Zeitschrift: Commentarii Mathematici Helvetici
Herausgeber: Schweizerische Mathematische Gesellschaft

Band: 61 (1986)

Artikel: Commutative ring-spectra of characteristic 2.
Autor: Wirgler, Urs

DOl: https://doi.org/10.5169/seals-46917

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 18.10.2025

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-46917
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

Comment. Math. Helvetici 61 (1986) 33-45 0010-2571/86/010033-13$01.50 + 0.20/0
© 1986 Birkhiuser Verlag, Basel

Commutative ring-spectra of characteristic 2

Urs WURGLER

1. Introduction and statement of the main result

Let E*(—) be a ring-theory, i.e. a multiplicative cohomology theory repre-
sented by a ring-spectrum E. Experience shows that if E is of characteristic 2, i.e.
if 2- 7,(E) =0, then often some care is needed because the product on E might
not be commutative. For example this happens for the spectra MUZ/, or KZ/,
which represent complex cobordism theory resp. complex K-theory with
coefficients Z/,, and many cobordism theories of manifolds with singularities. On
the other hand one knows many ring-theories of characteristic 2 which are
commutative. For example, if A denotes a graded commutative Z/,-algebra,

H*(X; A) =[] H**(Xx; A7)

is such a ring-theory which is represented by the graded Eilenberg—MacLane
spectrum

H(A)=\/ ZH(A™) = H S'H(A™).

Other examples are given by MO*(—), the unoriented cobordism theory, or
MPL*(-), the unoriented PL-cobordism theory. Now it is well-known that both
spectra MO and MPL are equivalent to graded Eilenberg-MacLane spectra
whereas MUZ/, and K7/, are not. The purpose of this paper is to show that these
examples represent a general phenomenon. More precisely, we will prove the

(1.1) TueoreMm. Let E be a commutative ring-spectrum with coefficient ring
74(E) of characteristic 2. Then there is an equivalence of ring-theories

E*(-)=H*(—;E")
on the stable homotopy category S.
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34 URS WURGLER

(1.2) Remarks AND Exampres. (1) Theorem (1.1) immediately produces a
conceptual proof of the fact that MO, MPL and a lot of other spectra considered
in [5] are equivalent as ring-spectra to graded Eilenberg—MacLane spectra.

(2) Following Rourke [13] we call a spectrum E a Z/,-spectrum if it is a
(—1)-connected ring-spectrum and mo(E)=2Z/,. E is said to represent ordinary
Z/,-cohomology if the Thom map T:E*(X)— H*(X;Z/,) is epic for all
CW-complexes X, i.e. if the Atiyah—Hirzebruch spectral sequence collapses for
all X. From (1.1) it is obvious that a Z/,-spectrum with commutative coefficient
ring represents ordinary Z/,-cohomology iff it is commutative. This corrects
Corollary 1 of [13] (see also [14]).

(3) Let E be a commutative ring-spectrum. From [3] one knows that if
n*:E*(S?) — E*(S?) is zero (n:5°>— $? denotes the Hopf map) then EZ/,
admits an admissible product. Moreover, in this case there is a commutative
admissible product on EZ/, if and only if 0=17%*(1)e E*(M,) where %€
{3°M,, §?} is a generator and M, denotes the mod 2 Moore spectrum (see [3],
(7.7)). So in this situation (1.1) implies that EZ/, is equivalent to a graded
Eilenberg—MacLane spectrum iff 7*(1) = 0. This means that the class #*(1) may
be viewed as a sort of “total k-invariant” of the spectrum EZ/,.

(4) Let n:S'— BO be the non-trivial map. Since BO is an infinite loop
space, corresponding to 7 there is a map o*(n):S>— B20 where 2°B*0 = BO.
Applying €7 one gets a map

h = Q%c*(n): Q°S*— BO.

