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Growth of the coefficient of quasiconformality and
the boundary correspondence of automorphisms of a bail

M. Perovic

Abstract A homeomorphism / Bn^&gt;Bn of the unit bail in Rn(n 2*2) whose coefficient of quasiconformality

in the bail of radius r &lt; 1 has asymptotic rate of growth K(r) sup^,. k(x, f) 0(log (1/
1 - r)) can be continuée! to a homeomorphism / Bn-+Bn of the closed bail Bn For n 2 this implies
that the Caratheodory theory of pnme ends for conformai mappings also holds for the class of
homeomorphisms / B2-* D with K(r) O(log (1/1 - r))

The following theorem was recently given by Zorié [10]:
If f:B2-^B2 is an automorphism of the unit dise B2 such that

(l-r)K(r)

where K(r) is the coefficient of quasiconformality of fin the dise B2(r), then/can
be extended to a continuons mapping/:52-»B2 of the closed dise B2 into itself.

Zorié [10] also made the conjecture that the above theorem holds for n ^ 3

with Kn~\r) instead of K{r).
In this paper we prove that every homeomorphism f.Bn-*Bnoi the unit bail

Bn(n 5*2) such that K(r) O(log (1/1 — r)), i.e. K(r) increases as the logarithm,
can be continued to a homeomorphism f:Ên-+ Bn of the closed bail Bn. We also

give some conséquences of this statement.
Turn to the précise formulations.
Let D and D&apos; be régions in euclidean space Rn and f:D-*D&apos; a

homeomorphism. The number

max

k(x, f) hm sup
o min 1/00-

\y-x\=t
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Growth of the coefficient of quasiconformality 61

will be called the coefficient of quasiconformality of /at x e D. If D is the unit bail

In connection with the sequel recall that the coefficient of quasiconformality of
a homeomorphism is a Borel measurable function (cf. [8]).

The rest of the notation and terminology that we use hère is generally the

same as in [8].

LEMMA 1. Let f:Bn-*Bn be a homeomorphism with J1 Kn~\r) d
Then g=f~l has a continuous extension g:Bn^&gt;Bn of the closed bail Bn into
itself.

Proof. Since k(x,f) is bounded in every bail Bn{r) of radius 0&lt;r&lt;l, it
follows that k{yy g) is locally bounded and / is in the Sobolev space Wiloc(2?n),
i.e. ACLn in the sensé of [8], (cf. [8], 32.3). So, for coordinate functions g1,

l^i^n, of g we hâve (cf. [5], [6]):

f IVg&apos;l&quot; dy ^ \ k&quot;-\y, g)J(y, g)dy^\ kn~\xy f) dx
JBn JBn JBn

^ \ d(on_x \ rn-lKn~\r) dr ^ œ»^ \ Kn~\r) dr &lt; oo.

Jsnl Jq Jo

By the standard argument (for example in the same way as in proof of theorem
10.1 in [3]), one concludes the proof of the lemma.

LEMMA 2 (fundamental lemma). Let F be a compact subset of the unit bail
Bny b eSn~1 dBn and r the family of ail curves y in Bn such that y has a

common point with F and contains b in its closure. Let f:Bn-*D be a

homeomorphism such that

r(l-r)K(r)

and for some m &gt; 1

dr
(a)

1
1

n-\r)dr 0(t) when r-*0, (t&gt;0). (b)
i-rm

Then M{F) 0, where F =/(F).
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Proof. Let (rk) be an increasing séquence in [0,1) such that rk-*l when
Jc-^co and FczBn(r0). Let Fk be the family whose éléments are subcurves of
éléments of F that connect through the spherical ring Rk {x e Rn : 1 — rk &lt;

\x - b\ &lt; 1 - rk-t} its boundary sphères Sn~\b, 1 - rk) and Sn~\b, 1 - rk^). The
condition (a) (as well as (b)) implies K{r) &lt; &lt;*&gt; for 0 ^ r &lt; 1 and by theorem 32.3

in [8] a homeomorphism / is in the class Wln&gt;Yoc{Bn). Consequently, families

rfk=f(rk) are separate and P &gt; Tk (cf. [8]). Therefore [2]

Standard arguments yield (cf. [4], Lemma 1)

p&quot;(x)k&quot;-\x,f)dx,

for every p admissible for Fk. If for p we choose the extremal function of the ring
Rk then we obtain

-îhr*L kn~\x,f)

Let (f, co)^jc, co e S&quot; x(6, 1) be the spherical coordinate System with origin in
b. Let xm be the hypersurface defined by x e rm if and only if |*| 1 — fm, where

m &gt; 1 is such that the condition (b) is satisfied. Dénote by At the central

projection from b of the set Sn~\b, t)nên onto the unit sphère Sn~\b, 1), by
A[ &lt;z.At the projection of that part of the set Sn~\b, t) Ci Bn which lies inside of
the surface rm and by A[ the différence At —A&apos;t. Then, taking into account that
kn~\P{t, co))^Kn-\\P(t, û&gt;)|), we get

^f 1. (4)

Further, for 1 — rk « f « 1 — rfc_x

«-^&quot;&quot;&apos;(l - tT), (tk 1 - /¦*), (5)
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and for 0 &lt; t ^ 1 - r0

f Kn-\\P(ty o))\) dS&quot;-1 f dSn~2 f SKn-\r{t, 6)) dd,
Ja\ h»-2 Je,

where 0 is the angle between the vectors x — b and —b, r{t&gt; 6) \x\ and 6T and 6S

correspond to thèse points of Sn~1(by t) that lie on rm and Sn~x respectively. It is

easy to see that for t =f= 0

l-2tœsd + t2
de : dr.

rt sin d

Consequently, there exist 0 &lt; t&apos; &lt; 1 and a constant c &gt; 0 such that

— for o&lt;^*&apos;, dx&lt;e&lt;es{es&lt;7i).

