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Length of curves under conformai mappings

José L. Fernândez and David H. Hamilton

1. Introduction

It is well known that for any homeomorphism / of the unit disk D onto a

domain £2, where / is ACL and V/eL2(D), f-\QDL) has finite length for
almost ail rectifiable curves L. Suppose now that/is analytic, and let Â(£) dénote
the Hausdorff linear measure of a set E. Hayman and Wu [8] proved that for any
line L

for some absolute constant A. This was generalized by Garnett, Gehring and
Jones [7] who gave conditions on a rectifiable Jordan curve in order that (1) holds
for ail Q as above. It is necessary that L satisfy a regularity condition introduced
by Ahlfors, i.e. there is a constant c}:

k[Ln{\Ç-w\&lt;r}]^Clr (2)

for ail £ € L and r &gt;0. Garnett, Gehring and Jones conjectured that (1) could fail
for a regular quasicircle, i.e. L satisfies (2) together with

\zx-z2\&gt;c2mindia(Yi) (3)
i

for any zu z2e L where y,, y2 are the two components of L\{zlt z2). In fact we
show that the example suggested in [7] cannot work. A curve L is called

quasismooth (or chord-arc) if there is a constant M &gt; 0 such that for any z,, z2e L
we hâve

minA(y/)&lt;M \zx-z2\, (4)
i l, 2
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sec Jerison and Kenig [9], Pommerenke [12]. Actually (2) and (3) are équivalent
to (4). We prove:

THEOREM 1. For any quasismooth curve L and any simply connected

domain Q with Riemann mapping f

where A dépends only on the chord arc constant M.

We conjecture that (2) is a necessary and sufficient condition on L in order
that (1) hold for ail conformai maps.

Next we consider the case of the universal covering mapping / of a multiply
connected planar domain. Flinn [5] had obtained the following theorem: suppose
that Q is a hyperbolic planar domain and one component of C\L is contained in
Q. Then if / is one component oif~l{Q H L) we hâve Â(/) &lt; °°. On the other hand

if Q B\E where E c (0, 1) is a closed set of zéro logarithmic capacity then
Belna, Cohn, Piranian and Stephenson [3] proved that there are circles L which
do not satisfy (1).

Suppose that G is the Fuchsian group of Môbius transformations 7:D-&gt;D

which represents the cover group for Q. The Dirichlet fundamental région 3) for
G is

S {z e D :\T&apos;(z)\ &lt; 1, V7 e G\{/}}

We say that 3) is of finite length type if

THEOREM 2. For any hyperbolic planar domain Q offinite length type with
universal covering map /: D-» fl and any quasismooth curve L:

A[/&quot;1(finL)]&lt;oo

From this we prove:

COROLLARY 1. Suppose that Q is a finitely connected hyperbolic planar
domain with no point boundary components, and let f be the universal covering
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map. Then for any quasismooth curve L,

A[/&quot;1(finL)]&lt;oo.

The argument of the proof of Corollary 1 also shows how to construct
infinitely connectée! domains for which the theorem holds.

However we do hâve:

COROLLARY 2. Suppose that Q is a Denjoy domain, le. dQaU. Then

k[f~l(Q H L)]&lt;A for ail quasismooth curves L if and only if Q has finite length

type.

The fact that 3) has finite length type says something about the &quot;size&quot; of the

group G. The usual way of measuring that size is through the exponent of
convergence Ô(G)

inf(ô&gt;0: 2 (l-l TeG

(see, e.g. [14]).
We hâve

COROLLARY 3. Suppose that Q is a planar domain and G the Fuchsian

group uniformizing Q then if ô(G)&lt;% then for ail quasismooth curves L

A(/-1(i2nL))&lt;oo.

The condition on ô(G) is sharp because for D\{0} we hâve ô \ while
Â(/&quot;1(D\{0} riR) ». But on the other hand the condition is not necessary
because there are finitely connected domains with no point boundary components
for which ô &gt; i e.g. take Qe {z e C: \z\ &lt; s, \z - 1| &lt; e, \z\ &gt; Ile) with e small

enough (actually ô{Qe) f 1 as e-»0).

2. Preliminary results

We shall be dealing with domains G which are regular for the Dirichlet
problem. By dwzG we dénote the unique probability measure such that if g is

continuous on dG then the Perron solution u to the Dirichlet problem in G with
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boundary values g is given by

u(z) j gdwzG.

The harmonie measure of a Borel subset E of dG at a point z e G with respect to
G is then

(o(z, Ey G) f dwzG.
JE

Also the disk {\z — a\ &lt; r} is denoted by A(a, r).
We make fréquent use of the following results which are simple conséquences

of the Carleman-Milloux inequality, see [1], and HalFs lemma respectively, see

[6].