Let y be the universal bundle over BO and set ¥ =h*(y). A theorem of
Mahowald [11] asserts that the Thom spectrum of ¥, M(¥), is equivalent to the
Eilenberg—MacLane spectrum K(Z/,, 0). Theorem (1.1) may be used to produce
a very simple and conceptual proof of this fact. For this we remark that M(7) is
(—1)-connected and 7o(M(¥)) is cyclic since M(¥) can be constructed to have a
single zero cell. Since h*(w;) 0, the zero cell extends over the Moore spectrum
and mo(M(¥))=Z/,. Because h is an H-map, M(y) is a commutative ring-
spectrum ([10], Theorem (1.1)). From Theorem (1.1) it now follows that M () is
a wedge of Eilenberg—MacLane spectra. Using the homology Thom isomorphism
H,($2°S?,2/,) = H,(M(¥); Z/,) and the well-known fact that

H (2%S%,71) =7Z/)xy, x5, .. .]; x| =2" =1

one sees that there is only one summand K(Z/,, 0) in the wedge decomposition of
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M(¥), which finishes the proof. There are certainly other applications of (1.1) in
this context. We hope to come back to this somewhere else.

The proof of (1.1) will appear in section 3. It proceeds by an induction on the
Postnikov factors of the spectrum E and uses in a crucial way a property of
products in the spectra P(n) which is of independent interest and which we will
discuss in section 2.

2. Products on the spectra P(n) for p =2

Let BP be the Brown-Peterson spectrum at the prime p. Then BP, =
7 (BP)=Z[v;, vy, . ..] where |v]|=2(p'—1). For all n=0 there are BP-
module spectra P(n) with P(n), =BP,/I, where I, =(p, v4, ..., v,_;) denotes
the n-th invariant prime ideal of BP, (see [8] for details). For different n, the
spectra P(n) are related by exact triangles in the stable homotopy category S:

P(n) = P(n) == P(n+1)

1 | (2.1)
On

All maps displayed above are morphisms of BP-module spectra. Note that
P(0) = BP by definition and that P(1)=BPZ/,. Let u,:BP — P(n) denote the
composition 7,,_y° - - - ° 7, and v, : BP A P(n) = P(n) the module map.

Recall [19] that BP*(BP) is isomorphic as left BP*-module to BP*®R where
R denotes the free Z,,-module with basis elements the Quillen operations rg
indexed over exponent sequences E = (e;, €5, ..., en, 0, .. .). The degree of rg is
|E| = Li=12(p' — 1)e;. Let A(Qq, ..., Qn-1) be the Z/,-exterior algebra with
generators Q; of degree 2p’ — 1. There is an isomorphism of left P(n)*-modules
(see [8], 2.12.)

®,:P(n)*®R ® A(Qo, - - . , Qn-1)=>P(n)*(P(n)) (2.2)
defined by the rule

B, (vE @ rp ® QU0 10) = vE(rp), o (Q ), 0 01}
where Q,_;=1,°3, and the operations (rg),, (Q®>*-?), are recursively
defined as extensions of (rg),_1, (Q¢» ), _1°Q,_, to P(n)*(P(n)) using

[8, (2.9)]. In particular one has Q2_; =0.
By an admissible product on P(n) we mean a product m,:P(n) A P(n) —
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P(n) which satisfies the following two conditions:
(2.3) (i) The diagram

BP A BP 25 P(n) A P(n)

| [

Hy

BP —— P(n)

commutes in S.
(ii) Set vy, = (v, Av,)°(id AT Aid):BP A BP A P(n) A P(n)— P(n) A P(n).
Then the diagram

BP A BP A P(n) A P(n) - P(n) A P(n)
id/\id/\m,,lv m,

Vp © (m Aid)

BP A BP A P(n) > P(n)

commutes in S.
Written in terms of elements the second condition looks as follows: For all
u € BP*(X), v e BP*(Y), x e P(n)*(X), y € P(n)*(Y) one has

W x)Ap(v-y)= (D" Av) - (xA,y).

(2.3) just means that an admissible product makes P(n) a BP-algebra-spectrum
compatible with the given BP-module structure v,,.

It is known that for p odd, there is exactly one admissible product on P(n)
and this product is associative and commutative (see [18], (2.12)). If p =2 the
situation is as follows:

(2.4) ProposiTiON. Suppose p =2 and n=1. Then there are exactly two
admissible products m,,, m, : P(n) A P(n) — P(n). Both are associative and have a
two-sided unit. m, and m,, are related by the formula

m, = mnoT =m,+uv,: mn(Qn—l A Qn-—l)' (25)

Moreover, n,_,:P(n—1)— P(n) is a map of ring spectra with respect to any
admissible product chosen on P(n — 1) resp. P(n).

