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Minimal surfaces in foliated manifolds

Joël Hass

Introduction

In this paper the interaction between minimal surfaces and foliations of
manifolds is studied. Techniques from the theory of foliations are used to give
information about minimal surfaces, and minimal surface techniques to examine
foliations.

The main idea is to introduce a spécial metric in which the leaves of a foliation
are either minimal surfaces or totally géodésie. Finding such metries is often
possible, via results of Sullivan [Su]. In any case, such metrics exist in manifolds
such as Rn and Hn&gt; which hâve totally géodésie foliations. The minimal surfaces
in such minimally foliated manifolds must then intersect the foliation in a
restricted manner.

Section one contains some preliminary lemmas about the nature of minimal
surfaces and how they intersect, and also about the nature of their singularities,
branch points.

Section two examines Euler characteristic information obtained by examining
the induced foliation on a minimal surface in a minimally foliated 3-manifold.
Exploiting this leads to a simple proof of Novikov&apos;s theorems on foliation [N] via
Theorem 2.7, which finds obstructions to the existence of a metric making each

leaf of a foliation minimal. A key technical point arising is to show that singular
points of the induced foliation on a minimal surface in a minimally foliated
manifold are isolated. This is done in a séries of lemmas that deal with both
immersed and branched minimal surfaces, and with interior and boundary
singularities. The section concludes with some constructions of minimal foliations
of hyperbolic space.

In Section 3 the Bernstein problem is examined. In R3 the Bernstein theorem
states that a complète minimal graph is a plane. This has been generalized in

[S-YII] and [F-S] to show that a stable, complète, orientable minimal surface in
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a 3-manifold of non-negative Ricci curvature is totally géodésie. We consider the

corresponding question in the eight 3-dimensional geometries. Counterexamples
are known for H3 [A], [HI], [W-W]. We show it to be false, except in the

geometries of non-negative Ricci curvature, by constructing counter-examples in
Nil, Sol, 5L(2, R) and H2 x R. The technique is to find foliations by minimal
surfaces which are not totally géodésie.

In Section 4 we examine branch points of minimal surfaces. In the présence of
a minimal foliation, a branch point induces certain types of singularities in the
induced foliation. This enables us to count how many branch points can occur in
certain situations. In Euclidean space, the number of critical points for a height
function on a curve implies bound on the number of branch points for a spanning
minimal surface. Via Milnor&apos;s results on the relationship of curvature and height
functions, we obtain bounds on the number of branch points for a spanning
minimal surface in terms of the total curvature of a boundary curve, generalizing
results of [Ni] and [H-H]. The above results also apply in a more gênerai foliated
manifold than R3.

In Section 5 we generalize the results to higher dimensions. Hère the

appropriate category is a totally géodésie foliation of codimension one. Using
thèse, we show that certain least area surfaces in certain 4-manifolds hâve no
branch points, analogous to the 3-manifold case proved in [O] and [G]. We also

obtain a topological theorem analogous to the sphère theorem of 3-manifold
theory [P], [St]. This resuit gives the existence of a non-trivial embedded 2-sphere
in a 4-manifold with non-trivial second homotopy group which admits a totally
géodésie codimension one foliation.

Finally, in the Appendix, we prove a simplified version of Sullivan&apos;s theorem
and extend it to the case of a manifold with boundary. We then show how
minimal surface techniques imply the existence of Reeb components in certain
foliations.
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supervision of R. Kirby. I would also like to thank M. Freedman and P. Scott for
helpful suggestions and remarks.

§1. Préliminaires

We will assume that ail maps and manifolds are smooth unless otherwise

specified. A surface is minimal if it is critical for the area functional under normal
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variation. A surface is least area if it is compact and has less area than any
homotopic surface (rel boundary). A surface is area minimizing if it is least area
on compact sets. A surface is homology area minimizing if any compact
subsurface has less area than any competing homologous surface (rel boundary).
The foliations we work with will always be assumed orientable. We say that a

foliation of a Riemannian manifold is minimal if each leaf is a minimal surface.
Let / be a map from a surface F with boundary dF to a manifold M with boundary
dM. We say / is proper if

1) f~\dM) dF
2) For any compact set K a M, f~x{K) is compact.
The following lemma generalizes the &quot;Maximal Principle for minimal

surfaces&quot;.

LEMMA 1.1. Let M be a Riemannian 3-manifold and let F1} F2 be surfaces.
Let pt e Fn f: Fl~^My i l,2 be minimal immersions withfxip^ f2(p2)f and such
that the tangent planes of the two immersions agrée atfxipx). Let (xly x2, x3) be any
smooth coordinates in a neighborhood V of fiipi) such that fiipi) (0, 0, 0) and
such that f(Ft) restrict to graphs over the (xlf x2) plane in V, of functions (j)lf (j)2

respectively. Then either (p1 02 in a neighborhood of (0, 0, 0) or in V there is a
C1 change of coordinates in the (xlf x2) plane such that in the new coordinates the

function (f)x — (j)2 is given by C • Re (zn) where z =x1-\- ix2 and n is an integer,

n^2, C is some non-zéro constant.

Proof. This is proved in Section 1 of [F-H-S].

Remark. It follows that pairs of minimal surfaces either coincide on open sets

or hâve isolated tangencies. However more must be said to understand tangencies
of families of minimal surfaces. A key point used later about Lemma 1.1 is that

we need to change the xlf x2 coordinates but not the x3 coordinate.

LEMMA 1.2. Let (M, dM) be a compact Riemannian 3-manifold whose

boundary has zéro mean curvature. Let (F, dF) be a properly immersed minimal
surface in a neighborhood of a point x e dM. Then F is transverse to dM at x.

Proof. F does not lie completely in dM as we assume it&apos;s proper. Suppose F is

tangent to dM at x e dF (1 dM. We pick (x^, x2y jc3) coordinates near x so that

x (0, 0, 0), 3F is the Xx-axis, dM - the xx —x2 plane. Then since F is smooth
and tangent to dM at xy we can find a small neighborhood where it is a

non-negative graph $ over the 1/2 plane {x3 0y x2&gt;0}. 0 satisfies a homoge-

neous linear elliptic P.D.E. (a&quot;(xlf x2)(f&gt;Xi)X} 0, ay(0, 0) ôlJ [G]. Also, we hâve

V&lt;t&gt;(xlf x2)-&gt;0 as (jtt, x2)-*(0, 0). It follows from the Hopf boundary point
lemma [P-W, p. 67] that 0 changes signs in every neighborhood of (0,0) in
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{jc2&gt;0, x3 0}. But &lt;t&gt; is non-negative in such neighborhoods by construction, so

we hâve a contradiction.

LEMMA 1.3. Let Mn be a Riemannian manifoldy let (F, dF) be a compact
surface and let f: F2-^M be a branched minimal immersion. Then the branch

points of f are isolated. If x e F is an interior branch point, then there are
coordinates (xlf x2 • * • xn) about f(x) with f(x) (0, 0) such that if
7t{xlf x2, x3, xn) (xlf x2) is the projection to the first two coordinates, then

Jt°fis afinite sheeted branched cover in some neighborhood ofx, and there are at
least two sheets. Similarly, if x e dF is a boundary branch point, we can find
coordinates (xlf. ,xn) with f(dF) the xraxis, and n°f a branched cover
which is k-sheeted on {x2&gt;0} and k — 1 sheeted on {x2&lt;0}, in some neighborhood

of x. Moreover, the tangent plane to f(F), Tf(yyf(F), smoothly approaches
the (xt, x2) plane as y—&gt;x.

Proof For interior branch points this is a conséquence of the normal form of

/ near a branch point [G]. For boundary branch points there are similar
expansions [Nil].

We will say that a boundary branch point has degree k if jï °/ is a A&gt;sheeted

cover on (x2 &gt; 0) and (k — l)-sheeted on {x2 &lt; 0}.

