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Length of curves under conformal mappings

José L. FErRNANDEZ and Davib H. HAMILTON

1. Introduction

It is well known that for any homeomorphism f of the unit disk D onto a
domain £, where f is ACL and Vfe L*(D), f (2N L) has finite length for
almost all rectifiable curves L. Suppose now that f is analytic, and let A(E) denote
the Hausdorff linear measure of a set E. Hayman and Wu [8] proved that for any
line L

MfRNL)<A, (1)

for some absolute constant A. This was generalized by Garnett, Gehring and
Jones [7] who gave conditions on a rectifiable Jordan curve in order that (1) holds
for all Q as above. It is necessary that L satisfy a regularity condition introduced
by Ahlfors, i.e. there is a constant c;:

MLOA|E - wl<r}]=cr )

for all § € L and r > 0. Garnett, Gehring and Jones conjectured that (1) could fail
for a regular quasicircle, i.e. L satisfies (2) together with

|2 = z,| > ¢, min dia (7,) 3)

for any z,, z, € L where y,, y, are the two components of L\{z,, z,}. In fact we
show that the example suggested in [7] cannot work. A curve L is called
quasismooth (or chord-arc) if there is a constant M > 0 such that for any z,, z;e L
we have

min A(v.) =M |z, - z,|, 4)
i=1,2
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sec Jerison and Kenig [9], Pommerenke [12]. Actually (2) and (3) are equivalent
to (4). We prove:

THEOREM 1. For any quasismooth curve L and any simply connected
domain Q with Riemann mapping f

MU (RNL)=A<w,
where A depends only on the chord arc constant M.

We conjecture that (2) is a necessary and sufficient condition on L in order
that (1) hold for all conformal maps.

Next we consider the case of the universal covering mapping f of a multiply
connected planar domain. Flinn [5] had obtained the following theorem: suppose
that Q is a hyperbolic planar domain and one component of C\L is contained in
Q. Then if [ is one component of f~'(£ N L) we have A(/) <®. On the other hand
if Q=D\E where Ec(0, 1) is a closed set of zero logarithmic capacity then
Belna, Cohn, Piranian and Stephenson [3] proved that there are circles L which
do not satisfy (1).

Suppose that G is the Fuchsian group of Mobius transformations 7:D— D
which represents the cover group for . The Dirichlet fundamental region & for
Gis

9 ={zeD:|T"(z)| <1, VT e G\{I}}

We say that & is of finite length type if

> ABTD) <

THEOREM 2. For any hyperbolic planar domain 2 of finite length type with
universal covering map f:D— €2 and any quasismooth curve L:

AMff(RNL)<e
From this we prove:

COROLLARY 1. Suppose that 2 is a finitely connected hyperbolic planar
domain with no point boundary components, and let f be the universal covering
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map. Then for any quasismooth curve L,
Alf (2N L)<

The argument of the proof of Corollary 1 also shows how to construct
infinitely connected domains for which the theorem holds.
However we do have:

COROLLARY 2. Suppose that 2 is a Denjoy domain, i.e. 3QcR. Then
Af(2N L)< A for all quasismooth curves L if and only if 2 has finite length
type.

The fact that & has finite length type says something about the “size” of the
group G. The usual way of measuring that size is through the exponent of
convergence 8(G)

5(G) = inf{é >0: S (1 - 1T(0)|)6<m}

TeG

(see, e.g. [14]).
We have

COROLLARY 3. Suppose that 2 is a planar domain and G the Fuchsian
group uniformizing 2 then if 6(G) <3 then for all quasismooth curves L

Af (RN L)) <.

The condition on 8(G) is sharp because for D\{0} we have & =3 while
A(f~Y(D\{0} NR) =c. But on the other hand the condition is not necessary
because there are finitely connected domains with no point boundary components
for which 6 >1, e.g. take 2, ={z e C:|z|<g, |z — 1| <g, |z]| > 1/€} with & small
enough (actually 8(£2,) 11 as e—0).

2. Preliminary results
We shall be dealing with domains G which are regular for the Dirichlet

problem. By dw we denote the unique probability measure such that if g is
continuous on 3G then the Perron solution u to the Dirichlet problem in G with
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boundary values g is given by

u(z)=| gadwsg.

aG

The harmonic measure of a Borel subset E of 9G at a point z € G with respect to
G is then

w(z, E, G) =f dwg.
E

Also the disk {|z — a| <r} is denoted by A(a, r).
We make frequent use of the following results which are simple consequences
of the Carleman—Milloux inequality, see [1], and Hall’s lemma respectively, see

[6].

