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Le groupe de Witt d&apos;une surface réelle

Ghazi Ayoub

Introduction

En 1976, M. Knebusch a posé le problème suivant: Soit X un schéma de type
fini sur R. Est-ce que le groupe de Witt de X est de type fini? Dans le cas d&apos;un

schéma de dimension 1, une réponse affirmative a été donnée par Knebusch
lui-même pour X lisse [18], et par G. Dietel pour X quelconque [7]. Dans ce

résumé de ma thèse (Lausanne 1985), je traite le cas affine X spec A. Je

démontre le résultat suivant:

THÉORÈME. Si A est de dimension 2 et si le conoyau de Y\cA-+ PicÂ {À le

normalisé de A) est de type fini, W(A) est aussi de type fini (§11). En particulier si
A est normal de dimension 2, W(A) est de type fini.

Je donne ensuite des exemples de surfaces réelles non normales dont le

groupe de Witt n&apos;est pas de type fini (§11).

§1. Préliminaires

Soit A un anneau commutatif unitaire dans lequel 2 est inversible. Soit V(A)
la catégorie des A-modules projectifs de type fini. Une forme quadratique sur
M e V(A) est une application q:M-^A telle que:

i) q(kx) X2q(x) pour tout x e M, XeA,
ii) bq(x, y) \[q{x + y) - &lt;?(•*) ~ 900] définit une forme bilinéaire symétrique

bq:MxM-+A.
Soit dq:M-*M* HomA{M, À) Fhomomorphisme défini par dq{x)(y)

Bq{x, y). Si dq est bijectif, q est dite non-dégénérée, et le couple (M, q) est appelé
un espace quadratique sur A.

Une isométrie entre deux espaces quadratiques (MXyqx) et (M2, q2) est un
&apos;.Aft-^i^ tel que q2(f(xl)) ql(xl) pour tout xxeMA. On note
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Le groupe de Witt d&apos;une surface réelle 75

Notons Quad A la catégorie ayant pour objets les espaces quadratiques sur A
et pour morphismes les isométries. Sur Quad A on définit la somme orthogonale
par (Mx, qx) 1 (M2, q2) (Mx © Af2, q) où q(xx ®x2) qx(xx) + q2(x2) et le produit

tensoriel &lt;8&gt; par {Mx, qx) ® (Af2, #2) (Afi &lt;8U M2, q) où ^(xj ® jc2)

&lt;7i(*i) • ^2(^2) pour tout xt e Mt. Pour tout P e V(A) soit H(P) l&apos;espace

quadratique (P®P*, dp) où dp(x(Bf)=f(x). L&apos;espace H(P) est dit hyperbolique.
Posons W(A) /C0(Quad y4), le groupe de Grothendieck de Quad A ([2], chap.
7). Le produit tensoriel des espaces quadratiques induit sur W(A) une structure
d&apos;anneau commutatif. Soit H(A) l&apos;idéal engendré par les éléments de la forme

[H(P)] - [H(Q)] avec Py Q e P(A). L&apos;anneau W(A) W(A)/H(A) est appelé
Vanneau de Witt de A. La classe dans W(A) de l&apos;espace (M, q) est notée

{(M, q)}. Tout homomorphisme d&apos;anneaux f:A—&gt;B induit un homomorphisme

/* : W(A)-+ W(B) défini par /*{(M, q)} {(M ®AB,q® B)}, où (q ® B)(x ®
6) =f{q{x)) - b2 pour tout xeM, b e B. Dans la suite, .4 désigne toujours une
algèbre affine sur le corps M des réels.

§2. Réduction du cas général

Puisque A est noethérien, il est produit fini d&apos;anneaux Ax x • • • xAn où les

seuls idempotents de At (l^i^n) sont 0,1. Puisque W(AX x • • • xAn) -
W{AX) x • • x W(An), il suffit de traiter le cas où les seuls idempotents de A sont
0 et 1. Ceci revient à supposer que spec A est connexe. En particulier le rang de

tout P e V{A) est bien défini.
Soit Aréd A/N où N est le nilradical de A. En vertu de ([25], corol. 23, p.

270), l&apos;homomorphisme canonique W(A)-+ W(ATé(i) est bijectif. On peut donc

supposer que A est réduit.

THÉORÈME 2.1. Soit S&quot;1 A l&apos;anneau total des fractions de A où S est
l&apos;ensemble des éléments non diviseurs de zéro, et soit À la fermeture intégrale de A
dans S~l A. Vanneau S&quot;1 A est produit direct d&apos;un nombre fini de corps K,

(l^i^s) et À est produit direct de sous-anneaux intégralement clos A[ de Kt

Preuve. ([4], chap. IV, §2, no. 5, prop. 10 et chap. V, §1, no. 2, corol. 1 de la

prop. 9.)

Dans la suite on gardera les notations suivantes:
(£= {a eA/aÀcA} est le conducteur de À dans A,i\A-*Â est l&apos;injection
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canonique,
A c-U À

¦i 1*

est le diagramme commutatif où / induite par i et y, k sont les surjections
canoniques. De plus, K désignera toujours le corps des fractions de A quand
celui-ci est intègre. Pour tout groupe abélien G on notera 2G le sous-groupe des

éléments d&apos;ordre &lt;2.

§3. Les invariants classiques

a) Uhomomorphisme rang
Le rang de tout espace hyperbolique est pair. L&apos;homorphisme p: W(A)-*Z/

2Z défini par: p{(M, q)} rang M modulo 2 est donc un homomorphisme
d&apos;anneaux qu&apos;on appelle le rang. Le noyau de p est noté I(A).

b) Le discriminant
Le produit tensoriel de deux espaces quadratiques de rang 1 est aussi de rang

1. Le carré d&apos;un tel espace est isométrique à l&apos;espace unité (A, m) où

m:A XA-+A est la multiplication. Donc l&apos;ensemble des classes d&apos;isométries des

espaces quadratiques sur A de rang 1 possède une structure de groupe abélien
d&apos;exposant 2. On le note Q(A). Soit (Af, q) un espace quadratique de

rang r • Posons d(M, q) (ArM, (-l)r(r-1)/2Ar&lt;?) où

Arq(xxA- • - Axr) dét(Bq(xn x;)). Le discriminant de (M,q) est la classe de

d(M, q) dans Q(A). Le discriminant d&apos;un espace hyperbolique est trivial, mais d

ne définit pas un homomorphisme de groupes de W(A) dans Q(A). Seulement la

restriction de d à I(A) est un homomorphisme, appelé le discriminant.

c) Uinvariant de Clifford
Soit (Af, q) 6 Quad 4 Notons T(M ~A® M @ M &lt;8&gt; M ® - • • l&apos;algèbre ten-

sorielle de M. Soit J(q) l&apos;idéal engendré par les éléments x ® x - q(x) pour tout
xeM. L&apos;algèbre de Clifford de (M, q) est C(M, q) T(M)/J(q). La Z/2Z-
graduation T(M) T(M)+ 0 T(M)~ où T(My 0o M®2w et T(M)&quot;

e« M®2**1 induit une Z/2Z-graduation C(M, q) C(M, q)+ 0 C(M, &lt;?)-.

Soit Br(A) le groupe de Brauer de A ([1] ou [20]). Considérons l&apos;application
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a) : W(A)-+ 2Br(A) qui est donnée par

(0 {la
classe [C(M, q)] e Br(A) si rang M est pair

la classe [C(M, q)+] e Br{A) si rang M est impair.

En général, co ne définit pas un homomorphisme de groupes, mais si on restreint
o) au sous-groupe D(A) Ker (d:/(/!)—&gt; 6(^4)), on obtient un homomorphisme.
La classe (y {(M, #)} est appelée l&apos;invariant de Clifford de (M, q).

d) La signature totale
Un ordre sur K est un sous-ensemble £ de K tel que £ + £&lt;=£, E EcE et

tel que # soit la réunion disjointe de £, -E et {0}. Soit (M, q) e Quad /C et soit
/x, lr une base orthogonale de (M, #). La signature de (M, g) par rapport à

l&apos;ordre E est aE(M, q) nombre des #(//)€ ZT-nombre des q{lt)e-E. Par un
théorème de Sylvester, oE(M, q) ne dépend pas du choix de la base orthogonale.
Puisque la signature d&apos;un espace hyperbolique est zéro, oE définit un
épimorphisme d&apos;anneaux oE\W(K)-*&gt;Z. Réciproquement, tout épimorphisme
d&apos;anneaux W(^)-»Z coincide avec oE pour un ordre unique E de K ([19], chap.
5, th. 5.3). L&apos;homomorphisme YlEoE: W(K)-+HEZ (où E parcourt l&apos;ensemble

des ordres sur K) est appelé la signature totale de K. Par exemple, si K M, le
seul ordre est E R+ — {0} et aE est un isomorphisme.