§2. Two dimensiona! foliations

In this section we will use the tools of minimal surface theory to examine
codimension one foliations. The philosophy behind this is that the minimal
surface often picks out a canonically positioned surface, and one does not need to
move such a surface by an isotopy or homotopy before applying a topological
argument or technique.

The basic technique we will use is to examine the induced foliation on a

minimal surface inside a manifold with a codimensions one foliation. For such an
induced foliation to be advantageous, we need a géométrie structure on the
foliation. For a 2-dimensional foliation of a 3-manifold, we need the leaves to
each be minimal surfaces. In higher dimensions we need the leaves to be totally
géodésie. Thèse conditions are not as restrictive as one might think.

We will show that the induced foliation on the surface has isolated

singularises. Thèse cause contributions to the Euler characteristic of the surface

as indicated in the next lemma.
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LEMMA 2.1. The Euler characteristic % of a compact surface with a
codimension one foliation containing k isolated singularities at satisfies %

Ef=i ind {ot) where ind (at) is computed as in Figure 1.

Proof. This resuit is well-known and follows easily from the Hopf Index
Theorem.

4-prong: ind (a) — 1

transverse boundary
0-prong: ind (a) 1/2

n-prong: ind (a) 1 — n/2

transverse boundary
2-prong: ind (a) -1/2

tangent boundary

n-prong: ind (a) —

transverse boundary

w-prong: md (a) ———

Figure 1
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Note. Other types of singularises can occur in gênerai.

A foliation of a Riemannian 3-manifold is called a minimal foliation if every
leaf is a minimal surface. Such foliations are sometimes called geometrically taut.
The following lemma indicates when one can find such foliations. It is due to
Sullivan [Su]. A proof is given in the Appendix.

THEOREM 2.2. Let M be a closed orientable 3-manifold and let &amp; be a

codimension one foliation of M. M admits a metric such that every leaf of 2F is a

minimal surface if and only if every compact leaf of 2F intersects some closed curve
which is transverse to 3F.

Note. It follows that if 2F has no compact leaves then M admits a metric
making 9 minimal.

The type of foliation induced on a minimal surface which is in a minimally
foliated 3-manifold is of very restricted type. A key technical point which must be

settled before analyzing the induced foliation is that singularities of the induced
foliations are isolated.

LEMMA 2.3. Let 2F be a minimal foliation in a 3-manifold M. Let F be an
immersed minimal surface in M. The induced foliation on F is either

1. Trivial, and F lies in a leaf of 2F or
2. Non-trivial, and non-singular in interior(F) except at isolated points where

singularities ofln-prong type occur, n^l.
Proof. Assume that F does not lie in a leaf. If F meets 3&gt; transversely at x,

then so does some neighborhood of x in F. If F meets 2F non-transversely at x, let

Lo be the leaf of 2F meeting x. Then the picture for the intersection of F and Lo is

given by Lemma 1.1, so that the intersection of F and Lo has isolated tangencies.

However, we must show that every leaf of SF is transverse to F in a deleted

neighborhood of x in F.

Pick coordinates (jt1, x2, x3) in a neighborhood of x in M so that the tangent
space to F at x is tangent to {x3 0}, and so that {x3 c} is part of a leaf of 2F.

By appropriate choice of such coordinates, it was shown in Lemma 1.1 that up to
a C^diffeomorphism, F is given by x3 Re (jc1 4- ix2)n in a small neighborhood of

x. Since this graph is transverse to {x3 c} except at the origin, the resuit
follows.

We now state a similar lemma analyzing what happens for bounded minimal
surfaces near their boundary.
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LEMMA 2.4. Let 3P be a minimal foliation in a 3-manifold M and let (F, dF)
be a minimal immersed surface in M. If a component of dF is transverse to 2F then
there are no singularities in the induced foliation near this component of dF. If a

component of dF lies in a leaf of 3?y then singularities on this component are

isolated, and are of tangent boundary n-prong type, n^l, or F lies entirely within
a leaf of 9.

Proof The first statement follows from the observation that transversality is

an open condition. So assume that a component C of dF lies in a leaf of ?F.

Suppose that there is a point x eC such that each deleted neighborhood of x in F
contains a point of tangency of F with a leaf of the foliation. Such points consist
of either a séquence of interior singularities of the induced foliation of F,
approaching x, or a séquence of boundary tangencies approaching x.

To study the latter case we consider Lo H F, where Lo is the leat containing
the boundary component C of F containing x and TFX is tangent to Lo. Pick a

coordinate neighborhood U of x with coordinates (x1, x2, x3) so that the disks
{x3 c} give the leaves of SF, Lo is given by {x3 0} and F H U is a disk which is

a graph x3 4&gt;{xl, x2). If F H Lo contains a closed curve in U, then there would
be a leaf Lt in U which F meets at an interior point and which lies on one side of
F locally. This contradicts the maximal principle described in Lemma 1.1.

Similarly no other leaf intersects F in a closed curve in U. It follows that the
intersection of F and Lo in U consists of a number of graphs which are trees, with
vertices consisting of n-prongs of the induced foliation. If there is a non-finite
number of such graphs, then they accumulate in F D U, either to C &lt;= dF or to a

part of some tree in interior(F), as the set F H Lo is closed. Note that if the
graphs accumulate to a point y e C then they also accumulate to the entire arc
between x and y on C, as otherwise there would be a violation of the maximal

principle as above. In this case, there is an open arc of C where F agrées with Lo
and where the two tangent planes agrée. This implies that F lies in Lo by Lemma
5 of [M-Y 1] and Lemma 1.1. Consider now the case of an interior accumulation

point. An interior point cannot be an accumulation point of distinct components
of F fl Lo by Lemma 1.1. Thus it follows that there are only a finite number of
trees of Lo H F in F H U. It also follows that thèse trees hâve only a finite number
of vertices, as otherwise there would again be an infinité number of arcs leaving
U, forcing an accumulation point. Thus x is isolated on C as a tangency point,
and by picking U smaller, we can assume that (Lo H F) DU consists of a finite
number of arcs A} with one boundary point at x, together with C. Moreover, the
number of arcs is at least one, as if no such arcs exist near x, then a small

neighborhood of x in F lies on one side of Lo. It then follows from Lemma 1.2
that F is transverse to Lo at x, contradicting our assertion that x is a point of
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tangency. To conclude the proof we need to show that there are no interior
tangencies of F with 3F accumulating to x. Suppose a séquence of tangency points

{xj of leaves L, with F accumulated to x. As £—&gt;&lt;», Lt—&gt; Lo. We restrict
attention to a small 1/2 disk D in F about x. dD n Lo consists of (dD H C)
together with a finite number of points yr We can assume by taking D small, that
each point of dD meets Lo transversely, except for x. Thus we know that the local

picture for 3F n D is as depicted in Figure 2, away from a neighborhood of x.

Figure 2

Since Ll-^L0, for i sufficiently large Lt H 3D is arbitrarily close to the points

j Consider an Lt with Lt fï &lt;9D contained in a transverse neighborhood of {y}},
as depicted. Since Lt is tangent to D to *„ there are at least 4 arcs, Bl9 B2, B3, B4

leaving xt and running out to dD — C from xt as in Figure 3, or giving a closed

loop in D, or accumulating in D. Since we are working in a small neighborhood
of x, each leaf intersects this neighborhood in a disk and thus its intersection with
D is compact and can not hâve an accumulation point. lt can not hâve a closed

Figure 3
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Figure 4

loop by the maximal pnnciple. Thus each of Bly B2, B3, B4 run out to dD — C. At
least two of thèse arcs, say B1 and B2, run to a transverse neighborhood of the
same point yk. Thèse eut off a subdisk E of D. The induced foliation on E has a

finite number of singularities as it is a bounded distance from the boundary of D.
This induced foliation is as in Figure 4 near the boundary.

