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Le groupe de Witt d’une surface réelle

GHAZI AYOUB

Introduction

En 1976, M. Knebusch a posé le probléme suivant: Soit X un schéma de type
fini sur R. Est-ce que le groupe de Witt de X est de type fini? Dans le cas d’un
schéma de dimension 1, une réponse affirmative a ét€ donnée par Knebusch
lui-méme pour X lisse [18], et par G. Dietel pour X quelconque [7]. Dans ce
résumé de ma thése (Lausanne 1985), je traite le cas affine X =spec A. Je
démontre le résultat suivant:

THEOREME. Si A est de dimension 2 et si le conoyau de Pic A— Pic A (A le
normalisé de A) est de type fini, W(A) est aussi de type fini (§11). En particulier si
A est normal de dimension 2, W(A) est de type fini.

Je donne ensuite des exemples de surfaces réelles non normales dont le
groupe de Witt n’est pas de type fini (§11).

§1. Préliminaires

Soit A un anneau commutatif unitaire dans lequel 2 est inversible. Soit P(A)
la catégorie des A-modules projectifs de type fini. Une forme quadratique sur
M € P(A) est une application q: M — A telle que:

i) g(Ax)=A%g(x) pour tout x e M, A€ A,

ii) by(x, y)=13[q(x +y) — q(x) — g(y)] définit une forme bilinéaire symétrique
b,:M xXM—A.

Soit d,:M— M*=Hom, (M, A) homomorphisme défini par d,(x)(y) =
B,(x, y). Si d, est bijectif, q est dite non-dégénérée, et le couple (M, q) est appelé
un espace quadratique sur A.

Une isométrie entre deux espaces quadratiques (M, q,) et (M,, g,) est un
isomorphisme f:M,— M, tel que g,(f(x,)) = q,(x;) pour tout x, € M;. On note

f:(My, )= (M, q5).

74
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Notons Quad A la catégorie ayant pour objets les espaces quadratiques sur A
et pour morphismes les isométries. Sur Quad A on définit la somme orthogonale
par (My, q1) L (M3, g;) = (M, © M,, q) ot q(x; © x2) = q:(x,) + qa(x2) et le pro-
duit tensoriel ® par (M}, q,)® (M, q.)=(M; @, M,,q) ou q(x;®x,)=
qi(x,) - g2(x2) pour tout x; € M;. Pour tout P e P(A) soit H(P) I'espace quad-
ratique (P ©® P*, d,) ou d,(x @ f)=f(x). L’espace H(P) est dit hyperbolique.
Posons W(A) = K,(Quad A), le groupe de Grothendieck de Quad A ([2], chap.
7). Le produit tensoriel des espaces quadratiques induit sur W(A) une structure
d’anneau commutatif. Soit H(A) I'idéal engendré par les éléments de la forme
[H(P)] - [H(Q)] avec P, Q e P(A). L’anneau W(A)= W(A)/H(A) est appelé
I’'anneau de Wit de A. La classe dans W(A) de l'espace (M, q) est notée
{(M, q)}. Tout homomorphisme d’anneaux f:A— B induit un homomorphisme
fy«:W(A)— W(B) défini par f.{(M, q)} ={(M®, B, q®B)}, ou (g @B)x®
b) =f(q(x)) - b> pour tout x e M, b € B. Dans la suite, A désigne toujours une
algébre affine sur le corps R des réels.

§2. Réduction du cas général

Puisque A est noethérien, il est produit fini d’anneaux A; X ---X A4, ou les
seuls idempotents de A; (1<i=<n) sont 0,1. Puisque W(A, X ---XA,)=
W(A)) X --- X W(A,), il suffit de traiter le cas ou les seuls idempotents de A sont
0 et 1. Ceci revient a supposer que spec A est connexe. En particulier le rang de
tout P € P(A) est bien défini.

Soit A,.q=A/N ou N est le nilradical de A. En vertu de ([25], corol. 23, p.
270), ’homomorphisme canonique W(A)— W(A,,) est bijectif. On peut donc
supposer que A est réduit.

THEOREME 2.1. Soit S™' A I'anneau total des fractions de A o S est
I’ensemble des éléments non diviseurs de zéro, et soit A la fermeture intégrale de A
dans S™' A. L’anneau S™' A est produit direct d’un nombre fini de corps K,

(1sis<s) et A est produit direct de sous-anneaux intégralement clos A, de K,
(I=<isy).

Preuve. ([4], chap. IV, §2, no. 5, prop. 10 et chap. V, §1, no. 2, corol. 1 de la
prop. 9.)

Dans la suite on gardera les notations suivantes:
€={aeAlaA c A} est le conducteur de A dans A,i:A— A est I'injection
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canonique,
A —5 A
il lk
A/C—— A/C

est le diagramme commutatif ot / induite par i et j, k sont les surjections
canoniques. De plus, K désignera toujours le corps des fractions de A quand

celui-ci est intégre. Pour tout groupe abélien G on notera ,G le sous-groupe des
éléments d’ordre <2.

§3. Les invariants classiques

a) L’homomorphisme rang

Le rang de tout espace hyperbolique est pair. L’homorphisme p: W(A)— Z/
27 défini par: p{(M, q)} =rangM modulo 2 est donc un homomorphisme
d’anneaux qu’on appelle le rang. Le noyau de p est noté I(A).

b) Le discriminant

Le produit tensoriel de deux espaces quadratiques de rang 1 est aussi de rang
1. Le carré d’'un tel espace est isométrique & l’espace unité (A, m) ou
m:A X A— A est la multiplication. Donc I’ensemble des classes d’isométries des
espaces quadratiques sur A de rang 1 posseéde une structure de groupe abélien

d’exposant 2. On le note Q(A). Soit (M, q) un espace quadratique de
rang r - Posons d(M, q) = (A'M, (—1)"""D2A’g) ou

A'q(x A - - - Ax,) = dét (B,(x;, x;)). Le discriminant de (M, q) est la classe de
d(M, q) dans Q(A). Le discriminant d’un espace hyperbolique est trivial, mais d
ne définit pas un homomorphisme de groupes de W(A) dans Q(A). Seulement la
restriction de d & I(A) est un homomorphisme, appelé le discriminant.

¢) L’invariant de Clifford ‘

Soit (M, g) e Quad A. Notons T(M)=ADMDPMOMD - - - I'algebre ten-
sorielle de M. Soit J(q) I'idéal engendré par les éléments x ® x — g(x) pour tout
x € M. L’algébre de Clifford de (M, q) est C(M, q)=T(M)/J(q). La Z/2Z-
graduation T(M)=T(M)*®T(M)~ oa TM)*=DFM®" et T(M) =
@5 M®>*! induit une Z/2Z-graduation C(M, ) =C(M, q)* ® C(M, q)".

Soit Br(A) le groupe de Brauer de A ([1] ou [20]). Considérons I’application
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w:W(A)— ,Br(A) qui est donnée par

o{(M, q)} = {la classe [C(M, q)] € Br(A) si rang M est pair

& la classe [C(M, q)*] € Br(A) si rang M est impair.
En général, w ne définit pas un homomorphisme de groupes, mais si on restreint
w au sous-groupe D(A) = Ker (d:1(A)— Q(A)), on obtient un homomorphisme.
La classe w{(M, q)} est appelée l’invariant de Clifford de (M, q).

d) La signature totale

Un ordre sur K est un sous-ensemble E de Ktelque E+ EcE, E-EcE et
tel que K soit la réunion disjointe de E, —E et {0}. Soit (M, g) € Quad K et soit
l, ..., une base orthogonale de (M, q). La signature de (M, q) par rapport a
lordre E est 0z(M, q) =nombre des g(l;) e E-nombre des g(l;)) e —FE. Par un
théoréme de Sylvester, o(M, q) ne dépend pas du choix de la base orthogonale.
Puisque la signature d’'un espace hyperbolique est zéro, op définit un
épimorphisme d’anneaux og:W(K)->»Z. Réciproquement, tout épimorphisme
d’anneaux W(K) - Z coincide avec oz pour un ordre unique E de K ([19], chap.
5, th. 5.3). L’homomorphisme [[g oz: W(K)—I[lz Z (ou E parcourt ’ensemble
des ordres sur K) est appelé la signature totale de K. Par exemple, si K =R, le
seul ordre est E=R™* — {0} et oz est un isomorphisme.