Sur Ay une signature est par définition un épimorphisme d&apos;anneaux:

W(A)-»Z • Soitv4(IR) {m e Specm A \ A/m R}. La composition om : W(A)-&gt;

W(A/m) W(U)-^Z définit une signature sur A pour tout meA(U). Soient

Yi, • • Yr les composantes connexes de A(U). En vertu de ([17], chap. 5, §2),
les seules signatures sur A sont oïy. or où at omi pour m, e y,-.

L&apos;homomorphisme at x • • • x ar : W(A)-&gt; 1! est la signature totale de A.

§4. Recollements d&apos;espaces quadratiques

Considérons le diagramme cartésien décrit au §2.

A C-J~* À

i
Soient (g^ ^j) € Quad^4, (Q2, q2) e Quadi4/(£ et soit / une isométrie de

Môi&gt;9i) sur /*(Ô2^2)- Notons Af((Qt, ^0, (Q2, q2),f) ou simplement
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x, Q2,f) l&apos;ensemble des couples (jc,, x2) e Qx x Q2 tels que /(&amp;*(.*,))

/*(jc2)- Le groupe M{QXf Q2,f) est un &gt;4-module projectif de type fini avec
l&apos;action suivante de A:a(xu x2) (i(a) • xuj(a) • x2) ([21], §2). On peut munir
M{Qx,Q2,f) d&apos;une forme quadratique non-dégénérée q(f), définie par
q(f)(xïyx2) a où a est l&apos;unique élément de A tel que i{a) — qx(x\) et

j(a) q2(x2). Les lemmes suivants sont bien connus dans le cas linéaire ([21], §2).
Le cas quadratique en résulte facilement.

LEMME 4.1. Soit (Qy q) e Quad A Notons Id Visométrie entre k*(i*(Q, q))
et /*(/*(£?&gt; #))• L&apos;application xt-*(i*(x), /*(*)) induit une isométrie de (Q, q) sur
M(i*{Q)yj*(Q)yld). En particulier, H(An) et M(H(Ân), H(A/iîn)y Id) sont
isométriques.

LEMME 4.2. Soient (Qly qx)y (Q[y q\) e Quad^ et (Q2, q2), (Q2, q2) e

QuacM/lS. L&apos;application ((xu x2)y {x\y jc2))«-&gt;((jc,, x\)y (x2y x2)) induit une
isométrie de M(QU Q2y f) 1 M{Q\y Q2yf) sur M(Q, 1 Q\y Q2 1 Q2y f 0/&apos;). D

LEMME 4.3. Pour tout f eO2n(Â/&amp;) et e e EO2n(Â/&lt;S)y on a une isométrie
M(H(Ân), H(A/$n)y foe)-^M(H(Àn)y H(A/£n),f). D

LEMME 4.4. Soit O(Â/(Î) lim O2n(À/(î), la limite étant prise par rapport
aux applications suivantes:

~*

a4

\ Q,

i) Pour tout a e O2n(Â/ii)y on a une isométrie:

M(H(Àn)y H(A/iin)y a) 1 M(H(Àm)y H(A/iîm)f Id)

n+m), H(A/i£&quot;+m), a&apos;).

ii) Pour tout a e O2n(À/&amp;) et p è O2m(Â/&amp;) on a

{M(H(Àn+m)y

{M(H(Ân)y H(A/iïn), a)}

où {(Af, q)} désigne la classe de (Af, q) dans le groupe de Witt de A. D
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§5. Le groupe de Witt d&apos;une R-algèbre affine régulière A de dimension ^2

En vertu du théorème 2.1, A est produit direct d&apos;un nombre fini d&apos;anneaux

réguliers intègres. On peut donc supposer que A est intègre. Soit (X, Ox) un
schéma et Gm le faisceau des unités. Soit /i2 le sous-faisceau des racines carrées de
l&apos;unité. Considérons la suite de Kummer 0-» ju2—»Gm^»Gm—»0. Cette suite est

exacte en topologie étale ([20], p. 66). On en déduit une suite exacte longue

PROPOSITION 5.1. Soit X SpecA // existe un isomorphisme de suites

exactes

HUX, Gm) -£-* H%(X, Gm) &gt; Hlét(X, ,i2)

* u(A) —2—
UX, Gm) -U Hlt(X, Gm)

\i îf
Pic&gt;l &gt; PicA

Preuve. [20], pp. 123-126.

PROPOSITION 5.2. //],(Spec4, //2) 5e juryecte 5wr 2Pic4 et H&amp;SpecA, ju2)

surjecte sur 2Br(A).

&gt; HUX M2) ^ Hi(X Gm) -^ Hlét(Xf Gm) H2ét(X, fi2)

Pic A —* PicA

Hl(X, Gm) ^- HUX, Gm)

Preuve. On a le diagramme commutatif (avec la première ligne exacte) où les
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deux dernières flèches verticales sont des isomorphismes ([11], p. 76). D&apos;où la

conclusion.

PROPOSITION 5.3. Soit X une variété lisse sur R et F un faisceau sur Xy fini
et localement constant Alors Hlét{X, F) est fini pour tout i.

Preuve. Puisque l&apos;extension M &lt;-&gt;C est étale, la variété X&apos; X xRC est lisse

([20], chap. 1, §3). En vertu de ([30],exp. 16, th. 5.2), Hlét{X, F) est fini. Soit

n\XXRC—*X la première projection. C&apos;est un revêtement galoisien de groupe
de galois G {1, o) où a est l&apos;automorphisme induit par la conjugaison
complexe. D&apos;après ([20], chap. 3, th. 2.20), il existe une suite spectrale de

Hochschild-Serre :

&apos;, F)) ^&gt;En Hpé;\X, F).

Soit £&apos;D£i)D£iD-&apos;o£;+1 0une filtration de El telle que E&apos;j/E&apos;J+1 ££&apos;~y

pour tout Q^j^i, Pour démontrer que El est fini, il suffit de démontrer que les

£oo sont finis. Il suffit donc de démontrer que tous les Ep2q sont finis. Or,
G Z/2Z est cyclique et H%(X&apos;, F) est fini. On en déduit que Ep2q est fini.

COROLLAIRE. Les groupes H\t(Spec A, fi2) et H%(SpecA, [i2) sont finis.
En particulier, Q(A), 2PicA et 2Br(A) sont finis. Ces résultats restent valables si

on remplace A par une variété réelle lisse.

Soit maintenant ox x • • • x or\ W(i4)—&gt;Zr la signature totale de A. Notons
N(A) le noyau de l&apos;homomorphisme d x (signature totale): I(A)^&gt;Q(A) xZr.
L&apos;invariant de Clifford définit un homomorphisme: N(A)-*2Br(A) ([1], chap. 2).

PROPOSITION 5.4. Si la dimension de A est 1, les espaces quadratiques sur
K sont déterminés par p, d et la signature totale.

Preuve. Puisque le degré de transcendance de K sur R est 1, K(\/-l) est un

corps Q. En vertu de ([8], corol. 2.11), I2K est sans torsion. Dans ce cas, les

espaces quadratiques sur K sont déterminés par p, d et la signature totale ([9], th.
2). D

THÉORÈME 5.5. Pour toute M-algèbre affine régulière A de dimension 1,

W(A) est de type fini.

Preuve. Soit i+\I(A)-*l{K) l&apos;homomorphisme canonique injectif ([1], chap.
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I, prop. 4.10). Toute signature o:W(K)-*Z de K induit une signature

a°/*: W(A)-*Z de A. Mais on a un nombre fini de signatures sur A. Soient

aïf... os les signatures de A qui sont induites par celles de K. On peut donc
définir un homomorphisme / qui rend commutatif le diagramme suivant:

-1 J 1&apos;

KK) dxslgn totaie de K&gt; Q(K) x I1Z

En ventu de la proposition 5.4, la deuxième flèche horizontale est injective. Donc
I(A) s&apos;injecte dans Q(A) x Zs qui est de type fini.