By doubling along SE H dD we obtain a foliation of the 2-disk with no
boundary singularities and only n-prong interior singularities. This contradicts
X(D2) +1, and so we hâve a contradiction to the assumption of an accumulation

point at x. The lemma now follows.
The above lemma does not apply if the boundary point is a branch point of the

minimal surface F. Interior branch points can not accumulate to x unless x is a

boundary branch point and thus did not need to be considered in Lemma 2.4. We
deal with this possibility in the following lemma.

LEMMA 2.5. Let 2F be a minimal foliation in a 3-manifold M and let (F, dF)
be a minimal surface in M (possibily having branch points on the boundary). If a

component C of dF is transverse to $F then the induced foliation is non-singular on
dF except at isolated boundary branch points of F where there are transverse

boundary n-prong singularities, n ^ 3.

Proof Suppose that C is transverse to 9. We must consider the induced
foliation in a neighborhood of a boundary branch point x. The behavior of a least

area surface with smooth boundary near a boundary branch point is described in
Lemma 1.3. There is a well-defined tangent plane at the branch point. As 9 is

transverse to this plane at jc, and branch points are isolated, the induced foliation
has an isolated singularity at jc. Let (jc1, jc2, jc3) be coordinate about jc such that
TFX is tangent to {x3 0}. The projection to the (x1, jc2) plane gives a map of
degree k on {x2 &gt; 0} and k - 1 on {jc2 &lt; 0} of F to a neighborhood of (0,0), as F
is locally a graph over the (jc1, jc2) plane away from (0,0). The intersection with F
in a neighborhood of jc of a surface transverse to the (jc1, x2) plane and transverse



10 JOËL HASS

to SF consists of (2k — 1) arcs converging to the origin. Thus there is a transverse

boundary (2k - l)-prong.

LEMMA 2.6. Let M be a Riemannian 3-manifold with a minimal foliation 2F,

let (F} dF) be a minimal surface in M with dF contained in a leaf Lo of &amp;* and

suppose that F is tangent to Lo at a boundary branch point x. Then there is a

neighborhood U of x such that x is the only point of tangency of a neighborhoood
of x in F and 2F in U&gt; or F coincides with Lo in U. Moreover, in the former case

the induced foliation at x has a tangent boundary n-prong for some n^l.

Proof We can pick a small neighborhood U with coordinates (xly x2, xj so

that x (0, 0, 0), Lo={jt3 0}, the leaves of &amp; are given by {x3 constant},
dF {x3 x2 0} and the projection of F to the (xx,x2) plane is a cover with
degree k on {x2 &gt; 0} and k — 1 on {x2 &lt; 0}.

Consider now the induced foliation on F obtained by intersecting with the
leaves of 9 in U. This foliation contains no closed curves in some neighborhood
of x in F. To see this, it is convenient to pass to A&gt;fold branched cover 0 of U,

branched along the x3-axis. This has a smooth metric away from the pre-image of
the x3-axis, and is foliated by the pre-images of the leaves of 2F. F D U lifts to an

embedded disk F in Û and the induced foliation on F in U is the same as that on
F in U. If there is a closed curve in this foliation, then a curve on a leaf Lx in Û

bounds two distinct disks, each embedded and minimal, one on Lx and one on F.

The maximal principle gives a contradiction as the disk on F must meet a leaf in a

manner contradicting Lemma 1.1, namely the last leaf it meets. Note that it is

irrelevant whether Lx Lo or whether the branch locus in on this closed curve.
Thus the induced foliation has no closed curves. The techniques of Lemma 2.4

now show that the branch point is an isolated tangency point, and the induced
foliation has a tangent boundary n-prong for some n ^ 1. Note that F does not lie

on one side of Lo, by the Hopf boundary maximum principle, in any
neighborhood of x, as in Lemma 1.2.

Remark. The previous lemmas hâve concentrated on the intersection of a

minimal surface with the particular leaf on which a branch point lies. They imply
that the nearby leaves intersect transversely and thus in smooth curves. It is then

straightforward to construct a homeomorphism of a neighborhood of the

singularity so the local picture corresponds to some standard model for a prong
singularity as given in Lemma 2.1.

We will apply thèse lemmas now to find conditions on a foliation which are
obstructions to finding some metric in which it is a minimal foliation.
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THEOREM 2 7 Let M be a compact, closed 3-manifold with a 2-dimensional
foliation 3* Any of the following conditions are obstructions to the existence of a

metnc on M in which each leaf of &amp; is minimal
î) M contains a null-homotopic curve transverse to the foliation
n) jtx(M) is finite
(ni) iz2{M) is non-trivial, and 3P contains no leaves which are 2-spheres or

projectwe planes
îv) M is reducible, and ZF contains no leaves which are 2-spheres or projectwe

planes
v) There is a compressible leaf in M, i e a leaf L such that jïi(L) does not

inject into jzx(M)

Remark If 9&gt; contains a leaf with finite nx then ail the leaves of £F hâve finite
jt1 [Re] It follows that M is one of S2 x S1, S2 x S1, P2 x S1 or P3 # P3, as M is

a bundle over a 1-dimensional orbifold with the leaves as fibers

Proof Suppose there exists a foliation on M rnaking each leaf minimal We
will show that assuming any of î-v will lead to a contradiction

i) In this case, let D be a least area disk bounding the null homotopic
transversal Such a disk exists [Mo] and is immersed in îts interior [O] The
induced foliation on D has isolated singulanties, by Lemmas 2 3 and 2 4 Using
Lemma 2 1, and %{D) + 1, we get a contradiction, as the induced foliation on a

minimal disk has only singularises of n-prong or transverse boundary n-prong
type, n ^2

n) Jïi(M) is fimte Put a point in M and consider îts orbit under the normal
flow to the leaves of &amp;* Thus orbit has an accumulation point as M is compact A
small perturbation gives a closed transverse curve to the foliation Taking a finite
multiple of such a curve gives a null homotopic closed transversal, which after a

small perturbation can be taken to be embedded We now apply case i) to get a

contradiction
ni) If jt2(M) =f 0, then a resuit of Sacks and Uhlenbeck [S-U] shows that

there is a minimal 2-sphere immersed in M Again, the induced foliation has

isolated singulanties, each of which contnbutes a négative number to #(S2) 4-2,

by Lemma 2 1 This is a contradiction
îv) If M is reducible, the existence of an embedded minimal 2-sphere has

been estabhshed by Meeks, Simon and Yau [M-S-Y] The resuit now follows as

in case ni
v) If M has a compressible leaf L, let C be a simple closed curve on L

bounding a compressing disk Let D be a least area disk bounding L D can not
lie in L as dD is non-trivial in L, so the induced foliation on D is non-trivial We

now get a contradiction as before by applying Lemmas 2 1, 2 4, 2 5 and 2 6
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Note. We can extend some parts of this theorem to non-compact 3-manifolds.
AH conditions except (ii) are obstructions as long as M is required to possess a

homogeneously regular metric in the sensé of [M-S-Y]. There exist foliations of
R3 with ail leaves minimal so (ii) is not an obstruction in the non-compact case.
For conditions (iii) and (iv) we must also require that M covers a compact
manifold to establish the existence of minimal 2-spheres, and rule out S2x R and
P2xR.

COROLLARY 2.8 (Nokikov). Let &amp; be a foliation of a compact 3-manifold
M. Ifone ofthe conditions i)-v) of Theorem 2.5 holds. then 3Fhas a compact leaf

Proof If not, then every leaf of 9 is non-compact. It follows from Lemma 2.2
that 9 is minimal in some metric, contradicting Theorem 2.5.

Note. Novikov stated a somewhat différent resuit, but his techniques, which

were purely topological, can be extended to prove the above resuit, cf. [Ro]. In
particular, Novikov did not consider case (iv). See the appendix for an extension
of Corollary 2.8 to show the existence of Reeb components.

We can use the techniques developed hère to further analyze surfaces in
foliated 3-manifolds. For example we prove the following.

