3, 2) = G¢s:

®(Gies) = 0(Gies) — 70(024) — T70(034) — 80(M;3) +210(Op)
+280(Ds) +560(Cs) — 840(C,).

Hall’s notation for the subgroups of GL(3, 2) is O, for the octahedral group of
order 24, M, ; for the non-abelian group of order 21, Oy for dihedral of order 8,
D for dihedral of order 6, and GC;, C, for cyclic groups. We have written
—140(0,,) as —70(0z,) — 70(0,,4) because there are two conjugacy classes of
these subgroups. Hall did not need to distinguish between the conjugacy classes
in this way. To explain the rest of his notation it is sufficient for our purposes to
say that there are (for example) 8 maximal subgroups of type M, 5, for each of
which u(M; ;)= —1, so we obtain a term —80(M, ) in the above expression.
Here ¢ and o are functions defined on the subgroups of G, satisfying
o(H) =Y x<n ¢(K). We immediately read off the following formula in
cohomolegy:

H™(G, M), = 1k[7.24H" (Oss, M), + 7.24H"(Ora, M), — 21.8H"(O5, M),
—28.6H"(Dg, M), + 84.2H"(C,, M),]
= H"(0%, M), + H* (O, M), — H"(Og, M), — H"(Dg, M),
+ H"(C,, M),.

Since we have decided to compute the 2-parts of cohomology groups we have
omitted the terms with subgroups of odd order. It is well known, and easy to
prove, that H"(Ds, M), = H"(C,, M),, so the last two terms above cancel, and
we obtain

H™(G, M), = H"(Oy4, M), + H"(O24, M), — H" (O3, M),
= %Hn(A‘h M)Z + %Hn(AM M)2 + HH(OS; M)Z - %H”(V) M)2
- %H"(V, M),.

The second line is obtained by inserting the formula previously obtained for O,,.
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Here V = C, X G, and repeated terms with the same subgroup indicate different
conjugacy classes. Using a formula such as this one may readily compute the
Poincaré series of the cohomology ring ®;,_, H*(G, E).

3. Proof of Theorems A and A’

As explained in §2, Theorem A follows from Theorem A’ by applying
Ext7 c( , M,) to both sides of the congruence of Theorem A'. Since Ext is zero
on projective modules, the congruence becomes an equality between cohomology
groups. We therefore prove Theorem A’.

The idea behind the proof of Theorem A’ is as follows. For each term ug,
which appears in the congruence we have to verify, we obtain by Theorem D’ an
expression in terms of the uy where H is cyclic mod p and is a subgroup of G
We will substitute these expressions into both sides of the congruence in Theorem
A’ and after some rearrangement of the terms we will show that the two sides are
equal. With this end in view we use the notation €(G,) for those subgroups of G,
which are cyclic mod p, so that €(G) = €. Evidently €(G,) = € N {all subgroups
of G,}. For each subgroup G, there will be a function f defined on €(G,). We
now denote this function by f,, retaining the symbol f for the function on €. For
each subgroup G, Theorem D’ gives an identity

fo(H) G
Z,= 21 G
? Hefsz(ca) |G,:H| 7 T

in A(G,). We use the up arrow to denote induction. Inducing this up to G we
obtain

fo(H)
He«z(co |G,:H |

uGa -

in A(G). The right hand side of the equation in Theorem A’ is

S (1) = s (- 1)dxm(a)
oeA/IG ’ O€eA ‘G Gl

-3 (=1)dm@ SL(H)
oeA IG Gl He‘@(G)lG HI

(=1)*™%, (H)

= u
Hee,y  |G:H| "
o€eA
-1 dim(o) E H )

oeA
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By Theorem D', the left hand side of the equation in Theorem A’ is

UH
Uy = H).
" He%(G) lG :Hlf( )

We will show that provided O,(H)# 1 and H € €(G),

f(H) = GEH (—1)*™Of (H).

This will suffice to prove Theorem A’, since the two sides of the congruence in
the theorem differ by at most a linear combination of the uy,, H € €(G), where
O,(H) = 1. Such a subgroup H has order prime to p, so uy is projective.

To verify the last equation above we check that the right hand side satisfies
the defining property of f, namely

>  f(K)=1 forall He%(G)

H<Ke%(G)

provided that O,(H)# 1. We wish to use this to define f(H) inductively when
O,(H)#1 and when f(K) has already been defined if H <K € €(G). This is
valid, since in this situation O,(K)+# 1. Note that the condition G, 2 H in the
equation to be verified is equivalent to saying o is fixed by H, i.e. 0 € A”. We
calculate

2 CDOfEK)= 3 (D Y f(K)= X (-)
H=<Ke%€(G)oeAX oeAH H<K=G, oeAf
’ Ke%4(G)

by the defining property of f,. This last quantity is the Euler characteristic x(A"),
and if we assume condition (a) in the statement of Theorem A then it is 1 if
O,(H)#1, H € €(G). This completes the proof of Theorems A and A’ on the
assumption that (a) holds.