PROPOSITION 5.6. Si la dimension de A est 2, les espaces quadratiques sur
K sont déterminés par p, d, signature totale et Vinvariant de Clifford w.

Preuve. Puisque le degré de transcendance de K sur IR est 2, K(y/— 1) est un
corps Q. On en déduit que I3K est sans torsion ([8], corol. 2.11). Dans ce cas, les

espaces quadratiques sur K sont déterminés par p, d, signature totale et (o ([9],
th. 3).

THÉORÈME 5.7. Pour toute U-algèbre affine régulière A de dimension 2, le

groupe W(A) est de type fini.

Preuve, comme dans le théorème 5.5, on a un diagramme commutatif:

^ QiA)xF
-1 i I&apos;

I(K) ¦ &gt; Q(K) x nzv 7 d x sign totale de K 7

où i* est l&apos;homomorphisme canonique injectif ([22], th. 17). Notons N(A) (resp.
N(K)) le noyau de la première flèche horizontale (resp. la deuxième flèche

horizontale). Considérons le diagramme commutatif:

N(A) -a* 2Br(A)

N(K) -ï-&gt; 2Br(K)

Par la proposition 5.6, la deuxième flèche horizontale est injective. Donc N(A)
s&apos;injecte dans 2Br(A) qui est fini, d&apos;où la conclusion puisque Q(A) est fini.
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§6. Le groupe de Witt d&apos;une R -algèbre affine A de dimension ^1

LEMME 6.1. Soit A une R-algèbre affine de dimension 0. Le groupe de Witt

W(A) est de type fini.

Preuve. L&apos;aftneau A, étant réduit, noethérien et de dimension 0, est un
produit fini d&apos;extensions finies de IR, ce qui veut dire que A -^ Up x Cq. Comme

W(U) Z et W(C) Z/2Z ([19], chap. 2), le théorème en découle.

Dans la suite de ce paragraphe, supposons que la dimension de A est 1. Il
s&apos;ensuit que la dimension de À est 1 et que celle de A /S et de Â/fë est nulle.
Considérons le diagramme cartésien:

A &lt;^u A

i 1*

AffS. c-f-* À/fS,

PROPOSITION 6.2. Pour tout x e Ker (i, ©/„ : W{A)-» W(Â) 0 W(A/&lt;£)),

il existe (M,q)eQmdA, p e¥(Â) et QeV(A/&amp;) tels que x est la classe de

(M, q), i.(M, q)^H{P) etj*(M, q)=*H(Q).

Preuve. Soit x {(M,, &lt;?,)} e Ker i* ©/». Il existe Pu P2e P(Â) et Qu Q2 e

P(i4/S) tels que /«(M,, qt) 1 H(Pl)^H(P2) et }AMx,qï)LH{Qï)^H{Q2).
Soit P[eV(À) tel que P[®P^Â&quot; et soit Q[eV(A/&amp;) tel que Q&apos;^Q&apos;^AI

@m. Posons

(M, q) (Mu qt) 1 H(A&quot;) 1 H(Am),

À et Q Q\

Les assertions de la proposition sont alors vérifiées. D

PROPOSITION 6.3. Pour tout x e Ker (»&apos;„ ©/„), il existe 6 e O2(À/&amp;) tel que
x {(M(H(À), H(A/(S), 6),

Preuve. D&apos;après la proposition précédente, il existe (M, q)eQvaAA, Pe
V(Â) et Qer(A/£) tels que (M, q)^M{H{P), H(Q), Id). Soit In le rang de

M. Puisque A/&amp; et ^4/6 sont de dimension 0, ils sont semi-locaux. Il existe
donc un isomorphisme a:P®ÀÂ/&amp;:::*A/&amp;&quot;®A/VLÂ/&amp; Q®AnsÂ/&lt;S.. Notons S

le ^4-module projectif M{P, A/&amp;&quot;, a), et soit R e ¥(A) tel que R © S^Am. On a

(M, q) ± H(R)z*M(H(Àm), H(A/&amp;m), 6t) où 0, e O2m(Â/&lt;£). En vertu de ([34],
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th. 28), on a O2m(Â/6) O2(À/Œ) x EO2m(À/&amp;) pour tout m 2*2. Donc 0!
0°£ où 6eO2(Â/&amp;) et Ee£O2m(Â/S). D&apos;après le lemme 4.4, {M(//(Âm),
//(A/6m), do£)} et {M(//(^2), //04/S2), 0)} sont égales, d&apos;où la
conclusion.

PROPOSITION 6.4. Soit a e U(À/Œ). Si 0 (* °_\ la classe de l&apos;espace

\0 a /
M(H(Â), H(A/&amp;), 0) est nulle dans W(A).

Preuve. D&apos;après ([34], lemme 1.1.), la matrice

(a
0 0 0\

0 10 0

0 0 a~l 0

0 0 0

appartient à EO4(Â/^). Si on applique le lemme 4.3 avec/ /d et e 0&apos;, on
trouve que M(H(Â2), H(A/&amp;2), 0&apos;)-=&gt;M(H(À2), H(A/&amp;2), Id)^H(A2). Par
le lemme 4.4, M(H(Â), H(A/&lt;&amp;), 8) 1 H(A) et M(H(À2), H(A/&amp;2), 6&apos;) sont
isométriques, d&apos;où la conclusion.

THÉORÈME 6.5. Le noyau de /* ©y* est fini.

Preuve. Soit jceKer^©/^). Il existe, par la proposition 6.4, deO2(Â/&amp;)

tel que x {Af(//(i4), H(A/JÏ), 9)}. En vertu de ([3], prop. 4.4.1), O2(À/&amp;)^

H2(À/(£) x Z2(i4/(£) où H2(Â/(Î) est le sous-groupe engendré par les éléments de

la forme -i et 22(^4/C£) est le groupe des fonctions localement constantes

de Spec,4/(£ dans Z/2Z. D&apos;après le lemme 4.4, pour tout or, p e O2(^/(S),
{A#(//(i4), if(i4/S), oro^)} {M(H(À)9 H(A/i£), a)} + {At(H(À), H(A/ii)9 P)}.
Si aeH2(À/&amp;), {M(H(À), H(A/(Î), a)} est nulle par la proposition 6.5. De
plus, Z2(À/iS) est fini car Â/(i est noethérien, d&apos;où la conclusion.

THÉORÈME 6.6. Le groupe W(A) est de type fini.

Preuve. D&apos;après le théorème 2.1, À est produit direct d&apos;un nombre fini
d&apos;algèbres affines intégralement closes. Donc, par le théorème 5.5, W(Â) est de

type fini. En vertu du lemme 6.1, W(A/ii) est de type fini. D&apos;où la conclusion en
utilisant le théorème précédent.
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§7. Le groupe de Picard d&apos;une R -algèbre affine régulière A

Soit X SpccA et Y une variété projective réelle contenant X et dans

la-quelle X est un ouvert. En vertu de ([15], Main th. 1, p. 132), on peut supposer
que Y est lisse. Notons Y&apos; YxRC. Puisque R &lt;^&gt;C est étale, Y&apos; est une variété
lisse. Soit Jt\ Y&apos;—» Y la première projection. L&apos;application n est un revêtement
galoisien ([20], p. 43-44) de groupe de Galois G {1, o}.

THÉORÈME 7.1. On a une suite exacte:

1 -* Pic Y-&gt; (Pic Y&apos;)G -* Z/2Z(ou Z/2Z x Z/2Z).

Preuve. En vertu de ([20], chap. 3, th. 2.20), il existe une suite spectrale
Hft(G, HUY&apos;, Gm))=&gt;//r«(Y, Gm).

En particulier, on a la suite exacte:

0-^HlXG, mt(y&apos;, Gm))-&gt;Hlt(Y, Gm)

&apos;, Gm)).

Puisque Y&apos; possède au plus deux composantes irréductibles, H^t(Yr, Gm) C*(ou
C*xC*). D&apos;où la conclusion, car H\t{Y&apos;, Gm) Pic Y&apos; et H\t(Yy Gm)
Pic Y. D

THÉORÈME 7.2. Pic Y&apos; contient un sous-groupe Pic0 Y&apos; qui est isomorphe à

CIL où L est un réseau de Crt. De plus, le groupe NS(Y&apos;) Pic Y&apos;/Pic0 Y&apos; est de

type fini.