THEOREM 2.9. Let F be a closed minimal surface in a minimally foliated
3-manifold. If F is a 2-sphere or projective plane then F lies in a leaf of 5F. If F is a

Klein Bottle or torus then either F is transverse to 3F or F lies in a leaf of 3F. If F
is a surface of higher genus and F does not lie in a leaf then

# (tangencies of F to 9) ^ |z(F)|

Proof. We apply the above technique to count the singularities of the induced

foliation on F. Since each singularity contributes a négative integer to x(F) the
resuit follows.

We can also apply thèse techniques to obtain results on foliations of
non-compact manifolds, as in the following theorem.

EXAMPLE. Let 9 be a foliation of a compact manifold whose leaves satisfy
the hypothesis of Theorem 2.2 Then if f:F-+M induces an injection of the
fundamental group, there exists a map /&apos; homotopic to / with # (tangencies of

f\F) to 9) ^ \%{F)\. This follows as the resuit of Schoen-Yau [S-Y] show that/
can be homotoped to a minimal surface in the metric given by Theorem 2.2. Thus

if F is a torus, or Klein bottle, there exists a homotopic map with no tangencies.
See [Ga] for a topological argument.
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COROLLARY 2 10 Let M3 be a Riemanman 3-manifold with a complète,
homogeneously regular metnc of non-negative Ricci curvature Then every
foliation of M by minimal surfaces has each leaf a totally géodésie surface

Proof It suffices to prove such a resuit in the universal cover of M so we can

assume M îs simply connectée! Then by the remark following Theorem 2 5 it
follows that each leaf îs also simply connectée!, else there îs a compressible leaf
We will show that every leaf îs stable A theorem of Schoen and Yau [S-YII] will
then imply that each leaf îs totally géodésie

If L îs not stable, for some leaf L, then there îs a compact disk D m L and a

variation Lt of L Lo, supported on D, such that if A{t) îs the area of Dt then
A&quot;{f) &lt; 0 Thus for some small e, Area (De) &lt; Area (D), D€ and D agrée on dD
Let D &apos; be a least area disk spannmg dD D &apos; does not lie in L Applymg Lemmas
2 1,24 and 2 6 we obtain a contradiction as before

Note The above argument implies that each leaf îs area mimmizing, and in
fact homology area mimmizing An alternative approach îs given in the

Appendix

COROLLARY 2 11 Every foliation of E3 by minimal surfaces is the standard

planar foliation {x3 constant} up to rotation

The situation is somewhat différent m the case of a manifold with some

négative curvature In hyperbohe 3-space there are at least as many ways to
construct a foliation by totally géodésie hyper-surfaces as there are ways of
fohating the 2-sphere at înfimty minus 2 points by circles as below

A foliation of Si minus 2 points
by round circles

Figure 5
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However, we can construct a minimal foliation of H3 in which the leaves are
not totally géodésie.

EXAMPLE. There is a foliation of H3 by minimal surfaces, no one of which is

totally géodésie.
We construct this foliation by using a resuit of Anderson [A]. Pick a Jordan

curve F on the sphère at &lt;=&gt; of H3 which intersects each longitude at precisely one
point.

A foliation of St minus 2 points by
circles which are not round, and
which meet each longitude once

Figure 6

Let yt be a one-dimensional family of hyperbolic isometries fixing the north
pôle and south pôle of the sphère at o°. Then {y • V)teR is a foliation of the sphère
at infinity—{north pôle, south pôle}. Anderson&apos;s resuit states that there is a

stable minimal surface F asymptotic to F. yt • F will be the foliation we seek.

To see that this is a foliation it is necessary to check that y, • F H yt. • F — (p if
t f t&apos;, or equivalently, that F H y, • F (f&gt; for tj= 0. If not, then note that y, • F is

contamed in the convex hull ot y, • F. bot t large, this lies in a small neighborhood
of the north pôle. Moreover, the convex hull of F misses a neighborhood of the
north pôle. Thus y, • F doesn&apos;t intersect F for sufficiently large t. If y, • F D Fj= &lt;p

for some t, let tM sup {t | y, • FnF =f 0}. Then y,M • FHF j^Ç and y,M • F lies

on one side of F. This contradicts the maximal principle, and so {yt • F}teR gives a

foliation of //3 by minimal surfaces.

Each leaf on this foliation is stable and area minimizing by the methods of
Corollary 2.10. As H3 is homogeneously regular, the note following Theorem
2.10 implies that each leaf is incompressible and thus is a plane topologically.
Moreover, each leat is the unique surface in H3 havmg the corresponding curve
on the sphère at infinity as its asymptotic limit. If there were two such, the
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maximal principle again gives a contradiction. This answers a question of
Anderson [A] in thèse cases. One can generalize the construction to a larger set

of curves, those which bound asymptotically a minimal surface in H3 which is part
of a family of curves giving a non-singular foliation of Si, — {2 points}, and with
the property that any curve is carried to another by some hyperbolic isometry.

§3. The Bernstein Problem in the 3-geometries

In this section we consider the following question, which can be thought of as

a gêneralization of the Bernstein theorem: When does there exist a stable
minimal surface, in one of the eight 3-dimensional geometries on 3-manifolds,
which is not totally géodésie? This question was settled for orientable surfaces in
R3 with the Euclidean metric by [D-P] and [F-S]. In [F-S] is it also shown that if
M3 has non-negative Ricci curvature then a stable surface is totally géodésie.
Thus the stable minimal surfaces in S3 and S2 x R are totally géodésie. S3 in fact
does not hâve such surfaces as great 2-spheres are unstable.

This leaves H3y H2 x R, Sol and SL(2, R). Examples of not totally géodésie,
area minimizing surfaces in H3 were constructed in [A], [W-W] and [HI], The

previous section gives a method to construct many such surfaces which are
homology area minimizing planes. In [H I] such surfaces are also constructed in
H2x R. There are in fact lifts of least area surfaces in F x S1 where F is a

compact hyperbolic surface. It foliows from [F-H-S] that a least area surface in
F x S1 is equivariant under the S1 action, and this yields a foliation in H2 x R by
homology area minimizing planes.

Finally, we find explicitly foliations on each of Sol, Nil and SL(2, R) consisting
of minimal planes that are not totally géodésie. Since thèse are minimizing, and in
fact homology area minimizing, the analog of the Bernstein theorem fails for
thèse geometries.

For an exposition ot the eight geometries, see [S].
Sol has a metric ds2 e2z dx2 + e~2z dy2 + dz2 where (jc, y, z) are coordinates

on R3. Orthonormal 1-forms are w1 ezdx, w2 e~zdy, w3 dz. Calculation
gives dwx — wt a vv3, dw2 w2 a vv3, dw3 0, and using the structure équations,
w12 0, H&gt;23 H&gt;2&gt; h&gt;13= -wx. We can then compute sectional curvatures Kl2l2 —

+ 1, X2323 — 1, ^1313 — 1. In particular, we will use the fact that the x, y plane
can not be totally géodésie, as its intrinsic curyature is given by the flat metric
dx2 + dy2 from which it follows by the Gauss équation that its normal curvature is

-1. Note that there is an isometry / of Sol given by /: (x, y, z)-&gt; (y, x, -z), and

note also that /: (je, y, z)—&gt;(x +xf, y +yf, z) is an isometry. It follows that the
(jc, y) plane is minimal, as / reverses its orientation and leaves (0,0,0) fixed, and
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/ takes the origin to any other point on the (jc, y) plane, leaving the plane
invariant, so that its mean curvature is zéro everywhere.

Now eonsider the isometry K: (jc, y, z)-&gt;(e~~&apos;x, e&apos;y, z + t). This takes the

plane {z 0} to the plane {z t}. Thus ail the horizontal planes are minimal and

we hâve a foliation by surfaces not totally géodésie. Thus the Bernstein theorem
does not hold in Sol.