(2.6) REMARKS. (a) Proposition (2.4) is implicitly contained in [18] (see (3.7)
of [18]), and was known to the author since 1977. Using completely different
methods the formula (2.5) has been independently proved by Mironov [12] for a
geometrically defined product on P(n).
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(b) Using (2.4) and the Conner—Floyd theorem mod , one easily sees that an
analogous statement is also true for K(n), the n-th Morava K-theory. For
K*(X;Z/,), complex K-theory mod 2, a formula like (2.5) has been proved by
Araki-Toda in [3].

(c) Besides the application we will discuss in this paper, (2.4) has other uses.
For example, it may be used to calculate the Morava K-theories for Eilenberg—
MacLane spaces for the case p =2 (see the appendix of [9]) and it should be
possible to determine the algebra structure of P(n),(P(n)) for p =2 with its help.

Before we give the proof of (2.4) let us recall some facts which will be used
repeatedly.

(2.7) LemMmA. Let E be a ring-spectrum. If X is a connective spectrum such
that H,(X; E,) is free over E, and the spectral sequence H,.(X; E,)> E .(X)
collapses, then the evaluation

€:E*(X) — Homg-: (E.(X), E,)

is an isomorphism. If X is a ring-spectrum, € induces a 1-1-correspondence
between maps of ring-spectra X — E and homomorphisms of E.-algebras
E.(X)—E,.

Proof. See [1], (4.2) and the proof of (4.6).

Let E be a complex-orientable ring spectrum (i.e. the canonical complex line
bundle 7. is E-orientable). Let u € E*(CP,) be a C-orientation and let F denote
the formal group associated to u. If E* is a Z)-algebra we may assume F is
p-typical. Then there is a unique map of ring-spectra uz:BP— E such that
ue(u®)=u.

Observe that

[plr(x) = ME(ZFBP Uixp') = > wxr (2.8)

i=0 =0
where w,=ug(v;) and the v, are Araki-generators [2]. If ug(Z,)=

(p, Wi, ..., w,_1)=(0) = E* we obtain for 0 <k <n using (2.1) an isomorphism
of E,-modules

E.(P(k))=E.BP)® A(ay, . . . , ar_1). (2.9)

If p is odd, (2.9) is an isomorphism of E ,-algebras [18].
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Proof of (2.4). We assume the reader is familiar with [18]. Let Prod, denote
the set of admissible products on P(n). In [18] it was shown that P(n)*(BP A BP)
is a coalgebra with structure map wyg and that P(n)*(P(n) A P(n)) is a
P(n)*(BP A BP)-comodule with structure map ;. Moreover, there is a 1-1-
correspondence between the set Prod, and the set of primitive elements
a € P(n)’(P(n) A P(n)) which satisfy (u, A u,)*(a) = u.,mq € P(n)°(BP A BP).
But ([18], (4.12)) there is an isomorphism of P(n)*-modules

Pr P(n)*(P(n) A P(n)) E/\P(m)"'(Q(')) R Q:l—l’ 8’ v e ey Q:;-l)

and the same proof as for [18], (4.13) shows that in the case p = 2 the sparseness
of the ring P(n)* implies that there are two elements m,, m, in Prod,
corresponding to 1 and 1+ v, Q,,_,Q; 1. m, induces an isomorphism ([18], (3.8))

P(n)*(P(n))®P(n)*(P(n)) = P(n)*P(n) A P(n))
from which the relation

mn = mn + vnmn(Qn—l A Qn-—l)

follows. Associativity and existence of a two-sided unit for both products m, and
m, are proved as in [18], (5.4), as is the multiplicativity of u,. It thus rests to
show that m, =m,°T. It is obvious that « € Prod, implies a° T € Prod,. So either
both admissible products are commutative or none of them. In the latter case we
obtain m, =m,°T and the proposition is proved. Suppose m, and m, are both
commutative and write P(n) (resp. P(n)) for the spectrum P(n) endowed with
the multiplication m,, (resp. m,). Adapting the arguments of ([18], section 6) to
the case p =2 one sees using the commutativity of m, that for any complex-
oriented commutative ring spectrum E of characteristic 2 and 2-typical formal
group of height =n (i.e. uz(l,) = 0) there is an isomorphism of E ,-algebras

EJP(n)=E.[a,...,anbps,...]

where b; = (g A ug)«(t), a?=(ug A ug)«(t), i=1,...,n From (2.7) it follows
that there is a map of ring-spectra 8:P(n) — E given by £(0)(a;) =0, £(6)(b;) =
0, (1) = 1. Clearly, 0 is an extension of the map u,. This applies in particular to
the case E = P(n). Because m, and m, are both admissible products, 6 is a map
of BP-module-spectra P(n) — P(n). From the obvious BP-version of [16], (4.17)
it follows that there is one and only one such map. Hence 6 =idp,, and so
m, = m,, a contradiction. This means there can be no commutative product in
Prod,, and the proposition follows.
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We close this section by stating two lemmas which will be used for the proof
of Theorem (1.1) in section 3.