Preuve. [13], App. B, §5.

PROPOSITION 7.3. Le groupe Pic Y&apos; est la somme directe de Pic0 Y&apos; et de

NS(Y&apos;).

Preuve. Le groupe Pic0 Y&apos; est divisible, il est donc un Z-module injectif ([14],

p. 31, th. 7.1). Il s&apos;ensuit que la suite

1 -* Pic0 Y&apos; -* Pic Y&apos; -* NS(Y&apos;)~* 1 est scindée.

Dans la suite, on aura besoin de quelques propriétés des groupes divisibles et

dont les preuves sont faciles.
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LEMME 7.4.

i) Tout quotient d&apos;une groupe divisible est divisible;
ii) Une somme directe ou un produit direct de groupes est divisible si et seulement

si chaque composante est divisible;
iii) Un groupe abélien non trivial de type fini n&apos;est jamais divisible;
iv) Dans un groupe abélien, toute somme d&apos;un sous-groupe divisible D et d&apos;un

groupe de type fini est une somme directe de D et d&apos;un groupe de type fini;
v) Tout quotient d&apos;une somme directe d&apos;un groupe divisible et d&apos;un groupe de

type fini (resp. fini) est la somme directe d&apos;un groupe divisible et d&apos;un groupe
de type fini (resp. fini);

vi) Soit o Nrc- - - cz Nt+i czNxCz- • • czN0 N une filtration d&apos;un groupe
abélien N. Si pour tout i, Nt /Nl+1 est divisible, N l&apos;est aussi.

vii) Soit 0—»G1-»G—»G2—&gt;0 une suite exacte de groupes abéliens. Si Gx est la

somme d&apos;un groupe divisible et d&apos;un groupe fini et si G2 est la somme d&apos;un

groupe divisible et d&apos;un groupe de type fini, alors G est la somme (directe)
d&apos;un groupe divisible et d&apos;un groupe de type fini. Si G est la somme d&apos;un

groupe divisible et d&apos;un groupe de type fini et si G2 est fini, alors Gi est la

somme d&apos;un groupe divisible et d&apos;un groupe de type fini.

PROPOSITION 7.5. Le groupe (Pic Y&apos;)G est la somme directe d&apos;un groupe
divisible et d&apos;un groupe de type fini.

Preuve. Puisque NS(Y&apos;) est de type fini, il suffit, d&apos;après le lemme 7.3, de

vérifier l&apos;assertion pour (Pic0 Y&apos;)°.

En effect, Pic0 Y&apos; Cn/L et o est un automorphisme continu du groupe de Lie
réel Cn/L. En vertu de ([33], chap. 2), il existe un unique automorphisme à du

groupe de Lie réel Cn qui rend commutatif le diagramme

CT/L —? CT/L

où FI est le revêtement universel de Cn/L. Comme à est continue, il est

R-linéaire, et de plus, Ô2 ld et a(L) L. D&apos;après ([6] ou [32]), on a trois
représentations entières non-décomposables du groupe {id, ô}: la représentation
triviale, celle donnée par le signe et la représentation régulière. Par un
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changement de base dans le réseau L, à peut donc s&apos;écrire sous la forme:

0
i

1

0

0
1

1

0

Soit {lt}T=\ U {fj}j=\ U {gkf hkyk=i la base choisie de L. La condition â(x)
x e L revient à dire que

x £ atlt + + +
/=!

^€^,^6^1, ykeU et ô^elR

avec y^ - ôk dans Z. Donc (Cn/L)° est isomorphe à (R/Z)m x (^Z/Z)r x (R/Z)\
Mais IR/Z est un groupe divisible et ^Z/Z est fini, d&apos;où la conclusion.

PROPOSITION 7.6. Le groupe Pic 7 #sf la somme directe d&apos;un groupe
divisible et d&apos;un groupe de type fini.

Preuve. Considérons la suite exacte:

1-» Pic Y-+ (Pic Y&apos;)G~* Z/2Z(ou Z/2Z x Z/2Z).

D&apos;après la proposition 7.5, (Pic Y&apos;)a est la somme directe d&apos;un groupe divisible et
d&apos;un groupe de type fini. Le lemme 7.4 (vii) nous permet alors de conclure.

THÉORÈME 7.7. Pour toute U-algèbre affine régulière A, le groupe Pic A est

la somme directe d&apos;un groupe divisible et d&apos;un groupe de type fini.
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Preuve. Soit Y une variété projective lisse sur R dans laquelle X est un
ouvert. En vertu de ([5], th. 3.4), l&apos;homomorphisme canonique Pic Y-» Pic X est

surjectif. D&apos;après la proposition 7.6, Pic y est la somme directe d&apos;un groupe
divisible et d&apos;un groupe de type fini. Le théorème découle donc du Lemme
7.4(v).

§8. Le groupe de Picard d&apos;une [R-algèbre affine A de dimension 1

Considérons à nouveau le diagramme cartésien suivant

A c-±-&gt; À

Comme la dimension de A est 1, celle de À est 1, celle de A/i£ et de À /S est
nulle. Il s&apos;ensuit que PicA/fë Picyï/(£ 1. La suite exacte de Mayer-Vietoris
([2], chap. 9, th. 5.3) devient:

où &lt;pi(u © v) ^(u)&quot;&quot;1 • l(v). Cette suite induit une suite exacte:

Soient mly. mn les idéaux maximaux de A qui contiennent (£ et soient

mx,. mr ceux de À qui contiennent S. En vertu de ([4], chap. 4, §2), il existe
des familles (ÔK)),=i, ,n et (e(my))/=1, ,r telles que (£ Q ÔK) Q Ô(m;),
m, 3 ô(tt*i) 3 m?1 et m; =&gt; g(my) 3 m;n&apos; pour certains entiers n, et ny ^ 1.

PROPOSITION 8.1. On obtient un diagramme commutatif de la forme:

* A/Q, ~^ A/Hm, -^ R* x C1&quot;*

1- i
À ÀIC\m, -^-+ Ms x C&quot;&quot;r

où h, h, g et g sont des épimorphismes. O
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PROPOSITION 8.2. Les anneaux A/S et À/&amp; sont des M-espaces vectoriels

de dimension finie.

Preuve. A/f\m&quot;1 est isomorphe à H, A/m?. Le seul idéal premier de

A/fXm?&apos; est m,/m?1. Il existe donc une filtration de A/m?&apos; à quotients
isomorphes à R ou C. On en déduit que A /m? est un R -espace vectoriel de

dimension finie. L&apos;épimorphisme h nous permet de conclure. Le même raisonnement

s&apos;applique sur Â/S.

LEMME 8.3. Soitf:C^»B un épimorphisme d&apos;anneaux, tel que le noyau de f
soit inclus dans Vidéal n(C) des éléments nilpotents de C. La restriction U(f) de f
aux groupes des unités est surjective et Ker U(f) 1 + Ker /.

Preuve. C&apos;est une vérification facile.

LEMME 8.4. Si on applique le lemme 8.3 au diagramme de la proposition 8.1,

on obtient le diagramme commutatif:

i i i
1 + n(i4/6) c—&gt; U(À/&amp;) —» R*5 x C*r~s a

LEMME 8.5. Les deux groupes 1 + n(A/(S) etl + n(Â/E) sont divisibles. De

plus, on a 2(1 -f n(A/Œ)) 2(1 + n(À/(£j) 1.

Preuve. Puisque Al$&amp; est noethérien, il existe m e N tel que (n(A/S))m 0.

Considérons la filtration 1 + n(A/Œ) =&gt; • • • 3 1 + (n(A/(£))m 1. Pour tout i
l,...,m — 1, on a des isomorphismes

Par la proposition 8.2, ce dernier groupe est un R-espace vectoriel de dimension

finie, d&apos;où la conclusion. Le même raisonnement s&apos;applique à 1 + n(Â/(£).

PROPOSITION 8.6.

i) Les deux groupes 2U(A/$) et 2U(À/&amp;) sont nuls.

ii) U(A/&amp;) et U(Â/(&amp;) sont chacun somme directe d&apos;un groupe divisible et
d&apos;un groupe fini.