Nil has metric ds2 dx2 + dy2 + (dz-x dy)2 where (jc, y, z) are coordinates
on R3. Orthonormal 1-forms are wx dx, w2 - dy, w3 dz -x dy. Calculation
gives dw1 0, dw2 0, dw3= — w1 a h&gt;2, and the structure équations give w12

— l/2w3, h&gt;13 — 1/2h&gt;2, h&gt;23=+1/2h&gt;1 from which it follows that #i2i2=~3/4,
^1313= +1/4, ^2323 +1/4. In particular, the y — z plane is not totally géodésie,
by the Gauss équation as before, as setting x 0 we see that its intrinsic metric is

flat. There is an isometry /: (jc, y, z)~»(-jc, -y, z) showing that the mean
curvature of {jc 0} is zéro at the origin. Moreover the isometry /: (jc, y, z)—»

(jc, y + a, z + b) for any constants a, b shows the mean curvature is everywhere
zéro. Finally, the isometry K, K{x, y, z) {a +jc, y, 2 + ay) carries the plane
{jc 0} to the plane {x a}, where a is any constant. Thus we get a foliation of
Nil byjtninimal surfaces which are not totally géodésie.

5L(2, R) is the universal cover of the unit tangent bundle of hyperbolic
2-space. We do not give its metric explicitly, but note instead the isometries of
$L(2,R), which is the unit tangent bundle of the hyperbolic plane, include
induced mappings from isometries of H2 and rotations of the fibers by fixed

angle. We eonsider the cylinder consisting of ail the points above a hyperbolic
géodésie, where we use the Poincaré disk model for H2. This surface is carried to
itself by a transitive group of isometries of SL(2, R), and so has constant mean
curvature. Reflection through the géodésie lifts to an isometry of SL(2, R) which

interchanges its two sides, and so its mean curvature is zéro. Clearly if we can can
foliate SL(2, R) by non-totalWgeodesic minimal surfaces, lifting to the universal

cover will give a foliation of 5L(2, R).
The cylinders consisting of ail unit vectors above a given géodésie hâve

constant Gauss curvature, which must be zéro, as they hâve parallel disjoint
geodesics representing a generator of nx. Fiat cylinders hâve the property that

any two geodesics on them which run from one end to the other intersect either

zéro or an infinité number of times. If thèse cylinders are totally géodésie in
5L(2, R) then geodesics on the cylinder are also geodesics in 5L(2, R). Assume

this is the case, as else they serve as our desired example and we&apos;re done, by

letting f be a foliation consisting of ail the cylinders over a foliation of H2 by
geodesics.

We then eonsider a différent foliation of 5L(2, R). Let q be a point on the
circle at o° and let Lq consist of the unit tangent vectors to ail geodesics emanating
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from q. Varying q on the circle at o° gives a foliation of 5L(2, R), SF&apos;. Letting x
be a point on Lqy reflection through the géodésie in H2 to which x is tangent
interchanges the sides of Lq, leaves x fixed and Lq invariant, and thus shows that

Lq has zéro mean curvature at x. x is arbitrary so Lq is minimal.
Consider the cylinder C over the géodésie from — 1 to 1 and intersect it with

Lq where q -/. The intersection consists of a line / going from one end to the
other end of C. If both Lq and C are totally géodésie then so is / as two totally
géodésie surfaces intersect in a géodésie. But / intersects a géodésie y on C which
runs from one end to another in one point, therefore / is not a géodésie. The

géodésie y consists of unit vectors orthogonal to the géodésie running from — 1 to
1 in H2. Thus at least one of Lq and C is not totally géodésie.

Note. Explicit calculation can also show that thèse foliations are not totally
géodésie. However the metric of SL{2, R) is not as easy to write explicitly as that
of the other geometries.

§4. Branch points

We hâve seen that the présence of branch points on a minimal surface which
lies in a minimally foliated manifold leads to singularities in the induced foliation.
We exploit this to give information on the number of possible branch points, both
interior and boundary. Branch points can be either true or false, the latter
occurring because of a parametrization rather than an actual point where the

image of a surface is not immersed [G]. Our resuit apply to both types.
Différences will occur only if the branched surface lies in a leaf, which will not
happen in this section.

We hâve dealt in various cases with the effect on the induced foliation at a

branch point. We summarize this in the following lemma.

LEMMA 4.1. Let M be a Riemannian manifold, 9 a codimension one
minimal foliation and let f: (F, dF) —» M be a branched minimal immersion, with
dF transverse to 3F except at isolated points. Then the induced foliation has

singularities of négative Euler characteristic at each branch point and at each

interior tangency point. If dF meets a leaf Lo at a point x, and lies on one side of
Lo, there is either a transverse boundary 0-prong or a transverse boundary
k-prong, k ^ 2, and k&gt;2 only if the point x is also a branch point. At an interior
branch point x of degree ky there is a Ik-prong singularity induced if TFX is

transverse to 9 and k — 2 degree(x). If TFX is tangent to 2F at x, then the induced

foliation has a k-prong where k^2degree(x). At a boundary branch point x at
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which TFX is transverse to 3F, there is a transverse boundary (21 — l)-prong, where

l degree(x). At a boundary point x at which TFX is tangent to 3F there is a

transverse boundary k-prong, k^2. At an isolated tangency of dF to 3F the

induced foliation has either a transverse boundary 0-prong or a transverse

boundary k-prong, k^l.
Proof. Most of the results foliow from Section 2. If an interior branch point x

is tangent to &amp; then the techniques of [G-L] show that F intersects the foliation
in a A&gt;prong with k ^ 2 degree(x). If a boundary branch point is tangent to SF, the

argument of Lemma 2.6 yields a transverse boundary fc-prong, k ^2. Finally, if
dF is immersed at x and has a maximum or minimum relative to the foliation,
then the induced foliation has a transverse boundary 0-prong or transverse
boundary 2-prong. A saddle point tangency of dF yields no singularity.

Using Lemma 4.1 to measure the contribution of branch points to the Euler
characteristic now gives the following resuit.

THEOREM 4.2. Let T be a smooth curve in R3 bounding a minimal surface
F. Let h: R3-*R3 be a Morse height function such that h \ F has k critical points on

F, and which has T critical points on interior (F). Let {xb} be the branch points of
F, both interior and boundary. Then

[l-degree(x,)]-r

Note. It follows from Lemma 1.3 that there are only finitely many branch

points, so the sum makes sensé.

Proof. By a small perturbation of h we can assume that the level sets of h are
transverse to the tangent plane of F at critical points of dF and to the tangent
planes of any branch points. Thèse level sets are minimal surfaces, in fact totally
géodésie. Contributions to the Euler characteristic of F as calculated from the
induced foliation now yield Ti{Xb} [-degree(jc^) +1] from interior and E^}
[-degree^) +1] from boundary branch points. Other contributions arise from
tangencies, which always give négative contributions if interior, and can yield no
more than +1/2 if a tangency of F to the level sets of h. The resuit follows, as

there are k tangencies of the last type, and interior tangencies yield n-prongs,

COROLLARY 4.3. // F bounds a minimal disk D and F has a Morse height
function with only one maximum then D has no branch points.
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Proof. %{D) 1 and k 2 in the formula of Theorem 4.2. Since degree(xfo) ^
2 we conclude there are no branch points.

Note. A similar resuit was obtained by Rado, cf. [La].

COROLLARY 4.4. // k(r) $r\F\ satisfies k(F)&lt;2jt(n+ 1), F a closed

curve in R3, and F bounds a branched minimal surface F, then £{*,,} [degree(xb) —

l]^n — x(F). Furthermore, if F is a simple closed curve then we can replace the

hypothesis by k(F) ^ 2n(n + 1).

Proof. It is shown in [Mi] that if k(F) satisfies the above hypothesis, there is a

height function h on F which is Morse with no more than 2n critical points.
Perturbing to make h transverse to the branch points, the resuit follows from
Theorem 4.2.