LEMMA 1. There is a positive function c(ô)y ô &gt; 0, such that if the closure of
a domain Q contains continuum E which meets dQ then for any z e Q\E satisfying

dist (z, E) &lt; c(ô) dist (z, 3Q\E)

we hâve

eo(z, E} Q\E) &gt; 1 - ô.

Let us dénote the upper half plane by H. Also if 0&lt;a&lt;6&lt;l and
6 e (0, n11) then

S(a, b,d) {zeH:\z\e (a, b)y argz e (0, n- 6)}.

LEMMA 2. Given 0&lt;a&lt;b, and 6 e (0, tu/2) there exists R&gt;0 and rj&gt;0

such that for any r&gt;R and for any continuum E a H joining \z\ 1 to \z\ r

co(z, (4(0, r)DH)\E)&gt;r)

for each z in the sector S(a, b, 6).

Also we shall be using quasiconformal mappings. We need

LEMMA 3. Given 0&lt;a&lt;b&lt;l and 6 € (0, n/2) there exists R&gt;0 and a

positive function t](k) such that for any r^R:
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If E is a continuum joining \z\ \ to |z| r in H, then for any k-
quasiconformal mapping 4&gt;:C—»C we hâve

&lt;o(&lt;P(z), &lt;*&gt;(£), &lt;P(A(0, r) H H\E)) &gt; r,(k)

for each z e S(a, b, 6).

The lemma follows from Lemma 2 and the distortion theorem of Mori, see

[2]. Let Q be the component of A(0, r)C\H\E containing zeS(a, b, 6) and

suppose / and g are the Riemann mappings from the unit disk D onto
(respectively) Q and &lt;P(Q) with /(0) z, g(0) &lt;P(z). If zeS(a,by0) then
because of Lemma 2 a)(z, E, Q)&gt; rj. On the other hand 2jt (o{z&gt; E, Q) is the

length of the subarc Ix which is the closure of {e&apos;e:\imr^if(relB) e E}. One should
note that as £ is a continuum in H, by a theorem of Beurling (see Collingwood
and Lohwater [4]), &quot;f~\E)&quot; is an arc of 3D with a set of capacity zéro removed.

Similarly 2n (o(&lt;P(z), *P{Q)) is the length of a subarc /2. But g&quot;1 °$°/=^isa
quasiconformal mapping of D onto itself which fixes 0. Thus as ty(I\) I2 we see

by Mori&apos;s theorem that:

where c, ô &gt;0 dépend only on k&gt; which concludes the proof of the lemma.
The following is derived from estimâtes of Jerison and Kenig [9] and Kaufman

and Wu [10, p. 269, 273].

LEMMA 4. Suppose that U is a domain whose boundary is a quasismooth
curve with constant M. If zQ e U, £0 € dU satisfy {for sorne r &gt; 0)

dist(z0, 9U)&gt;ar

and

for some a, b&gt;0, then for any set F czdU satisfying F cz 4(Ç0, r) and A(F) &gt; r/2
we hâve

a&gt;(zo, F, U)&gt;t)

where r\ &gt; 0 dépends only on a, b and M.
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This is most easily proved by using Lemma 1 of [10] which provides us with a

point zx e U satisfying

and

where aï9 blf r)x &gt; 0 dépend only on a, b and M. Now U is an (e, °°) domain (see

[11]) and so there exists a rectifiable arc y cz U joining z0 to Z! and satisfying

and

dist(y,

where a2 dépends only on a, b and K. Consequently Harnack&apos;s inequality is

applied and we see that it is impossible that (o(zq,\ï\ U) may become arbitrarily
small.

The connection between estimating harmonie measures and k(f~l(QC\L)) is

derived from the notion of a Carleson measure (see [6]). Now a positive measure

jM on the unit disk may be defined to be a Carleson measure if

\ \T&apos;(z)\dpt&lt;c (5)

for any Môbius transformation 7:0—&gt;B. Clearly then, by considering/ ° 7, any
L satisfying (1) will hâve the property that arc length measure on f~l(Q H L) is a

Carleson measure. This was observed in [7] and gives the extra conclusion that we
hâve a Carleson measure.

LEMMA 5. Suppose that L is a Jordan curve satisfying Ahlfors&apos; regularity
condition (2). Then to obtain k(f~l[QD L])&lt;c for ail simply connected Q the

following are sufficient:
There is a a &gt; 0, e &gt; 0 and /S &lt; 1 such that for any séquence w}eLHQ with

wj — wk\ ^ ordist (wJf 9Q)y /=£&amp;, (6)
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we hâve

&lt;o(w,,K,,a\K,)xfi (7)

where

Kj U À (wk, oce dist (wk, dQ)) (8)

3. Proof of Theorem 1

We let M dénote the chord arc constant of L, see (4). Now we fix a \ and
détermine e and )3 so that (7) of Lemma 5 is verified for any séquence
{wk} czLH Q satisfying (6).