Preuve. C&apos;est une conséquence des Lemmes 8.4 et 8.5.
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PROPOSITION 8.7. Soit G un groupe abélien tel que le groupe 2G soit de

type fini (resp. fini), et soit S un sous-groupe de G. Si S est la somme directe d&apos;un

groupe divisible D et d&apos;un groupe de type fini T, le groupe 2(G/5) est de type fini
{resp. fini).

Preuve. D&apos;après ([14], chap. 3, th. 5.3), la suite 0-*S-»G-»G/S-»0 induit
la suite exacte:

0-»Homz (Z/2Z, S)-+ Homz (Z/2Z, G)-+Homz(Z/2Z, G/S)

-*Extz(Z/2Z,S)-*---.

Identifions 2G avec Homz(Z/2Z, G) et 2(G/S) avec Homz(Z/2Z, G/5). Il suffit
de démontrer que Extz (Z/2Z, 5) Extz (4(Z/2Z, D) 0 Extz (Z/2Z, T) est de

type fini. Puisque D est divisible, Extz(Z/2Z, D) 0. Soit j3:Z&quot;-»r un
épimorphisme. On en déduit un épimorphisme B3|c:Extz(Z/22, Zn)-»Extz(Z/
2Z,T) ([14],p. 105). Mais Extz(Z/2Z,Zrt)^(Extz(Z/2Z,Z))n^(Z/2Z)n, d&apos;où,

d&apos;où la conclusion.

LEMMA 8.8. Le groupe U(À) est la somme directe d&apos;un groupe divisible et
d&apos;un groupe de type fini.

Preuve. En utilisant le théorème 2.1, on peut supposer À intègre. En vertu de

([28], Lemme 1), on a la suite exact:

où T est un groupe de type fini et k la clôture algébrique de R dans À. Mais
k R ou C. Le lemme 7.4(vii) nous permet alors de conclure.

THÉORÈME 8.9 Le groupe 2Pic4 est fini.

Preuve. Considérons la suite exacte:

D&apos;après le théorème 2.1, À est produit direct fini d&apos;algèbres affines intégralement
closes. Donc, par le corollaire de la proposition 5.3, J?\cÀ est fini. En vertu de la

proposition 8.6, 2U(Â/&amp;) est nul et U(A/d) est la somme directe d&apos;un groupe
divisible et d&apos;un groupe fini. De même, par le lemme 8.8, le groupe U(À) est la



90 GHAZI AYOUB

somme directe d&apos;un groupe divisible et d&apos;un groupe de type fini. On en déduit de

la proposition 8.7 que le groupe

est fini, d&apos;où la conclusion.
\l(U{A/&lt;£))-k((U(A))

THÉORÈME 8.10. Le groupe YicA est la somme directe d&apos;un groupe
divisible et d&apos;un groupe de type fini.

Preuve. Considérons la suite exacte:

Par la proposition 8.6, U(À/($) est la somme directe d&apos;un groupe divisible et d&apos;un

groupe fini. Par le théorème 7.7, Pic&gt;4 est la somme directe d&apos;un groupe divisible
et d&apos;un groupe de type fini. D&apos;où la conclusion en utilisant le lemme 7.4(v) et

(vii).

PROPOSITION 8.11. Le groupe Pic ,4 /(Pic ,4)2 est fini.

Preuve. On a Pic A D © T où D est divisible et T est de type fini. Puisque
D D2 et T/T2 est fini, l&apos;assertion est vérifiée.

§9. Le groupe de Witt d&apos;une R -algèbre affine normale A de dimension 2

Soit A une R-algèbre affine normale de dimension 2. Nous allons montrer que
le groupe W(A) est de type fini. En vertu du théorème 2.1, on peut supposer que
A est intègre de corps des fractions K.

Pour tout anneau normal /?, soit Cl (R) son groupe des classes de diviseurs

([10], §6).

THÉORÈME 9.1. Le noyau de Vhomomorphisme canonique

BrO4)^Br(tf) s&apos;injecte dans ]\ StT^&apos;

meZ^l \Am)

où Z est Vensemble fini des idéaux maximaux singuliers de X Spec A et A% est le

hensélisé strict de Am ([26], chap. 8).
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Preuve: Soit Rx le faisceau des fonctions rationnelles inversibles sur X.
Notons Div^ le faisceau des diviseurs de cartiers. En vertu de ([11], exp. 5, prop.
1), la suite exacte de faisceaux 0-»Gm-»i?£—»Div;r—&gt;0 induit une suite exacte
de cohomologie étale:

Divx)-»H2ét(X, Gm)-^H2ét(Xf Rx)

D&apos;après ([11], exp. 5, p. 74),

Hl(X, Div^) s&apos;injecte dans U ^^U ^meZ FlC Um

où Um Spec Am - {m} et U% Spec A% - {mA^}. Par ([20], chap. 4, th. 2.5),
Bx{A) s&apos;injecte dans H%(X, Gm). Il suffit donc de démonter que Pic 1)*% et

Cl(,4£) (resp. Pic Um et Cl(Am)) sont isomorphes. D&apos;après ([12], chap. 4, corol.
18.8.13), A% est normal (et de dimension 2). De plus, pour tout P e Specv4^ de

hauteur 1, (A^)p est factoriel. Il s&apos;ensuit que Pic (/£ et Cl (A^) sont isomorphes
([12], chap. 4, prop. 21.6.12). Le même raisonnement s&apos;applique à Am.

PROPOSITION 9.2. Vanneau B =A &lt;8&gt;UC est normal de dimension 2. Le
nombre d&apos;idéaux maximaux de B au-dessus d&apos;un idéal maximal m de A est 1 ou 2.

Si m&apos; est un idéal maximal de B au-dessus de m, mAm • Bm&gt; ~m&apos;Bm&gt;.

Preuve. Pour la première assertion, on peut se reporter à ([20], p. 27). On
vérifie facilement les deux autres assertions.

PROPOSITION 9.3. Soit m&apos; un idéal maximal de B • Si Bhm. est un hensélisé
de Bm, le groupe C\(Bhm&gt;) est isomorphe à Cl(B^), où Bhm est le complété
m&apos;Bhm-adique de Bhm&gt;.

Preuve. Puisque le corps résiduel de Bm&gt; est C, on a Bhm&gt; B^&gt;. En vertu de

([26], chap. 8, p. 96), on a Êhm-Êm&gt;. L&apos;anneau Êm&gt; est un anneau local
noethérien intégralement clos de dimension 2 ([37], chap. 8, §13).
L&apos;homomorphisme injectif fidèlement plat Bhm&gt;&lt;-*Bm&apos; induit dcnc un monomor-
phisme Cl (Bm.)-+Cl {Èhm ([10], chap. 2, corol. 6.11). Considérons le
diagramme commutatif :

Pic (Spec Bhm. - {m&apos;Bhm}) &gt; Cl (**.)
I I

èhm.-{m&apos;Êhm.}) &gt; C\(Bhm.)
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D&apos;après ([12], chap. 4, prop. 21.6.12), les flèches horizontales sont des isomor-

phismes. Par ([16], p. 214), la première flèche verticale est surjective, ce qui
achève la démonstration.

PROPOSITION 9.4. Soit Bh Vanneau de la variété analytique correspondante
à B([31], §2, no 5). Pour tout idéal maximal mf de B, Vhomomorphisme
canonique Cl(Bm)-&gt;Cl(Bhm&gt;) est bijectif.

Preuve. En vertu de ([31], §2, no 6, prop. 3), on a Bhm=Êm&gt;. Le

monomorphisme fidèlement plat Bhm&lt;^Êhm&apos; induit un monomorphisme
Cl(Bhm)^&gt;Cl(Bhm). Considérons la suite d&apos;homomorphismes:

Bm&gt; —&gt; Bhm&gt;~-*&gt; Bhm21* Bm&gt; Bm&gt;.

Cette suite induit une suite:

Cl (Bhm .)-&gt; Cl (Bhm) o Cl {Êhm)^ Cl (£*,.)•

La proposition précédente nous permet alors de conclure. D

THÉORÈME 9.5. Soit m un idéal maximal de A. Le groupe 2C1 (A%) est fini.