(2.10) LeMMA. Let E be a commutative C-oriented ring-spectrum with
coefficient ring of characteristic p >0 and p-typical formal group. If ug(1,) = (0),
then for all 0<k=<n there is a map 0,:P(k)— E such that 8,= ug and the
diagrams

P(k) 2> E
nT / 1 (2.11)
P(k—1)

commute. If p is odd or if p =2 and k <n, the 6, may be chosen to be maps of
ring-spectra.

Proof. From (2.9) we have an isomorphism of E,-modules
E.(P(k)=Et, t;,...]1® Aay, . . ., ar_1). (2.12)

For p odd this is an isomorphism of E,-algebras and by (2.7) the lemma follows
for this case if we define 6, by €(6,)(t;) =0 (i >0), €(6)(a;))=0(G=0,..., k—
1) and €(6;)(1) = 1. Using the same method one also obtains maps 6, such that
(2.11) commutes for p =2. To show that the 6, may be chosen to be maps of
ring-spectra for kK <n one observes that because w, = pug(v,)=0 for k<n,
Proposition (2.4) implies that E,(P(k)) is a commutative E ,-algebra if k <n.
Now adapting the argument of [18], section 6, to this situation one gets an
isomorphism of E ,-algebras

E*(P(k)) EE*[aO; vy Or—1s bt 1s Te2s - - ]

with |a;| = 2"*' — 1. As above for p odd one now sees that for ¥ <n the 6, may be
chosen to be maps of ring spectra.

(2.13) LemMa. Let E be a complex-oriented ring-spectrum with coefficient ring
of characteristic p > 0 and formal group F. If [p]r(X) = 0 there is an isomorphism
of ring-theories

®:H*(X; E*) = E*(X)

on the category CW,.
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Proof. Because E* is a Z,)-algebra we may assume that F is p-typical.
Because [p]r(X) =0, ug(L.) =0 and it follows from (2.10) that for all £ >0 there
are maps of ring-spectra 6, : P(k) — E such that 0,°n,_, = 6,_,. The 6, may be
seen to produce a map of ring spectra 6.:HZ/,=lim, P(k)— E. Then
b=0,.®1:H*(X;Z/,) ® E*— E*(X) is an equivalence of ring-theories over
the category of finite complexes which is easily seen to extend to an equivalence
over CW,,.

(2.14) Remark. With the additional hypothesis that E° is a finite field (2.13)
has been proved in [17] by different methods. Notice also that by a theorem of J.
M. Boardman [4], if E is a ring spectrum with 7 ,(E) a free Z/,-module which is
equivalent to a graded Eilenberg—MacLane spectrum H(x,(E)), then there is
automatically an equivalence of ring-spectra E = H(x,(E)).

3. Proof of Theorem (1.1)

First we observe that we may assume the spectrum E is (—1)-connected:

(3.1) LemMA. Let E be a ring-spectrum such that p - 1 =0 € E° for some prime
p and let E denote the (—1)-connected cover of E. Then any isomorphism of ring
theories @ :H*(X;E*)— E*(X) induces an isomorphism of ring theories
®:H*(X; E*)— E*(X).

Proof. The (—1)-connected cover E of a ring-spectrum E is again a
ring-spectrum and there is a canonical map of ring-spectra n:E — E. Define a
multiplicative transformation ¢ : H*(X; Z/,) — E*(X) by the composition

¢:H*(X;Z/,) 5> H*(X; E*) 3 E*(X) 5 EX(X).

For X=25° ¢ is just the inclusion Z/, < E°c E*. ¢ induces a multiplicative
transformation of cohomology theories on the category CW, of finite complexes
¢:H*(X; E*)=H*(X;Z/,) ® E* — E*(X). Because ®|s is an isomorphism, &
is an equivalence. It is easy to see that @ extends to an equivalence on the
category CW,,.