We finish with the observation that (b) implies (a). If H € € with O,(H)+#1
then H has a subnormal series H; <H, <JH where H, has order p, H, is a
p-group and H/H, is cyclic. Now A" is acyclic by hypothesis, and hence
Z/pZ-acyclic, thus by a theorem of Smith ([23], or VII, 10.5(b) in [3])
A" = (A")H: is also Z/pZ-acyclic. Therefore A™: is Q-acyclic and since A is the
fixed points on A" under the action of the cyclic group H/H,, x(A¥) = x(A™) =1
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by the Lefshetz trace formula. This completes the proof. The argument just
indicated can also be found in Proposition 2 of [17].

It is interesting to compare the various rival conditions on A under which
results like Theorem A are proved. A frequent condition in theorems proved by
equivarient cohomology is that A" is acyclic for all p-subgroups H of G.
Evidently this implies condition (b), and in general it is a more stringent
condition, as explained in [17]. In order to prove that Theorem A holds in the
presence of (b), the condition (a) which we worked with in the actual proof has
to be suitably weak. For example, if we replaced (a) by “A* is Z/pZ-acyclic for
all H € €” then we would not be able to deduce (a) from (b) (see [17]).

4. Proof of Theorem B and Corollary C

Quillen showed in [18] that if A =&, &, or the Tits building of a Chevalley
group and H < G is a p-group then A" is contractible, from which condition (b)
of Theorem A follows. Clearly, for any simplicial complex arising from a poset of
subgroups, G, will always fix o pointwise since the vertices of o are subgroups
ordered by inclusion. Hence Theorem A applies to &, &, and buildings.

In fact a slight extension of Quillen’s argument shows that when A=« or &
and H € ¥ with O,(H) # 1 then A" is contractible, as we now demonstrate in the
case A=g. Write H,=0,(H) and put C=Q({(H,)), the largest central
elementary abelian subgroup of H,. Then 1# C char H, {H, so C<lH. Let
A € 9" be any non-trivial elementary abelian p-subgroup normalized by H. Then
A™ is non-trivial and is normalized by H since H, <J H. Hence the assignments

A—> A5 A . C>C

take place inside &/ and give a contraction of " [3, p. 268].

Suppose now that A is the Tits building of a finite Chevalley group in
characteristic p. We may take the parabolic subgroups of rank n to be the
simplices of dimension n, and then if B is a Borel subgroup the parabolic
subgroups containing B form a set of representatives for A/G. Since the isotropy
group or stabilizer of a parabolic subgroup is its normalizer, and parabolic
subgroups are self normalizing, we obtain Corollary C.

5. Structure of the complex of elementary abelian p-subgroups

We first establish the conclusion of Theorem E for an arbitrary graph with
similar fixed point properties to &, but under the hypothesis of connectivity. This
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was essentially proved by Oliver [17], and the situation is very similar to one
analysed by Quillen [18]. We give an algebraic proof for the benefit of the reader.

5.1. THEOREM. Let A be a finite connected graph on which G acts and let p
be a fixed prime. Suppose that G acts without inversions (i.e. any element of G
which fixed an edge, fixes its two end vertices) and that for every subgroup P < G
of order p, A" is a non-empty tree. Then the p-adic completion H,(A), is a

projective Z,G-module. Furthermore, if C, 4 G, is the chain complex of A then
both of the short exact sequences

0— H,(4),—(C),—Im (d),—0

and

0—Im(d),— (G),—Z,—0

are split as sequences of Z,G-modules.

Proof. Let Q by a Sylow p-subgroup of G. Since Z,G-modules are projective
and morphisms split if and only if, respectively, they are projective and split on
restriction to Q, it suffices to assume G =Q is a p-group. Now for each
1# H <G, A" is contractible. This is because if P<IH is a normal subgroup of
order p then A” is a non-empty tree on which H acts and any finite group acting
on a tree has a fixed point (Serre), so A” = (A”)" is also a non-empty tree. Thus
Ui2n<c AY has the homology of the poset of subgroups of G [3,IX, 11.2], and
this is contractible since the poset has a maximal element [18,1.5]. Hence the
chain complex D;— D, of U, 1< A" has the homology of a point, and since this
subcomplex consists of those points where the action is not free we can write
Ci=D;® P, for i=1, 2 where the P, are free modules. By examining the long
exact sequence associated with the sequence of chain complexes 0— D.— C. —
P.— 0 we see that C. and P. have the same reduced homology, so there is an
exact sequence

0— H,(4)— P— K—0.