LEMMA 1. There is a positive function c(8), é >0, such that if the closure of
a domain Q contains continuum E which meets 3L then for any z € Q\E satisfying

dist (z, E) = c(0) dist (z, 9Q\E)
we have

w(z, E, Q\E)=1-0.

Let us denote the upper half plane by H. Also if 0<a<b<1 and
6 € (0, ©/2) then

S(a,b,0)={zeH:|z|e(a,b), argz € (6, m — 0)}.

LEMMA 2. Given 0<a<b, and 0 € (0, n/2) there exists R>0 and n>0
such that for any r = R and for any continuum E c H joining |z| =1 to |z|=r

w(z, (A0, »NH)\E)>n
for each z in the sector S(a, b, 0).
Also we shall be using quasiconformal mappings. We need

LEMMA 3. Given 0<a<b<1 and 0 € (0, n/2) there exists R>0 and a
positive function n(k) such that for any r = R:
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If E is a continuum joining |z|=1 to |z|=r in H, then for any k-
quasiconformal mapping ®:C— C we have

w(P(z), P(E), P(A0, r)NH\E)) =n(k)
for each z € S(a, b, 0).

The lemma follows from Lemma 2 and the distortion theorem of Mori, see
[2]. Let Q be the component of A(0, )N H\E containing z € S(a, b, ) and
suppose f and g are the Riemann mappings from the unit disk D onto
(respectively) £ and @(LQ) with f(0) =2z, g(0)= ®(z). If z€S(a, b, 6) then
because of Lemma 2 w(z, E, 2)>n. On the other hand 27 w(z, E, Q) is the
length of the subarc I; which is the closure of {¢'?:lim,_,, f(re'®) € E}. One should
note that as E is a continuum in H, by a theorem of Beurling (see Collingwood
and Lohwater [4]), “f'(E)” is an arc of 3D with a set of capacity zero removed.
Similarly 27 w(®(z), (L)) is the length of a subarc I,. But g 'e Pof=1yisa
quasiconformal mapping of D onto itself which fixes 0. Thus as y(/;) = I, we see
by Mori’s theorem that:

ML) = c{Mb)}°
where ¢, 6 >0 depend only on k, which concludes the proof of the lemma.
The following is derived from estimates of Jerison and Kenig [9] and Kaufman

and Wu [10, p. 269, 273].

LEMMA 4. Suppose that U is a domain whose boundary is a quasismooth
curve with constant M. If zye U, §, € 3U satisfy (for some r > 0)

dist (zy, dU) =ar
and
|zo— &o| = br

for some a, b >0, then for any set F < dU satisfying F < A(Ly, r) and A(F)=r/2
we have

(2, F, U)=n

where 1 >0 depends only on a, b and M.
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This is most easily proved by using Lemma 1 of [10] which provides us with a
point z; € U satisfying

a;'r =dist (z;, dU) = ayr

bi'r=|Ey—z)|=byr
and
w(z,, F,U)=n,>0

where a,, b;, n; >0 depend only on a, b and M. Now U is an (&, ) domain (see
[11]) and so there exists a rectifiable arc y = U joining z, to z, and satisfying

AMy)=a,r
and
dist (y, dU)=a5'r

where a, depends only on a, b and K. Consequently Harnack’s inequality is
applied and we see that it is impossible that w(z,, M, U) may become arbitrarily
small.

The connection between estimating harmonic measures and A(f~'(2 N L)) is
derived from the notion of a Carleson measure (see [6]). Now a positive measure
p on the unit disk may be defined to be a Carleson measure if

| IT@ldu<c )

for any Mobius transformation 7 :[D— D. Clearly then, by considering f o T, any
L satisfying (1) will have the property that arc length measure on f~'(2N L) is a
Carleson measure. This was observed in [7] and gives the extra conclusion that we
have a Carleson measure.

LEMMA 5. Suppose that L is a Jordan curve satisfying Ahlfors’ regularity

condition (2). Then to obtain A(f~'[2N L)) <c for all simply connected Q the
following are sufficient:

There is a >0, € >0 and B <1 such that for any sequence w; € L N  with

W, — wi| = ar dist (w;, 9R2),  j#k, (6)
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we have

w(w, K;, Q\K;)<p (7)
where

K= ,E;J] A (Wi, ae dist (W, 9Q)) (8)

3. Proof of Theorem 1

We let M denote the chord arc constant of L, see (4). Now we fix a =4 and
determine € and B so that (7) of Lemma 5 is verified for any sequence
{wi} € L N L2 satisfying (6).