Preuve. Soit m&apos; un idéal maximal de B au-dessus de m. Vu les propriétés qui
caractérisent un hensélisé strict et à l&apos;aide de la proposition 9.2, on peut
voir facilement que A^^ Bhm B%&gt;. On a donc

Cl (4Ï)^ Cl {Bhm)^ Cl (Êhm,)^ Cl (Bhm,).

Mais, d&apos;après ([23], th. 2.2), le groupe Cl(Êhm) est de la forme flr0Qc0(0/
Z)N, où H est un groupe de type fini, N est un entier naturel et c est zéro ou le
cardinal de R.

THÉORÈME 9.6. Le groupe C\(Am) est la somme directe d&apos;un groupe
divisible et dJun groupe de type fini.

Preuve. Soit X Spec A et U X - Z où Z est le lieu singulier de X. Soit Y
un modèle projectif lisse de X. En vertu de ([10], §7, corol. 7.3), Thomomor-
phisme canonique Cl(A)^&gt;Cl(Am) est surjectif. De plus, on a Cl (A) Cl (U)
([29], exp. 11, corol. 3.8) et Cl (U) Pic U ([13], chap. 2, § 6). Le lemme 7.4(v)
nous permet alors de conclure.
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PROPOSITION 9.7. Le groupe

est fini.

Preuve. C&apos;est une conséquence des deux derniers théorèmes et de la

proposition 8.7.

COROLLAIRE. Le groupe 2(Ker Br (A)-» Br (K)) est fini.

Preuve. C&apos;est une conséquence du théorème 9.1 et de la proposition 9.7.

PROPOSITION 9.8. Le groupe Q(A) est fini.

Preuve: Soit k la clôture algébique de U dans A. Considérons la suite exacte

k*_ UÇA) U(A)
k*2~* k*2

&quot;&quot;&quot;

*•

D&apos;après un théorème bien connu de Sanuel ([28], Lemme 1), le groupe U(A)/k*

k*2 &quot;&quot; &quot;&quot;&quot;

U(A)2
est de type fini. On en déduit que 2 et ensuite 2, sont de type fini.
Considérons la suite exacte:

Il suffit de démontrer que 2Pic A est de type fini. Or, Pic A s&apos;injecte dans Cl (A)
([10], corol. 18.13) et, comme on vient de voir, Cl (A)^ Cl (U)^ Pic U. Par le
corollaire de la proposition 5.3, 2Pic U est de type fini.

THÉORÈME 9.9. Le groupe W(A) est de type fini.

Preuve. Soit Âr SpecÂ un ouvert affine lisse de X SpecA. On a le

diagramme commutatif:
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Comme I(À) est de type fini, il suffit de voir que Ker (I(A)—&gt;I(Â)) est de

type fini. Puisque I(À)-»I(K) est injectif, Ker(I(A)-+I(Â)) Ker (I(A)-»
I(K)). Soit N(A) le noyau de d x (signature totale): Ker (I(A)-*I(K))-+
Q(A) x Zr. L&apos;invariant de Clifford co induit un homomorphisme injectif ([22], th.

15) ù):N(A)^20^^(Bt(A)^Bt(K))). Ce dernier groupe est fini d&apos;après le

corollaire de la proposition 9.7. Donc N(A) est de type fini, d&apos;où la conclusion

puisque Q(A) est de type fini.

§10. Recollements d&apos;espaces hyperboliques de rang 4

Soient

et p
(b&quot; M
\b2\ #22&apos;

deux matrices de GL2(Â/(Î) telles que dét a dét )3 ô. Soit d:(M2(Â/
(£), dét)—»(Af2(;4/(£), dét) l&apos;isométrie donnée par ©(y^ary/EJ&quot;1. Si on identifie
(Àf2(&gt;4/(£), dét) avec H{ÀI&amp;)&gt; on trouve facilement que la matrice #£ de 0 par
rapport à la base canonique de H(Â/iî2) est

bn -b7

2l

Notons P la matrice tP~1.

On vérifie facilement que l&apos;application

2, or) x M(^2, &gt;l/C£2, p)-»M(H(Â2), H(A/iî2), 0*

qui envoie

x2

-x2

/y,
U h

h

est /4-biIinéaire. On en déduit un ,4-homomorphisme naturel, noté aussi

2, ,4 AS2, or) &lt;8U M(Â2, A/iî2, P)^M{H{À2), H(A/iS2),
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THÉORÈME 10.1. \pap est un isomorphisme de A-modules.

Preuve. Il est facile de voir que pour tout idéal maximal m de A et pour tout
Qx e V(Â) et Q2 e P(A/S) l&apos;application canonique Qx x Q2-* (g,)m x Q2)m

induit un isomorphisme de ,4m-module If:M(Qlf Q2ff)^M((Ql)mt {Q2)m,fm)&apos;

De plus Sf est une isométrie dans le cas quadratique. On peut donc supposer que
A est un anneau local. Dans ce cas, À/&amp; est un anneau semi-local. En vertu de

([2], chap. 5, §9), on peut amener ar(resp. /}) à la forme

/détor 0\/ /dét/3&quot;1 0\\l o iHresM o J)

par des opérations élémentaires. Pour tout 1 ^ i, j ^ 4, notons E®(k) les matrices

orthogonales élémentaires. C&apos;est-à-dire £°(A) /4H-X(etJ -ejr) où, pour tout

If T2 + A: si 1^A:^2
Ik — 2 si 3^/c=^4

et les e/y sont les éléments de la base canonique de M4(Â/(£). Soit e

f J6GL2(À/C£). On peut voir facilement que 6%. e 0^ • E^3(k)f 0%a

^3(A) • 0£, 0^ &quot; £?2(A) • 0^ et 0£* 0^ • É°n(k). Si s (\ J), on a 0g..

fl£-£§2(A), 0?.« £§2(A).flg, fli^ £Si(A)-flg et flg-«= flg. Ê^(A). Il
s&apos;ensuit que les recollements avec 0£. e ou 0f. ^ ou 0^ ^ ou 0£ f sont isomorphes
aux recollements avec 0£. De même, les recollements avec a (resp. /J) et les

recollements avec e • or ou a • e (resp. e • /J ou )3 • e) sont isomorphes. On peut

donc supposer que a j /3. Dans ce cas, les modules en question sont

libres ([21], lemme 2.4) et V&lt;*t/3 est évidemment un isomorphisme.

THÉORÈME 10.2. Soit A&apos;a

A2M(À2, A/£2, a) ®AA2M(À2,

^L M(A2À2, A2Al&amp;2y A2a) ®A M(A2À2, A2A/62, A2p)

Visomorphisme canonique qui identifie la deuxième puissance extérieure du
recollement avec le recollement des deuxièmes puissances extérieures. Soit
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Aa ® A0 : L-* H M(Â, A/(£, dét or) ®A M(Â, A/6, dét jS&quot;1) l&apos;isomorphisme

obtenu par les identifications usuelles de A2À avec À et de A2A/&amp;2 avec A/fë. Soit

enfin A1:H-^A l&apos;application définie par: Ai{{xXi jc2)® 0&gt;i, y?)) A où A est

Punique élément de A tel que i(k) xt - yx et ;(Â) x2 • yi- Vapplication e

AxoAa ® A$° A&apos;a® A&apos;p est un isomorphisme de A-modules,

Preuve. C&apos;est une vérification immédiate.

THÉORÈME 10.3. On définit sur H M(À2,A/$2&gt; oc) ®A M(À2, A/&amp;2, j3)

la forme bilinéaire suivante: (x &lt;8&gt;y, xt ®)&gt;i)e s(xAxt ^yAyx). Visomorphisme
xj&gt;afp est une isométrie d&apos;espaces bilinéaires.

Preuve. C&apos;est une vérification facile.

THÉORÈME 10.4. Soient P, Q et R des A-modules projectifs de rang
respectivement 2,2 et 3. Supposons qu&apos;on ait des isomorphismes e:A2P®A
AïQ^A et &lt;p:A4(R®A):^A. Il existe alors deux isométries u:(A2(R ©A))^
^H(R) et v : (A2(P © Q))e^ H(A2P) 1 (P ® Q)e, où (P ® Q)e est définie par
(p®q,p&apos;®q&apos;)e e(pAp&apos;®qAq&apos;) et (A2(/? ©A))0 est définie par (x,y)&lt;p

&lt;P(xAy).