Sur A, une signature est par définition un épimorphisme d’anneaux:
W(A)»Z - Soit A(R) = {m e Specm A | A/m =R}. La composition o,,: W(A)—
W(A/m)=W(R)— Z définit une signature sur A pour tout m € A(R). Soient
Y1, - .., ¥, les composantes connexes de A(R). En vertu de ([17], chap. 5, §2),
les seules signatures sur A sont 0y,...,0, ou O;=0, pour mce€y,.
L’homomorphisme o, X -+ - X 0,: W(A)— Z’ est la signature totale de A.

§4. Recollements d’espaces quadratiques

Considérons le diagramme cartésien décrit au §2.

A <5 A

,l lk

A/C—> A/C

Soient (Q,, g;) € Quad A, (Q,, g,) € Quad A/C et soit f une isométrie de
ki(Q1,q1) sur 1,(Q2, q2). Notons M((Q., q,), (@2, ¢2), f) ou simplement
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M(Q,, Q,, f) I'ensemble des couples (x;, x,) € Q, X O, tels que f(k.(x,))=
l.(x;). Le groupe M(Q,;, Q,, f) est un A-module projectif de type fini avec
’action suivante de A:a(x,, x,)=(i(a)-x,, j(a)-x,) ([21], §2). On peut munir
M(Q,, Q,,f) d'une forme quadratique non-dégénérée q(f), définie par
q(f)(x,,x;)=a ou a est I'unique €élément de A tel que i(a)=gq,(x,) et
j(a) = g,(x,). Les lemmes suivants sont bien connus dans le cas linéaire ([21], §2). -
Le cas quadratique en résulte facilement.

LEMME 4.1. Soit (Q, q) € Quad A. Notons Id I'isométrie entre k(i .(Q, q))
et 1,.(j.(Q, q)). L’application x > (i, (x), j(x)) induit une isométrie de (Q, q) sur
M(i . (0),j«(Q), Id). En particulier, H(A") et M(H(A"), H(A/C"), Id) sont
isométriques. [

LEMME 4.2. Soient (Q),q1), (Q1,q1)eQuadA et (Q;, q2), (02, q3) €
Quad A/C. L’application ((x;, x3), (x1, x2))—= ((x;, x1), (x2, x3)) induit une

isométrie de M(Q]: Q2r f) 1 M(Q;, Qé) f’) sur M(Ql 1 Q;r QZ 1 Qé’ f®f') O

LEMME 4.3. Pour tout f € 0,,(A/€) et € € EO»,(A/C), on a une isométrie
M(H(A™), H(A/G™), fo£)> M(H(A"), H(A/G"), f). O

LEMME 4.4. Soit O(A/€) =1lim 0,,(A/S), la limite étant prise par rapport
aux applications suivantes: -

a; 0 a, O
a, @ . , 0 1 0 -
o= (a,3 a/4) € Ozn(A/G)*—‘) o = o 0 i 0 € 02(,,+1)(A/6:).
0 0 0 1

i) Pour tout a € 0,,(A/CS), on a une isométrie:
M(H(A"), H(A/G™), &) L M(H(A™), H(A/C™), Id)

:’M(H(/in-'—m), H(A/G,"+m), a,l).
ii) Pour tout a € 0,,(A/C) et B ¢ 0O,,,(A/C) on a

{M(H(A"™), H(A/C"*™), a~B)}
= {M(H(A™), H(A/C"), @)} + {M(H(A™), H(A/C™), B)},

ou {(M, q)} désigne la classe de (M, q) dans le groupe de Witt de A. 0O
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§5. Le groupe de Witt d’'une R-algebre affine réguliére A de dimension <2

En vertu du théoréme 2.1, A est produit direct d’'un nombre fini d’anneaux
réguliers intégres. On peut donc supposer que A est integre. Soit (X, O,) un

schéma et G, le faisceau des unités. Soit u, le sous-faisceau des racines carrées de
I'unité. Considérons la suite de Kummer 0— u,— G2 G,,— 0. Cette suite est

exacte en topologie étale ([20], p. 66). On en déduit une suite exacte longue
= HyX, G,) D HilX, Gp)— Hi (X, po)— -+ -

PROPOSITION 5.1. Soit X =Spec A. Il existe un isomorphisme de suites
exactes

Ov -_— Hgt(X) Hz) — Hgt(X) Gm) — HQ,(X, Gm) —— H;I(X; Nz)

I I I I

0 — u(A) — U(A) ——5—— U(A) —— Q(A)

—_— Hé,(X, Gm) '—2—’ Hi't(X’ Gm)

I |

——— PicA ———> PicA

Preuve. [20], pp. 123-126. 0O

PROPOSITION 5.2. H}(Spec A, u,) se surjecte sur ,Pic A et H%(Spec A, u,)
se surjecte sur ,Br(A).

- — HYX, t)) — HYX, G,)) == HYX, G,)) —> H4(X, )

I b

PicA —2— PicA

— H%(X, G,,) — HYX, G,,)

1 I

Br(A) —>— Br(A)

Preuve. On a le diagramme commutatif (avec la premiére ligne exacte) ou les
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deux dernieres fleches verticales sont des isomorphismes ([11], p. 76). D’ou la
conclusion. O

PROPOSITION 5.3. Soit X une variété lisse sur R et F un faisceau sur X, fini
et localement constant. Alors H.(X, F) est fini pour tout i.

Preuve. Puisque 'extension R < C est étale, la variété X' = X X C est lisse
([20], chap. 1, §3). En vertu de ([30], exp. 16, th. 5.2), H.(X, F) est fini. Soit
7 : X Xg C— X la premiere projection. C’est un revétement galoisien de groupe
de galois G ={1,0} ou o est I'automorphisme induit par la conjugaison
complexe. D’apreés ([20], chap. 3, th. 2.20), il existe une suite spectrale de
Hochschild-Serre:

E29= H2(G, HY(X', F))=> E" = H2*%(X, F).

Soit E‘>E{oE{>--->Ej,;=0 une filtration de E’ telle que E}/E},,=E.'~/
pour tout 0 <j <i, Pour démontrer que E’ est fini, il suffit de démontrer que les
E. sont finis. 11 suffit donc de démontrer que tous les E5“ sont finis. Or,
G = Z/2Z est cyclique et HL(X', F) est fini. On en déduit que E5'7 est fini. [

COROLLAIRE. Les groupes H}(Spec A, u,) et H%(Spec A, u,) sont finis.
En particulier, Q(A), ,Pic A et ,Br(A) sont finis. Ces résultats restent valables si
on remplace A par une variété réelle lisse. [1

Soit maintenant o, X - - - X 0,: W(A)— Z" la signature totale de A. Notons
N(A) le noyau de ’homomorphisme d X (signature totale): I(A)— Q(A) X Z".
L’invariant de Clifford définit un homomorphisme: N(A)— ,Br(A) ([1], chap. 2).

PROPOSITION 5.4. Si la dimension de A est 1, les espaces quadratiques sur
K sont déterminés par p, d et la signature totale.

Preuve. Puisque le degré de transcendance de K sur R est 1, K(V—1) est un
corps C,. En vertu de ([8], corol. 2.11), I’K est sans torsion. Dans ce cas, les

espaces quadratiques sur K sont déterminés par p, d et la signature totale ([9], th.
2). O

THEOREME 5.5. Pour toute R-algeébre affine réguliere A de dimension 1,
W(A) est de type fini.

Preuve. Soit i, :I(A)— I(K) ’homomorphisme canonique injectif ([1], chap.
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I, prop. 4.10). Toute signature o:W(K)—Z de K induit une signature
o°i,:W(A)—Z de A. Mais on a un nombre fini de signatures sur A. Soient
01, - . ., O, les signatures de A qui sont induites par celles de K. On peut donc
définir un homomorphisme j qui rend commutatif le diagramme suivant:

dxoy Xx...