Note. F need only be C3 for this to work.

For the disk, this yields the following, similar to results of Heinz-Hildebrandt
obtained via a Gauss-Bonnet technique. Their results generalize to surfaces of
bounded mean curvature, with extra terms.

COROLLARY 4.5. With the previous situation, and F a disk:

Proof. If

-&lt;r + lm

then we can find a height function as in Corollary 4.4 with only r maxima. We
then replace r with k(F)l2n in Corollary 4.4.

We can generalize Theorem 4.2 in several directions. We first consider a more
gênerai theorem in R3.

THEOREM 4.6. Let Q be a région in U3 foliated by a minimal foliation 9.
Let F be a curve in U3 whose convex hull is contained in interior(&lt;2) and which is
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tangent to 3F at k points. Let F be a branched minimal surface spanning F. Then

where {xb} is the set of branch points.

Proof. By perturbing F slightly, we can assume it intersects 9 transversely at

any branch point or boundary tangency. The resuit now follows as in Theorem
4.2.

EXAMPLE. Let Lo be a pièce of the catenoid.

Figure 7

Let rbe a curve with convex hull in a small bail. Translates of Lo foliate this bail.
Tcan be picked so each height function on Thas ^=4 critical points but F has only
two critical points relative to 9. A minimal disk spanning F has no branch points
by Theorem 4.6.

EXAMPLE. Let Lo be the 1/2 plane {x3 0,xl^0} in R3, and rotate about
the x2 axis to get a foliation 9 of R3 - ({x1 x3 0} by géodésie planes. The
curve below has no Morse function with two critical points, large total curvature,
and is only tangent to 9 at two points. A minimal disk spanning JThas no branch

point by Theorem 4.6. Another generalization of Theorem 4.2 is to a gênerai
3-manifold M. Hère we can not naturally perturb F or 9, as M may not hâve a

large isometry group like R3.

THEOREM 4.7. Let M a Riemannian 3-manifoldy 9 a minimal foliation of
My (F, dF) a branched minimal surface with dF transverse to 9 except at k critical

points. Then

4+ S [-
1 {xb}

[-1/2]-



Minimal surfaces in foliated manifolds 21

Figure 8

where {xb} are the interior branch points, {yb} the boundary branch points and
there are T points of tangency of interior (F) to 9.

Proof. We can not now assume that TFX is transverse to 9 at boundary
tangencies or branch points. We still hâve the previous Euler characteristic
contribution at interior branch points, even if they&apos;re tangent, but 3-branch points
may only hâve transverse boundary 2-prongs if tangent to 5F, so we may only get
a — 1/2 contribution frorn them. Otherwise the proof is as in Theorem 4.2.

Further generalizations, to higher dimensions, are given in Section 5. Note
that we do not need to weaken the results of 4.2 if we can perturb the foliation
isometrically. Thus for curves in S3, H3 and so on, the stronger results of 4.2
hold.

§5. Higher dimensions, branch points and a sphère theorem

In the previous section we restricted attention to the case where M was a

foliated 3-dimensional manifold. We now examine the situation in dimensions 4

and above. The appropriate analogue of a minimal foliation in thèse dimensions
is one in which each leaf is totally géodésie. We call this a totally géodésie

foliation.
Using thèse, we can extend ail the results of the previous section on branch

points, as well as prove a topological resuit on the existence of embedded

2-spheres in certain 4-manifolds.
The following lemma is the analogue of Lemma 4.1 in this context.

LEMMA 5.1. Let M be a Riemannian manifold with a totally géodésie

foliation 5F of codimension one, and let f: (F, dF)-*M be a branched minimal
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immersion with dF transverse to 9 except at isolated points. Then either /(F) lies

entirely in a leaf of 9 or the induced foliation has isolated singularises of négative
Euler characteristic at each tangency of F to 3F and at each branch point of F. At
isolated points where dF is tangent to 3F there is either a transverse boundary
0-prong or a transverse boundary k-prong, k ^ 1. At interior branch points x of F
there is a Ik-prong singularity induced where k degree (x) if TFX is transverse to
3F, and a k-prong singularity, k ^ 4, if TFX is tangent to 3F. At boundary branch

points x transverse to 3F there is a transverse boundary k-prong singularity where

k 2 • degree (x) — 1. If x is a boundary branch point tangent to 3F there is a

transverse boundary k-prong atx, k^ 2. Ifx is an interior tangency of F to 3F there
is a k-prong singularity at x, k^ 4.

Proof. The existence of a tangent space of F at a branch point implies the
statement where TFX is transverse to 2F exactly as in dimension 3.

Suppose TFX is tangent to 9*. We pick coordinates {ylf yn} about

x {0, 0} such that 9 is given by yn constant. Then the minimality of/(F)
implies that we can pick coordinates on F so that / is a harmonie, almost
conformai map. Call thèse coordinates {xlyx2}. Then the harmonicity of / is

given by the équation

for each a, where A dénotes the Laplacian on F and where gl} is the metric on F,

(glJ) (gy)~\ and FptY are the Christoffel symbols of M. Since yn constant gives
a totally géodésie hypersurface of M, we hâve for a n in the above, that

as rp&gt;Y 0 if 1 ^ j8, y^n-lby total geodesity, and Fnn,r 0 by skew symmetry.
r d(vR°f) iLet h1 \r%n ^ JJglJ Then h] is a smooth function on F and u (yn°f)
L

&apos;

oxl J

S
satisfies the équation Lu 0 where L A + hJ — We now apply a theorem of

dXj

Bers, as in [F-H-S, Section one] to show that after a C1 change of coordinates in
F, U agrées with the real part of the function c • zm&gt; where c is a constant, m ^ 2,
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or else u 0. Thus the zéros of u consists of 2ra lines crossing at (0,0), m ^2,
and this is the intersection of F with the leaf Lo to which it is tangent. Moreover F
is transverse to ail leaves nearby to x, except at the one tangency point, as

V(Re (zm)) is not zéro in a deleted neighborhood of (0,0).
If F is tangent to 9 at an interior branch point, the above argument still

applies, to show an induced A&gt;prong singularity, k^A. If F is tangent at a

boundary branch point, the argument in Section two applies to show an induced
transverse boundary A&gt;prong, k ^ 2.

We first note that this extends the results of the previous section.

THEOREM 5.2. The results of Theorem 4.2, Corollaries 4.3, 4.4, 4.5 and
4.6, and of Theorem 4.7, holdfor dimension larger than 3 if 2F is a totally géodésie

foliation of codimension one, except that the formula from Theorem 4.7 becomes
the weaker

42 2
Z M {yb}

where {xb} is the set of interior branch points, {yb} the set of boundary branch

points.

Proof The proofs of ail results are the same except that in the analog of
Theorem 4.7 we do not hâve as much control over the induced foliation if a

tangency of F to SF occurs at a branch point. In this case we still know that the
induced foliation has a 2fc-prong singularity where k ^ 1.

We next apply thèse techniques to get some new results in understanding the
branch points of closed minimal surfaces in n -manifolds where n ^4. Results of
Osserman and Gulliver [O] [G] hâve shown that least area surfaces in dimension
three admit no true branch points. False branch points can occur, as for example
when a least area torus is the two-fold branched cover of a 2-sphere in the
3-manifold S2 x S1. However if the surface injects in Jt1 or is 1-1 on its boundary,
then false branch points can&apos;t exist for topological reasons. Branch points can

occur for surfaces in 4-manifolds, as evidenced by complex submanifolds with
singularities. Such submanifolds are always area minimizing. We next state a

theorem giving information on the existence of branch points in this context.