Preuve. C&apos;est une vérification facile.

THÉORÈME 10.5. L&apos;espace E M(H(Â2), H(A/&amp;2), 6%) est stablement

hyperbolique.

Preuve. Posons P M (À2, A/(£2, a) et Q M(Â2, A/S2, $). Les deux A-
modules P et g sont de rang 2. Par le théorème de Serre ([12], chap. 4, §2), il
existe un A-module R projectif de rang 3 tel que P(BQ R(BA. D&apos;après le
théorème 10.2, il existe un isomorphisme e:A2P®AA2Q:::*A. Par la première
assertion du théorème 10.4, l&apos;espace (A2(/?©A))e est hyperbolique. Par la
deuxième assertion, {P®Q)e est stablement hyperbolique. On conclut par
l&apos;isométrie ^a/3.

§11. Groupe de Witt et normalisation

Dans la suite A est une 1R -algèbre affine non normale de dimension 2. Nous
allons utiliser parfois des notations et des résultats de ([3]). Le lecteur pourra s&apos;y

référer pour les définitions et les démonstrations. Soit Y Spec R un schéma
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affine. Considérons les deux suites exactes suivantes de schémas en groupes:

1-* jm2-» Spin-* SO-&gt; 1

et

PROPOSITION 11.1. Pour tout neN*, onaun diagramme commutatif:

i
Hl,(Y,Gm) -=-* PicR

1

GLn) SU h^y, Gm)

&quot;1 J&quot;

l,(Y, Spin2n) * Hi(Y, SO2n) -g* Hl,(Y, (i2)

I

où dét est Vapplication induit par Vapplication &quot;déterminant&quot; et H est Vapplication

induite par celle qui envoie a e GLn(R) sur je SO^iR).\0 ta-i/

Preuve. Soit x e Hlét(Y, GLn). Il existe un recouvrement étale S de R tel que x
est la classe modulo les 1-cobords d&apos;un 1-cocycle y eGLn(S&lt;8)RS). On peut
choisir S de façon que dét Y soit égal à z2 pour un certain z e U(S ®R S). Donc
&lt;5(dét(*)) est la classe modulo les 2-cobords de 92(z) où d2:U(S&lt;8RS)-&gt;

U(S &lt;8)R S &lt;8&gt;/? S) est la différentielle. D&apos;autre part, H(x) est la classe de

(y o \
H(y) \ n • Considérons le diagramme commutatif suivant ([3])

\U Îy-tJ

GL (5 &lt;8&gt;RS)n

où Clo est le groupe spécial de Clifford.
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L&apos;élément z~lA(y) est dans Clo(H(S0RS)n) et on a de plus que
N(z~l • A(y)) (z&quot;1)2 - dét y 1. Ainsi z&quot;1 • A(y) e Spin2,(5 ®R S). Alors,
ô(/f(x)) est la classe modulo les 2-cobords de d2(z~l • A(y)) où d2 est la
différentielle. Mais 32(A(y)) 1 car A(y) est un 1-cocycle et dans jU2(S (8)/? 5 &lt;8)/? 5)
les éléments 32(z) et 32(z&quot;1) définissent la même classe. D

COROLLAIRE. Soit P,Qe V(R). S&apos;il existe rneN tel que
H(P) 1 H(Rm)^H(Q) 1 H(Rm), alors il existe un R-module I inversible tel que

Preuve. Dans ce cas, ô(H[P]) ô(H[Q]). Il suit du diagramme de la

proposition précécente que &lt;5(dét [P]) &lt;5(dét [g]). Ceci revient à dire que
(dét [P] • dét [Q]&apos;1) e Ker&lt;5 Im(2), d&apos;où la conclusion.

PROPOSITION 11.2. Soit R un anneau noethérien de dimension 1 et soit
/, / 6 Pic R. Les espaces H(I) 1 H(R) et H(I &lt;g&gt; J2) 1 H(R) sont isométriques.

Preuve. Par le théorème de Serre, il existe L e Pic R tel que / ®/2 R © L.
Il s&apos;ensuit que A2(I®J2)^A2(R ©L). Ceci veut dire que /®/2^&gt;L. Donc
H(I®J2)^H(R®L)^&gt;H(R®I®J2). Puisque H(J2) 1 H(R)^ H{R2) ([24, p.
15), on a H(I)±H(R2)^&gt;H(I®J2)±H(R2). Le théorème d&apos;effacement des

espaces quadratiques ([27], th. 7.2) nous permet de conclure.

DÉFINITION 11.3. Sur les classes d&apos;isomorphismes des R -modules projectifs
de type fini on définit la relation d&apos;équivalence suivante: (P)~(Q) s&apos;il existe

m € M tel que H(P) 1 H(Rm) et H{Q) 1H(Rm) sont isométriques. Notons [P] la
classe d&apos;équivalence de (F).

DÉFINITION 11.4. Soit F le groupe abélien libre sur les classes

d&apos;équivalences défines ci-dessus et soit B le sous-groupe engendré par les

éléments de la forme [P © Q] - [P] - [Q]. On pose Ko(R) F/B. Notons ^o(^)
le sous-groupe des éléments de la forme [P] - [Q] avec rang P rang Q. Tout
homomorphisme d&apos;anneaux f:R—&gt;C induit un homomorphisme de groupes
KW):KyLR)-*K&amp;Q défini par KM)([P] - [Q]) [P®R C) - [Q ®R C].
Notons K&apos;Q{f) la restriction de K&apos;0{f) à K&apos;0(R). Enfin, notons nx : K0(R)-+ Kq(R) la

surjection canonique.

DÉFINITION 11.5. Soit
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l&apos;application définie par: y([P] - [Q]) [dét P] - [dét Q]. D&apos;après le corollaire de
la proposition 11.1, y est bien définie et elle est évidemment surjective.

DÉFINITION 11.6. Soit SK0(R) le noyau de l&apos;épimorphisme dét:K0
Pic R. Cette application induit un isomorphisme

et dont l&apos;application inverse est donnée par dét&quot;1 ([/]) [R] — [/]. On pose

L&apos;épimorphisme y induit un épimorphisme noté aussi

Pic/?
2

&apos;

(Pic/?)

DÉFINITION 11.7. Soit KO0(R) le sous-groupe de KO0(R) engendré par les

éléments de la forme [(Qi, q\)} - [(ô2, #2)] avec rang (?i rang (?2 2n pour
nelU II est facile de voir que l&apos;application H:K&apos;0(R)-*KO0(R) définie par
H([P] - [Q]) [H(P)] - [H(Q)] est un monomorphisme de groupes.

Soit A une M -algèbre affine non normale de dimension 2. Soit À la clôture
intégrale de A dans son anneau total de fractions et i l&apos;inclusion de A dans À.

PROPOSITION 11.8. Le diagramme suivant est commutatif avec des lignes
exactes :

0 » Ko(A) KO{)(A) -JL&gt; l(A) 0

0 —&gt; kiiÀ) —&gt; ko0(à) —

En particulier, on a une suite exacte

où pour tout homomorphisme /, Nf désigne son noyau et Cf son conoyau.
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Preuve. La première assertion est facile. La deuxième c&apos;est le lemme du

serpent.

PROPOSITION 11.9. Le diagramme suivant est commutatif avec des lignes
exactes

&gt; K0(A)
(Pic A)I | V1 ^™j

P»c(0
Uô(&apos;) Ip^

Pic 4
(PkM)2

En particulier, on a la suite exacte: C Pic (/)-» CKo(i)-+ CPic (/)-»/.

Preuve. C&apos;est une vérification facile.

PROPOSITION 11.10. Si PkM/ImPioTesf de type fini, CKi(i) l&apos;est aussi.

Preuve. Considérons le diagramme commutatif:

SKn(A) -^- KllÀ) -* KM) &gt; 0

SKn(À) r^^Puisque les deux lignes sont exactes, on a une suite exacte

S(i)-&gt; 0.

En vertu de ([35], corol. 5.3), CSK0(i) est nul. Puisque Pic/Ï/Im Pic4 est de

type fini, les groupes (Pic4)2/Im (PkM)2 et CPic(/) sont de type fini. De la

proposition 11.9 on déduit que CKWÏ) est de type fini. D&apos;où la conclusion puisque
£K0 c£i(0.