For E a (—1)-connected spectrum, the proof of (1.1) will proceed by an
induction on the Postnikov factors of E using Lemma (2.13) and Proposition
(2.4). Recall from [7] that for any spectrum E and any k € Z the k-th Postnikov
factor E[k] of E may be defined as representing spectrum of the cohomology
theory

CW, 3 X~ E[k](X):=im {E9(X**9*1) > E9(X**9)}. (3.2)
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The coefficients of E[k]*(—) are given by

E“4, q=-k

E[k]q={o, q<—k.

(3.3)

There are obvious morphisms 7, : E — E[k] which on the coefficients induce the
identity for ¢ = —k and zero otherwise. For different k, the Postnikov factors are
related by exact sequences

o= E[K]7(X) & HI (X5 B — E[k +1](X) &

— E[k]Y(X) S H7 (X, E* 1) — ...

If E is a ring-spectrum the Postnikov-factors E[k] are in general not ring-spectra.
However, if E is a (—1)-connected ring-spectrum the E[k] are also ring-spectra
and the m;, & are maps of ring-spectra (see [15]).

Let 7, denote the canonical complex line bundle over CP,.

(3.5) LemMA. Let E be a (—1)-connected ring-spectrum, k =0. Then a) 1., is

E[2k]-orientable iff n, is E-orientable b) 1. is E[2k + 1]-orientable iff i, is
E-orientable.

Proof. Let s =3*(1) € E*(S*) = E*(CP,) = E[k]*(CP,). ny is E-orientable if
and only if there is an element u, € E*(CP,,,) such that u, | CP, = +s. One has
CP% =CP,=CP%*, so from (3.2) we get

E[2k X(CP.) =im {E*(CPi+1) > E*(CPi+1)} = E{CPeyy)
E[2k + 1]X(CP.) = im { E¥(CP,.,) = E*(CPy,1)}.

The lemma follows.

The next lemma is the main step in the proof of Theorem (1.1). For any n =0
put i =2(2" —1).

(3.6) LemMa. Let E be a (—1)-connected commutative ring-spectrum with
coefficient ring of characteristic 2. If E[n] is C-orientable and [2]f,(x) =0, then
El[n + 1] is also C-orientable and (2], (x) = 0.

Proof. The proof may be divided into two steps. (A): E[n + 1] is C-orientable
and (B): [2]p(x) =0.
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(A): From Lemma (3.5) we see that we must prove the bundle 71 71, is
E-orientable. Let u, € E*(CP,. ) be an E-orientation of 7, and let y:$>**D+1
CP,.,: be the Hopf map. Then 7., is E-orientable iff y*(u;)=0¢ E'72*+D,
From [6, (6.8)] we learn that this obstruction is zero if either k + 2 is not a power
of a prime p or if Kk +2=p” for some prime p and 1/p e E*. Inourcase 2-1=0
in E*, hence 1/p € E* for all odd primes p. So a possibly non-zero obstruction for
extending an orientation of 7; to an orientation of 7,,, can only occur if
k+2=2". The hypothesis of (3.6) and Lemma (3.5) imply that 7;, is
E-orientable. From the remarks above it follows that then 7G5i),-1 = f2m1_1 iS

also E-orientable, so E[(n+1)—2] is C-orientable. By (3.5) to prove the
C-orientability of E[n + 1] it will suffice to show that E[n + 1 — 1] is C-orientable.

Let EP? denote the Atiyah—-Hirzebruch spectral sequence for E and let *E?*
denote the corresponding spectral sequence for the k-th Postnikov factor of E.
Let 0 € H¥CP.; E°) = E3°(CP,) =*E%>°(CP.) be a C-orientation of H*(—; E°).
The obvious cohomological version of a result of Vick [15] implies that

(i) E[k] is C-orientable iff o is a permanent cycle in the spectral sequence
*EP9(CP,) and

(ii) ois a permanent cycle in *E?*9(CP..) iff o survives to the k-th stage in the
spectral sequence E2'9(CP.).

Because E[m—Z] is C-orientable, o survives to E2Y_,. Put d =d;+5_,. To
prove the C-orientability of E[n + 1 — 1] it is sufficient to show d(o) = 0.

