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Minimal surfaces in foliated manifolds

JoeEL Hass

Introduction

In this paper the interaction between minimal surfaces and foliations of
manifolds is studied. Techniques from the theory of foliations are used to give
information about minimal surfaces, and minimal surface techniques to examine
foliations.

The main idea is to introduce a special metric in which the leaves of a foliation
are either minimal surfaces or totally geodesic. Finding such metrics is often
possible, via results of Sullivan [Su]. In any case, such metrics exist in manifolds
such as R" and H", which have totally geodesic foliations. The minimal surfaces
in such minimally foliated manifolds must then intersect the foliation in a
restricted manner.

Section one contains some preliminary lemmas about the nature of minimal
surfaces and how they intersect, and also about the nature of their singularities,
branch points.

Section two examines Euler characteristic information obtained by examining
the induced foliation on a minimal surface in a minimally foliated 3-manifold.
Exploiting this leads to a simple proof of Novikov’s theorems on foliation [N] via
Theorem 2.7, which finds obstructions to the existence of a metric making each
leaf of a foliation minimal. A key technical point arising is to show that singular
points of the induced foliation on a minimal surface in a minimally foliated
manifold are isolated. This is done in a series of lemmas that deal with both
immersed and branched minimal surfaces, and with interior and boundary
singularities. The section concludes with some constructions of minimal foliations
of hyperbolic space.

In Section 3 the Bernstein problem is examined. In R® the Bernstein theorem
states that a complete minimal graph is a plane. This has been generalized in
[S-Y II] and [F-S] to show that a stable, complete, orientable minimal surface in
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2 JOEL HASS

a 3-manifold of non-negative Ricci curvature is totally geodesic. We consider the
corresponding question in the eight 3-dimensional geometries. Counterexamples
are known for H? [A], [HI], [W-W]. We show it to be false, except in the
geometries of non-negative Ricci curvature, by constructing counter-examples in
Nil, Sol, SL(2,R) and H* X R. The technique is to find foliations by minimal
surfaces which are not totally geodesic.

In Section 4 we examine branch points of minimal surfaces. In the presence of
a minimal foliation, a branch point induces certain types of singularities in the
induced foliation. This enables us to count how many branch points can occur in
certain situations. In Euclidean space, the number of critical points for a height
function on a curve implies bound on the number of branch points for a spanning
minimal surface. Via Milnor’s results on the relationship of curvature and height
functions, we obtain bounds on the number of branch points for a spanning
minimal surface in terms of the total curvature of a boundary curve, generalizing
results of [Ni] and [H-H]. The above results also apply in a more general foliated
manifold than R°.

In Section 5 we generalize the results to higher dimensions. Here the
appropriate category is a totally geodesic foliation of codimension one. Using
these, we show that certain least area surfaces in certain 4-manifolds have no
branch points, analogous to the 3-manifold case proved in [O] and [G]. We also
obtain a topological theorem analogous to the sphere theorem of 3-manifold
theory [P], [St]. This result gives the existence of a non-trivial embedded 2-sphere
in a 4-manifold with non-trivial second homotopy group which admits a totally
geodesic codimension one foliation.

Finally, in the Appendix, we prove a simplified version of Sullivan’s theorem
and extend it to the case of a manifold with boundary. We then show how
minimal surface techniques imply the existence of Reeb components in certain
foliations.
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§1. Preliminaries

We will assume that all maps and manifolds are smooth unless otherwise
specified. A surface is minimal if it is critical for the area functional under normal
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variation. A surface is least area if it is compact and has less area than any
homotopic surface (rel boundary). A surface is area minimizing if it is least area
on compact sets. A surface is homology area minimizing if any compact
subsurface has less area than any competing homologous surface (rel boundary).
The foliations we work with will always be assumed orientable. We say that a
foliation of a Riemannian manifold is minimal if each leaf is a minimal surface.
Let f be a map from a surface F with boundary 9F to a manifold M with boundary
oM. We say f is proper if

1) f~'(6M) = dF

2) For any compact set K = M, f~'(K) is compact.

The following lemma generalizes the ‘‘Maximal Principle for minimal
surfaces”.

LEMMA 1.1. Let M be a Riemannian 3-manifold and let F,, F, be surfaces.
Letp, e F, f;: F— M, i =1, 2 be minimal immersions with f,(p,) = f>(p,), and such
that the tangent planes of the two immersions agree at f,(p,). Let (x,, x,, x3) be any
smooth coordinates in a neighborhood V of fi(p,) such that fi(p,) = (0, 0, 0) and
such that f;(F,) restrict to graphs over the (xy, x,) plane in V, of functions ¢, ¢,
respectively. Then either ¢, = ¢, in a neighborhood of (0, 0, 0) or in V there is a
C' change of coordinates in the (x,, x,) plane such that in the new coordinates the
function ¢, — ¢, is given by C - Re (z") where z =x, +ix, and n is an integer,
n=2, Cis some non-zero constant.

