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Growth of the coefficient of quasiconformality and
the boundary correspondence of automorphisms of a ball

M. PeroviC

Abstract. A homeomorphism f:B”— B" of the unit ball in R"(n = 2) whose coefficient of quasicon-
formality in the ball of radius r <1 has asymptotic rate of growth K(r) = sup, <, k(x, f) = O(log (1/
1—7r)) can be continued to a homeomorphism f: B” — B”" of the closed ball B". For n =2 this implies
that the Caratheodory theory of prime ends for conformal mappings also holds for the class of
homeomorphisms f: BZ— D with K(r) = O(log (1/1 - r)).

The following theorem was recently given by Zori¢ [10]:
If f: B>— B? is an automorphism of the unit disc B2 such that

j lﬁkm =00, flK (r)dr <o,

where K(r) is the coefficient of quasiconformality of f in the disc B*(r), then f can
be extended to a continuous mapping f: B*— B? of the closed disc B? into itself.

Zori¢ [10] also made the conjecture that the above theorem holds for n =3
with K"~!(r) instead of K(r).

In this paper we prove that every homeomorphism f: B”— B" of the unit ball
B"(n =2) such that K(r) = O(log (1/1 —r)), i.e. K(r) increases as the logarithm,
can be continued to a homeomorphism f: B"— B" of the closed ball B". We also
give some consequences of this statement.

Turn to the precise formulations.

Let D and D' be regions in euclidean space R"” and f:D-— D' a home-
omorphism. The number

max |f(y) ~f(x)|

s ly—x
ko ) =limp min_ |f(y) ~£(x)

ly—x|=t
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Growth of the coefficient of quasiconformality 61

will be called the coefficient of quasiconformality of f at x € D. If D is the unit ball
B" let

Ki(r)=K(r)= sup k(x, f).

In connection with the sequel recall that the coefficient of quasiconformality of
a homeomorphism is a Borel measurable function (cf. [8]).

The rest of the notation and terminology that we use here is generally the
same as in [8].

LEMMA 1. Let f:B"— B" be a homeomorphism with [' K"~ '(r)dr <c.
Then g=f"" has a continuous extension §:B"— B" of the closed ball B" into
itself.

Proof. Since k(x, f) is bounded in every ball B"(r) of radius 0<r <1, it
follows that k(y, g) is locally bounded and f is in the Sobolev space W}, ,..(B"),
i.e. ACL" in the sense of [8], (cf. [8], 32.3). So, for coordinate functions g’
1<i=<n, of g we have (cf. [5], [6]):

eldy=| k0,80, dy < | ke

1 1
< dw,,_lf r"KT () dr < w,,_lj K" (r) dr <.
sn—1 0 0

By the standard argument (for example in the same way as in proof of theorem
10.1 in [3]), one concludes the proof of the lemma.

LEMMA 2 (fundamental lemma). Let F be a compact subset of the unit ball
B", beS" '=09B" and T the family of all curves y in B" such that y has a
common point with F and contains b in its closure. Let f:B"—D be a
homeomorphism such that

4 dr
f A=-nK>r) (@)

and for some m > 1
1

K" Y(r)dr=0(t) when t—0,(t>0). (b)

1—¢m

Then M(I'') =0, where I = f(I).
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Proof. Let (r,) be an increasing sequence in [0, 1) such that r,— 1 when
k— and F < B"(ry). Let I, be the family whose elements are subcurves of
elements of I' that connect through the spherical ring R, ={xeR":1 - <
|x —b| <1—r,_,} its boundary spheres $"~'(b, 1 —r,) and $""'(b, 1 — r,_,). The
condition (a) (as well as (b)) implies K(r) <x for 0<r <1 and by theorem 32.3
in [8] a homeomorphism f is in the class W, ,.(B"). Consequently, families
I'; = f(I;) are separate and I'"" > I}, (cf. [8]). Therefore [2]

Ml—-n (F’) 2 Ml n (‘r;c) (2)

Standard arguments yield (cf. [4], Lemma 1)

M(I) < p"(xX)k" " (x, f) dx,

R,NB"

for every p admissible for I;. If for p we choose the extremal function of the ring
R, then we obtain

M(I) < —— j K7D g 3)

«NB" lx bln

Let (t, )5 x, o € $"7'(b, 1) be the spherical coordinate system with origin in
b. Let t,, be the hypersurface defined by x € 7,, if and only if |x| =1 —¢", where
m>1 is such that the condition (b) is satisfied. Denote by A, the central
projection from b of the set $*7!(b, t) N B” onto the unit sphere S"7'(b, 1), by
A, c A, the projection of that part of the set $*~!(b, t) N B” which lies inside of
the surface t,, and by A} the difference A, — A,. Then, taking into account that
k" Y(P(t, w)) < K" '(|P(t, )|), we get

n—1 —rg—1
f /) {) dxsf iiff k" Y(P(t, w))dS™!
RNB" |X — bl 1— A,c85"1(b,1)

— Ik t

sf " ldt[ K™ Y(P(t, )]) dS™. 4)

Tk

Further, for 1 —r,<t<1-r,_,

| kP ) ds i <o, KA, G=1-n), (5)
A;
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and for 0<t<1-r,
65
f K" '(|P(t, w)|) dS™ ! =J ds"*| K" Xr(t, 0))de,
Al sn-2 6.

where 6 is the angle between the vectors x — b and —b, (¢, 8) = |x| and 6, and 65
correspond to these points of S”7'(b, ¢) that lie on 7,, and S$”~' respectively. It is
easy to see that for £+ 0

_1—-2tcos€+t2
rt sin 0

de dr.

