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Untere Schranken fur den ersten Eigenwert des
Laplace-Operators auf kompakten Riemannschen Flàchen

Heinz Huber

1. Einleitung

1.1 Auf jeder kompakten Riemannschen Flâche 9 vom Geschlecht g&gt;l

gibt es eine einzige Metrik konstanter Kriimmung — 1, welche mit der konformen
Struktur von 9 vertràglich ist: die Poincaré-Metrik. Der zugehôrige Laplace-
Beltrami-Operator -A besitzt ein diskretes Spektrum:

A0 0&lt;A1^A2^--., (Ân-&gt;+«).

Es ist bekannt ([l]-[3]), dass es eine positive untere Schranke fur A X1 gibt, die

nur vom Durchmesser D von 9&lt; abhàngt; insbesondere hat Buser [2] gezeigt,
dass1)

-2

Eine bessere Abschàtzung ist zu erwarten, wenn neben dem Durchmesser noch

weitere geometrische Daten von 3F berûcksichtigt werden. Wir betrachten in
dieser Arbeit das Volumen von 9\

=\ dco

und den &quot;Injektivitàtsradius&quot; d 1/2, (/ ist die Lange der kurzesten geschlos-

senen Geodàtischen auf 9). Wir beweisen folgendes Theorem:

A g Min (i a) a 2(2 - Tg21) Tg2 |/fe - 1)D2 (I)

a) Die hyperbolischen Funktionen werden im folgenden mit Sin, Cos, Tg bezeichnet.

46
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Zum Vergleich von (1) und (I) betrachten wir die Menge Ig aller Flàchen vom

Geschlecht g^2 mit Tg2-&gt;- und D&lt;41og2g. (Es ist leicht zu sehen, dass

D &gt; log 2g fur jede Flàche vom Geschlecht g). Die Abschàtzung (1) von Buser
liefert dann

(26g4 + 2~V4 - 4)&quot;1

Dagegen ergibt (I) ein erheblich besseres Résultat:

Andererseits kann man der Arbeit [5] von F. Jenni leicht entnehmen: Es gibt eine

hyperelliptische Flâche fgelg mit

k&amp;8)~2g-\ (g-oo).

1.2 Zum Beweis von (I) dùrfen wir annehmen, dass

0&lt;A&lt;i (1)

Wir zeigen, dass dann À ^ a. Dazu wàhlen wir eine zu À gehôrige reellwertige
Eigenfunktion &lt;t&gt; mit

f 4&gt;2

Jgp

f

(2)

Wegen A =£ 0 gilt:

(3)

In §2 werden wir beweisen, dass unter der Voraussetzung (1)

(4)

(5)

Da 9 kompakt ist, gibt es zu zwei beliebigen Punkten p, q e 2F stets einen
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geodàtischen Weg y von p nach q mit der Lange

\ ds dist (p, 9) ë D.
Jy•&apos;y

Daher wird

Jy Jy

Definieren wir

s f (V&lt;^)) &lt;is • f tfa ^ AD2/4^/. (6)
Jy Jy

Km:=Am-2\ (&lt;l&gt;ip)-(t&gt;(q))2mda&gt;pd(ol!, meN, (7)

so folgt aus (6)

Km ^ (W2A/4jtI)m (XD2(g - 1)11)m. (8)

Nun sei

N* {meN|22m-1^iCm}. (9)

Fur meN* folgt dann aus (8)

Falls N* eine unendliche Menge ist, kônnen wir daraus schliessen, dass

womit wegen (5) Theorem (I) bewiesen wâre.
Nun folgt aus (2), (3) und der Schwarzschen Ungleichung:

f
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Dièse Ungleichung besagt gerade, dass

2 e N*. (11)

Sei nun m e N* und m&apos; 2m - 1. Dann folgt aus den Definitionen (7) und (9):

2m&apos; ^ ^(m&apos;&quot;3)/2 f (*(p) - &lt;P(q))m&apos;(&lt;t&gt;(p) ~ 4&gt;{q)) d(op dcoq.