This splits since P, is projective, so H;(A) is projective.
It remains to show that the short exact sequences split. The first one splits
because H,(A), is projective, and Im (d), is torsion free, being a subgroup of
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(G),p- For the second sequence, G has been assumed to be a p-group and we
have seen that A is a non-empty tree. Thus at least one of the transitive
permutation summands of ((,), is just Z, and the restriction of the map
(&), — Z, to this summand is the identity Z,— Z,. The inverse of this map gives
the desired splitting.

We now turn our attention to the connectivity of /. Since & and & are
homotopy equivalent, they have the same number of components and evidently
the action of G on them is the same. Let & be a connected component of & and
G the set of elements of G which preserve &, so the permutation representation
of G on the components of & is the action on the cosets of G in G, since G

_permutes the components transitively. We state the following for a group of
p-rank <2.

5.2. LEMMA. Let C. = C,-%> G, be the chain complex of . Then

(i) the chain complex of o is C. = C. 1Z, obtained by applying the induction
functor to C. .

(ii) H()=H,(HA)1E as ZG-modules, forr=1, 2.

Proof. (i) o is (equivalent to) the induced G-poset LI, s\ 4, defined in an
obvious way as the disjoint union of pairwise incomparable copies of & indexed
by the cosets G\G. Evidently passing to the associated chain complex commutes
with the process of induction.

(i) This is because ZG is projective, and hence flat as a ZG-module, so that
taking homology commutes with tensoring.

Proof of Theorem E. Since the inclusion map & - & is a homotopy equiv-
alence [18] it suffices to prove the result for &. Projectivity of H,(%) follows from
5.1 and 5.2 (ii). Since

0— ker (d),— (C,),— Im (d),—0
and

0— Im (d), — (Cy), = Z,— 0
both split, and this is preserved under induction, the corresponding sequences for
o split as well. It remains to show that Hy(#), is projective. Now Hy(&f), is the

permutation module Z, 1 ¢. We will show that the augmentation map _Zp + &
Z, splits with a projective kernel. In [18] Quillen showed that G is self-
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normalizing and is a strongly p-embedded subgroup of G, which means that for
every x € G either G*NG =G or G*N G contains no elements of order p. It
follows that G contains a Sylow p-subgroup of G, and it suffices to show (by the
theory of relative projectivity) that on restriction to G the augmentation map
splits with a projective kernel. By Mackey’s theorem,

Z, Tg le= ®_Zp Tgmé

GxG

where the sum is taken over double cosets, and for each double coset apart from
G itself, |G* N G| is prime to p. Hence all summands on the right are projective
apart from a single copy of Z, corresponding to the double coset G. On this
summand the map Z,— Z, is the identity, so the inverse gives a splitting for the
augmentation as a G-map, and the kernel is isomorphic to the sum of the
remaining summands, which is projective.

The only extra complication in Theorem E over Theorem 5.1 is that &/ might
not be connected. But then the stabilizer G of a component of & is self-
normalizing and strongly p-embedded, and as far as cohomology is concerned we
might just as well work with G as with G. This is shown in the next result.

5.3. PROPOSITION. The restriction map res: H"(G, M),— A(G, M), is an
isomorphism.

Proof. By [5] res is mono, and

COTeS.TES = D, C, * Tesgngs - COTesE
GxG

Every map on the right is zero on the p-part of cohomology, except for the
summand with G X G =G. This is because the other maps factor through
A"(G*N G, M), and this has trivial p-part because p4 |GX¥ N G| if x ¢ G. Hence
cores.res = 1 and res is epi on the p-part of cohomology.

There is a group-theoretical interpretation of 5.1 and 5.2 which we now
mention. We return to the situation of 5.1 where G acts on a graph A without
inversions. The quotient graph A/G acquires the structure of a graph of groups
by choosing a connected lifting of A/G to A and assigning as vertex or edge
groups of A/G the stabilizers in G of the liftings of the vertices or edges to A. For
the application to & in case G has p-rank 2, we should replace & by a connected
component & if necessary, and G by G. In any case, /G = &/G. Let G denote
the fundamental group of this graph of groups. There is a unique homomorphism
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G — G which is an isomorphism on corresponding vertex or edge stabilizers, and
since A is connected it is surjective, by Bass-Serre theory [21]. The kernel N of
this homomorphism may be identified as the fundamental group =,(A), and it is
the free group on a fundamental set of cycles in A. Thus N/N' is a free abelian
group, and it is acted upon by G by means of conjugation within G. Since N itself
acts trivially on N/N’, this free abelian group becomes a ZG-module, and one
sees that N/N' = H,(A) as ZG-modules. Thus we have:

5.4. COROLLARY. With the hypotheses of 5.1, (N/N'), is a projective
Z2,G-module.

This kind of situation was considered by Brown on p. 67 of [2]. There is a
Mayer-Vietoris sequence giving the equivariant cohomology of G on A, and also

a Mayer-Vietoris sequence for the cohomology of G [7]. These both have the
form

...— A"(G, M)— ® A"(G,, M)— DA"(G., M) A"*'(G, M)— - - -

veV eeE

in the case of G, or the same sequence with the G term replaced by A%(A; M)
for equivariant cohomology. Here V and E are the vertex and edge sets of A, and
we will always work with Farrell-Tate cohomology, denoted by H. As Brown
observed, it follows that for ZG-modules M, inf: A"(G, M),— A"(G, M), is
an isomorphism, since Hg(A; M), = H"(G, M), and because we have isomorph-
isms on the vertex and edge groups. Because of the information about H*(G, M )p
in Theorem A we also obtain:

5.5. THEOREM. Let M be a ZG-module and G the fundamental group of the
graph of groups A/G, with A as in 5.1. Then at the prime p the Mayer-Vietoris
sequence for the cohomology of G with coefficients in M is the splice of split short
exact sequences of the form

0— A"(G, M),— &© A"(G,, M),— D A"(G., M),—0

veV eeE

Proof. The isomorphism H"(G, M), =H"(G, M), and the formula of
Theorem A show that the middle term in the above sequence is isomorphic to the
direct sum of the two outer terms. By counting composition lengths it immed-
iately follows that the above is a short exact sequence. It splits because of the
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following much more general theorem of Miyata:

THEOREM (Miyata [27]). Let R be a ring with a Noetherian subring Z
contained in the centre of R such that R is a finitely generated Z-module. Let
0—A— B— C—0 be a short exact sequence of finitely generated R-modules. If
B = A @ C then the sequence splits.

6. The connection with equivariant cohomology

The approach of equivariant cohomology is to obtain the cohomology of G
in terms of the cohomology of the isotropy groups in an action of G on some
suitable space. In our situation of G acting on A, if A” is acyclic for all
p-subgroups 1+# H < G then the p-part of the equivariant cohomology H%(A, M)
is isomorphic to the p-part of A*(G, M) [3, p.292], and there is a spectral
sequence whose E,; page is

Er'= @ H(G,, M),>H(A, M), (6.1)

g€, /G

[3, p. 173] where A, is the set of simplices in dimension r. It would be interesting
to prove Theorem A using this spectral sequence, but I have not been able to do
so in general. The case where I can do it is the one treated in Theorem E, when
A is a graph. Here the splitting of the differential and the projective homology
immediately imply Theorem A’, and hence Theorem A, but Theorem E also
demonstrates that the p-torsion part of the equivariant cohomology spectral
sequence terminates at the E, page.

6.2. PROPOSITION. Let G and A be as in Theorem E. The p-torsion
equivariant cohomology spectral sequence (6.1) has E, = E, and the E, page is
zero except on the fibre EY .

Proof. The spectral sequence arises from the double complex
homgz,; (#, homg, (C.(4),, M,), where 2 is a Z,G projective resolution of Z,,.
Since the reduced homology H,(A), is always projective, it splits off from C.(4),
and the remaining differential on C.(A), is then split (by Theorem E). It follows
that homgz, (C.(4),, M,) also has projective homology and split differential so
that when we take homology along the columns of the double complex the
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projective homology groups contribute nothing, and what remains is the E, page

@ HA'G,, M), © H(G,, M),

oeAo/G ogeA/G

& A°G,, M), D HYG,, M)
p p

oeAo/G oe AV/G

where each of the maps d is induced by the differential of C.(A) and is thus split
epi. Hence E, is only non-zero on the fibre, and the spectral sequence stops
there.

I am in fact able to show that the conclusion of Proposition 6.2 holds without
restriction on the dimension of A, namely that the rows in the E;, page of the
above spectral sequence are all split acyclic, except at the left hand-end where the
homology is H*(G, M),. 1 hope to return to this in another paper.

It is also just conceivable that the following question might always have an
answer in the affirmative. This would immediately imply Theorems A and A’.

6.3. Let A= ¥ be the complex of p-subgroups of G and

G2 Cpy> > G G,

be its chain complex. Is it true that for every r the reduced homology completed
at p, H,(A), is a projective Z,G-module, and the sequence

0—ker(d,),— (C),—1Im(d,),—0

is split?