Fix j and let z = w;. Also we define d = dist (z, Q) and J = L N Q. Denote by
J, the component of J which contains z and by J, the component of J; N A(z, ad)
containing z. Consider now the closed (in Q) set K=, A
(w, ae dist (w, 3Q)). Clearly K o K; U (J — J) and in particular by the maximum
principle

w(z, K, 2\K) = w(z, K;, \K;) 9

So we have only to show that if we choose € appropriately (depending only on L)
we obtain 8 = B(e, M) <1 so that

w(z, K, Q\K) = . (10)
Recall the function ¢(6) of Lemma 1; then if € =c(8) we have
w(z, I\Jo, Q\(U\Jp)) = (1 - 8)w(z, K, 2\K). (11)

To see this we write

w(z, I\Jy, 2\ \Jy)) = f @ (&, J\o, 2\ \y)) dw ok (E).

But by Lemma 1, if { € K then w(g, J\J,, Q\(J\Jp) =(1 - §), and (11) follows.
In fact, if w eJ\J, and |§ — w| < ae dist (w, 382) then if E is the closure of the
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component of J\J, containing w we have

dist (§, E) = ae dist (w, Q)
=< ae(l — ae) ' dist (&, 9Q)
< ¢(8) dist (&, 39).

The next step is to estimate w(z, J\Jy, Q\(J —Jy)). Let U,, U, be the
complementary domains of L. Suppose that £, is the component of Q\(J\Jy)
containing z, and ;= ,N U,, i =1, 2. Also we define J;; to be the components
of (J\J;) N 3€;. Note that J;; belongs to only one of the boundaries 3€,.

The disk A(z, da/2M) contains no point of J\J,. We set r =da/2M. Since L
is chord arc we have subarcs I; of dA(z, r) such that for some p, 7 >0 (depending
only on M)

[c® (12)

ML) = —’23 v (13)

dist (£;, L) > tr. (14)
Therefore

w(z, J\Jy, 2\(J\)p))
- j 0 (&, TN, Q\I\I)) dW s, 1(E)
dA(z, r)

P

<(1-p)+ -g +2 min max w (g, I\, Q\U\)) (15)
But for L €1,
w(&, I\Jo, 2\ \p)) = w(E, J, ) (16)

and we see from (15) that it is enough to show that

min max w(g, J, Q) =8. (17)

We consider now two cases. Let B > 1 be a constant to be determined later; B
will depend only on M.
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In this first case we suppose there exists §, € (L\J;) N 382, so that
|&o — z| < Bd. (18)

In this case we let (following [10]) S; = L\(U;J;;). Clearly L\J; =S, US,. From
the maximum principle we obtain for { € [,

1- CU(C, J’ Ql) = (D(C, 89,\], Ql) = O)(C, Si’ Ul) (19)

Now we use Lemma 4 for the chord arc domain U,. Since {, € L\J, we have that
max A(A(Lo, ) N S;) = % (20)

Consequently by (18), (20) and Lemma 4 we obtain that

max min w(¢g, S;, U;))=n>0. (21)

i=1,2 (el

where 7 depends only on B and the chord arc constant M and so only on M.
Then from (21), (19), (17), (15) and (11) we get

w(z, K, 2\K) Sl—g—'s (22)

where B, <1 depends only on M.

This leaves the case where for each ¢ e (L\J,) N 3Q, we have |{ — z| > Bd.
Let w e 3Q2 N 39, |w — z| =d. Notice that w ¢ L for w ¢ L\J, by our assumption
(and w ¢ J, as w ¢ €2). We can join w to a point on dA(z, Bd) with a continuum

F o SQ N a.Q(,ﬂ (A-(Z, Bd)\A(Z; d)))

because if not there would exist w, € Q2N 3Q,, |w,—z|<Bd and w, e L\J,
contradicting our assumption in the second case. Since Fc 3, we have
FN(L\J))=¢ and FNJ,=¢ so FNL=¢.