Daraus und aus (10) schliessen wir mit Hilfe der Schwarzschen Ungleichung:

Daher ist mit m e N* auch m&apos; 2m — 1 e M*. Daraus folgt wegen (11), dass M*
tatsàchlich eine unendliche Menge ist. Damit ist Theorem (I) bewiesen bis auf die

Gradientenabschâtzung (4).
1.3 Man kann leicht eine obère Schranke fur D angeben, die nur von d und

A abhàngt. Sei

Dann gilt

f dco 2jt(Cosr-l)&lt;A fur r^dy (12)
JBp(r)

also insbesondere

Cos d - 1&lt; A/2jt 2(g - 1). (13)

Es gibt daher eine naturliche Zahl n derart, dass

Cos d - 1

Wir zeigen, dass

D^2nr mit Cosr l+^~- (15)
n -f 1
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und somit

Cos d - (16)

In der Tat: Es gibt zwei Punkte a, b e 2F mit dist (a, b) D und ein geodâtisches
Segment der Lange D mit den Endpunkten a, b. Dièses Segment zerlegen wir
durch die Punkte p0 a, plf pn b in n Stucke gleicher Lange D/n. Dann
gilt offenbar

dist (pnpj)^ D/n fur i±j. (17)

Definieren wir nun r &gt; 0 durch

so ist wegen (14) r Si d und daher nach (12)

V f

Daher kônnen BPo(r), 5Pw(r) nicht paarweise disjunkt sein. (Sonst wàre
nâmlich die offene Menge 8F — U7n=o BPj(r) leer und somit ^ nicht
zusammenhângend). Folglich gibt es zwei Indices i^j und einen Punkt qe
BPi(r) H BPj{r). Dann ist aber

dist (pu pj) g dist (p,, ç) + dist (pJf q) ^ 2r

und somit wegen (17) D ^ 2nr.
1.4 Aus(16)folgt

1 1 Cosrf-1 1 Sinrf
&gt;

g2&apos;D&gt;4(g-1) d 4(g-l)T g2&apos;

Daraus ergibt sich fur die Schranke a in Theorem (I) die Abschàtzung
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o*(d) ist offensichtlich eine monoton wachsende Funktion von d. Daher folgt aus

(13)

o*{d) &lt; o*(d0), Cos d0 - 1 2(g - 1) è 2.

Daraus ergibt sich aber leicht, dass stets o*{d) &lt; IIA. Daher folgt nun aus (I) und
(18) das Theorem

2. Die Abschàtzung von V0

2.0 Wir versehen den Einheitskreis E {z eC\ \z\ &lt; 1} mit der hyperboli-
schen Metrik

ds2 4(l-\z\2y2\dz\2, (1)

welche die konstante Krùmmung —1 besitzt. Fur die hyperbolische Distanz der
Punkte 0 und z ergibt sich:

p(0, z) log^j, \z\ Tg (p(0, z)/2). (2)
1- \z\

Mit geodâtischen Pokarkoordinaten

r p(0, z), 0

wird

Daher ergibt sich fur das Volumenelement und die Beltrami-Operatoren der

Metrik (1):

dco Sinrdrd6 (3)

(4)
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(5)

2.1 Wir betrachten nun einen beliebigen Punkt p e 3*. Da das Geschlecht
von &amp;* grôsser als eins ist, gibt es eine konforme Ueberlagerungsabbildung
TI:E-+

JT(0)=p. (6)

Da jede Decktransformation von H eine Isometrie der Differentialgeometrie (1)
ist, kônnen wir dièse Géométrie mit II von E auf &amp; verpflanzen und erhalten
(unabhângig von der Wahl von p e &amp;) die in der Einleitung charakterisierte
Poincaré-Metrik auf 2F. Wir definieren:

(7)
r p(0, z), d arg z, z x + iy.