I(A) = QA)x Z*

"*1 |

’
I(K) d X sign. totale de K; Q(K) X HZ

j

En ventu de la proposition 5.4, la deuxieéme fleche horizontale est injective. Donc
I(A) s’injecte dans Q(A) X Z° qui est de type fini. O

PROPOSITION 5.6. Si la dimension de A est 2, les espaces quadratiques sur
K sont déterminés par p, d, signature totale et I’invariant de Clifford w.

Preuve. Puisque le degré de transcendance de K sur R est 2, K(V—1) est un
corps C,. On en déduit que I°K est sans torsion ([8], corol. 2.11). Dans ce cas, les
espaces quadratiques sur K sont déterminés par p, d, signature totale et w ([9],
th. 3). O

THEOREME 5.7. Pour toute R-algébre affine réguliére A de dimension 2, le
groupe W(A) est de type fini.

Preuve. comme dans le théoréme 5.5, on a un diagramme commutatif:

dXoyX... X

1(A) "> QA)x7°

| N

> Q(K) x I1Z

I(K) d X sign. totale de K

ou i, est 'homomorphisme canonique injectif ([22], th. 17). Notons N(A) (resp.
N(K)) le noyau de la premiere fleche horizontale (resp. la deuxi¢me fleche
horizontale). Considérons le diagramme commutatif:

N(A) —= ,Br(A)

N(K) —> ,Br(K)

Par la proposition 5.6, la deuxiéme fleche horizontale est injective. Donc N(A)
s’injecte dans ,Br(A) qui est fini, d’ou la conclusion puisque Q(A) est fini. O
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§6. Le groupe de Witt d’'une R-algébre affine A de dimension <1

LEMME 6.1. Soit A une R-algébre affine de dimension 0. Le groupe de Witt
W(A) est de type fini.

Preuve. L’anneau A, étant réduit, noethérien et de dimension 0, est un
produit fini d’extensions finies de R, ce qui veut dire que A— R? X C?. Comme
W(R)=27Z et W(C)=2/2Z ([19], chap. 2), le théoréme en découle. [

Dans la suite de ce paragraphe, supposons que la dimension de A est 1. Il
s’ensuit que la dimension de A est 1 et que celle de A/€ et de A/€ est nulle.
Considérons le diagramme cartésien:

Ay, 4
il 1/:
AIG = A[G

PROPOSITION 6.2. Pour tout x € Ker (i, ®j,:W(A)— W(A) @ W(A/Q)),
il existe (M,q)eQuadA, peP(A) et QeP(A/C) tels que x est la classe de
(M, q), i.(M, q)=> H(P) et j (M, q)=> H(Q).

Preuve. Soit x = {(M,, q,)} e Keri, Dj,. 1l existe P,, LeP(A) et Q,, O, €
P(A/C) tels_ que i,(Mi,q,)L H(_Pl)'z"’H(Pz) et j.(My, q1) L H(Q;)—> H(Q,).
Soit P e P(A) tel que P; D P,—> A" et soit Qe P(A/C) tel que Q; D Q;>A/
&™. Posons

(M, q)=(M,, q,) L H(A") L H(A™),
P=P,®P,DA™ et Q=0,dQ,DA/C"

Les assertions de la proposition sont alors vérifiées. [

PROPOSITION 6.3. Pour tout x € Ker (i, @ ,), il existe 0 € O,(A/C) tel que
x={(M(H(A), H(A/C), 6), q(0))}.

Preuve. D’aprés la proposition précédente, il existe (M, q)e Quad A, Pe
P(A) et Q e P(A/C) tels que (M, q)=> M(H(P), H(Q), Id). Soit 2n le rang de
M. Puisque A/C et A/€ sont de dimension 0, ils sont semi-locaux. Il existe
donc un isomorphisme a:P®;A/€>A/C"® s A/E=Q® 45 A/C. Notons S
le A-module projectif M(P, A/€", ), et soit R e P(A) tel que R S—A™. On a
(M, q) LH(R)> M(H(A™), H(A/€™), 6,) ot 8, € 0,,,(A/C). En vertu de ([34],
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th. 28), on a 0,,,(A/€) = 0,(A/€) X EO,,,(A/€) pour tout m =2. Donc 0, =
Boc ou 0e0,(A/Q) et £€EO,,,(A/C). D’aprés le lemme 4.4, {M(H(A™),
H(A/C™), 6°¢£)} et {M(H(A?, H(A/G?, 0)} sont égales, dou Ila
conclusion. [

_ 0
PROPOSITION 6.4. Soit ae U(A/C). Si 0= (8 a“)’ la classe de ’espace
M(H(A), H(A/C), 0) est nulle dans W (A).

Preuve. D’apres ([34], lemme 1.1.), la matrice
0
0
6[

I

a—-l

0
0
0
0 1

== e B I
O O = O

appartient @ EO,(A/¢). Si on applique le lemme 4.3 avec f=1Id et £=6’, on
trouve que M(H(A?), H(A/GC?), 6')> M(H(A?, H(A/C?), Id)=>H(A?. Par
le lemme 4.4, M(H(A), H(A/C), 8) L H(A) et M(H(A?), H(A/G?), ') sont
isométriques, d’ou la conclusion. [

THEOREME 6.5. Le noyau de i, ®j, est fini.

Preuve. Soit x € Ker (i, @j,). 1l existe, par la proposition 6.4, 8 € O,(A/S)
tel que x = {M(H(A), H(A/€), 8)}. En vertu de ([3], prop. 4.4.1), O,(A/€)>
H,(A/C€) X Z,(A/€) ot Hy(A/S) est le sous-groupe engendré par les éléments de

0 -
la forme (g a") et Z,(A/¢) est le groupe des fonctions localement constantes

de Spec A/S dans Z/2Z. D’aprés le lemme 4.4, pour tout a, e O,(A/C),
{M(H(A), H(A/C), a°B)} = {M(H(A), H(A/C), )} + {M(H(A), H(A/G), B)}.
Si o e Hy(A/S), {(M(H(A), H(A/S), o)} est nulle par la proposition 6.5. De
plus, Z,(A/€) est fini car A/S est noethérien, d’ou la conclusion. O

THEOREME 6.6. Le groupe W(A) est de type fini.

Preuve. D’aprés le théoréme 2.1, A est produit direct d’'un nombre fini
d’algebres affines intégralement closes. Donc, par le théoréme 5.5, W(A) est de
type fini. En vertu du lemme 6.1, W(A/C) est de type fini. D’oti la conclusion en
utilisant le théoréme précédent. [
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§7. Le groupe de Picard d’une R-algébre affine réguliere A

Soit X =SpecA et Y une variété projective réelle contenant X et dans
la-quelle X est un ouvert. En vertu de ([15], Main th. 1, p. 132), on peut supposer
que Y est lisse. Notons Y' =Y X C. Puisque R & C est étale, Y’ est une variété
Lisse. Soit #:Y'— Y la premiere projection. L’application & est un revétement
galoisien ([20], p. 43-44) de groupe de Galois G = {1, o}.

THEOREME 7.1. On a une suite exacte:
1— Pic Y— (Pic Y’)G—> 2/2Z(ou Z/2Z X Z/27Z).

Preuve. En vertu de ([20], chap. 3, th. 2.20), il existe une suite spectrale
HZ(G, HY', G,,))> H5 (Y, G,,).

En particulier, on a la suite exacte:

0— He(G, Ha(y', Gm))— He(Y, Gy)
M ét(G’ Hét(Y': Gm))_)ch?t(Gy H(é)t(Y" G:-'T’m))
Puisque Y’ posséde au plus deux composantes irréductibles, Ho(Y', G,,) = C*(ou

C*xC*). Dou la conclusion, car Hy (Y', G,)=PicY’ et HiY,G,)=
PicY. O

THEOREME 7.2. Pic Y’ contient un sous-groupe Pic® Y' qui est isomorphe &
C"/L ot L est un réseau de C". De plus, le groupe NS(Y') =Pic Y'/Pic’ Y’ est de
type fini.