Use a quasiconformal mapping @ from C to C mapping R onto L, ¢(0) =z,
@(x) =», Also we may assume |P(1) — z| =r. Since F does not meet L, without
loss of generality F < U, and @ maps H onto U,. Now from the uniform bounds
for quasiconformal mapping, (13) and (14) we obtain constants a, b, 6 depending
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only on the chord arc constant M so that

&~'(I,) < S(a, b, 6). (23)
Now, if £ €I,
w(c’ aQI\Jr Ql) = w(C, F, Ul) (24)

But if E = @ !(F) then E is a continuum running from |z| = ¢, to |z| = ¢,, where
¢, depends only on k and ¢, depends on M and B, and ¢c,—>> as B—x,
Consequently from Lemma 3, (23) and (24) show that if B = By(M)

w(, J, ) =pM)<1
for each £ € I,, and so, as in the first case, we obtain

B2

w(z, K, 2\K) Sl s

(25)

where f, <1 depends only on M.

Therefore we choose 8 =max (B;, B,) and d <1— B and with £ =c(d) see
that the proof of the theorem is complete.

4. Proof of Theorem 2

We need the following (see [7]):

LEMMA 6. Let U be a simply connected domain with rectifiable boundary,
and f a conformal mapping of U onto Q. Then for any quasismooth curve L

Af (RN L)) < c,A8V).

Let g be the Riemann mapping from D to U. Thus by Theorem 1 arc length
duon g='o f7Y(2N L) is a Carleson measure and hence as g’ € H'

r@nL)= lgldusc, [ lg'ldo =ca@u)

which proves the lemma.
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Now let € be a hyperbolic planar domain and f:D— & be the universal
covering map. Suppose that G is the Fuchsian group of Mobius transformations
T :D— D which represents the cover group for £. The Dirichlet fundamental
region 9 for G is

{(zeD:|T'(2)| <1, VT € G\{I}}.

Now 9 is a convex set in the hyperbolic metric with rectifiable boundary. Thus by
Lemma 6

A (RNL)NT(D)} = cA3TD) (26)

for any quasismooth curve L and T € G. This immediately proves theorem 2.
Corollary 1 follows from

LEMMA 7. Suppose that G is the Fuchsian group of a finitely connected
planar domain with no point boundary components. Let 9 be the Dirichlet region
for G. Then

> MT 39D) <.

The boundary 9% consists of a finite number of disjoint nonconcentric circles
orthogonal to the unit disk. Let us denote & as &,. The region %, is obtained
from 2 by reflecting & through each of the orthogonal circles, and adding 9,. At
the n™ stage we obtain 9, with boundaries exactly n reflections of the original
circles. Thus Y. A(T9) = X5 -1 A(89,). We need

LEMMA 8. There is a constant B <1 such that

A9, ND)< np”

Let E, =39, ND, F, be a circle of E,_; and G, the part of E, separated from
the rest of E, by F,. By conformal invariance there is <1 such that
dia (G,) = B dia (F,). However as G,, consists of orthogonal semicircles A(G,) ==z
dia (G,). Summing over the components of E,_, gives

A‘(En) = ﬁl(En—l)

Thus we prove Lemmas 7, 8 and complete the proof of Corollary 1.
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The necessary part of Corollary 2 is derived from using the real line as our
curve L. In this symmetric situation f~'(R) is Ug T(39).
Corollary 3 follows immediately from

LEMMA 9. With the notations above if Q is a hyperbolic planar domain then

2 A(OTD) S.ZJT(iTllfI iT(O)I)~ TZG (1- IT(O)Iz)l/z

TeG

where C is a universal constant.

Proof. To see this we will associate to each side of 9 and the T(92)’s an
element R € G in a 1-1 fashion and in such a way that if z € s then p(z, R(0)) =
p(z, 0), where p denotes hyperbolic distance in D. This is enough because then s
is contained in a euclidean disk of radius |[R(0)|™' (1 — |[R(0)[*)'* and so

Ms)=m [R(O)|™" - (1 - [R(O))™.

So consider the side s. It separates two contiguous images of 9, say A(9),
B(2) with A, B€ G.

The transformations {7;} in G which pairwise identify the sides of & generate
G and in fact since Q is planar G is freely generated by the {T;}.

Now A = B o T, for some generator 7; so that if B=T, o --- o T; is a reduced
word then the word length of A is n—1 or n+1 according to T, =Ty"' or
T,# Ty'. Changing the roles of A and B we may assume that the latter case
occurs and to s we associate A=T,0 :-- oT,oT,. Noticethat A=T,,0 --- 2T, T,
determines s by being the side separating 7,0 - - - o T,(9) from A(2). Finally
s = 8A(9D) and so for each z € s p(z, A(0)) = p(z, 0).
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