THÉORÈME 11.11. Soit G le sous-groupe de Ker (/* ©/* : W(A)-+ W(Â) 0
W(A/(Î)) engendré par les éléments de la forme {(M, q)} tels que
i*(M, q)^H(Àn) etj*(M, q)^H(Aldn). Alors G est fini.

Preuve. Soit x {(M, q)} e G. En vertu du lemme 4.1, (M, q)^&gt;M(H(Ân),
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H(A/&amp;n), 6) où de O2n(À/&amp;). Mais O2n{ÀI&amp;) O4(À/&lt;$) x EO2n(Â/&amp;) ([34],
th. 2.8) et grâce aux résultats du §4, on peut supposer que 6 eO4(À/&amp;).

Considérons la suite exacte ([3]):

Ici PIC^4/S dénote le groupe de Picard des A/S-modules gradués inversibles.
Dans ([3]), base démontre qu&apos;on peut identifier Clo(//(i4/(£2)) avec le groupe
L {(a&apos;, P&apos;) e GL2(Â/&amp;) x GL2(À/&amp;) \ dét a&apos; dét fi9}. De plus, si

« h:: :¦)

sont tels que (a&apos;, pf) e L, alors Jt(a&apos;, p&apos;) d% où

a&apos; -b&apos;\ n d -c\H-c&lt; d&gt;) 6t ^ U a)&apos;

Si 6 Ji{oc&apos;y fi&apos;), il découle du théorème 10.5, que jc O. Il suffît donc de

démontrer que Imi/; est fini. Or Imt/; est contenu dans 2PICi4/(ï 2(Pic^4/
e©Z2(Â/©)), d&apos;où la conclusion puisque Z2(^4/G) est fini et 2PicÂ/Œ est fini
d&apos;après le théorème 8.9.

THÉORÈME 11.12. 5i PicÂ//m Pic ,4 est de type fini, W(A) Vest aussi.

Preuve. Puisque I(Â) est de type fini, il suffit de montrer que M* est de type
fini. D&apos;après les propositions 11.8 et 11.10, il suffit même de démontrer que
l&apos;image Z de NKO0(i) dans M* est de type fini. Soit x n([M, q)] - [H(An)]) e
Z. Ceci entraîne [(M, q)&lt;8&gt;AÀ] - [H(Àn)] 0, ce qui veut dire qu&apos;il existe keN
tel que (M, q) &lt;&amp;AÀ ±H(Âk)^&gt;H(ÀnJhk). On peut donc supposer que x
{(M, q)} avec /*(M, q)^H{Àn). Considérons l&apos;homomorphisme ;\JZ:Z-»
/(A/S). Puisque /(A/G) est de type fini il suffit de démontrer qu&apos;il en est de même
de Ker (/? \z)&gt; Soit x {(M, q)} avec *&apos;*(M, q)^H(Àn) un élément de Ker (/* \z)-
II existe alors m e M et P € P(A/G) tels que /*(M, q) 1 H(A/^Sm)^&gt;H(P). Par le
théorème de Serre, il existe I inversible tel que P^» (A/£)m+n~l © /. On en déduit
qu&apos;on peut supposer x {(Af, q)} avec i*(M, q)^&gt;H(Àn) et j*(M, q)^&gt;

H(AHin-l)LH(I). Il existe donc 6 e O2n(Â/Œ) tel que (M, q)^M(H(Àn),
H(A/£n-l)±H(I), 6). D&apos;après la proposition 11.2 et le théorème 8.9, il suffit
de démontrer que pour tout A/(S-module inversible /, les éléments (e Ker/* |z) de
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la forme {(M(H(Àn), H(A/&amp;&quot;-1) 1 //(/), 0))} sont en nombre fini. Soit/ e

tel que I®J^A/&amp;2. Fixons une isométrie e:H(À/fin)^H(À/(&amp;n&apos;1) ± H(I®A/{1
À/&lt;S). Soit M0 M(H(Àn+l), H(A/(£n)±H(J), (e®Id)&quot;x) le recollement
correspondant. Le nombre d&apos;éléments de la forme {M(H(Ân)y H(A/
&lt;£?-l)±H(I), d)} + {M0} {M(H(À2n+l), H(A/(ï2n+l), 0®(e®Id)-1)} est fini
d&apos;après le théorème 11.11.

Nous allons maintenant montrer qu&apos;il existe des R-algèbres affines non
normales de dimension 2 et dont le groupe de Witt n&apos;est pas de type fini.

LEMME 11.13. Soit A R[X, Y, Z]/(X2 - Z2f{Y)) où f(Y) est un polynôme
sans facteurs carrés de degré impair ^3. La clôture intégrale de A dans son corps
des fractions est À R[Y, Z, X/Z]/((X/Z)2 ~f{Y)).

Preuve, Puisque le lieu des singularités de À est de codimension 2, À vérifie
la propriété Rx. De plus, Â vérifie la propriété S2 puisque dimÀ — 3 — 1 2. Ceci

prouve que Â est normal. On voit immédiatement que Â est entier sur A.

LEMME 11.14. Notons x, yy z les classes respectives de X, Y, Z. Le conducteur

de À dans A est &amp; Àz Ax + Az.

Preuve. C&apos;est une vérification immédiate.

Soit B M[Y, T]l{T2-f{Y)). Identifions À avec B[Z],A/IS, avec U[Y] et
Â avec B. On a alors le diagramme cartésien

A &lt;^-&gt; B[Z]

i-i-

LEMME 11.15. Le groupe Pic Â/Im Pic A n&apos;est pas de type fini.

Preuve. En vertu de ([10]), th. 8.1 et corol. 18.5), on a PkM/l£ Pic M 1 et
Picfi. Mais B est l&apos;anneau des fonctions régulières d&apos;une courbe réelle

affine intègre lisse L de genre ^1. Donc Pic B n&apos;est pas de type fini ([36], variétés
abéliennes et courbes algébriques, §5). La suite exacte de Mayer-Vietoris
l-+U(A)-»U(B[Z])®M*~-»U(B)^&gt;PicA^PkB^PicB nous permet de
conclure que Pic Â/Im Pic A — Pic B. O

LEMME 11.16. On a U(A) M* U(Â).



Le groupe de Witt d&apos;une surface réelle 103

Preuve: C&apos;est une vérification facile.

LEMME 11.17. Le groupe CK&apos;Q{i) n&apos;est pas de type fini.

Preuve. La suite de Mayer-Vietoris devient:

Il s&apos;ensuit que Pic&gt;4 l. Considérons le diagramme de la proposition 11.9.

Puisque Pic A 1, Kq(A) est nul. De plus, Pic^4 Pic B n&apos;est pas de type fini et
PicJ3/(PicZ?)2 est fini par la proposition 8.11. La proposition 11.9 nous permet
de conclure que le groupe CK&apos;Q{ï) CK&apos;ô(i) Kq(Â) n&apos;est pas de type fini.

LEMME 11.18. Le groupe G Im {H\CK&apos;Q{i)-+ CKO0(i)) est fini.

Preuve. On la diagramme commutatif suivant

K0(B) ^ K0(B[Z))

K&apos;0{B) -

où h:B-*B[Z] est l&apos;injection canonique. Puisque ^o(^) est surjectif ([2], chap.
11, th. 3.1), Ko(h) est surjectif. L&apos;application: fi[Z]—» B qui envoie Z sur 0 induit
une section pour Ko(h). Donc K&apos;Q{h) est un isomorphisme. Soit x e G. Il existe

P, Q e P(5) tels que rang P rang Q et x - [H(P)] - [H(Q)]. Grâce au
théorème de Serre on peut supposer qu&apos;il existe deux B-modules inversibles /, /
tels que x [//(/)] - [//(/)]. D&apos;après la proposition 8.11, PicB/(PicB)2 est fini.
D&apos;où la conclusion en utilisant la proposition 11.2.

THÉORÈME 11.19. Le groupe W(A) n&apos;est pas de type fini.

Preuve. D&apos;après le lemme 11.17, CK&apos;Q{Ï) n&apos;est pas de type fini. Par le lemme
11.18, le groupe G Im (H :CKo(i)-*CK00(i)) est fini. On déduit de la suite

exacte de la proposition 11.8

que M* n&apos;est pas de type fini.
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