Preuve. [13], App. B, §5. O

PROPOSITION 7.3. Le groupe Pic Y’ est la somme directe de Pic’ Y’ et de
NS(Y').

Preuve. Le groupe Pic’ Y’ est divisible, il est donc un Z-module injectif ([14],
p- 31, th. 7.1). 1l s’ensuit que la suite

1-Pic’Y' > PicY'—> NS(Y’')— 1 est scindée. O

Dans la suite, on aura besoin de quelques propriétes des groupes divisibles et
dont les preuves sont faciles.
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LEMME 7.4.

i) Tout quotient d’une groupe divisible est divisible;

ii) Une somme directe ou un produit direct de groupes est divisible si et seulement
si chaque composante est divisible;

iii) Un groupe abélien non trivial de type fini n’est jamais divisible;

iv) Dans un groupe abélien, toute somme d’un sous-groupe divisible D et d’un
groupe de type fini est une somme directe de D et d’un groupe de type fini;

v) Tout quotient d’une somme directe d’un groupe divisible et d’un groupe de
type fini (resp. fini) est la somme directe d’un groupe divisible et d’'un groupe
de type fini (resp. fini);

vi) Soit o=N,c---cN N c---cNy=N une filtration d’un groupe
abélien N. Si pour tout i, N; /N, est divisible, N ’est aussi.

vii) Soit 0— G,— G — G,— 0 une suite exacte de groupes abéliens. Si G, est la
somme d’un groupe divisible et d’un groupe fini et si G, est la somme d’un
groupe divisible et d’un groupe de type fini, alors G est la somme (directe)
d’un groupe divisible et d’un groupe de type fini. Si G est la somme d’un
groupe divisible et d’un groupe de type fini et si G, est fini, alors G, est la
somme d’un groupe divisible et d’un groupe de type fini. U

PROPOSITION 7.5. Le groupe (Pic Y')° est la somme directe d’un groupe
divisible et d’un groupe de type fini.

Preuve. Puisque NS(Y') est de type fini, il suffit, d’apres le lemme 7.3, de
vérifier I’assertion pour (Pic’ Y’)°.

En effect, Pic® Y’ = C"/L et o est un automorphisme continu du groupe de Lie
réel C"/L. En vertu de ([33], chap. 2), il existe un unique automorphisme & du
groupe de Lie réel C" qui rend commutatif le diagramme

cn 2

nl ln

C'/L — C"/L

ou [] est le revétement universel de C"/L. Comme & est continue, il est
R-linéaire, et de plus, 6°=1d et 6(L)=L. D’apres ([6] ou [32]), on a trois
représentations entieres non-décomposables du groupe {id, 6}: la représentation
triviale, celle donnée par le signe et la représentation réguliere. Par un
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changement de base dans le réseau L, 6 peut donc s’écrire sous la forme:

( )

O e

—O

O b

Soit {/;}721U {f;}/=1U {8, h«}i-: la base choisie de L. La condition (x)—
x € L revient a dire que

k=1

X = 2 a,-l,— + z ﬁ]f; + Z Y8k + 6khk,
i=1 j=1

~

oul
o, €R,BesZ, vieR et 6,eR

avec v, — 0, dans Z. Donc (C"/L)° est isomorphe a (R/Z)™ X (3Z/Z)" x (R/Z)".
Mais R/Z est un groupe divisible et 3Z/Z est fini, d’ou la conclusion. O

PROPOSITION 7.6. Le groupe PicY est la somme directe d’un groupe
divisible et d’un groupe de type fini.

Preuve. Considérons la suite exacte:
1- Pic Y— (Pic Y')“ — Z/2Z(ou Z/2Z x Z/2Z).

D’apres la proposition 7.5, (Pic Y')G est la somme directe d’'un groupe divisible et
d’un groupe de type fini. Le lemme 7.4 (vii) nous permet alors de conclure. [

THEOREME 7.7. Pour toute R-algébre affine réguliére A, le groupe Pic A est
la somme directe d’un groupe divisible et d’un groupe de type fini.
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Preuve. Soit Y une variété projective lisse sur R dans laquelle X est un
ouvert. En vertu de ([5], th. 3.4), ’homomorphisme canonique Pic Y — Pic X est
surjectif. D’aprés la proposition 7.6, Pic Y est la somme directe d’'un groupe
divisible et d’un groupe de type fini. Le théoréme découle donc du Lemme
7.4(v). O

§8. Le groupe de Picard d’une R-algebre affine A de dimension 1

Considérons a nouveau le diagramme cartésien suivant

il ik

A/C — A/C

Comme la dimension de A est 1, celle de A est 1, celle de A/€ et de A/€ est
nulle. Il s’ensuit que Pic A/€ =Pic A/€ =1. La suite exacte de Mayer-Vietoris
([2], chap. 9, th. 5.3) devient:

1— U(A)— U(A) ® U(A/€)—— U(A/€)— Pic A—PicA— 1,

ot ¢,(u ®v)=k(u)"'-I(v). Cette suite induit une suite exacte:

. U(A/G)
I(U(A/€)) - k(U(A))

1 —PicA—>PicA—1.

Soient m,, ..., m, les idéaux maximaux de A qui contiennent ¢ et soient
m,, ..., m, ceux de A qui contiennent €. En vertu de ([4], chap. 4, §2), il existe

des familles (Q(m,))i—1.. » €t (Q(,));-1.., telles que € = (M, Q(m;) =, Q(77),

m; o Q(m;) > m? et m; o Q(m;) > m} pour certains entiers n; et n; = 1.
j j i P j

PROPOSITION 8.1. On obtient un diagramme commutatif de la forme:
AlQmy =5 A/€ = Al(\m, —> R x C"

Lo

ANy = AL —p> Al Ry — R x O

ou h, h, g et § sont des épimorphismes. [
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PROPOSITION 8.2. Les anneaux A/C et A/C sont des R-espaces vectoriels
de dimension finie.

Preuve. A/( \;m} est isomorphe a [[;A/m}. Le seul idéal premier de
A/MN;m? est m;/ml. 11 existe donc une filtration de A/m{ a quotients
isomorphes 2 R ou C. On en déduit que A/m]* est un R-espace vectoriel de

dimension finie. L’épimorphisme 4 nous permet de conclure. Le méme raisonne-
ment s’applique sur A/¢C. O

LEMME 8.3. Soit f: C > B un épimorphisme d’anneaux, tel que le noyau de f
soit inclus dans l'idéal n(C) des éléments nilpotents de C. La restriction U(f) de f
aux groupes des unités est surjective et Ker U(f) =1 + Ker f.

Preuve. C’est une vérification facile. [

LEMME 8.4. Si on applique le lemme 8.3 au diagramme de la proposition 8.1,
on obtient le diagramme commutatif

1+n(A/€) —> U(A/€) —» R** xC**

l l l

1+ n(A/€) —> U(A/C) —» R* xC*~ O

LEMME 8.5. Les deux groupes 1+ n(A/C) et 1+ n(A/€) sont divisibles. De
plus, on a ,(1+n(A/€))=,(1+n(A/€))=1.

Preuve. Puisque A/C est noethérien, il existe m e N tel que (n(A/€))™ =0.
Considérons la filtration 1+ n(A/€)>-:->1+ (n(A/€))" =1. Pour tout i=
1,...,m—1, on a des isomorphismes

14 (n(A/Q)) -, _(n(A/)y
1+ ("l(:‘l/(s:))“'1 (n(A/(S))‘*l (n(A/(&:))"“ .

1+ (n(A4/€)) _

Par la proposition 8.2, ce dernier groupe est un R-espace vectoriel de dimension
finie, d’od la conclusion. Le méme raisonnement s’applique a 1+n(A/€). O

PROPOSITION 8.6.
i) Les deux groupes ,U(A/Q) et ,U(A/€) sont nuls.

ii) U(A/C) et U(A/C) sont chacun somme directe d’un groupe divisible et
d’un groupe fini.