Proof. This is proved in Section 1 of [F-H-S].

Remark. 1t follows that pairs of minimal surfaces either coincide on open sets
or have isolated tangencies. However more must be said to understand tangencies
of families of minimal surfaces. A key point used later about Lemma 1.1 is that
we need to change the x;, x, coordinates but not the x; coordinate.

LEMMA 1.2. Let (M, M) be a compact Riemannian 3-manifold whose
boundary has zero mean curvature. Let (F, OF) be a properly immersed minimal
surface in a neighborhood of a point x € M. Then F is transverse to oM at x.

Proof. F does not lie completely in M as we assume it’s proper. Suppose Fis
tangent to M at x € 9F N dM. We pick (x;, x,, x3) coordinates near x so that
x =(0, 0, 0), OF is the x,-axis, M = the x, — x, plane. Then since F is smooth
and tangent to M at x, we can find a small neighborhood where it is a
non-negative graph ¢ over the 1/2 plane {x;=0, x,>0}. ¢ satisfies a homoge-
neous linear elliptic P.D.E. (a”(x1, x,)$.,),, =0, a’(0, 0) = 67 [G]. Also, we have
Vo (xy, x,)—0 as (xq, x,)—(0,0). It follows from the Hopf boundary point
lemma [P-W, p. 67] that ¢ changes signs in every neighborhood of (0, 0) in
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{x2>0, x3=0}. But ¢ is non-negative in such neighborhoods by construction, so
we have a contradiction.

LEMMA 1.3. Let M" be a Riemannian manifold, let (F, 9F) be a compact
surface and let f: F>— M be a branched minimal immersion. Then the branch
points of f are isolated. If x € F is an interior branch point, then there are
coordinates (X1, x,---x,) about f(x) with f(x)=(,...,0) such that if
(X, X2, X3, - . . , X,) = (X1, X5) is the projection to the first two coordinates, then
mof is a finite sheeted branched cover in some neighborhood of x, and there are at
least two sheets. Similarly, if x € 9F is a boundary branch point, we can find
coordinates (x4, ..., x,) with f(OF) =the x,-axis, and mw°f a branched cover
which is k-sheeted on {x,>0} and k — 1 sheeted on {x, <0}, in some neighbor-
hood of x. Moreover, the tangent plane to f(F), Ty, f(F), smoothly approaches
the (x,, x,) plane as y— x.

Proof. For interior branch points this is a consequence of the normal form of
f near a branch point [G]. For boundary branch points there are similar
expansions [NiI].

We will say that a boundary branch point has degree k if wof is a k-sheeted
cover on (x,>0) and (k — 1)-sheeted on {x, <0}.

§2. Two dimensional foliations

In this section we will use the tools of minimal surface theory to examine
codimension one foliations. The philosophy behind this is that the minimal
surface often picks out a canonically positioned surface, and one does not need to
move such a surface by an isotopy or homotopy before applying a topological
argument or technique.

The basic technique we will use is to examine the induced foliation on a
minimal surface inside a manifold with a codimensions one foliation. For such an
induced foliation to be advantageous, we need a geometric structure on the
foliation. For a 2-dimensional foliation of a 3-manifold, we need the leaves to
each be minimal surfaces. In higher dimensions we need the leaves to be totally
geodesic. These conditions are not as restrictive as one might think.

We will show that the induced foliation on the surface has isolated
singularities. These cause contributions to the Euler characteristic of the surface
as indicated in the next lemma.
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LEMMA 2.1. The Euler characteristic y of a compact surface with a
codimension one foliation containing k isolated singularities o; satisfies y =
Y*_ ,ind (0;) where ind (0;) is computed as in Figure 1.

Proof. This result is well-known and follows easily from the Hopf Index
m

\\M\ff 1&7 .@ |

4-prong: ind (0) = n-prong: ind (0)=1-n/2

_Q

transverse boundary
2-prong: ind (o) = —1/2

transverse boundary
0-prong: ind (o) =1/2

tangent boundary transverse boundary
-n e _1=n
n-prong: ind (0) = N n-prong: ind (o) = 5

Figure 1
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Note. Other types of singularities can occur in general.

A foliation of a Riemannian 3-manifold is called a minimal foliation if every
leaf is a minimal surface. Such foliations are sometimes called geometrically taut.
The following lemma indicates when one can find such foliations. It is due to
Sullivan [Su]. A proof is given in the Appendix.

THEOREM 2.2. Let M be a closed orientable 3-manifold and let ¥ be a
codimension one foliation of M. M admits a metric such that every leaf of ¥ is a
minimal surface if and only if every compact leaf of F intersects some closed curve
which is transverse to F.

Note. It follows that if & has no compact leaves then M admits a metric
making ¥ minimal.