Setzen wir noch

* Fx(0,0),j3 F,(0,0), (8)

so folgt aus (1) und (6), (7)

(V&lt;*0(p) }(«2 + )82) (9)

Die Ueberlagerungsabbildung II ist injektiv auf

K={zeE\p(0, z)&lt;d]

(Siehe z.B. [4] 3.2). Daher wird

jk Jn(K) JJn(K)

Daraus folgt wegen (3), (4) und (7):

f (Cfrir, 0) de) Sin r dr + f ([
*
ffc, 6) dd) SÛT1 r dr S A. (10)
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2.2 Wir stellen nun die Funktion/(r, 6) durch eine Fourier-Reihe dar:

/(r,0)= S cn(r)em9. (11)
n —oo

Da / reellwertig ist, gilt

C-n=VH. (12)

Wir interessieren uns insbesondere fur Ci(r) und zeigen zunàchst

limeur *(«-#). (13)

In der Tat: Aus (7), (8) und (2) ergibt sich

/(r, 6) &lt;t&gt;(p) + \z\ (a cos 0 + p sin 0) + O(|z|2)

0(P) + è Tg^ ((a - i/3)e^ 4- {a 4- #)*-&quot;) +

Somit wird

2.3 Zur Berechnung von ct(r) benôtigen wir die Legendre-Funktion

F,(x): Pv(x), v(v + l) -A.

Sie ist im Intervall [1, °°) Lôsung der Differentialgleichung

£ 0; (14)

sie ist regulâr an der Stelle x 1 und es gilt

F,(l) l. (15)

Daraus ergibt sich sofort
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Definieren wir

Gk(x) (x2-l)1/2F&apos;k(x), x&gt;l, (17)

so gilt

£(x2-l)G&apos;,(x) + ^--J-^Gk(x) 0. (18)

Wir zeigen nun:

ci(r) yGA(Cos r), |y|2 À-2(Vtf&gt;)(p). (19)

Zunàchst bemerken wir : Aus (4) und (7) folgt

fr(r, 0)ëM MaxV0.

Daraus ergibt sich:

\c[(r)\^M1&apos;2. (20)

Die Eigenfunktion (f&gt; erfûllt auf 9 die Gleichung A0 + À0 0. Daraus folgt
wegen (5) und (7):

in&quot;1 r^- (sSin&quot;1 r— (Sinrj- I 4- Sin&quot;2r —-^ + A/ 0.

Hieraus ergibt sich sofort eine gewôhnliche Differentiagleichung fur

Ci{r)=èzCf(r&apos;d)e~iedd:

Sin&quot;1 r 4- (Sin r c[(r)) + (A - Sin&quot;2 r)Cl(r) 0.
ar

Fûhren wir die neue Variable x — Cos r ein und definieren

/i(jc) Cx(r), jc Cosr, r&gt;0, (21)
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so wird

55

(22)

h(x) erfûllt also dieselbe Differentialgleichung wie Gk(x). Wir betrachten deshalb
die Wronski-Determinante

W(x)
Gx(x) h{x)
G&apos;x{x) h&apos;(x)

d
Aus (18) und (22) folgt j- (x2 - l)W(x) 0 und somit

W(x)
x2-l&apos;

(23)

mit einer gewissen Konstanten c. Andererseits folgt aber aus (13), (17), (20),
(21), dass die Determinate W{x) fur x i 1 beschrànkt ist. Somit muss c 0 sein.

Dann sind aber h und GA linear abhângig: Es gibt eine Konstante y derart, dass

Daraus und aus (16), (17) ergibt sich:

À

Y
Somit wird wegen (13)

1

und daher wegen (9):|y|2 A&quot;2(V0)(p). Damit ist die Behauptung (19)
bewiesen.