Preuve. C’est une conséquence des Lemmes 8.4 et 8.5. O
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PROPOSITION 8.7. Soit G un groupe abélien tel que le groupe ,G soit de
type fini (resp. fini), et soit S un sous-groupe de G. Si S est la somme directe d’un
groupe divisible D et d’un groupe de type fini T, le groupe ,(G/S) est de type fini
(resp. fini).

Preuve. D’aprés ([14], chap. 3, th. 5.3), la suite 0— S — G — G/§S— 0 induit
la suite exacte:

0— Homy (Z/2Z,S)— Homy (Z/2Z, G)— Homy(Z/2Z, G/S)
— Ext; (Z/2Z,8)— - - -.

Identifions ,G avec Homz(Z/2Z, G) et ,(G/S) avec Homz (Z/2Z, G/S). 11 suffit
de démontrer que Ext;(Z/2Z,S)=Ext;(4(Z/2Z,D)® Ext;(Z/2Z,T) est de
type fini. Puisque D est divisible, Ext;(Z/2Z, D)=0. Soit B:7"»T un
épimorphisme. On en déduit un épimorphisme B, :Ext;(Z/2Z, Z")-» Extz (Z/
2Z,T) ([14],p. 105). Mais Ext; (Z/2Z,7")— (Ext; (Z/2Z, Z))* > (Z/2Z)", d’ou,
d’ou la conclusion. O

LEMMA 8.8. Le groupe U(A) est la somme directe d’un groupe divisible et
d’un groupe de type fini.

Preuve. En utilisant le théoréme 2.1, on peut supposer A intégre. En vertu de
([28], Lemme 1), on a la suite exact:

1-k*>UA)>T—1,

ou T est un groupe de type fini et k la cloture algébrique de R dans A. Mais
k =R ou C. Le lemme 7.4(vii) nous permet alors de conclure. O

THEOREME 8.9 Le groupe ,Pic A est fini.

Preuve. Considérons la suite exacte:

U(A/G) ) . =
=— |- ,Pic A— ,Pic A.
1"’z(z(U(A/@:)) k(U@ * :

D’apres le théoreme 2.1, A est produit direct fini d’algébres affines intégralement
closes. Donc, par le c9rollaire de la proposition 5.3, ,Pic A est fini. En vertu de la
proposition 8.6, ,U(A/C) est nul et U(A/C) est la somme directe d’un groupe
divisible et d’un groupe fini. De méme, par le lemme 8.8, le groupe U(A) est la
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somme directe d’un groupe divisible et d’'un groupe de type fini. On en déduit de
la proposition 8.7 que le groupe

( U(A/C)
2M(U(A/®)) - k((U(A))

) est fini, d’ou la conclusion. [J

THEOREME 8.10. Le groupe PicA est la somme directe d’un groupe
divisible et d’un groupe de type fini.

Preuve. Considérons la suite exacte:

U(A/C)

— I(UAS)) - k(U(/i)) —-PicA—PicA—1.

1

Par la proposition 8.6, U(A/€) est la somme directe d’un groupe divisible et d’un
groupe fini. Par le théoréme 7.7, Pic A est la somme directe d’un groupe divisible
et d’'un groupe de type fini. D’ou la conclusion en utilisant le lemme 7.4(v) et
(vii). O

PROPOSITION 8.11. Le groupe Pic A/(Pic A)* est fini.

Preuve. On a PicA=D @ T ou D est divisible et T est de type fini. Puisque
D = D? et T/T? est fini, I'assertion est vérifiée. O

§9. Le groupe de Witt d’une R-algebre affine normale A de dimension 2

Soit A une R-algeébre affine normale de dimension 2. Nous allons montrer que
le groupe W(A) est de type fini. En vertu du théor¢me 2.1, on peut supposer que
A est intégre de corps des fractions K.

Pour tout anneau normal R, soit Cl (R) son groupe des classes de diviseurs

([10], $6).
THEOREME 9.1. Le noyau de I’homomorphisme canonique

¢ (A")

Br (A)— Br (K) s’injecte dans U@y

out Z est ’ensemble fini des idéaux maximaux singuliers de X = Spec A et A% est le
hensélisé strict de A,, ([26], chap. 8).
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Preuve: Soit Ry le faisceau des fonctions rationnelles inversibles sur X.
Notons Divy le faisceau des diviseurs de cartiers. En vertu de ([11], exp. 5, prop.
1), la suite exacte de faisceaux 0— G,,— Rx— Divy— 0 induit une suite exacte
de cohomologie étale:

O_>H;1(X’ DivX)—)Hezit(Xy Gm)—)Hgl(X’ R;) = Br (K)—) o

D’apres ([11], exp. 5, p- 74),
Pic U"s
1

Hl(X, Di ‘injecte d = ]
& ivy) s’inj ans LU,

ou U, =SpecA,, — {m} et U% = Spec Al — {(mAX}. Par ([20], chap. 4, th. 2.5),
Br(A) s’injecte dans H:(X, G,,). Il suffit donc de démonter que Pic U%X et
Cl (A%) (resp. Pic U,, et Cl(A,,)) sont isomorphes. D’aprés ([12], chap. 4, corol.
18.8.13), A% est normal (et de dimension 2). De plus, pour tout P € Spec A% de
hauteur 1, (A7), est factoriel. Il s’ensuit que Pic U} et Cl (A%) sont isomorphes
([12], chap. 4, prop. 21.6.12). Le méme raisonnement s’applique a A4,,. O

PROPOSITION 9.2. L’anneau B = A Qi C est normal de dimension 2. Le
nombre d’idéaux maximaux de B au-dessus d’un idéal maximal m de A est 1 ou 2.
Si m' est un idéal maximal de B au-dessus de m, mA,, - B,, =m'B,,..

Preuve. Pour la premiére assertion, on peut se reporter a ([20], p. 27). On
vérifie facilement les deux autres assertions. [

PROPOSITION 9.3. Soit m' un idéal maximal de B - Si B",. est un hensélisé
de B,,, le groupe Cl(B".) est isomorphe a Cl(B".), on B",. est le complété
m'B", -adique de B,..

Preuve. Puisque le corps résiduel de B}, est C, on a B%,. = B%.. En vertu de
([26], chap. 8, p.96), on a B%.=B,.. Lanneau B, est un anneau local
noethérien intégralement clos de dimension 2 ([37], chap. 8, §13).
L’homomorphisme injectif fidelement plat B%. < B”. induit dcnc un monomor-
phisme Cl(B%.)— Cl(B%) ([10], chap. 2, corol. 6.11). Considérons le diagr-

amme commutatif:

Pic (Spec B, — {m'B"%.}) — CI(B%,)

| |

Pic (Spec B%, — {m'Bf’,,.}) — CI(B%)
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D’apres ([12], chap. 4, prop. 21.6.12), les fleches horizontales sont des isomor-
phismes. Par ([16], p. 214), la premiére fleche verticale est surjective, ce qui
acheve la démonstration. O

PROPOSITION 9.4. Soit B, I’anneau de la variété analytique correspondante
a B([31], §2, no 5). Pour tout idéal maximal m' de B, I’homomorphisme
canonique Cl (B,,))— Cl (B,,,") est bijectif.

Preuve. En vertu de ([31], §2, no 6, prop. 3), on a B,.=8B,. Le
monomorphisme fidelement plat B,, < B, induit un monomorphisme
Cl (By,.")— Cl (B,,.-). Considérons la suite d’homomorphismes:

B%.— B,,..— B,,,= B, = B",..
Cette suite induit une suite:
Cl1 (B%.)— Cl1 (B,.') = Cl (B,,, )= Cl (B%).
La proposition précédente nous permet alors de conclure. [
THEOREME 9.5. Soit m un idéal maximal de A. Le groupe ,Cl (A%) est fini.