The type of foliation induced on a minimal surface which is in a minimally
foliated 3-manifold is of very restricted type. A key technical point which must be
settled before analyzing the induced foliation is that singularities of the induced
foliations are isolated.

LEMMA 2.3. Let % be a minimal foliation in a 3-manifold M. Let F be an
immersed minimal surface in M. The induced foliation on F is either

1. Trivial, and F lies in a leaf of F or

2. Non-trivial, and non-singular in interior(F) except at isolated points where
singularities of 2n-prong type occur, n =2.

Proof. Assume that F does not lie in a leaf. If F meets & transversely at x,
then so does some neighborhood of x in F. If F meets & non-transversely at x, let
L, be the leaf of % meeting x. Then the picture for the intersection of F and L, is
given by Lemma 1.1, so that the intersection of F and L, has isolated tangencies.
However, we must show that every leaf of % is transverse to F in a deleted
neighborhood of x in F.

Pick coordinates (x', x?, x*) in a neighborhood of x in M so that the tangent
space to F at x is tangent to {x> =0}, and so that {x’ =c} is part of a leaf of %.
By appropriate choice of such coordinates, it was shown in Lemma 1.1 that up to
a C'-diffeomorphism, F is given by x* = Re (x' + ix?)” in a small neighborhood of
x. Since this graph is transverse to {x’=c} except at the origin, the result
follows. -

We now state a similar lemma analyzing what happens for bounded minimal
surfaces near their boundary.
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LEMMA 2.4. Let & be a minimal foliation in a 3-manifold M and let (F, 9F)
be a minimal immersed surface in M. If a component of JF is transverse to F then
there are no singularities in the induced foliation near this component of OF. If a
component of OF lies in a leaf of &, then singularities on this component are

isolated, and are of tangent boundary n-prong type, n =1, or F lies entirely within
a leaf of #.

Proof. The first statement follows from the observation that transversality is
an open condition. So assume that a component C of JF lies in a leaf of %.
Suppose that there is a point x € C such that each deleted neighborhood of x in F
contains a point of tangency of F with a leaf of the foliation. Such points consist
of either a sequence of interior singularities of the induced foliation of F,
approaching x, or a sequence of boundary tangencies approaching x.

To study the latter case we consider L, N F, where L, is the leaf containing
the boundary component C of F containing x and TF, is tangent to L,. Pick a
coordinate neighborhood U of x with coordinates (x', x* x°) so that the disks
{x*=c} give the leaves of ¥, L, is given by {x* =0} and F N U is a disk which is
a graph x*> = ¢(x', x?). If F N L, contains a closed curve in U, then there would
be a leaf L; in U which F meets at an interior point and which lies on one side of
F locally. This contradicts the maximal principle described in Lemma 1.1.
Similarly no other leaf intersects F in a closed curve in U. It follows that the
intersection of F and L, in U consists of a number of graphs which are trees, with
vertices consisting of n-prongs of the induced foliation. If there is a non-finite
number of such graphs, then they accumulate in F N U, either to C < dF or to a
part of some tree in interior(F), as the set F N L, is closed. Note that if the
graphs accumulate to a point y € C then they also accumulate to the entire arc
between x and y on C, as otherwise there would be a violation of the maximal
principle as above. In this case, there is an open arc of C where F agrees with L,
and where the two tangent planes agree. This implies that F lies in L, by Lemma
5 of [M-Y 1] and Lemma 1.1. Consider now the case of an interior accumulation
point. An interior point cannot be an accumulation point of distinct components
of FN Ly, by Lemma 1.1. Thus it follows that there are only a finite number of
trees of Lo N Fin F N U. It also follows that these trees have only a finite number
of vertices, as otherwise there would again be an infinite number of arcs leaving
U, forcing an accumulation point. Thus x is isolated on C as a tangency point,
and by picking U smaller, we can assume that (L, N F) N U consists of a finite
number of arcs A; with one boundary point at x, together with C. Moreover, the
number of arcs is at least one, as if no such arcs exist near x, then a small
neighborhood of x in F lies on one side of L,. It then follows from Lemma 1.2
that F is transverse to L, at x, contradicting our assertion that x is a point of
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tangency. To conclude the proof we need to show that there are no interior
tangencies of F with & accumulating to x. Suppose a sequence of tangency points
{x;} of leaves L; with F accumulated to x. As i—>x, L,— L, We restrict
attention to a small 1/2 disk D in F about x. dD N L, consists of (3D N C)
together with a finite number of points y;. We can assume by taking D small, that
each point of 9D meets L, transversely, except for x. Thus we know that the local
picture for # N D is as depicted in Figure 2, away from a neighborhood of x.