Fix j and let z wr Also we define d dist (z, dQ) and J L D Q. Dénote by
Jx the component of / which contains z and by /0 the component of Jx H A(z, ad)
containing z. Consider now the closed (in £2) set K ULe/v/o ^
(h&gt;, oce dist (w, 3£2)). Clearly Kid KjU(J — JQ) and in particular by the maximum

principle

w(z, K, O\K) ^ û&gt;(z, #;, CNi^) (9)

So we hâve only to show that if we choose s appropriately (depending only on L)
we obtain j8 /J(£, M) &lt; 1 so that

I3. (10)

Recall the function c(ô) of Lemma 1; then if e ^ c(&lt;5) we hâve

a)(z, J\J0, O\(J\J0)) &gt; (1 - ô)(o{zy K, Q\K). (11)

To see this we write

0)) f a&gt;(C, J\J0, a\(J\J0)) dw&apos;a

JdK

But by Lemma 1, if £ € K then co(£, /\/0, Q\(J\JQ) 2&gt; (1 - ô), and (11) follows.
In fact, if w €/\/0 and |Ç - w| &lt; ae dist (w, 3i2) then if E is the closure of the
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component of /\/0 containing w we hâve

dist (£, E) &lt; ae dist (w, dQ)

&lt;c(&lt;5)dist(Ç, dû).

The next step is to estimate œ{z&gt; J\JOf £2\(J — Jo)). Let U\, U2 be the

complementary domains of L. Suppose that £20 is the component of fi\(/\/0)
containing z, and Qt — Qo D Un i 1, 2. Also we define /l&gt;; to be the components
of (/\/i) H 3Qt. Note that /f ; belongs to only one of the boundaries 9Qt.

The disk A(z, da/2M) contains no point of /\Z0. We set r da/2M. Since L
is chord arc we hâve subarcs l} of 3A{zy r) such that for some p, t &gt; 0 (depending
only on M)

/,&lt;=fi, (12)

A(/,) ^r (13)

dist (/„ L) &gt; xr. (14)

Therefore

&lt;o(z, J\J0, Q\(J\J0))

f a&gt;(Ç, /\/0, Q\(J\J0)) dw&apos;Mz, r)(

s (1 - P) + + min max w(Ç, /\/0) Q\(J\J0)) (15)
2 2 i=i, 2 /,

But for Ce/,

a&gt;(£, /\/0, Q\(J\J0)) =s û)(Ç, /, Of) (16)

and we see from (15) that it is enough to show that

min max &lt;o(Ç, /, fl,) &lt; j8. (17)

We consider now two cases. Let B &gt; 1 be a constant to be determined later; B
will dépend only on M.
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In this first case we suppose there exists £() e (L\Ji) f) dQ0 so that

\to-z\^Bd. (18)

In this case we let (following [10]) 5, L\(\J,J,.j)- Clearly L\/, =5, US2. From
the maximum principle we obtain for £ e /,

1 - o&gt;(£, /, Q,) û»(Ç, 9Q,\J, Qt) &gt; o)(Ç, 5,, (/,). (19)

Now we use Lemma 4 for the chord arc domain il,. Since £&lt;&gt; e L\7, we hâve that

maxÀ(4(£0,r)nS,)2:J. (20)

Consequently by (18), (20) and Lemma 4 we obtain that

max min û&gt;(Ç, 5,, Vt)&gt;r}&gt;0. (21)
i l,2 Ç€#,

where r\ dépends only on B and the chord arc constant M and so only on M.
Then from (21), (19), (17), (15) and (11) we get

&lt;o(z,K9 Q\K)&lt;-\ (22)
1 — o

where 0, &lt; 1 dépends only on M.
This leaves the case where for each £ e (L\/,) n 3fl0 we hâve |£ - z| &gt; Brf.

Let &gt;v e 3Û H 3ÛO, |w - z| d. Notice that w ^ L for w&gt; ^ L\/, by our assumption
(and w $Ji as w $ Q). We can join w to a point on 3id(z, fld) with a continuum

Fcâfifl 3fl0

because if not there would exist w, e 3Q n 3fi0, 1^ - z| &lt; Bd and w, e

contradicting our assumption in the second case. Since FadQ{) we hâve
F H (L\/,) ^ and F n/, 0 so F H L 4&gt;.