7. Cohomology of some specific groups

In this section we use Theorems A and D to give reduction formulae for the
cohomology of certain specific groups in terms of the cohomology of their
subgroups. As well as being valid for arbitrary ZG-modules M we give more
detailed results when M has the trivial action, and for this we consider the
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Poincaré series of the cohomology ring with |, coefficients:

Ps(t)= D, " - dim H*(G, F,)
n=0

The results for the Poincaré series when p =2 are summarised in the following

table
Group Ps(1)
1+¢
A
) (1-2)1-7)
1
D
" (1-1)°
1+¢
2
! (1-9(1-7)
2s same as 2,
1+¢
2
° (1-0(1-)(1-7)
As same as A,
Ag same as A,
A, same as A,
PSL5(q), g odd same as A,
: 1+¢
PSL;(q), dd
3(q) q o (1 _ t3)(l _ t4)
1+¢
M
H (1-2)(1-1%
1+2)1+1°)
Jy

1-2Q-tHa -1

The above groups will be taken: in order through this section, where further
formulae will appear with details of the calculations. From 7.4 onwards where the
formulae become more complicated we will omit the coefficient module M from
our notation; thus H"(G), will mean H"(G, M),. The formulae still work for
arbitrary modules M. Many of the above Poincaré series would be regarded as

known, in particular the first two.
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The series for A, may be obtained from the fact that H"(A,, F,) is isomorphic
under the restriction map to the fixed points H"(V, F,)< where V is the Sylow
2-subgroup of A, [5]. Now ®,_,H"(V,[F,) is a polynomial ring with two
generators in degree 1, and the action of C; is induced by that on H'(V, F,),
which is the dual of the action of C; on V. The Poincaré series of the ring of
invariants may now be computed using Molien’s Theorem [24].

When G = D,~ is a dihedral 2-group the Poincaré series may be obtained from
the description of the kernels in a minimal projective resolution of [, provided by
Butler and Shahzamanian [4]. From their description, the dimension of the
maximal semisimple quotient of the nth kernel is n+1, and this is
dim H"(D,~, [F,). Hence

1
(1-0*

> " dim H*(Dym, F,) =142t + 32+ 4+ - - - =
n=0

We will treat the general dihedral group in 7.3.

From time to time we will use the following elementary but rather powerful
observation.

7.1. LEMMA. (1) Suppose 1- N— G— Q— 1 is a short exact sequence of
groups and ug = ZAguyg in A(Q) where the sum is taken over various subgroups
K < Q. Let K be the inverse image of K in G. Then ug = ZAgug in A(G), and
H"(G, M), = ZAcH"(K, M),,.

(2) Suppose G =A X B and u, = ZAzuy in A(A), ug = ZAgug in A(B), for
subgroups H<A and K<B. Then ug=ZAyiguy.x and H"(G, M), =
2AuAxH"(H X K, M),.

Proof. The cohomology formulae follow from those for permutation modules
as explained in §2.

(1) We regard ugp = ZAgux as an equation of Z,G-modules via the homo-
morphism G— Q.
(2) Ug = Uy ® Ug = ZAHA.KUH X Ug = ZAHAKuHxK.

72. G=2,p=2

We apply Theorem D with &£ = €, the subgroups of X, which are cyclic
(mod 2). The maximal members of € are A, and three copies of Dg. Every pair of
these intersects in the four group V which is normal in 24 so these are the only
subgroups which arise as intersections of maximal members. As explained in §2,
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the function f of Theorem D is only non-zero on these subgroups, and we have
f(As) =f(Dg) =1, f(V)= —3. Theorem D becomes

H™(Z4, M), = 3H"(A4, M), + H"(Dg, M), — 3H"(V, M),
where V <1X,. The Poincaré series is now computed as

Py (1) =3P, (1) + Pp(t) — 3Py (2).

7.3. G = Dy,, where m is odd, p =2

The procedure is the same as for 2,. Maximal members of €:Cy-1,, and D,
(m copies). These intersect only in the subgroup C,-i:. Therefore f(C,-1,)=
f(Dy) =1, f(Cy-1) = —m. The indices of these subgroups in their normalizers are,
respectively, 2, 1 and 2m. Hence by Theorem D

Hn(DZ'mJ M)Z = Hn(DZ': M) + %[H"(Cz’"lm: M)2 - Hn(CZ’_l’ M)]
7.4. G=35,p=2

We apply Theorem A. The quotient graph &//G may be represented as
follows:

This means that there are two conjugacy classes of subgroups of type C, X G,
and two of type C,. The normalizers of the corresponding subgroups are %, D,
Dg and G, X 5. For each conjugacy class of subgroups C, and C, X C, there is at
most one orbit of edges C, < G, X G,, and the edge stabilizers are shown adjacent
to the edges. Reading from left to right, typical representatives of the C, X G,
subgroups are ((12)(34), (13)(24)), ((12),(34)); and of the C, subgroups are
((12)(34)) and ((12)). All of the Dg subgroups shown are the same. It follows by
Theorem A that

H"(G),=H"(Z,), + 2H"(Dg) + H"(C, X 23), — 2H"(Dg) — H" (G, X )
= H"(Z,), + H(C, X 23), — H'(C, X G,),.