Yy

Figure 2

Since L;— L, for i sufficiently large L; N 8D is arbitrarily close to the points
{y;}. Consider an L; with L; N 3D contained in a transverse neighborhood of {y;},
as depicted. Since L; is tangent to D to x;, there are at least 4 arcs, B, B,, B;, B,
leaving x; and running out to D — C from x; as in Figure 3, or giving a closed
loop in D, or accumulating in D. Since we are working in a small neighborhood
of x, each leaf intersects this neighborhood in a disk and thus its intersection with
D is compact and can not have an accumulation point. It can not have a closed

B,

Figure 3
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Figure 4

loop by the maximal principle. Thus each of B,, B,, B;, B, run out to 3D — C. At
least two of these arcs, say B; and B,, run to a transverse neighborhood of the
same point y,. These cut off a subdisk E of D. The induced foliation on E has a
finite number of singularities as it is a bounded distance from the boundary of D.
This induced foliation is as in Figure 4 near the boundary.

By doubling along E N 3D we obtain a foliation of the 2-disk with no
boundary singularities and only n-prong interior singularities. This contradicts
x(D?)=+1, and so we have a contradiction to the assumption of an accumula-
tion point at x. The lemma now follows.

The above lemma does not apply if the boundary point is a branch point of the
minimal surface F. Interior branch points can not accumulate to x unless x is a
boundary branch point and thus did not need to be considered in Lemma 2.4. We
deal with this possibility in the following lemma.

LEMMA 2.5. Let ¥ be a minimal foliation in a 3-manifold M and let (F, oF)
be a minimal surface in M (possibily having branch points on the boundary). If a
component C of OF is transverse to F then the induced foliation is non-singular on
OF except at isolated boundary branch points of F where there are transverse
boundary n-prong singularities, n = 3.

Proof. Suppose that C is transverse to #. We must consider the induced
foliation in a neighborhood of a boundary branch point x. The behavior of a least
area surface with smooth boundary near a boundary branch point is described in
Lemma 1.3. There is a well-defined tangent plane at the branch point. As % is
transverse to this plane at x, and branch points are isolated, the induced foliation
has an isolated singularity at x. Let (x', x*, x*) be coordinate about x such that
TF, is tangent to {x>=0}. The projection to the (x', x*) plane gives a map of
degree k on {x>*>0} and k — 1 on {x* <0} of F to a neighborhood of (0, 0), as F
is locally a graph over the (x', x*) plane away from (0, 0). The intersection with F
in a neighborhood of x of a surface transverse to the (x', x*) plane and transverse
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to OF consists of (2k — 1) arcs converging to the origin. Thus there is a transverse
boundary (2k — 1)-prong.

LEMMA 2.6. Let M be a Riemannian 3-manifold with a minimal foliation %,
let (F, OF) be a minimal surface in M with JF contained in a leaf L, of & and
suppose that F is tangent to L, at a boundary branch point x. Then there is a
neighborhood U of x such that x is the only point of tangency of a neighborhoood
of x in F and & in U, or F coincides with L, in U. Moreover, in the former case
the induced foliation at x has a tangent boundary n-prong for some n = 1.

Proof. We can pick a small neighborhood U with coordinates (x;, x;, x3) so
that x = (0, 0, 0), L,= {x3=0}, the leaves of % are given by {x;=constant},
OF = {x;=x,=0} and the projection of F to the (x;, x,) plane is a cover with
degree k on {x,>0} and kK — 1 on {x, <0}.

Consider now the induced foliation on F obtained by intersecting with the
leaves of &% in U. This foliation contains no closed curves in some neighborhood
of x in F. To see this, it is convenient to pass to k-fold branched cover U of U,
branched along the x;-axis. This has a smooth metric away from the pre-image of
the x;-axis, and is foliated by the pre-images of the leaves of #. F N U lifts to an
embedded disk F in U and the induced foliation on F in U is the same as that on
Fin U. If there is a closed curve in this foliation, then a curve on a leaf L, in U
bounds two distinct disks, each embedded and minimal, one on L, and one on F.
The maximal principle gives a contradiction as the disk on F must meet a leaf in a
manner contradicting Lemma 1.1, namely the last leaf it meets. Note that it is
irrelevant whether L, = L, or whether the branch locus in on this closed curve.
Thus the induced foliation has no closed curves. The techniques of Lemma 2.4
now show that the branch point is an isolated tangency point, and the induced
foliation has a tangent boundary n-prong for some n = 1. Note that F does not lie
on one side of L,, by the Hopf boundary maximum principle, in any
neighborhood of x, as in Lemma 1.2.

Remark. The previous lemmas have concentrated on the intersection of a
minimal surface with the particular leaf on which a branch point lies. They imply
that the nearby leaves intersect transversely and thus in smooth curves. It is then
straightforward to construct a homeomorphism of a neighborhood of the
singularity so the local picture corresponds to some standard model for a prong
singularity as given in Lemma 2.1.