Let £:E[n +1—2]— E[#] be the obvious map. Let u be a C-orientation of
E[n +1 — 2] with 2-typical formal group F and set G = £,(F). For dimensional

reasons we have [2]g(x)= Y F - x2, |wi| = —2(2° —1). Because & induces the
i=1

identity on the coefficients for dimensions =—7 = —2(2" — 1), we obtain from the
assumptions of (3.6)

£ 21 () = [2]6(x) = ZG W =0,

hence [2]z(x) =0. By Lemma (2.12) this implies there is an equivalence of ring
theories E[n + 1 —2]*(=)=H*(—; E[n + 1—2]*). From the Gysin sequence of
the bundle n ® n one sees that the projection p:S(7.® 1.)=RP,— CP,
induces a monomorphism p*: H*(CP.; E[n + 1 —2]*) > H*(RP.; E[n + 1 —2]*).
We may assume that o has been chosen so that for some generator a €
HY(RP.;E®, p*(oc)=a®. Now d is a derivation, so d(a®)=d(&) o+
« - d(a) =0 because E is assumed to be commutative and 2 - E* =0. Since p* is
monic we obtain d(o) =0.
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(B): Let us write T for E[n + 1]. From (A) we know that T is C-orientable.
Choose a C-orientation with typical formal group F = F;35 and let u;:BP — T be
the canonical map. From our assumptions we know that [2]z(x) =0, hence
ur(v)=w; =0 for 0<<i<n and [2]p(x) = w,,1x*>"". The lemma will be proved if
we can show w,.;=0. By (2.10) there are maps 6,(0<k <n + 1) such that the
diagrams

P(k+1) —s T

'?kT /
P(k)
commute and 6, is a map of ring-spectra for kK <n. There is an isomorphism
T* ® P(k)*(P(k))= T*(P(k))
P(k)*

given by t @ a+—t - 6;(«) and the product m; on P(k) induces a homomorphism

mi: T*(P(k)) = T*(P(k) A P(k)) =T*(P(k)) ‘Tg T*(P(k)).

Set 6 =6,,.,. Using (2.2), the relation (n¥®n*)m}..(0)= 6,86, and the fact
that T* =0 for * < —n + 1 we obtain the expansion (we write m for m, ., and QO
for 0, € P(n +1)¥"'~Y(P(n + 1))

m*(6) = 696 +16(Q)®6(Q) + 2, £6(x)Q6(B:Q)
+ 2, 1,6( )8 6(B)) (3.7)

where a;, a;, B;, B € P.(RO A(Qo, ..., @n-1)) = P(n+1)*(P(n+1)) and
A, &, t;€ T*. Because T is commutative we obtain (t:P(n+1)AP(n+1)—
P(n + 1) A P(n + 1) denotes the switch map)

t*m*(6) = 686 + 16(Q)®6(Q) + 2, £0(B.Q)Q6(w)

+ 2 5,6(8))®6(a;Q). (3.8)
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From (2.4) we know that the diagram
P(n+1)AP(n+1)
|
t
o
Pn+1)AP(n+1)

P(n+1)

commutes where ¢ =m +v,,.; - m(Q A Q). But
¢*(6) = m*(6) + Wy - (Q*®Q*)mM*(6)
= m*(6) + w,.,0(Q)®6(Q)

because Q%= 0. Since ¢*(0) =t*m*(0) we obtain from (3.7) and (3.8)

Wi~ O(Q)BO(Q) = 2, EO(@)BO(BQ) + 2 78(ajQ)B6(B))
+ Z E6(B:Q)®6(x) + ; 70(8))®6(e;Q)
=:A+B+A'+B'. (3.9)
Applying 1*®id to both sides of (3.9) we get (remember: Qon, = 0)
0= (n:®id)(A) + (n;®id)(B")
which implies A + B’ =0. Similarly, applying id®n}, we get
0= (id®n;)(B) + (id®nx)(A")
which implies B + A’ = 0. Together one obtains
#n410(Q)®6(Q) = 0
and this is only possible if w,,; =0. This proves the lemma.
The proof of Theorem (1.1) is now easy: First we observe that E[0] = H(E®) is
clearly C-orientable and satisfies [2]5(X) = 0. So from (3.6) it follows inductively

that the same is true for all Postnikov factors of E. This easily implies that E is
C-orientable and [2]#(X) = 0. So (1.1) follows from (2.13).
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