We are now omitting the coefficient module M from our notation. This equation
holds for arbitrary coefficients M. Some simplification of the last two terms is
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possible using Theorem D. We know by Theorem D’ that

u23 = uCz -+ %(uc3 - u]).
So that by Lemma 7.1, u¢,xs, = Uc,xc, + 3(Uexc, — Uc,). Hence

H"(G),= H"(Z,), + H'(C, X ) + 3[H"(C, X Gy), — H*(G)] - H' (G X G)
= H"(Z,), + }[H"(C; X G3), — H*(C)).

By the Kiinneth formula, the [,-cohomology ring for C, X C; has the same
Poincaré series as for C,, and so Ps(t) = P5,(¢).

75. G=2%s,p=2

To describe /G is rather complicated, since there are 3 conjugacy classes of
G, subgroups, 5 classes of C, X G,, and 2 classes of C, X C, X C,, and indeed, this
is not the best approach. Up to conjugacy the maximal 2-local subgroups have the
form X, X C, where X, permutes four of the letters, and Ng({(12), (34), (56))).
This latter group has the structure C, X C, X G, j 25, since the three transposi-
tions shown are the only ones in the group they generate, and this set of three
elements is preserved. We apply Theorem D with & = {all 2-local subgroups},
i.e. subgroups of 24y X G, G X G, X Czi] 25, and their conjugates. These are the
maximal elements of Z. A calculation shows that the possible intersections of
these have the form

1. 3, %G,
CXCx G2,
25 permuting 3 of the letters
Dg X C, with Dg permuting 4 letters
((12), (34), (56))
((12)(34), (13)(24), (56))
7. ((12))

Intersections which have odd order have been omitted. Taking the rows and
columns to correspond to these subgroups in the above order, the matrix C
discussed in section 2 is

SRR

B 7

01

4 3 1
C=]1101

31031

1 303 01

.7 3 4 9 3 1 11
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solving the equation C-f=(1,...,1) gives f=(11 —6 —1 0 0 24)', and the
vector with entries f(K)/|Ng(K):K| is (1 1 =1 —1 0 0 1)". Therefore by
Theorem D,

H"(Z6),=H"(Z, X ), + H(C, X G, X G, [ 23),
— H"(Dg X G,) — H"(Z3), + H"(CG,).

Note that in the last two terms, C, may be chosen to be a subgroup of %5, and
since H"(23), = H"(G,), the last two terms cancel. Some further simplification of
the remaining terms is possible, but we must take care to distinguish non-conjugate
subgroups which are abstractly isomorphic. Since us, = up, + 3(us, — Uc,xc,), by
Lemma 7.1 we obtain H"(Z, X G), = H"(Ds X G,) + 3[H"(A4 X C,), — H*(C, X
C, x )], and since us, = uc, + 3(uc, — u,) we have

HY(Cy X Gy % G Z5),= H"(Dy X G) + [ H(C, X G, x G| Gy),
— H (G, X G, X Gy)]

Substituting this into the formula for H"(Z), gives

H"(Z6),=H"(Ds X G) + %[H"(A‘s X G),—H'(CGXCXG)
+HY(GX G x G| G),— HY(G X G X C)]

In this formula, one of the groups G, X G, X G, is {(12), (34), (56)) while the
other is ((12)(34), (13)(24), (56)). Extending each of these groups by the 3-cycles
(135)(246) and (123), respectively, we obtain the groups denoted by C, X G, X
Czj C; and A, X C,, which are abstractly isomorphic. The formula holds for
arbitrary coefficient modules M.

7.6. G=As, Agor A;,p=2

When G =As, a Sylow 2-subgroup P is a TI set and so H"(G, M), =
H"(Ng(P), M), by [5]. If G =A¢ Then G = PSL(2,9), and this will be covered
by the discussion of the groups PSL(2, q). Now let G = A,. We apply Theorem
A A/Gis

@(szczxca)ﬂc‘a @ D; D
A.xG)JG (CGxGXC)]C >,

with vertex and edge stabilizers of &/ as shown.
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A copy of the group (C, X G, X C3)<] G, is generated by the elements
(12)(34), (13)(24), (567), (12)(56),

and representatives of the two conjugacy classes of four-groups are V,=
((12)(34), (13)(24)) and V, = ((12)(34), (12)(56)). Hence H"(A;),= H"(Z,), +
H"((A4 % C3) | Gy), — H"(Dy).