We will apply these lemmas now to find conditions on a foliation which are
obstructions to finding some metric in which it is a minimal foliation.
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THEOREM 2.7. Let M be a compact, closed 3-manifold with a 2-dimensional
foliation . Any of the following conditions are obstructions to the existence of a
metric on M in which each leaf of ¥ is minimal.

i) M contains a null-homotopic curve transverse to the foliation.

i) m(M) is finite.

(ili) m(M) is non-trivial, and ¥ contains no leaves which are 2-spheres or
projective planes.

iv) M is reducible, and ¥ contains no leaves which are 2-spheres or projective
planes.

v) There is a compressible leaf in M, i.e. a leaf L such that m,(L) does not
inject into w(M).

Remark. 1f % contains a leaf with finite 7, then all the leaves of % have finite
7, [Re]. It follows that M is one of §* X §', §? X S!, P>x §' or P? # P> as M is
a bundle over a 1-dimensional orbifold with the leaves as fibers.

Proof. Suppose there exists a foliation on M making each leaf minimal. We
will show that assuming any of i—v will lead to a contradiction.

i) In this case, let D be a least area disk bounding the null homotopic
transversal. Such a disk exists [Mo] and is immersed in its interior [O]. The
induced foliation on D has isolated singularities, by Lemmas 2.3 and 2.4. Using
Lemma 2.1, and x(D) = +1, we get a contradiction, as the induced foliation on a
minimal disk has only singularities of n-prong or transverse boundary n-prong
type, n =2.

ii) m,(M) is finite. Put a point in M and consider its orbit under the normal
flow to the leaves of &. Thus orbit has an accumulation point as M is compact. A
small perturbation gives a closed transverse curve to the foliation. Taking a finite
multiple of such a curve gives a null homotopic closed transversal, which after a
small perturbation can be taken to be embedded. We now apply case i) to get a
contradiction.

iii) If 7,(M)#0, then a result of Sacks and Uhlenbeck [S—U] shows that
there is a minimal 2-sphere immersed in M. Again, the induced foliation has
isolated singularities, each of which contributes a negative number to x(S%) = +2,
by Lemma 2.1. This is a contradiction.

iv) If M is reducible, the existence of an embedded minimal 2-sphere has
been established by Meeks, Simon and Yau [M-S-Y]. The result now follows as
in case iii.

v) If M has a compressible leaf L, let C be a simple closed curve on L
bounding a compressing disk. Let D be a least area disk bounding L. D can not
lie in L as 8D is non-trivial in L, so the induced foliation on D is non-trivial. We
now get a contradiction as before by applying Lemmas 2.1, 2.4, 2.5 and 2.6.
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Note. We can extend some parts of this theorem to non-compact 3-manifolds.
All conditions except (ii) are obstructions as long as M is required to possess a
homogeneously regular metric in the sense of [M-S-Y]. There exist foliations of
R? with all leaves minimal so (ii) is not an obstruction in the non-compact case.
For conditions (iii) and (iv) we must also require that M covers a compact
manifold to establish the existence of minimal 2-spheres, and rule out $* X R and
P*XR.

COROLLARY 2.8 (Nokikov). Let & be a foliation of a compact 3-manifold
M. If one of the conditions i)—v) of Theorem 2.5 holds. then & has a compact leaf.

Proof. 1f not, then every leaf of & is non-compact. It follows from Lemma 2.2
that & is minimal in some metric, contradicting Theorem 2.5.

Note. Novikov stated a somewhat different result, but his techniques, which
were purely topological, can be extended to prove the above result, c.f. [Ro]. In
particular, Novikov did not consider case (iv). See the appendix for an extension
of Corollary 2.8 to show the existence of Reeb components.

We can use the techniques developed here to further analyze surfaces in
foliated 3-manifolds. For example we prove the following.

THEOREM 2.9. Let F be a closed minimal surface in a minimally foliated
3-manifold. If F is a 2-sphere or projective plane then F lies in a leaf of ¥. If Fis a
Klein Bottle or torus then either F is transverse to & or F lies in a leaf of &. If F
is a surface of higher genus and F does not lie in a leaf then

# (tangencies of F to F) < |x(F)|

Proof. We apply the above technique to count the singularities of the induced
foliation on F. Since each singularity contributes a negative integer to x(F) the
result follows.

We can also apply these techniques to obtain results on foliations of
non-compact manifolds, as in the following theorem.

EXAMPLE. Let & be a foliation of a compact manifold whose leaves satisfy
the hypothesis of Theorem 2.2 Then if f: F— M induces an injection of the
fundamental group, there exists a map f' homotopic to f with # (tangencies of
f'(F) to F)=<|x(F)|. This follows as the result of Schoen—Yau [S-Y] show that f
can be homotoped to a minimal surface in the metric given by Theorem 2.2. Thus
if F is a torus, or Klein bottle, there exists a homotopic map with no tangencies.
See [Ga] for a topological argument.
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COROLLARY 2.10. Let M? be a Riemannian 3-manifold with a complete,
homogeneously regular metric of non-negative Ricci curvature. Then every
foliation of M by minimal surfaces has each leaf a totally geodesic surface.

