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Untere Schranken fiir den ersten Eigenwert des
Laplace-Operators auf kompakten Riemannschen Flichen

Heinz HUBER

1. Einleitung

1.1 Auf jeder kompakten Riemannschen Fliche ¥ vom Geschlecht g>1
gibt es eine einzige Metrik konstanter Krimmung —1, welche mit der konformen
Struktur von &% vertréglich ist: die Poincaré-Metrik. Der zugehorige Laplace-
Beltrami-Operator — A besitzt ein diskretes Spektrum:

AO=O<A-1§)'2§"', (An—)-i-OO)_
Es ist bekannt ([1]-[3]), dass es eine positive untere Schranke fiir A = A, gibt, die

nur vom Durchmesser D von & abhingt; insbesondere hat Buser [2] gezeigt,
dass')

D -2
= (4 Sin =
/1__(4Sm2) .

Eine bessere Abschitzung ist zu erwarten, wenn neben dem Durchmesser noch
weitere geometrische Daten von &% beriicksichtigt werden. Wir betrachten in
dieser Arbeit das Volumen von &:

A=J dw =4n(g —1)

und den “Injektivitdtsradius” d =1/2, (I ist die Lange der kiirzesten geschlos-
senen Geoditischen auf ). Wir beweisen folgendes Theorem:

AZMin(},0) o= 2(2 ~ Tg? g) Tg? g / (g — 1)D? )

1y Die hyperbolischen Funktionen werden im folgenden mit Sin, Cos, Tg bezeichnet.
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Zum Vergleich von (1) und (I) betrachten wir die Menge X, aller Flichen vom
d_2
Geschlecht g =2 mit ng-i >§ und D <4log2g. (Es ist leicht zu sehen, dass

D >log2g fiir jede Fliche vom Geschlecht g). Die Abschitzung (1) von Buser
liefert dann

MF)>(2% +27% -4 VFez,
Dagegen ergibt (I) ein erheblich besseres Resultat:

MF)>4%@g-1)""(log2g)™*> VFez,.

Andererseits kann man der Arbeit [5] von F. Jenni leicht entnehmen: Es gibt eine
hyperelliptische Flache %, € 2, mit

MF)~287", (§—).
1.2 Zum Beweis von (I) diirfen wir annehmen, dass
0<A<i (1)

Wir zeigen, dass dann A = 0. Dazu wihlen wir eine zu A gehorige reellwertige
Eigenfunktion ¢ mit

L ¢*dw =1. ()

Wegen A # 0 gilt:

f ¢ dw = 0. 3)
F
In §2 werden wir beweisen, dass unter der Voraussetzung (1)

Vo = ||grad ¢||>= A/4nl 4)

d d
=19 —To2%\ 102 &
1 2(2 Tg 2) Tg > (5)

Da % kompakt ist, gibt es zu zwei beliebigen Punkten p, g € ¥ stets einen
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geoditischen Weg y von p nach g mit der Léange

fds=dist(p,q)§o.
Y

Daher wird
00)- 0@y = ([ a)'s [ (B) - [
=< L (V) ds - f ds = AD?/4al. (6)
Definieren wir
Kni=A™2[  (8() - 9(@)P"dw, dw,,  meN, )
so folgt aus (6)
< (AD?A/4rly" = (AD*(g — 1)/I)™ ®)
Nun sei
N*={meN|22"1=K,). ©)

Fiir m € N* folgt dann aus (8)
AD*(g — 1)/ I = 2>7Vm,

Falls N* eine unendliche Menge ist, konnen wir daraus schliessen, dass
AD*(g — 1)/ =4,

womit wegen (5) Theorem (I) bewiesen wire.
Nun folgt aus (2), (3) und der Schwarzschen Ungleichung:

[ 00)- 9@ do, do, =24,
FxF (10)
. _00)- (@) do, do,=24] ¢*do+628
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Diese Ungleichung besagt gerade, dass
2eN*. (11)

Sei nun m e N* und m’ =2m — 1. Dann folgt aus den Definitionen (7) und (9):

2 SAT R (9(p) = 9@ ($p) ~ 9(@) do do,
Daraus und aus (10) schliessen wir mit Hilfe der Schwarzschen Ungleichung:

22m' éAm'—Bf

Fx

y(¢(P) — ()" dw, dw, - 2A =2K,,,..