Preuve. Soit m’ un idéal maximal de B au-dessus de m. Vu les propriétés qui
caractérisent un hensélisé strict et a I'aide de la proposition 9.2, on peut
voir facilement que A= B”.= B%.. On a donc

Cl (A7) = C1(B,)= Cl(B,) > Cl (Bym)-

Mais, d’aprés ([23], th. 2.2), le groupe Cl(B,,.) est de la forme H @ Q€ & (Q/
Z)", ot H est un groupe de type fini, N est un entier naturel et c est zéro ou le
cardinal de R. O

THEOREME 9.6. Le groupe Cl(A,,) est la somme directe d'un groupe
divisible et d’un groupe de type fini.

Preuve. Soit X =Spec A et U= X — Z ou Z est le lieu singulier de X. Soit Y
un modele projectif lisse de X. En vertu de ([10], §7, corol. 7.3), ’homomor-
phisme canonique Cl (4)— Cl (A,,) est surjectif. De plus, on a Cl(A) = Cl (V)
([29], exp. 11, corol. 3.8) et Cl(U) = Pic U ([13], chap. 2, § 6). Le lemme 7.4(v)
nous permet alors de conclure. [
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PROPOSITION 9.7. Le groupe

est fini.

Preuve. Cest une conséquence des deux derniers théorémes et de Ia
proposition 8.7. 0O

COROLLAIRE. Le groupe ,(Ker Br (A)— Br (K)) est fini.
Preuve. C’est une conséquence du théoréme 9.1 et de la proposition 9.7. O

PROPOSITION 9.8. Le groupe Q(A) est fini.

Preuve: Soit k la cloture algébique de R dans A. Considérons la suite exacte

K UA)_ U@

k*z—’ k*z - k* 1'

1—

D’aprés un théoréme bien connu de Sanuel ([28], Lemme 1), le groupe U(A)/k*

U(A ui
est de type fini. On en déduit que k(*2 , et ensuite U ((A))z’ sont de type fini.
Considérons la suite exacte:
ulA
1- U((A))z—’ Q(A)—,PicA—1.

Il suffit de démontrer que ,Pic A est de type fini. Or, Pic A s’injecte dans Cl (A)
([10}, corol. 18.13) et, comme on vient de voir, Cl (A)= Cl (U)= Pic U. Par le
corollaire de la proposition 5.3, ,Pic U est de type fini. O

THEOREME 9.9. Le groupe W(A) est de type fini.

Preuve. Soit X =SpecA un ouvert affine lisse de X =SpecA. On a le

diagramme commutatif: )
I(A) —> I(A)

NS

I(K)



94 GHAZI AYOUB

Comme I(A) est de type fini, il suffit de voir que Ker (I(4)— I(A)) est de
type fini. Puisque I(A)— I(K) est injectif, Ker (/(A)— I(A))=Ker (I(A)—
I(K)). Soit N(A) le noyau de d X (signature totale): Ker (/(A)— I(K))—
Q(A) x Z'". L’invariant de Clifford @ induit un homomorphisme injectif ([22], th.
15) w:N(A)— ,(Ker(Br(A)— Br (K))). Ce dernier groupe est fini d’aprés le
corollaire de la proposition 9.7. Donc N(A) est de type fini, d’out la conclusion
puisque Q(A) est de type fini. O

§10. Recollements d’espaces hyperboliques de rang 4

Soient
_{8n 012) _(bn blz)
o= et =
(a2| ar> ﬁ b21 b22

deux matrices de GL,(A/€) telles que dét a=dét B=35. Soit 6:(MyA/
©), dét)— (M,(A/€), dét) l'isométrie donnée par O(y) = ayB~'. Si on identifie
(My(A/C), dét) avec H(A/G?), on trouve facilement que la matrice 6% de 0 par
rapport a la base canonique de H(A/E?) est

4 ( by, _bZI)a (‘“bzl —bzz)
9;3:}_ ! —=by, by 2 by b,
* a (_blz b“)a ( by, bl2)
N—by  by/ 2\ by by

Notons f la matrice tp-1.
On vérifie facilement que I’application

Vap: M(A2 AIG? a) X M(A2, A/G2, B)— M(H(A?), H(A/G?), 6%)

qui envoie
x; & nooh
(623 0) A (10 ) R 1 o R
—x; & —y2 b

est A-bilinéaire. On en déduit un A-homomorphisme naturel, noté aussi

VYap:M(A? A/C? a) ®, M(A?, A/C?, B)— M(H(A?), H(A/C?), 65).
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THEOREME 10.1. Ya.p €St un isomorphisme de A-modules.

Preuve. 11 est facile de voir que pour tout idéal maximal m de A et pour tout
Q,eP(A) et Q,eP(A/C) rapplication canonique Q; X Q>—> (Q1))m X Q2)m
induit un isomorphisme de A,,-module 2;: M(Q;, Q,, f)—=> M{(Q1)ms (Q2)m> fin)-
De plus 2, est une isométrie dans le cas quadratique. On peut donc supposer que
A est un anneau local. Dans ce cas, A/€ est un anneau semi-local. En vertu de
([2], chap. 5, §9), on peut amener a(resp. 8) a la forme

(45 e (457 9)

par des opérations élémentaires. Pour tout 1<, j <4, notons E}(A) les matrices
orthogonales élémentaires. C'est-a-dire E)(A) =1, + A(e; — ;) o0, pour tout
1<k =4,

k'—{2+k si 1<k=<2
k-2 si 3<k<4

et les e, sont les éléments de la base canonique de M,(A/€). Soit &=

1 A -
(0 1) e GL, (A/€). On peut voir facilement que 0%.,.=08-E% (1), 0%,=

EL(A)- 08, 65 F = E%(A) - 08 et 05% =08 . E%(A). Si ¢ = (i (1)) ona6f =

05 - ES(A), 6F..=ES,(A)- 05, 0L P=E5NM)-05 et 605 °=05-E3(A). 1I
s’ensuit que les recollements avec 6% ., ou 62, , ou 6% % ou 62 F sont isomorphes
aux recollements avec 65. De méme, les recollements avec « (resp. B) et les
recollements avec £ - & ou a - € (resp. £+ B ou B - £) sont isomorphes. On peut
6 0
01
libres ([21], lemme 2.4) et vy, g est évidemment un isomorphisme. O

donc supposer que « =( >= B. Dans ce cas, les modules en question sont

THEOREME 10.2. Soit A, ® Ap:

A’M(A%, A/G?, o) ® 4 A’M(A?, A/C?, B)
— L = M(A2A?, A’A/C?, A’a) @4 M(A%A?, A’A/G2, A%B)

Pisomorphisme canonique qui identifie la deuxiéme puissance extérieure du
recollement avec le recollement des deuxiémes puissances extérieures. Soit
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Ay ®Ap:L>H=M(A, AlC, dét o) @, M(A, A/C, dét B") lisomorphisme
obtenu par les identifications usuelles de A’A avec A et de A*’A/C? avec A/C. Soit
enfin A,:H— A [application définie par: A((xy, x3) @ (y1, ¥2))=A ou A est
Punique élément de A tel que i(A)=x,-y, et j(A)=x,-y,. L’application €=
Aje A, ® Ago A, ® Ap est un isomorphisme de A-modules.

Preuve. C’est une vérification immédiate. 0O

THEOREME 10.3. On définit sur H= M(A? A/C?, a) @, M(A?, A/C?, B)
la forme bilinéaire suivante: (x @y, x; ® y;), = e(xAx, ® yAy,). L’isomorphisme
Ya.p €St une isométrie d’espaces bilinéaires.

Preuve. C’est une vérification facile. 0O

THEOREME 10.4. Soient P, Q et R des A-modules projectifs de rang
respectivement 2,2 et 3. Supposons qu’on ait des isomorphismes €:A*P®,
A’QS5 A et p: A RD A)> A. 1l existe alors deux isométries u:(A*(R © A)),
S H(R) et v:(AX(P® Q)).=> H(A’P) L(P® Q),, ou (P® Q), est définie par
(P®a,p' ®q'). = e(pAp’ ®qAq’) et (AR D A)), est définie par (x,y)q =
¢ (xAy).

Preuve. C’est une vérification facile. [

THEOREME 10.5. L’espace E = M(H(A?), H(A/C?), 6%) est stablement
hyperbolique.