Proof. 1t suffices to prove such a result in the universal cover of M so we can
assume M is simply connected. Then by the remark following Theorem 2.5 it
follows that each leaf is also simply connected, else there is a compressible leaf.
We will show that every leaf is stable. A theorem of Schoen and Yau [S-Y II] will
then imply that each leaf is totally geodesic.

If L is not stable, for some leaf L, then there is a compact disk D in L and a
variation L, of L = L, supported on D, such that if A(¢) is the area of D, then
A"(t) <0. Thus for some small €, Area (D,) < Area (D), D, and D agree on 3D.
Let D' be a least area disk spanning 8D. D' does not lie in L. Applying Lemmas
2.1, 2.4 and 2.6 we obtain a contradiction as before.

Note. The above argument implies that each leaf is area minimizing, and in
fact homology area minimizing. An alternative approach is given in the
Appendix.

COROLLARY 2.11. Every foliation of E* by minimal surfaces is the standard
planar foliation {x* = constant} up to rotation.

The situation is somewhat different in the case of a manifold with some
negative curvature. In hyperbolic 3-space there are at least as many ways to
construct a foliation by totally geodesic hyper-surfaces as there are ways of
foliating the 2-sphere at infinity minus 2 points by circles as below.

<

A foliation of S2 minus 2 points
by round circles

Figure 5
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However, we can construct a minimal foliation of H? in which the leaves are
not totally geodesic.

EXAMPLE. There is a foliation of H> by minimal surfaces, no one of which is
totally geodesic.

We construct this foliation by using a result of Anderson [A]. Pick a Jordan
curve I" on the sphere at < of H> which intersects each longitude at precisely one
point.

A foliation of SZ minus 2 points by
circles which are not round, and
which meet each longitude once.

Figure 6

Let vy, be a one-dimensional family of hyperbolic isometries fixing the north
pole and south pole of the sphere at ©. Then {y - I'),.r is a foliation of the sphere
at infinity—{north pole, south pole}. Anderson’s result states that there is a
stable minimal surface F asymptotic to I'. y, - F will be the foliation we seek.

To see that this is a foliation it is necessary to check that y,- FNy, - F=¢ if
t+t', or equivalently, that F Ny, - F = ¢ for ¢t +0. If not, then note that y, - F is
contained in the convex hull of y, - I'. For ¢ large, this lies in a small neighborhood
of the north pole. Moreover, the convex hull of I" misses a neighborhood of the
north pole. Thus y, - F doesn’t intersect F for sufficiently large ¢. If y,- FNF+# ¢
for some ¢, let tyy,=sup {t|y,- FNF+ ¢}. Then y,,- FNF ¢ and v,, - F lies
on one side of F. This contradicts the maximal principle, and so {y, - F},.x gives a
foliation of H> by minimal surfaces.

Each leaf on this foliation is stable and area minimizing by the methods of
Corollary 2.10. As H? is homogeneously regular, the note following Theorem
2.10 implies that each leaf is incompressible and thus is a plane topologically.
Moreover, each leaf is the unique surface in H* having the corresponding curve
on the sphere at infinity as its asymptotic limit. If there were two such, the
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maximal principle again gives a contradiction. This answers a question of
Anderson [A] in these cases. One can generalize the construction to a larger set
of curves, those which bound asymptotically a minimal surface in H> which is part
of a family of curves giving a non-singular foliation of S — {2 points}, and with
the property that any curve is carried to another by some hyperbolic isometry.

§3. The Bernstein Problem in the 3-geometries

In this section we consider the following question, which can be thought of as
a generalization of the Bernstein theorem: When does there exist a stable
minimal surface, in one of the eight 3-dimensional geometries on 3-manifolds,
which is not totally geodesic? This question was settled for orientable surfaces in
R’ with the Euclidean metric by [D-P] and [F-S]. In [F-S] is it also shown that if
M? has non-negative Ricci curvature then a stable surface is totally geodesic.
Thus the stable minimal surfaces in S> and $? X R are totally geodesic. S* in fact
does not have such surfaces as great 2-spheres are unstable.

This leaves H>, H* X R, Sol and SL(2, R). Examples of not totally geodesic,
area minimizing surfaces in H> were constructed in [A], [W-W] and [HI]. The
previous section gives a method to construct many such surfaces which are
homology area minimizing planes. In [HI] such surfaces are also constructed in
H?* X R. There are in fact lifts of least area surfaces in F X S' where F is a
compact hyperbolic surface. It follows from [F-H-S] that a least area surface in
F x S' is equivariant under the S' action, and this yields a foliation in H*> X R by
homology area minimizing planes.