Dabher ist mit m e N* auch m' =2m — 1 € N*. Daraus folgt wegen (11), dass N*
tatsdchlich eine unendliche Menge ist. Damit ist Theorem (I) bewiesen bis auf die
Gradientenabschitzung (4).

1.3 Man kann leicht eine obere Schranke fiir D angeben, die nur von d und
A abhingt. Sei

B,(r)={q e ¥ |dist (p, q) =r}.

Dann gilt

f dw =2a(Cosr—1)<A fir r=d, (12)

By(r)
also insbesondere

Cosd ~1<A/2x =2(g —1). (13)
Es gibt daher eine natiirliche Zahl » derart, dass

1

n<———=—=n+1. (14)

Wir zeigen, dass

2(g—1
D =2nr mit Cosr=1+£——) (15)
n+1
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und somit
4(g — 1d
<=
b Cosd -1 (16)

In der Tat: Es gibt zwei Punkte a, b € & mit dist (a, b) = D und ein geoditisches
Segment der Liange D mit den Endpunkten a, b. Dieses Segment zerlegen wir
durch die Punkte po=a, py, ..., p, =b in n Stiicke gleicher Liange D/n. Dann
gilt offenbar

dist (p;, p,)ZD/n fir i#j. (17)

Definieren wir nun r >0 durch

2(g—1)

Cosr=1+
n+1

’

so ist wegen (14) r = d und daher nach (12)

i dw=4n'(g—1)=j dw.

=078, ("

Daher konnen B,(r),..., B, (r) nicht paarweise disjunkt sein. (Sonst wire
ndmlich die offene Menge F—-\J_;B,(r) leer und somit & nicht
zusammenhingend). Folglich gibt es zwei Indices i#j und einen Punkt g€
B, (r) N B, (r). Dann ist aber

dlSt (pi’ p]) g dlSt (pi’ q) + dlst (p]" q) é 2r

und somit wegen (17) D = 2nr.
1.4 Aus (16) folgt

1 Cosd—l__ 1 Sind _ d

g—1) d  _ag-1 d ‘&%

1
—>
D

Daraus ergibt sich fiir die Schranke o in Theorem (I) die Abschétzung

1 Sin d\? d d
>ot) =gy () (2- 185 e,
o> o0*(d) 8G—17 \ 4 2-Tg > Tg ) (18)
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0*(d) ist offensichtlich eine monoton wachsende Funktion von d. Daher folgt aus

(13)
o*(d) < o*(dy), Cosdy—1=2(g—-1)=2.

Daraus ergibt sich aber leicht, dass stets 0*(d) < 1/4. Daher folgt nun aus (I) und
(18) das Theorem

rzue-n" @ =1 (3 (2-1ed) Tl an

2. Die Abschiitzung von V¢

2.0 Wir versehen den Einheitskreis E = {z € C| |z| <1} mit der hyperboli-
schen Metrik

ds*=4(1 - |z|»)~?|dz|?, D

welche die konstante Kriimmung —1 besitzt. Fiir die hyperbolische Distanz der
Punkte 0 und z ergibt sich:

1+ |z|
1-|z|

p(0, z) =log , |z| =Tg (p(0, 2)/2). 2)

Mit geoditischen Pokarkoordinaten
r=p(0, z), 0 =argz

wird
ds* = dr* + Sin’ r d6>.

Daher ergibt sich fiir das Volumenelement und die Beltrami—Operatoren der
Metrik (1):

dw =Sinrdrdf €)]

9\? 3 \?
— 2 __{F .2 (9
V = ||grad|| (ar) + Sin r(86> 4)
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3 3 o?
- . ._.1 - . — + . __2 .
A=Sin""r > (Sm r ar) Sin r 3o ()

2.1 'Wir betrachten nun einen beliebigen Punkt p € ¥. Da das Geschlecht

von ¥ grosser als eins ist, gibt es eine konforme Ueberlagerungsabbildung
II:E— % mit

I1(0) = p. (6)

Da jede Decktransformation von IT eine Isometrie der Differentialgeometrie (1)
ist, konnen wir diese Geometrie mit IT von E auf & verpflanzen und erhalten
(unabhingig von der Wahl von p € ) die in der Einleitung charakterisierte
Poincaré—Metrik auf %. Wir definieren:

f(r, 0) =F(x, y) = (¢ ° II)(2),

r=p(0,z), 0 =argz, z =x +iy. @
Setzen wir noch

o = F,(0, 0), B = F,(0, 0), 8)
so folgt aus (1) und (6), (7)

(Vo) (p) =i(a®+ B?) 9)

Die Ueberlagerungsabbildung IT ist injektiv auf
K={zeE|p(0,2z)<d}

(Siehe z.B. [4] 3.2). Daher wird

JKV(¢°II) do=[ V¢do éLch dw=1i.