We may reduce this further by applying the formula already obtained for 2,
and applying Theorem D to (A4 X C3)j C,, as follows. In Theorem D we take Z
to be all subgroups of A, X C; and Dg, and conjugates of these. Then & o €, and
the maximal members of & are A, X C; and 9 copies of Dg, any two of which
intersect in exactly C, X C,. Hence f(A4s X G) =f(Dg) =1, f(C, X C) =—9, and
the indices of these subgroups in thein normalizers are 2, 1 and 18 respectively.
By Theorem D,

H"((A4 % C;) ] Cy)2 = H*(Dg), + 3H"(A4 X C3), — 3H™ (G, X Gy),.

We substitute this and the formula for 24 into the formula given above for A, to
obtain

H"(A;),=3H"(A4), + 3H" (A4 X Gy), + H"(Dg) — 3H™(V}) — 3H™(V,).
The first group A, here normalizes the second four-group V,, and A, X C; acts as

A, on {1,2,3,4} and as C; on {5, 6,7}. Since A, and A, X C; have the same
cohomology with [, coefficients (by the Kiinneth formula), the Poincaré series is

Py (t) = Py (t) + Pp(t) — Pe,xc)(t) = Pa(2)-

7.7. G=PSL(2, q), qodd, p =2.
The structure of &£/G is as follows:

G C,xC) if q=13(modS8)
@@

Ay

D,,
Ds D C,xGC) if g=+1(mod8)
24 Dz, 24

(see [9]). In these diagrams r is the integer such that D,, is the centralizer of an
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involution.

H"(G),=H"(A4),+ H'(Dy,), —H*"(C, X G), if g=23(mod8)
H"(G);=H"(Z,),+ H"(Z4), + H"(D,,), — H"(Dg) — H"(Dg) if g =x1(mod 8).

We repeat groups according to the different conjugacy classes.

7.8. G=PSL(3, q), qodd, p=2
The structure of /G is

GL(2, q) (Co-1 %X Cy-1) 3 >X

(see [1]). Hence

H"(PSL(3, q)).
=H"(GL(2, q)), + H'(C,—1 X C; 4 il 25),—H"(Cpuy X Gy j G)..
We may reduce the middle term on the right using Theorem B. With
G=(C-1XC,y) :] 3, take & to consist of all subgroups of (C,_; X C,_;) ] G,

(Co=1 X Cy-1) <] C, and their conjugates. These are the maximal elements of &
and any two of them intersect in C,_, X C,_;. Hence f((C,—-, X C,_,) i] G)=1=

f((Cy-1 X Cq—l)i] G), f(Cpoy X Cyy) = =3,

H"((Cy-1 X Cy1) j Z3),= %H"((Cq—l X C,-1) j G),
+ H"((Cp-1 X C4—v) j G). - %Hn(cq—l X Cy-1)2

Therefore

H"(PSL(3, q)).
= H"(GL(2, q)), + 3[H(C,_1 X C,_1 | Cs), — H"(C,_, X C,_1)]

We can use this to determine the Poincaré series for PSL(3, q) over F,. By work
of Quillen,

141

1-01-1t)

Pora,q(t) =
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(see [19] or [10]). The cohomology ring of C,_, X C,_, is a polynomial ring in two
variables, and that of C,_, X C,_, ﬂ G; is the fixed points under the action of C;
on this ring [5]. C,_, X C,_, j C; thus has the same Poincaré€ series as A,, and

147 1 147 1
Frsaol) =GT2p0-m *2 [(1 —-1-7) (1- t)Z]
1+¢
1-)1 -1

7.9. M,, has the same 2-local structure as PSL(3, 3)
The graph &//G for M, is

©) D ©x0)

GL(Z) 3) 2"'4

710. G=J;,, p=2

Because Sylow 2-subgroups are abelian the 2-cohomology with trivial
coefficients may be computed using Swan’s theorem, the details being given in
Chapman [6]. Chapman gives the expression for P;(¢), and this may be shown to
be correct using Molien’s Theorem. The normalizer of a Sylow 2-subgroup has
the structure N=(C, X G X G) /] (C,j (;), and for trivial coefficients

H"(G, M),=H"(N, M),. This result should be modified for arbitrary coefficient
modules M, as we shall see.

By [15], /G has the structure
G X As

X

G, X Aq

with vertex and edge stabilizers as shown. Therefore by Theorem A, and after
some cancellation,

H"(G),=H"(N),+ H"(C, X As), — H"(C, X Ay),.
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Some simplification of the last two terms is possible. By Theorem D,
Ua,=Ua,+ 3(Uc,— Uc)

and so by Lemma 6.1, uc,xa, = Uc,xa, + 3(Uc,xc, — Uc,xc,)- Hence
H"(G),= H"(N), + (H"(C, X Cs), — H"(C, X G3),).

Some reduction of H"(N), is also possible with Theorem D, but we do not give
this.