Finally, we find explicitly foliations on each of Sol, Nil and SL(2, R) consisting
of minimal planes that are not totally geodesic. Since these are minimizing, and in
fact homology area minimizing, the analog of the Bernstein theorem fails for
these geometries.

For an exposition of the eight geometries, see [S].

Sol has a metric ds® = e* dx*+ e ** dy* + dz* where (x, y, z) are coordinates
on R3. Orthonormal 1-forms are w, =e*dx, w,=e °dy, wy=dz. Calculation
gives dw, = —w; A ws, dw, =w, AWw;, dw; =0, and using the structure equations,
wi =0, wy =w,y, w3 =—w,;. We can then compute sectional curvatures K;,, =
+1, Ko33 = —1, Ky3;3= —1. In particular, we will use the fact that the x, y plane
can not be totally geodesic, as its intrinsic curvature is given by the flat metric
dx* + dy* from which it follows by the Gauss equation that its normal curvature is
—1. Note that there is an isometry I of Sol given by I: (x, y, z)— (y, x, —z), and
note also that J: (x, y, z)—=>(x +x',y +y’, z) is an isometry. It follows that the
(x, y) plane is minimal, as I reverses its orientation and leaves (0, 0, 0) fixed, and



16 JOEL HASS

J takes the origin to any other point on the (x, y) plane, leaving the plane
invariant, so that its mean curvature is zero everywhere.

Now consider the isometry K:(x,y, z)—(e”'x, €'y, z +t). This takes the
plane {z =0} to the plane {z =¢}. Thus all the horizontal planes are minimal and
we have a foliation by surfaces not totally geodesic. Thus the Bernstein theorem
does not hold in Sol.

Nil has metric ds*>=dx*+ dy*+ (dz — x dy)* where (x, y, z) are coordinates
on R®. Orthonormal 1-forms are w; =dx, w,=dy, w;=dz —xdy. Calculation
gives dw; =0, dw, =0, dw; = —w; A w,, and the structure equations give w;, =
12w, wi3=—1/2w,, w3 =+1/2w, from which it follows that K,,;, = —3/4,
K313 = +1/4, K33 = +1/4. In particular, the y — z plane is not totally geodesic,
by the Gauss equation as before, as setting x = ) we see that its intrinsic metric is
flat. There is an isometry I: (x,y, z)—(—x, —y, z) showing that the mean
curvature of {x =0} is zero at the origin. Moreover the isometry J: (x, y, z)—
(x, y +a, z + b) for any constants a, b shows the mean curvature is everywhere
zero. Finally, the isometry K, K(x,y, z)=(a+x,y, 2+ ay) carries the plane
{x =0} to the plane {x =a}, where a is any constant. Thus we get a foliation of
Nil by minimal surfaces which are not totally geodesic.

SL(2, R) is the universal cover of the unit tangent bundle of hyperbolic
2-space. We do not give its metric explicitly, but note instead the isometries of
SL(2, R), which is the unit tangent bundle of the hyperbolic plane, include
induced mappings from isometries of H* and rotations of the fibers by fixed
angle. We consider the cylinder consisting of all the points above a hyperbolic
geodesic, where we use the Poincaré disk model for H*. This surface is carried to
itself by a transitive group of isometries of SL(2, R), and so has constant mean
curvature. Reflection through the geodesic lifts to an isometry of SL(2, R) which
interchanges its two sides, and so its mean curvature is zero. Clearly if we can can
foliate SL(2, R) by non-totally geodesic minimal surfaces, lifting to the universal
cover will give a foliation of TSYIYZ R).

The cylinders consisting of all unit vectors above a given geodesic have
constant Gauss curvature, which must be zero, as they have parallel disjoint
geodesics representing a generator of ;. Flat cylinders have the property that
any two geodesics on them which run from one end to the other intersect either
zero or an infinite number of times. If these cylinders are totally geodesic in
SL(2, R) then geodesics on the cylinder are also geodesics in SL(2, R). Assume
this is the case, as else they serve as our desired example and we’re done, by
letting & be a foliation consisting of all the cylinders over a foliation of H? by
geodesics. :

We then consider a different foliation of SL(2, R). Let g be a point on the
circle at © and let L, consist of the unit tangent vectors to all geodesics emanating
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from gq. Varying g on the circle at « gives a foliation of SL(2, R), #'. Letting x
be a point on L,, reflection through the geodesic in H® to which x is tangent
interchanges the sides of L,, leaves x fixed and L, invariant, and thus shows that
L, has zero mean curvature at x. x is arbitrary so L, is minimal.