Preuve. Posons P = M(A?% A/C? a) et Q=M(A? A/C? B). Les deux A-
modules P et Q sont de rang 2. Par le théoréme de Serre ([12], chap. 4, §2), il
existe un A-module R projectif de rang 3 tel que PO Q =R D A. D’apres le
théoréme 10.2, il existe un isomorphisme £:A’P® , A’Q = A. Par la premiére
assertion du théoréme 10.4, I'espace (A*R @ A)), est hyperbolique. Par la
deuxieéme assertion, (P @ Q). est stablement hyperbolique. On conclut par
Pisométrie Y, 5. O

§11. Groupe de Witt et normalisation

Dans la suite A est une R-algébre affine non normale de dimension 2. Nous
allons utiliser parfois des notations et des résultats de ([3]). Le lecteur pourra s’y
référer pour les définitions et les démonstrations. Soit Y = Spec R un schéma
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affine. Considérons les deux suites exactes suivantes de schémas en groupes:

1- u,— Spin—-SO0—1

et

1- u,—G,, %> G,,— 1.

PROPOSITION 11.1. Pour tout n € N*, on a un diagramme commutatif .

|

H[(Y,G,) — PicR

| |

H(Y, GL,) =% H(Y, G,,) = PicR
Hl s

* Hér(Y’ SpinZn) — ﬁét(Y; SO2n) T Hé,(Y, Mz)

&
<

ou dét est U'application induit par I’application ‘“‘déterminant’ et H est I’application
pp P pp pp

0
induite par celle qui envoie o € GL,(R) sur (g . ) € SO,,(R).

Preuve. Soit x € H;(Y, GL,). Il existe un recouvrement étale S de R tel que x
est la classe modulo les 1-cobords d’un 1-cocycle y € GL,(S®%zS). On peut
choisir S de fagon que dét Y soit égal a z* pour un certain z € U(S ®x S). Donc
O(dét(x)) est la classe modulo les 2-cobords de J,(z) ol 3,:U(S®zS)—
USOrS®rS) est la différentielle. D’autre part, H(x) est la classe de

0
H(y)= (g . ) Considérons le diagramme commutatif suivant ([3])

y

Clo (H(S®:S)") — SO (H(S ®% 5)")

\ /
GL (S®RS)"
ou Cl, est le groupe spécial de Clifford.
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L’élément z 'A(y) est dans Cly(H(S®xS)") et on a de plus que
Nz '-AQp))=(z"")*-dét y=1. Ainsi z7'- A(y) € Spin,,(S®x S). Alors,
O(H(x)) est la classe modulo les 2-cobords de 8,(z7'- A(y)) ou 3, est la
différentielle. Mais 3,(A(y)) = 1 car A(y) est un 1-cocycle et dans u,(S @z S R S)
les éléments 9,(z) et 3,(z ") définissent la méme classe. [

COROLLAIRE. Soit P,QeP(R). Sl existe meN tel que
H(P) L H(R™)— H(Q) L H(R™), alors il existe un R-module I inversible tel que
dét P =dét Q - [I?].

Preuve. Dans ce cas, S(H[P])=0(H[Q]). Il suit du diagramme de la
proposition précécente que O(dét[P]) = 6(dét[Q]). Ceci revient a dire que
(dét[P] - dét[Q]") e Kerd = Im(2), d’ot la conclusion. [

PROPOSITION 11.2. Soit R un anneau noethérien de dimension 1 et soit
I,J e PicR. Les espaces H(I) L H(R) et H(I ® J*) L H(R) sont isométriques.

Preuve. Par le théoréme de Serre, il existe L € PicR tel que /®J*=R® L.
Il s’ensuit que A*(I DJ*)> A*(RD L). Ceci veut dire que 1 ®J>°> L. Donc
HI®J)S>H(R®L)YSHR®IS®J?. Puisque H(J?) L H(R)=> H(R?) ([24, p.
15), on a H(I) L H(R®)= H(I ®J%) L H(R*). Le théoréme d’effacement des
espaces quadratiques ([27], th. 7.2) nous permet de conclure. O

DEFINITION 11.3. Sur les classes d’isomorphismes des R-modules projectifs
de type fini on définit la relation d’équivalence suivante: (P)~ (Q) s’il existe
m e N tel que H(P) L H(R™) et H(Q) L H(R™) sont isométriques. Notons [P] la
classe d’équivalence de (P).

DEFINITION 11.4. Soit F le groupe abélien libre sur les classes
d’équivalences défines ci-dessus et soit B le sous-groupe engendré par les
éléments de la forme [P @ Q] — [P] —[Q]. On pose K\(R) = F/B. Notons K{(R)
le sous-groupe des éléments de la forme [P] —[Q] avec rang P =rang Q. Tout
homomorphisme d’anneaux f:R— C induit un homomorphisme de groupes
Ki(f): Ky(R)—>Ky(C) défini par _Ki(f)([P] - [Q)) =[P ®x C] - [Q ® C].
Notons Kq(f) la restriction de Ko(f) @ Ko(R). Enfin, notons 7, : Ko(R)— Ky(R) la
surjection canonique.

DEFINITION 11.5. Soit

PicR

YfKo(R)""(’ﬁE”I'{)E
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I’application définie par: y([P] —[Q]) = [dét P] - [dét Q]. D’apres le corollaire de
la proposition 11.1, y est bien définie et elle est évidemment surjective.

DEFINITION 11.6. Soit SK(R) le noyau de I’épimorphisme dét: Ko(R)—
Pic R. Cette application induit un isomorphisme

KoR) ..
dét:———-—PicR
é SKO(R)—) ic

et dont I'application inverse est donnée par dét™' ([I]) = [R] — [I]. On pose

R
oR) = SKo(R))

L’épimorphisme y induit un épimorphisme noté aussi

Pic R

Y . KO(R)_) (PlC R)Z *

DEFINITION 11.7. Soit KOy(R) le sous-groupe de KOy(R) engendré par les

éléments de la forme [(Q;, q1)] — [(Q2, g2)] avec rang Q, =rang O, =2n pour
neN. 1l est facile de voir que Plapplication H:Ky(R)— KOy(R) définie par
H([P]—[Q)) =[H(P)] — [H(Q)] est un monomorphisme de groupes.

Soit A une R-algebre affine non normale de dimension 2. Soit A la cldture
intégrale de A dans son anneau total de fractions et i 'inclusion de A dans A.

PROPOSITION 11.8. Le diagramme suivant est commutatif avec des lignes
exactes:

0 — Ki(A) == ROL(A) 2> I(A) —> 0

lkam 1'30”“) l‘*
0 — Ko(A) T KO(A) == I(A) — 0
En particulier, on a une suite exacte
0— NK{(i)— NKOy(i)— Ni,— CK{(i) 2> CKOy(i)— Ci,— 0,

ou pour tout homomorphisme f, Nf désigne son noyau et Cf son conoyau.



100 GHAZI AYOUB

Preuve. La premiere assertion est facile. La deuxieme c’est le lemme du
serpent. [

PROPOSITION 11.9. Le diagramme suivant est commutatif avec des lignes
exactes

myodét! = Pic A
(PicA)? " RiA) > =2 1
(Pic A)
lmc 0] lkﬂ(') l Pic (1)
s or X ~ PicA
(Pic A)? — 5 Ko(4) 7 (Pic A)?

En particulier, on a la suite exacte: C Pic (i)~ CK}(i)— C Pic (i) — i.
Preuve. C’est une vérification facile. [
PROPOSITION 11.10. Si Pic A/Im Pic A ‘est de type fini, CK{(i) I'est aussi.
Preuve. Considérons le diagramme commutatif:

SKo(A) = K\(A) —» K}(A) —> 0

lsx,,m 1 Ko(i) lk;;m

SK(A) —— Ky(A) — Ki(A) — 0.
Puisque les deux lignes sont exactes, on a une suite exacte
CSK(i)— CK(i)— CKiy(i)— 0.
En vertu de ([35], corol. 5.3), CSK(i) est nul. Puisque Pic A/Im Pic A est de
type fini, les groupes (Pic A)*/Im (Pic A)* et CPic (i) sont de type fini. De la

pr?position 11.9 on déduit que CKi(i) est de type fini. D’ot la conclusion puisque
CKi(i) = CKy(i). O

THEOREME 11.11. Soit G le sous-groupe de Ker (i, ®j,: W(A)— W(A) ®
W(A/E)) engendré par les éléments de la forme {(M,q)} tels que
i.(M, q)—> H(A") et j (M, q)— H(A/C"). Alors G est fini.