Consequently, there exist 0 <t' <1 and a constant ¢ >0 such that

d
desc{ for 0<t<t', 0,<0<80s(0s<un).

So we have for 0<r<¢’

1
[Kn—l(lp(t, w)|)d5"_1$2w_n—'2'j K" X(r) dr, (6)
A o Jreen

t

with r(¢, 6,) =1—1t". According to (b) there exist 0 <¢"<1 and ¢, >0 such that

1
f K" Yr)ydr<sc,t for 0<t<t" @)
1

_tm

Let t,=min {¢', t"}. Then from (6) and (7) it follows that
f K" Y(|P(t, w)|) dS" ' < ¢w,_s, (8)
Ay

for 0 <t =<t, and some ¢ > 0. From (3), (4), (5) and (8) it follows that there exist
C >0 and 0=<R,< 1 such that

My < c K00

(9)
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whenever 7,_; = R,. From (2) and (9) one gets

_ _ In (l_rk_l)—ln (l—rk)
Ml/l n I'v > Cl/l n
) rk_12>Ro K1-(1-r)™)

for every increasing sequence (r;), 7. — 1. It follows that

dr
—NKA-A-n")’

1
Ml/l—n Iv BMJ’
) .

for some M >0 and R = 0. Changing variable by 1 — (1 — r)™ = u we finally have

Mt dr

Ml/l—-n 1—-: >— f )

(r) mJ) (1-r)K(r) (10)
If M(I") >0 it follows from (10) that the integral in (a) converges. This yields a
contradiction and the proof of the lemma is complete.

LEMMA 3. Let f:B"— D be a homeomorphism such that [* K"~ '(r) dr <.
Then D is a proper subset of R".

Proof. Suppose on the contrary that D = R". Let p, q be two different points
of the unit sphere $”~' = B", let s be a fixed element of (0, 1) and I the family
of curves which through B” join the segments [sp, p) and [sq, ). Let a be the
distance between the points sp and sq. Then the function x+—p(x)=1/a is
admissible for I'. Let I'" = f(I'). Then we have

M) < L"p”(x)k"_l(x, £) dx sal; Lnk”"l(x, £) dx

1
ay f K" Y(r) dr <.
a 0

=

On the other side, since the modulus of curve family is a conformal invariant, we
can suppose that I is the family of curves which join two arcs that begin in the
same point of R". This implies M(I"") =c log (b/t) for a fixed b and each 0 <t<b
(cf. [8], 10.12). This is a contradiction.

THEOREM 1. If f:B"— B" is a homeomorphism with K(r).= O(log (1/
1—7)) than f can be extended to a homeomorphism f:B"— B" of the closed ball
B".
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Proof. Let b e S" ' =038B". Let C(f, b) be the cluster set of f at b. Let F, I,
I'" be as in Lemma 2, F being connected and having more than one point. Since
the family A(f(F), C(f, b), B") of all curves that join f(F) and C(f, b) through
B" is a subfamily of I, because of the monotonicity of the modulus and Lemma
2, we obtain M(A(f(F), C(f, b), B")=0. (If K(r)=0(log(1/1—r)) then the
conditions (a) and (b) of Lemma 2 are satisfied). Since C(f, b) is connected this
means that C(f, b) has exactly one point. It follows that f has a continuous
extension f:B”"— B". On the base of Lemma 1 we conclude that f is a
homeomorphism.

Remarks. 1) Theorem 1 was in fact proved under the hypothesis (a) and (b)
of Lemma 2. But the condition (b) is slightly stronger than the condition
f1K" Y r)dr<e in [10]. 2) If K(r) increases faster than log(1/1—r) then
Theorem 1 does not hold. According to [10] for every nondecreasing function A
such that

v dr todr L a1 —
[ama== o Jamm== = Jrroa-

there exists a diffeomorphism f: B”— B" with K(r) < h(r) having no continuous
extension from B” into itself. 3) Theorem 1 also holds (under the conditions (a)
and (b)) if we replace the ball B” in the range by a region D which has property
P, on the boundary (cf. [8], 17.5 and 17.15).

It was pointed out in [10] that the question about boundary behavior of
different classes of homeomorphisms in the plane is reduced, from the metrical-
point of view, to the study of boundary behavior of automorphisms of a disc B>.
(This is a consequence of the Riemann mapping theorem and the Caratheodory
theory of prime ends).

THEOREM 2. For the class of locally quasiconformal mappings f:B*— D
which satisfy the condition K(r) = O(log (1/1—r)) the Caratheodory theory of
prime ends holds.

Proof. 1t is enough to show that a region D is conformally equivalent to the
unit disc B2 But that is a consequence of Lemma 3.
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