I(K)

Daraus folgt wegen (3), (4) und (7):

f: (fnff(r, 0) dB) Sin rdr + jd ( :nf%,(r, 0) dG) Sin~!'rdr=A. (10)

0
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2.2 Wir stellen nun die Funktion f(r, ) durch eine Fourier—Reihe dar:

<+ oo

f(r, )= 2 cu(r)e™. (11)

n= -

Da f reellwertig ist, gilt

Con =Cp. (12)
Wir interessieren uns insbesondere fiir ¢,(r) und zeigen zunichst
Li_r)r(l) ci(r)ir =3(a — ip). (13)
In der Tat: Aus (7), (8) und (2) ergibt sich
f(r, 8)=¢(p) + |z| (a cos 6 + B sin 8) + O(|z|*)
= 9(p) +1Tel (= iB)e’® + (o + iB)e™%) + O(Te2).

Somit wird

ci(r) = 51; J; f(r, 8)e ?d6 = i(a —iB) Tg-zr- + O(Tg2 %)

2.3 Zur Berechnung von c,(r) benétigen wir die Legendre—Funktion
E(x):=P,(x), v(iv+1)=—A.

Sie ist im Intervall [1, «) Losung der Differentialgleichung
d  , ,
7 &~ DE(x) + AR (x) = 0; (14)

sie ist reguldr an der Stelle x =1 und es gilt
E(1)=1 (15)

Daraus ergibt sich sofort

F)=-3. 16)
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Definieren wir

Gi(x)= (>~ D" F(x), x>1, (17)
so gilt

d%(xz -1)Gix) + (A o 1)GA(JC) =0. (18)
Wir zeigen nun:

ci(r)=vGi(Cosr),  |v[*=27%(Vo)(p). (19)

Zunichst bemerken wir: Aus (4) und (7) folgt

fA(r, )) =M =Max V¢.
F

Daraus ergibt sich:
lei(n| =M™ (20)

Die Eigenfunktion ¢ erfiillt auf & die Gleichung A¢ + A¢ = 0. Daraus folgt
wegen (5) und (7):

2
Sin~! r-(% (Sin r%) + Sin“zrg-é];+ Af =0.

Hieraus ergibt sich sofort eine gewShnliche Differentiagleichung fiir

27

1 :
Cl(r)=§]—t ! f(r, 9)6_'9d9:

Sin~! rgr- (Sinrci(r)) + (A —Sin"2r)c,(r) = 0.

Fihren wir die neue Variable x = Cos r ein und definieren

h(x) = cy(r), x =Cosr, r>0, (21)
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so wird

dix(xz_l)h'(xH(;L-xz-l)h(x)=0, x> 1. (22)

h(x) erfiillt also dieselbe Differentialgleichung wie G,(x). Wir betrachten deshalb
die Wronski—Determinante

Gi(x)  h(x)

Y& =161 nx)

.

d
Aus (18) und (22) folgt e (x* = 1)W(x) = 0 und somit

c
x2-1

W)= x>1, (23)

mit einer gewissen Konstanten c. Andererseits folgt aber aus (13), (17), (20),
(21), dass die Determinate W(x) fiir x | 1 beschrinkt ist. Somit muss ¢ =0 sein.
Dann sind aber # und G, linear abhéngig: Es gibt eine Konstante y derart, dass

ci(r) = yG,(Cos r).