THEOREM 5.3. Let M4 be a Riemannian 4-manifold with a totally géodésie

foliation 9. Then iff: F2-&gt; M4 is a least area map of a surface F homeomorphic to
a torus of Klein Bottle, then F has no true branch points. If f has false branch

points its image lies in a leaf
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Proof. We look at the induced foliation. AH singularities contribute négative
Euler characteristic, so none can exist. Thus / must be transverse to 9 or
contained in a leaf. If contained in a leaf, then the results of Osserman and

Gulliver yield the conclusion, as the leaf is a 3-manifold. If transverse, then any
branch point, true or false, leads to a 2&amp;-prong singularity, k ^2, and thus none
can exist.

COROLLARY 4.5. Least area tori in M3 x S1 hâve immersed image. Injective
least area tori in M3 x S1 hâve no branch points of any type, true or false.

We state one more resuit relating the number of tangencies T, branch points
B and the Euler characteristic of a surface.

THEOREM 5.5. Let f:F-+M4 be a branched minimal immersion into a

Riemannian manifold M with a totally géodésie foliation 3*. Then either f(F) lies

entirely in a leaf or

Proof. This follows as the previous results.

EXAMPLE. This implies for example that a minimal 2-sphere always lies in a

leaf, as does a minimal RP2. A surface of genus two can hâve at most two branch

points or tangencies, or else it lies in a leaf.

The topological sphère theorem [Pa], [St], states that if jz2(M3) =£ 0 then there
is an embedded 2-sphere in M3 which is non-trivial in n2. We can extend this to
certain 4-manifolds.

THEOREM 5.6. // jï2(M4) j= 0 and M4 admits a totally géodésie foliation of
codimension one then there is a embedded 2-sphere in M which is non-trivial in

n2{M).

Proof Equip M with the metric in which it has a totally géodésie foliation.
Results of Sacks-Uhlenbeck give the existence of a least area 2-sphere S

non-trivial in jr2(M4). Such a map is a branched minimal immersion. Considering
its induced foliation, we get a contradiction unless it lies inside a leaf L. Now

n2(L) =£ 0, else the 2-sphere would be trivial. But the sphère theorem [St] gives

that there is a collection of embedded 2-spheres gênerating jt2(L) as a jr^module.
One of thèse at least is non-trivial in n2{M)y as 5 is a linear combination of thèse,

and so this serves as our desired sphère.
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Appendix

For completeness and because we need to extend it slightly, we présent hère a

proof of Theorem 2.2. The proof is a simplification of Sullivan&apos;s original
argument which applies in codimension one, and is based on ideas related to me
by D. Epstein and W. Thurston. The proof applies also in higher dimensions for
codimension one foliations.

THEOREM Al. Let M be an oriented closed 3-manifold and let 9 be a
codimension one foliation of M. M admits a metric in which each leaf of 3F is a

minimal surface if and only if every compact leaf of 3F intersects some closed curve
which is transverse to 9. In such a metric, each leaf is homology area minimizing.

Remark. Non-compact leaves always intersect closed curves transverse to 2F.

Proof. We assume first that the foliation is transversely oriented. Note that
this gives an orientation to the leaves of 2F. Suppose first that each compact leaf
intersects a closed transverse curve. Since M is compact, each non-compact leaf
also intersects a closed transverse curve. Thus we can find a finite number of
maps f: S1 x D2-&gt; M, i 1, k, such that

1) Each f is an orientation preserving embedding and f(pt x D2) is contained
in a leaf.

2) UUf,(S1x12D2) M.
3)f(S1Xpt) are curves transverse to &amp;, and oriented according to the

transverse orientation of 2F.

On S1 x D2 we can pick coordinates (6, x, y) with 6 e S1 and (jc, y) e D2. Let
q)(x, y) be a positive function on D2 such that (p 1 on the disk of radius 1/2 and

&lt;p =0 outside the disk of radius 3/4. Let w0 be the 2-form on S1 x D2 given by
dw

vvo= cp{xfy)dx Ady. Then dwo 0 as dwo — dd a dx a dy 0, since cp is
ou

independent of 6. Using the embedding f gives a corresponding closed 2-form wt

on M, / 1, k. Let w Ef=i h&gt;( be a closed 2-form on M. Note that w is

non-zero restricted to the leaves of 3F.

Let p be a point in M and consider the following map ty from the tangent
space of M at p to IR2, whose kernel gives a &quot;normal direction&quot; to 2F. \j&gt; is the

composition of the map (pTMp^&gt;T*Mp defined by ç(x)(y) w(x, y) and the

map k: T*Mp-+U2 defined by k(qc) (&lt;x(u), a(v)) where (w, v) is a basis for the

tangent space to the leaves of 2P in a neighborhood of p. Note that since

w(u, v)^0 by construction of wy ip has a one-dimensional kernel. Let iVbea
vector field in ker (xp) in a neighborhood of p. Then w(N, u) w(N, v) 0.
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Now pick any volume form V on M and any Riemannian metric h on the
leaves whose volume form equals w restricted to the leaves. We then rescale N so

that iN(V) w and prescribe a metric g on M to be h on the leaves and to hâve N
as a unit vector orthogonal to the leaves. In the metric g, \\ w\\ ^ 1 and || w\\ 1 on
the tangent space to the leaves. We now show that each leaf is minimal in g. In
fact we show that each leaf is homology area minimizing.

Let K be a compact région of a leaf and let K&apos; be a homologous surface with
9K dK&apos;. Then

Area (K&apos;) f 1 ^ f w\K. f w\k Area (X)

where the inequality holds because ||w|| =^ 1 and the following equality holds by
Stoke&apos;s theorem, since dw 0 and K, K&apos; are homologous. This concludes the

proof that each leaf is minimal in the metric g. Note that the same proof applies
for codimension one foliations in manifolds of any dimension. This concludes the
first implication of the theorem. We now prove the converse.

Suppose M has a metric in which each leaf of SF is a minimal surface. Define a

2-form w by w iNV where N is the unit normal vector field to the foliation and

V is the volume form of M. Then ||w|| ^ 1 and ||w|| 1 on the leaves of &amp;, so the
above argument shows that each leaf is homology area minimizing.

We claim that dw 0. If not, let pbea point where dw &gt; 0 and pick L to be

the leaf containing p. Let D be a small disk about p on L, and let Dt be the image
of D under the leaf preserving normal flow to 9 at time t. Then

Area (D) \ w \

Jd JD

where A is the annulus between 3D and dDt, R the région bounded by D, A, Dt.
Since A is normal to &amp;, we hâve that J^ w 0. Thus

f dw= \ w- f w&gt;0
Jr Jd JDt

as dw =£ 0. Now w is the area form of both D and Dt. But D, is a normal variation
and so Dt minimal^ Area (DA) constant, a contradiction. So we hâve dw 0.
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Now let LN dénote the Lie derivative associated to the flow along N. Then

LNV diNV + iN dV dw 0.

So the volume form V is preserved by the normal flow.
Now suppose that there is some compact leaf Lo which does not intersect a

closed transverse curve. For a small real number e, the normal flow along TV of
distance e takes Lo off itself, tracing out a 3-dimensional région Rlm Iterating this
flow along N, Rt gets carried to a région R2 of equal volume. The surface Lo gets
carried to a disjoint surface Lt by flowing along N distance t else there would be a

closed transversal through Lo. Thus the région between Lo and Lt is an embedded
submanifold of M for ail ty and its volume grows without bound. This is a
contradiction in a finite volume manifold M. Thus there is a closed transversal
through Lo.

We next deal with the situation where the foliation is not transversely
oriented. Our arguments relied on this orientation, so they need modification as

follows.
Assume first that every compact leaf intersects a closed transversal in M. As

before, pick fibers^(51 x D2) covering M. Note that there is a double cover M of
M y such that a loop in M lifts to M if and only if the normal Une field to 3F along
the loop is orientable. Thus transversal closed curves lift to M and thus

f(Sl x D2) lifts. In M we construct a metric making each leaf minimal as before,
but equivariantly. We do so by picking the metric equivariantly on the two
disjoint lifts of each f(Sl x D2). We thus get a metric on M in which each leaf is

minimal.
The converse is easier. Lifting the minimal foliation f toM gives a minimal

foliation 3F in M. Thus each compact leaf in 3F intersects a transversal. The

projection of the transversal to M gives the same resuit in M.
Theorem A2 extends Theorem Al to the case where M has boundary.