2.4 Aus (11) folgt:

t 2 k;(r)|2=r/?(r,fl)rf0
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Hieraus und aus (17), (19) ergibt sich wegen c_x ct:

l(Cos r)f Sin2 r ^ fr{r, 6) d6

Cosr))2Sin2râ f */*(r, 6)d6

Daraus folgt nun wegen (10):

4^A&quot;2/(Cos d)(V&lt;t&gt;){p) g A (24)

mit

J(y) f (x2 - l)(Gi(x))2 ife + f (FK^))2 dx, y&gt;\. (25)

2.5 Nun haben wir noch J(y) nach unten abzuschâtzen! Aus (18) folgt:

Daraus ergibt sich durch partielle Intégration des ersten Terms:

\y {x2-ï){G&apos;x)2dx \(y2-l)^- Gl(y)+ [ U-^—)G\dx. (26)
h dy Ji \ x —1/

Wegen (17) ist aber

(y 1 \ 2 _ f 2 2 f i 2

h \ x2-l) h
A

h

Somit folgt aus (25), (26):

Aus (17) ergibt sich:

\(y2 - 1) — G\{y) \{y2 - 1) — (y2 -
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Daraus folgt wegen (14):

1^2 _ 1} ± G2k{y) _A(/ _ i)FAoonOO -y(y2- i)(nO0)2- (28&gt;

Weiter folgt aus (14)

Af Fa ic{*2 ~1)n ***+A2fFl dx=°-

Daraus ergibt sich durch partielle Intégration des ersten Terms

Af (x2 - l)(F;(;c))2 dx X(y2 - \)Fk(y)F&apos;x(y) + A2 f F2A(^) dx. (29)

Nun folgt aus (27)-(29):

/(y) A2f F|(jc) &lt;fc - -^— \(y2 - \)F{{y)f.

Schliesslich folgt nochmals aus (14)

Somit wird

X-2J(y) fFl(x) dx --/- fFx(x) dx). (30)

Nun ist aber

G-y

-i f
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Somit folgt aus (30)

/•Cos dçCosd F
)\ 1

Fur 0 ^ A S | gilt aber

A()1/4() fur *§sl.

(Siehe [4], Lemma 4 pag. 221). Somit wird

/•Cos d

n 22n(n\f

Somit folgt aus (31)

Wegen (34) gilt fur 0 ^ a &lt; 1, 0 ê f &lt; 1:

n=0 n=0

Daraus folgt nach der Ungleichung von Cauchy:

Nach [4], (21)-(23), pag. 219-220 gilt:

(1 - t)mE(t) (32)

2 r/2, 2 x_1/2 ^ 2n
i — (1 - r sm u) du= 2j crf (33)

n Jq rt=o

(2n)!

(35)
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Daraus ergibt sich fur a t, 0 ^ t &lt; 1:

und somit

£2(0 ^ 1 + f2.

Daher folgt aus (35)

Tg\d/2)

Damit folgt aus (24):

Dies ist die in 1. (4) angekundigte Gradientenabschàtzung.

LITERATUR

[1] Huber, H., Ueber den ersten Eigenwert des Laplace-Operators auf kompakten Mannigfaltigkeiten
konstanter negativer Krummung, Archiv Math. (Basel) 26 (1975) 178-182.

[2] Buser, P.; Untersuchungen iiber den ersten Eigenwert des Laplace-Operators auf kompakten
Flàchen, Dissertation Basel 1976.

[3] Buser, P.; Ueber den ersten Eigenwert des Laplace-Operators auf kompakten Flàchen, Comment.
Math. Helv. 54 (1979) 477-493.

[4] Huber, H.; Ueber die Eigenwerte des Laplace-Operators auf kompakten Riemannschen Flàchen,
Comment. Math. Helv. 51 (1976) 215-231.

[5] Jenni, F. Ueber das Spektrum des Laplace-Operators auf einer Schar kompakter Riemannscher
Flàchen, Diss. Basel (1981).

Mathematisches Institut der Universitàt Basel

Rheinsprung 21 CH - 4051 Basel

Erhalten 8 August 1985


	Untere Schranken für den ersten Eigenwert des Laplace-Operators auf kompakten Riemannschen Flächen.