Preuve. Soit x = {(M, q)} € G. En vertu du lemme 4.1, (M, q)= M(H(A"),
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H(A/G™), 6) ou 6 € 0,,(A/€). Mais 0,,(A/C)=0,(A/€) X EO,,(A/€) ([34],
th. 2.8) et grice aux résultats du §4, on peut supposer que 6 € O,(A/C).
Considérons la suite exacte ([3]):

1— U(A/C)— Clo(H(A/C?) —=— 0,(A/C) —> PIC A/G.

Ici PICA/C dénote le groupe de Picard des A/€-modules gradués inversibles.
Dans ([3]), base démontre qu’on peut identifier Cly(H(A/€?)) avec le groupe
L={(a’, B') e GL,(A/€) X GL,(A/Q®) | dét &’ = dét B'}. De plus, si

ee(t ) @ =0 0)
“\¢ d “\¢' d

sont tels que (a’, B') € L, alors n(a’, B') = 65 ot

_(a’ —b') ot ﬂ"‘(d —C)
=\ @ “\=b a/

Si 6 =n(a’, B'), il découle du théoreme 10.5, que x =0. Il suffit donc de
démontrer que Im y est fini. Or Im y est contenu dans ,PIC A/€ =,(Pic A/
S @ Z,(A/C)), d’ou la conclusion puisque Z,(A/E) est fini et ,Pic A/€ est fini
d’aprés le théoréeme 8.9. O

THEOREME 11.12. Si Pic A/Im Pic A est de type fini, W(A) I’est aussi.

Preuve. Puisque I(A) est de type fini, il suffit de montrer que Ni, est de type
fini. D’apres les propositions 11.8 et 11.10, il suffit méme de démontrer que
I'image Z de NKOy(i) dans Ni, est de type fini. Soit x = x([M, q)] — [H(A™)]) €
Z. Ceci entraine [(M, q) ®, A] - [H(A™)] =0, ce qui veut dire qu’il existe k € N
tel que (M, q)®,A L H(A*)S H(A"**). On peut donc supposer que x =
{((M, q)} avec i,(M, q)=> H(A"). Considérons I’homomorphisme j, |;:Z—
I(A/C). Puisque I(A/Q) est de type fini il suffit de démontrer qu’il en est de méme
de Ker (j, |z). Soit x = {(M, q)} avec i (M, )= H(A") un élément de Ker (j, |2).
Il existe alors m e N et P e P(A/C) tels que j, (M, q) L H(A/C™)= H(P). Par le
théoréme de Serre, il existe I inversible tel que P= (A4/C€)™*"~!' @ I. On en déduit
qu'on peut supposer x ={(M,q)} avec i, (M,q)>H(A") et j.(M, q)>
H(A/C"") LH(I). 1l existe donc 6 € 0,,(A/C) tel que (M, q)=> M(H(A"),
H(A/C""Y) L H(I), ). D’apres la proposition 11.2 et le théoreme 8.9, il suffit
de démontrer que pour tout A/C-module inversible I, les éléments (€ Kerj, |;) de
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la forme {(M(H(A™), H(A/€""") L H(I), 6))} sont en nombre fini. SoitJ € P(A4/¢)
tel que I ®J = A/C>. Fixons une isométrie £: H(A/C")=> H(A/C" ") L HU® 4/s
A/C). Soit My=M(H(A™"), H(A/C")LH(J), (¢®1d)™") le recollement
correspondant. Le nombre d’éléments de la forme {M(H(A"), H(A/
C* Y L H(I), 0)} + {M,} = {M(H(A*"*"), H(A/C**"), 8 DB (¢ D Id)™")} est fini
d’apres le théoréme 11.11. O

Nous allons maintenant montrer qu’il existe des R-algebres affines non
normales de dimension 2 et dont le groupe de Witt n’est pas de type fini.

LEMME 11.13. Soit A=R[X, Y, Z)/(X*— Z*f(Y)) oi f(Y) est un polynéme
sans facteurs carrés de degré impair =3. La clbture intégrale de A dans son corps
des fractions est A=R[Y, Z, X/Z]/((X/Z)* - f(Y)).

Preuve. Puisque le lieu des singularités de A est de codimension 2, A vérifie
la propriété R,. De plus, A vérifie la propriété S, puisque dim A =3 — 1 =2. Ceci
prouve que A est normal. On voit immédiatement que A est entier sur A. [

LEMME 11.14. Notons x, y, z les classes respectives de X, Y, Z. Le conduc-
teur de A dans A est § = Az = Ax + Az.

Preuve. C’est une vérification immédiate. O

Soit B =R[Y, T)/(T>-f(Y)). Identifions A avec B[Z], A/€ avec R[Y] et
A/E avec B. On a alors le diagramme cartésien

A < B[Z]

bl

R[Y]—— B
LEMME 11.15. Le groupe Pic A/Im Pic A n’est pas de type fini.

Preuve. En vertu de ([10]), th. 8.1 et corol. 18.5), ona PicA/C=PicR =1 et
Pic A = Pic B. Mais B est I’anneau des fonctions réguli¢res d’une courbe réelle
affine integre lisse L de genre =1. Donc Pic B n’est pas de type fini ([36], variétés
abéliennes et courbes algébriques, §5). La suite exacte de Mayer-Vietoris
1-U(A)— U(B[Z]) ® R*— U(B)— Pic A— Pic B> Pic B nous permet de
conclure que Pic A/Im PicA =PicB. O

LEMME 11.16. On a U(A) =R* = U(A).
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Preuve: C’est une vérification facile. O

LEMME 11.17. Le groupe CK((i) n’est pas de type fini.
Preuve. La suite de Mayer-Vietoris devient:
1->R*—>R*xR*>»R*— Pic A— Pic B— Pic B.

Il s’ensuit que PicA =1. Considérons le diagramme de la proposition 11.9.
Puisque Pic A =1, K{(A) est nul. De plus, Pic A = Pic B n’est pas de type fini et
Pic B/(Pic B)* est fini par la proposition 8.11. La proposition 11.9 nous permet
de conclure que le groupe CK{(i) = CK{(i) = Ki(A) n’est pas de type fini. O

LEMME 11.18. Le groupe G =1Im (H : CK{(i)— CKO(i)) est fini.
Preuve. On la diagramme commutatif suivant

Ko(h)

Ko(B) = Ko(B[Z])

lﬂl ln.

Ko(B) % Ko(B[Z])

ou h:B— B[Z] est I'injection canonique. Puisque K(h) est surjectif ([2], chap.
11, th. 3.1), Ky(h) est surjectif. L’application: B[Z]— B qui envoie Z sur 0 induit
une section pour Ky(h). Donc K((h) est un isomorphisme. Soit x € G. 1l existe
P,QeP(B) tels que rangP=rangQ et x=[H(P)]-[H(Q)]. Grace au
théoreme de Serre on peut supposer qu’il existe deux B-modules inversibles 7, J
tels que x =[H(I)] — [H(J)]. D’apres la proposition 8.11, Pic B/(Pic B)? est fini.
D’ou la conclusion en utilisant la proposition 11.2. O

THEOREME 11.19. Le groupe W(A) n’est pas de type fini.

Preuve. D’aprés le lemme 11.17, CK{(i) n’est pas de type fini. Par le lemme
11.18, le groupe G =1Im (H :CK{(i)— CKOy(i)) est fini. On déduit de la suite
exacte de la proposition 11.8

0— NK{(i)— NKOy(i)— Ni,— CK{(i)— CKOy(i)— Ci,—0

que Ni, n’est pas de type fini. O
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