8. Euler characteristic formulae

It was proved by K. S. Brown (see [2]) that the Euler characteristic of &
satisfies

x(£)=1(mod |G|,).

This was significant in his investigation of the Euler characteristic of G, and was
reproved by Quillen [18] and Gluck [11]. In this section we show that our own
Theorem A’ contains this congruence, and prove some other formulae of a
similar nature. We work in the generality of a group acting on a simplicial
complex so that condition (a) of Theorem A is satisfied, and this includes the
cases & and &. The condition is: (a) for all H € € with p||H|, x(A")=1.

8.1. THEOREM. Let G act on the simplicial complex A so that (a) holds.
Then

x(A)=1(mod |G|,).
Proof. Take ranks of both sides in Theorem A’. We obtain

1= > (-)"?|G:G,|=x(4) (mod|G|,),

oeAIG

the congruence arising because every finite rank projective Z,G-module has rank
divisible by |G|,.

In the next result we impose the further condition that all isotropy groups
have order divisible by p. This is satisfied when A=4 or ¥, since if
o=Ey<-.--<E, is a simplex then Ey is a non-identity p-group with E, c G,.
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8.2. PROPOSITION. Let G act on the simplicial complex A so that (a) holds
and for all o € A, p||Gyl.

(i) Let A/G denote the quotient complex of A by the action of G. Then
x(A/G)=1. , |

(ii) |G|p =[loeac |Go|,(>_1)dm and 'G/G,lp = [lseac lGa/G;,(fI)d‘mo

Proof. (i) Recall from [5] that A%(G, Z) is cyclic of order |G|. Substituting
this into Theorem A we obtain

Cig,= 2 (=1)¥™Cig,,.

ceA/IG

We may take the negative terms over to the left hand side and take the rank of
both sides as p-groups to obtain

1= 2 (_1)dima

oeA/G

after returning the negative terms to the right hand side. This is now precisely
x(A/G).

(i1) Instead of taking the rank of both sides in (i), take the order of both sides
to obtain the first formula. The second formula follows in a similar way using the
(co)homology group H~ %G, Z) = H(G, Z)= G/G". Evidently a formula of the
type in 8.2 (ii) will hold for the order of any cohomology group, for example the
Schur multiplier.

8.3. COROLLARY. If G has p-rank 2 then /G is a tree.

Proof. /G is a connected graph with Euler characteristic 1.

The last result is a statement about the p-local structure of groups of p-rank 2.
For example, it implies that in such a group, if x and y are commuting elements of
order p with (x,y)=C, xC, and (x) is conjugate to (y) in G, then (x) is
conjugate to (y) in Ng({x,y)). This is because in & there are edges
(x) = (x,y) and (y) = (x, y) whose end points fuse in &/G. Because #/G is a
tree, there is only one edge between these two vertices of &¢/G, so the above two
edges of & are conjugate. This means there is an element g € G with (x )& = (y)
and (x,y)®=(x,y). It seems, however, that the overall p-local information
conveyed by 8.3 is of a more subtle nature than this. It is interesting also that
Corollary 8.3 retains some force even when G is a p-group, in contrast to many of
the results in this paper.
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The approach adopted in 8.2 can also be applied to Theorem D to yield a
number of similar results. We use the notation of Theorem D.

8.4. PROPOSITION. Let & be any class of subgroups of G which is closed
under conjugation and taking subgroups, and which contains the class € of
subgroups which are cyclic mod p.

() > fH)=1 X f(H)=1(mod|G|,)

HeX Hed
plH|
f(H) f(H)
1 ’ =1
() nglG H| Ig&’IG:Hl
pllH|
(iii) |G|, = [] |H|g@DC:HD
HeZX
pllH|

Proof. (i) The equation is really included for completeness, because it is one
of the defining equations for f. We may also verify it by taking ranks of both sides
of the equation in Theorem D’. This is how we prove the second formula, except
that on omitting the terms for which p 4 |H| we obtain a congruence mod |G|,
since for such H, rank uy is divisible by |G|,.

(i) The formula in Theorem D’ is equivalent to an isomorphism between two
direct sums of modules. Taking fixed points and then ranks of both sides gives the
first equation. For the second we use the expression in Theorem D for
H°(G, Z), = G, and take the rank of each side as a p-group.

(iii) Follows by taking the order of both sides of the equation for H°(G, Z)p.
A similar formula holds for the order of any other cohomology group.

Remark. The sums in 8.4 are often more easily evaluated if taken over a set
Z* of representatives of conjugacy classes of subgroups in &, and factors
|G :Ng(H)| are introduced. These identities have a use as a check on the
accuracy of one’s calculation of the values of the function f, computed, for
example, as described in §2.
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