Daraus und aus (16), (17) ergibt sich:

lime,(r)/r=—=v.
r—0

2
Somit wird wegen (13)
- L (—a+ip)
Y2

und daher wegen (9):|y|*=A"%(V¢)(p). Damit ist die Behauptung (19)
bewiesen.
2.4 Aus (11) folgt:

27 Zm |c,’,(r)|2=[ nff(r, 0)dé

n=-—ow 0

+o 27

2 D, n?lc,(r)]*= 2(r, 0)d6

n=-—aoo
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Hieraus und aus (17), (19) ergibt sich wegen c_; =c;:

4wA~3(Ve)(p)(G;(Cos r))* Sin*r = ” fA(r, 8) d6

47499 p)(Fi(Cos ) sin®r S [ fitr, 0) do
Daraus folgt nun wegen (10):

47~2J(Cos d)(V)(p) = A
mit

10)=[ - DGi@P e+ [ Fr0F D, y>1

2.5 Nun haben wir noch J(y) nach unten abzuschitzen! Aus (18) folgt:

fci(xZ—l)G'dny(A— 1 )Gde—o
: Adx A ) x2—1 A - V.

Daraus ergibt sich durch partielle Integration des ersten Terms:

y d 'y 1
fl (x*—1)(G3) dx =3 1) dy_ Gi(y) +f1 (/1 - 1)61 dx.

Wegen (17) ist aber

f y (’1 - )Gi dx =2 fl , (x* = 1)(Fi(x))* dx — fl ’ (F;(x))? dx.

1 x2-—1

Somit folgt aus (25), (26):
d y
16) =107~ 1) 1 Gi0) + 3] (= DF @) dx
1
Aus (17) ergibt sich:

2 d _, N — L1(v2 i 2 _ ' 2
3y -1)@G,x(y)-—z(y 1)dy(y 1)(Fi(y))

(24)

(25)

(26)

(27)

=107~ D[ Fi0) £ 0*~ DFI0) + FE0)07~ DFi0) |
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Daraus folgt wegen (14):
1(y? - 1)—— G3(y) = —A(y* - DEY)Fi() —y(O* = DF:())
Weiter folgt aus (14)
Y d Y
AI E— (x*—1)F; dx +A2j F3dx =0.
1 dx 1
Daraus ergibt sich durch partielle Integration des ersten Terms
y Y
A f (6 = 1)(Fa(x))* dx = A(y* = DE()F;(y) + A> j Fi(x) dx.
1 1
Nun folgt aus (27)-(29):
10)= 2] i) de - 25 102 - DEIOIF.
Schliesslich folgt nochmals aus (14)
5 y
0~ DF;0) = -A[ B(x) d.
1

Somit wird

y 1 ( fl " E(x) dx)z.

7 0)= | Fw

Nun ist aber

([rwafs[ i | Earina

1 x

-1 X
=yy fll_'_szi(x)dx.

57

(28)

(29)

(30)
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Somit folgt aus (30)

Cosd Fi(x)
1+x?

A7%J(Cosd) = f
1

Fiir 0= A =1} gilt aber
E(x)Z Fu(x)>0 fir x=1.

(Siehe [4], Lemma 4 pag. 221). Somit wird

Cos d F (x) Tg2(d/2) 1+1¢ dt
J(Cosd) = ) T+ 52 dx = F2,| — 1=+

Nach [4], (21)-(23), pag. 219-220 gilt:

Fu15) = (1= 07E()

2 /2 o
E@)==| (@-tsin*u)du=72, %"
7T Jo n=0
_ (2n)!
TP

Somit folgt aus (31)

Ez(t)

TeX(d/2)
A7%J(Cosd) = f 1- t)
0

Wegen (34) gilt fir0=a <1, 0=¢<1:
(1—at) 2= 2 .t = 2 c,t™ (o)™,

Daraus folgt nach der Ungleichung von Cauchy:

1at_-<= (gocﬁt ) ( > (a t),,) _ E()

—a’t’

1+

(31)

(32)

(33)

(34)

(35)
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Daraus ergibt sich fiir a =¢, 0= < 1:

1-¢£ 12 t?
E(t)= =1+ =1+
O 1-¢7 14+¢ 2
und somit
EX(t)=1+¢

Dabher folgt aus (35)

Tg2(d/2)
A2J(Cos d) = f

0

d d
1—1¢ dt=l(2— 2—) 2_,
( ) G, Tg ) Tg 2

Damit folgt aus (24):
1 2 d 2 d
(V¢)(p)§l/4.ﬂ], I=3 2—Tg 'i Tg 5

Dies ist die in 1. (4) angekiindigte Gradientenabschitzung.
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