So we hâve for

f K^flPa a))|) dS&quot;&quot;1 ^ ^=2 f1
Xn-i(r) ^ (6)

with r(&gt;, 0T) 1 - tm. According to (b) there exist 0 &lt; t&quot; &lt; 1 and cx &gt; 0 such that

f1
K&quot;&quot;1^)^^!&apos; for 0&lt;t^t&quot;. (7)

Let r0 min {f&apos;, r&quot;}. Then from (6) and (7) it follows that

f Kn-\\P(t,œ)\)dSn-1^cœn-2, (8)
JA&quot;t

for 0 &lt; ^ ^ ^0 and some c &gt; 0. From (3), (4), (5) and (8) it follows that there exist
C &gt; 0 and 0 ^ Ro &lt; 1 such that
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whenever rk-X ^ ^o- From (2) and (9) one gets

vi-n,r^&gt;rm-n y In (l-&apos;W)-In (!-Mvi-n,r^&gt;r
K(L-(I-rk)

for every increasing séquence (rk), r*.—»1. It follows that

f1 dr
Mm~n(D ^ M

for some M &gt; 0 and R^O. Changing variable by 1 — (1 — r)m u we finally hâve

If M(F) &gt;0 it follows from (10) that the intégral in (a) converges. This yields a

contradiction and the proof of the lemma is complète.

LEMMA 3. Letf:Bn-+Dbea homeomorphism such that J1 Kn~\r) dr &lt; ».
Then D is a proper subset of Rn.

Proof. Suppose on the contrary that D Rn. Let p, q be two différent points
of the unit sphère Sn~x 3Bny let s be a fixed élément of (0,1) and F the family
of curves which through Bn join the segments [sp, p) and [sq, q). Let a be the
distance between the points sp and sq. Then the function jc-&gt;p(x) lia is

admissible for F. Let F&apos; =f(F). Then we hâve

f P*(x)kr-\x,f)dx*\ \ kr-\x,f)dx

&lt;oo.

On the other side, since the modulus of curve family is a conformai invariant, we

can suppose that F&apos; is the family of curves which join two arcs that begin in the

same point of Rn. This implies M(F&apos;) ^ c log {bit) for a fixed b and each 0 &lt; t ^ b

(cf. [8], 10.12). This is a contradiction.

THEOREM 1. If f:Bn-*Bn is a homeomorphism with K(r) O(log (1/
1 — r)) than f can be extended to a homeomorphism f:Èn-*Ën of the closed bail
Bn.
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Proof. Let b e S&quot;&quot;1 3Bn. Let C(f, b) be the cluster set of / at b. Let F, T,

F be as in Lemma 2, F being connectée! and having more than one point. Since

the family A(f(F), C(f, b), Bn) of ail curves that join f{F) and C(f, b) through
Bn is a subfamily of F, because of the monotonicity of the modulus and Lemma
2, we obtain M(A(f(F), C(f, b), Bn) 0. (If K(r) O(log (1/1 - r)) then the
conditions (a) and (b) of Lemma 2 are satisfied). Since C(f, b) is connected this

means that C(f, b) has exactly one point. It follows that / has a continuous
extension f:Bn-&gt;Bn. On the base of Lemma 1 we conclude that / is a

homeomorphism.

Remarks. 1) Theorem 1 was in fact proved under the hypothesis (a) and (b)
of Lemma 2. But the condition (b) is slightly stronger than the condition
$1Kn-1(r)dr&lt;™ in [10]. 2) If K(r) increases faster than log(l/l-r) then
Theorem 1 does not hold. According to [10] for every nondecreasing function h
such that

or fô^7W)=œ and

there exists a diffeomorphism /: Bn -&gt; Bn with K(r)^h(r) having no continuous
extension from Bn into itself. 3) Theorem 1 also holds (under the conditions (a)
and (b)) if we replace the bail Bn in the range by a région D which has property
P2 on the boundary (cf. [8], 17.5 and 17.15).

It was pointed out in [10] that the question about boundary behavior of
différent classes of homeomorphisms in the plane is reduced, from the metrical-

point of view, to the study of boundary behavior of automorphisms of a dise B2.

(This is a conséquence of the Riemann mapping theorem and the Caratheodory
theory of prime ends).

THEOREM 2. For the class of locally quasiconformal mappings f\B2-*D
which satisfy the condition K{r) O(log (1/1 — r)) the Caratheodory theory of
prime ends holds.

Proof. It is enough to show that a région D is conformally équivalent to the
unit dise B2. But that is a conséquence of Lemma 3.
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