THEOREM A2. Let M be a compact manifold with boundary and let 3F be a

codimension one foliation, transverse to dM. Then there is a metric on M in which
each leaf of 3F is minimal and dM is totally géodésie if and only if every compact
leaf of 3F intersects a closed transversal.

Proof Assume each compact leaf of 9 intersects a closed transversal. Double
M to obtain M&apos;, 3F&apos;. Every leaf of 3F&apos; intersects a closed transversal. We now can

carry out the construction of Theorem Al equivariantly under the involution of
M&apos; to get a metric in which each leaf is minimal. The boundary is now totally
géodésie.

Conversely, the argument of Theorem Al applies.
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Figure 9

With additional argument one can go beyond the arguments of Theorem 2.7
and show the existence of a Reeb component in a foliation, rather than just the
existence of a compact leaf. We give thèse arguments hère.

A Reeb component is a solid torus in M3 whose foliation is given up to
diffeomorphism by the foliation on {(R+ — {0}/—} by the level planes {x3 const/

~} where the équivalence relation ~ is given by (jc1, x2, x3) ~ (2jc\ 2x2, 2x3).

Hère M3+ dénotes the set of points in M3 with x3 ^ 0. A Reeb component is drawn
in Figure 9.

We will prove the following resuit.

THEOREM A3 (Novikov). Let M be a closed orientable 3-manifold and let &amp;

be a transversely oriented codiimension one foliation of M. If M has finite
fundamental group or if M is reducible then 9 contains a Reeb component.

Proof Following Novikov [No], we put a partial ordering on the leaves of 2F.

We say that Lx &gt; L2 if there is a transverse path, transversely oriented, from Lx
to L2.

We can define an équivalence relation on those leaves Lt of ^ satisfying
Lt&lt;Lt by Lt~Lj if Lt&lt;L} and Lj&lt;Lt. The components of this équivalence
relation are called Novikov components. Each non-compact leaf belongs to a

Novikov component. We now put a partial ordering on the Novikov components
of &amp; by letting A^ &gt; N2 if there is an oriented transverse curve leaving Nt and

entering N2. Note that we can not hâve Nt&gt; N2&gt; Nlf unless Ni, N2 are the same
Novikov component. By the Hausdorff Maximal Principle of set theory, there is a

maximal linearly ordered subset of the set of Novikov components which we can
assume contains Nt. As the set of Novikov components is countable, each being a

disjoint open set in a manifold, we can pick a séquence {Nt} such that NJ+l&gt;Nj
and such that ail Novikov components &gt;Nt which are in the maximal linearly
ordered subset are in the séquence {NJ. Pick a leaf LlczNl for each i. The
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séquence Lt accumulâtes to a leaf Lœ. Either

1. There is a maximal Novikov component Nx with Lœ c Nœ, or
2. The leaf L^ is not in a Novikov component.

In the latter case, note that LO0&gt;Ll for ail /. Now following backwards from
Loo along a flow Une of the normal flow to the foliation eventually gives rise to an
accumulation point, which lies in a Novikov component. This Novikov
component Nr satisfies N&apos; &gt; Nt for ail i. Thus we get a larger linearly ordered subset,
a contradiction. On the other hand, suppose there is a maximal Novikov
component iV». SN» consists of compact leaves as non-compact leaves lie in the
interior of a Novikov component. The oriented normal flow to 3F is everywhere
outward pointing on dAk, which implies that SiV» is a union of tori by Euler
characteristic arguments.

Let K dénote the open set of leaves which are not in a Novikov component,
and not in the closure of the union of ail the Novikov component. Then K is a

manifold and no leaf in K intersects a closed transversal. dK consists of leaves

which are limits of points of Novikov components.

CLAIM. The boundary of K and the boundary of any Novikov component
consists of tori leaves.

Proof of Claim. We hâve seen that any maximal Novikov component has tori
leaves. If there is a Novikov component with a non-torus 8-component, let Lx be
such a 8-component. The normal flow Unes to Lx each eventually enter a maximal
Novikov component. Thus Lx and a collection of tori bound a 3-manifold with
flow transverse to the boundary. It follows that #(LX) 0. The boundary of K
consists of leaves that are in the closure of Novikov components and thus are tori.

Suppose now that M has finite fundamental group and is irreducible. It follows
from Theorems 2.2 and 2.7 that M has more than one Novikov component. Thus
there is a Novikov component with tori on the boundary. A torus is compressible
since it can not inject into the fundamental group of M. Either the compressing
disk is inside the Novikov component or the compressing disk lies outside the
Novikov component, and it then may or may not be disjoint from the other
Novikov components.

By passing to an innermost Novikov component on the disk, one can reduce
to two cases

Case 1. There is a compressing disk with interior in K and boundary on a

torus leaf.
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Case 2. There is a compressing disk in a Novikov component with boundary
on a torus leaf T.

Case 1. By doubling K we get a closed manifold which is foliated so that each
leaf intersects a closed transversal. Thus there is a metric on K in which every leaf
is minimal, including the boundary. by Theorem A2. We can now solve the
Plateau problem in K for a disk with boundary given by the compressing disk.
This gives a contradiction as in Theorem 2.7.

Case 2. T is the boundary of a Novikov component No. so that there are
non-compact leaves in A^ whose accumulation points include T.

CLAIM T can be isotoped into No so that it becomes a torus T&apos; transverse to
the foliation in N0) foliated by parallel circles or Unes.

Proofof Claim. Up to diffeomorphism, a neighborhood of T in No is given by
[0, 1] x [0, 1] x [0, e]/~ with x3 const giving the foliation and the identification
~ given by the holonomy of the foliation, yielding a foliation on a neighborhood
of T in No.

Let a and j8 generate nx(T) with [0,1] x 0 x 0 representing a and 0 x [0, 1] x
0 representing j3. Then since 7t\{T) is commutative, the holonomy h(a) of oc and

h(/3) ot fi can not both be the identity, else there would be tori parallel to T
foliating a neighborhood of T in NOy so we can find in [0,1] x [0,1] x [0, e] a flat
rectangle with boundary arcs a, b, h(cc) • a, h((i) • b, which will be transverse to
the planes {x3 constant}. Note that the identification ~ identifies 0 x [0,1] x
[0, e] to 1 x [0, 1] x [0, e] by h(a) and [0, 1] x 0 x [0, e) to [0, 1] x 1 x [0, e] by
h(/3). This gives the desired torus T&apos; in 7V0, proving the claim.

Let R be the part of No bounded by T1. R is foliated by leaves transverse to
the boundary. Moreover, since TVo was a single Novikov component, each leaf of
the foliation ^ in R intersects a closed transversal. Thus there is a metric on R in
which each leaf of 3F&apos; is minimal and T&apos; is totally géodésie. We can now find a

minimal compressing disk D, whose boundary is either contained in a leaf or
transverse to the leaves. The latter case gives a contradiction as before. In the
former case we hâve that D is contained in a leaf, again by the argument of
Theorem 2.7. So T&apos; must be foliated by parallel circles and a similar resuit applies
to each of thèse. Thus R is foliated by minimal disks. iV0 is constructed from R by
adding on a collar with half cylindrical leaves converging to a torus. This gives a

Reeb foliation on No.

We finally consider the case where M is reducible and ^ has no 2-sphere
leaves. Let S be a 2-spheres that does not bound a bail. If 5 can be pushed off the
Novikov components it lies in K. But K has a metric with each leaf minimal,
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giving a contradiction as in Theorem 2.7. Else S intersects a Novikov component
in a compressing disk, givmg a contradiction as in the previous case.
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