Use a quasiconformal mapping &lt;P from C to C mapping R onto L, &lt;f&gt;(0) z,
#(oo) oo. Also we may assume |4&gt;(1) - z| r. Since F does not meet L, without
loss of generality F cUx and 0 maps // onto (/,. Now from the uniform bounds
for quasiconformal mapping, (13) and (14) we obtain constants a, b, 6 depending
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only on the chord arc constant M so that

4&gt;-l{Il)&lt;zS(a,b,0). (23)

Now, if Ç e Ii

aj^œ&amp;F,^). (24)

But if E &lt;P~l(F) then E is a continuum running from \z\ c1 to \z\ c2, where

c{ dépends only on k and c2 dépends on M and B, and c2—»°° as

Consequently from Lemma 3, (23) and (24) show that if fi &gt; B0(M)

for each Ç e A, and so, as in the first case, we obtain

co(zfKfQ\K)^-^- (25)
1 — o

where j32 &lt; 1 dépends only on M.
Therefore we choose /? max {fil9 )82) and ô &lt; 1 - j8 and with e c(&lt;5) see

that the proof of the theorem is complète.

4. Proof of Theorem 2

We need the following (see [7]):

LEMMA 6. Let U be a simply connected domain with rectifiable boundary,
and f a conformai mapping of U onto Q. Then for any quasismooth curve L

k(f-l(QnL))&lt;c1k(dU).

Let g be the Riemann mapping from D to U. Thus by Theorem 1 arc length
d\i on g&quot;1 °f~1(Q n L) is a Carleson measure and hence as g&apos; e H*

k{f~\Q H L)) f \g&gt;\ dimc2\ \g&apos;\ dd c2k(3U)
Jb JdB

which proves the lemma.
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Now let Q be a hyperbolic planar domain and /:D—&gt;Q be the universal
covering map. Suppose that G is the Fuchsian group of Môbius transformations
T:D-*O which represents the cover group for Q. The Dirichlet fundamental
région 3) for G is

{z € D: \T&apos;(z)\ &lt; 1, VT € G\{/}}.

Now 3) is a convex set in the hyperbolic metric with rectifiable boundary. Thus by
Lemma 6

k{f-\Q HL)n T(3))} &lt; c3k(9T3)) (26)

for any quasismooth curve L and T e G. This immediately proves theorem 2.

Corollary 1 follows from

LEMMA 7. Suppose that G is the Fuchsian group of a finitely connectée

planar domain with no point boundary components. Let 3) be the Dirichlet région
for G. Then

X A(T 93)) &lt; oo.

G

The boundary 93) consists of a finite number of disjoint nonconcentric circles

orthogonal to the unit disk. Let us dénote 3) as 3)x. The région 3)2 is obtained
from 3) by reflecting 3) through each of the orthogonal circles, and adding 3)x. At
the nth stage we obtain 3)n with boundaries exactly n reflections of the original
circles. Thus Eg KT3)) E^=i A(3SW). We need

LEMMA 8. There is a constantp&lt;l such that

n D) &lt; npn

Let En 9% fl D, Fn be a circle of En^x and Gn the part of En separated from
the rest of En by Fn. By conformai invariance there is P &lt; 1 such that
dia (Gn) ^ P dia (Fn). However as Gn consists of orthogonal semicircles X{Gn) ^ n
dia (Gn). Summing over the components of En^x gives

Thus we prove Lemmas 7, 8 and complète the proof of Corollary 1.
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The necessary part of Corollary 2 is derived from using the real line as our
curve L. In this symmetric situation f~*(U) is Ug T(d3f).

Corollary 3 follows immediately from

LEMMA 9. With the notations above if Q is a hyperbolic planar domain then

L

TeG xr=?fc/ &apos; TeG

where C is a universal constant.

Proof To see this we will associate to each side of 2) and the T(®)&apos;s an
élément R e G in a 1-1 fashion and in such a way that if z e s then p(z, R(0)) ^
p(z, 0), where p dénotes hyperbolic distance in D. This is enough because then s

is contained in a euclidean disk of radius (iî(O)l&quot;1 (1 - |/?(0)p)1/2 and so

So consider the side s. It séparâtes two contiguous images of 2), say A(3)),
B(3) with A, B e G.

The transformations {7^} in G which pairwise identify the sides of 3) generate
G and in fact since Q is planar G is freely generated by the {Tt}.

Now A B o To for some generator 7^ so that if B Tn ° • • • ° Tx is a reduced
word then the word length of A is n -1 or n +1 according to Tx Tôl or
7i ¥= Tô1. Changing the rôles of ^4 and B we may assume that the latter case

occurs and to s we associate A Tn ° • • • «&gt; 7i ° To. Notice that i4 7J,°*&apos;*o7i°7î)

détermines 5 by being the side separating Tn ° • • • ° Tv{3)) from A(S). Finally
s c &amp;4(2&gt;) and so for each z e s p(z, A(0)) &lt; p(z, 0).
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