Consider the cylinder C over the geodesic from —1 to 1 and intersect it with
L, where g = —i. The intersection consists of a line / going from one end to the
other end of C. If both L, and C are totally geodesic then so is / as two totally
geodesic surfaces intersect in a geodesic. But / intersects a geodesic y on C which
runs from one end to another in one point, therefore / is not a geodesic. The
geodesic y consists of unit vectors orthogonal to the geodesic running from —1 to
1 in H*. Thus at least one of L, and C is not totally geodesic.

Note. Explicit calculation can also show that these foliations are not totally
geodesic. However the metric of SL(2, R) is not as easy to write explicitly as that
of the other geometries.

§4. Branch points

We have seen that the presence of branch points on a minimal surface which
lies in a minimally foliated manifold leads to singularities in the induced foliation.
We exploit this to give information on the number of possible branch points, both
interior and boundary. Branch points can be either true or false, the latter
occurring because of a parametrization rather than an actual point where the
image of a surface is not immersed [G]. Our result apply to both types.
Differences will occur only if the branched surface lies in a leaf, which will not
happen in this section.

We have dealt in various cases with the effect on the induced foliation at a
branch point. We summarize this in the following lemma.

LEMMA 4.1. Let M be a Riemannian manifold, ¥ a codimension one
minimal foliation and let f: (F, 3F)— M be a branched minimal immersion, with
OF transverse to ¥ except at isolated points. Then the induced foliation has
singularities of negative Euler characteristic at each branch point and at each
interior tangency point. If OF meets a leaf L, at a point x, and lies on one side of
Ly, there is either a transverse boundary O-prong or a transverse boundary
k-prong, k =2, and k > 2 only if the point x is also a branch point. At an interior
branch point x of degree k, there is a 2k-prong singularity induced if TF, is
transverse to F and k =2 degree(x). If TF, is tangent to ¥ at x, then the induced
foliation has a k-prong where k =2 degree(x). At a boundary branch point x at
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which TF, is transverse to %, there is a transverse boundary (21 — 1)-prong, where
| = degree(x). At a boundary point x at which TF, is tangent to % there is a
transverse boundary k-prong, k=2. At an isolated tangency of OF to ¥ the
induced foliation has either a transverse boundary 0-prong or a transverse
boundary k-prong, k = 1.

Proof. Most of the results follow from Section 2. If an interior branch point x
is tangent to ¥ then the techniques of [G-L] show that F intersects the foliation
in a k-prong with k =2 degree(x). If a boundary branch point is tangent to %, the
argument of Lemma 2.6 yields a transverse boundary k-prong, k =2. Finally, if
JF is immersed at x and has a maximum or minimum relative to the foliation,
then the induced foliation has a transverse boundary O-prong or transverse
boundary 2-prong. A saddle point tangency of JF yields no singularity.

Using Lemma 4.1 to measure the contribution of branch points to the Euler
characteristic now gives the following result.

THEOREM 4.2. Let I" be a smooth curve in R> bounding a minimal surface
F. Let h: R*— R® be a Morse height function such that h | I has k critical points on
I', and which has T critical points on interior(F). Let {x,} be the branch points of
F, both interior and boundary. Then

k
x(F) s—z— + {2} [1—degree (x,)]— T

Note. 1t follows from Lemma 1.3 that there are only finitely many branch
points, so the sum makes sense.

Proof. By a small perturbation of 4 we can assume that the level sets of & are
transverse to the tangent plane of F at critical points of dF and to the tangent
planes of any branch points. These level sets are minimal surfaces, in fact totally
geodesic. Contributions to the Euler characteristic of F as calculated from the
induced foliation now yield X, [—degree(x;)+ 1] from interior and Y,
[—degree(y,) + 1] from boundary branch points. Other contributions arise from
tangencies, which always give negative contributions if interior, and can yield no
more than +1/2 if a tangency of I to the level sets of A. The result follows, as
there are k tangencies of the last type, and interior tangencies yield n-prongs,
n=4,

COROLLARY 4.3. If T bounds a minimal disk D and I" has a Morse height
function with only one maximum then D has no branch points.
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Proof. x(D)=1 and k =2 in the formula of Theorem 4.2. Since degree(x,) =
2 we conclude there are no branch points.

Note. A similar result was obtained by Rado, cf. [La].

COROLLARY 4.4. If k(') = [(|I'| satisfies k(I')<2m(n+1), I a closed
curve in R*, and I bounds a branched minimal surface F, then Y., [degree(x;) —
1)< n —x(F). Furthermore, if I is a simple closed curve then we can replace the
hypothesis by k(I') <2x(n + 1).

Proof. 1t is shown in [Mi] that if k(I') satisfies the above hypothesis, there is a
height function A on I' which is Morse with no more than 2n critical points.

Perturbing to make & transverse to the branch points, the result follows from
Theorem 4.2.

Note. I need only be C? for this to work.

For the disk, this yields the following, similar to results of Heinz—Hildebrandt
obtained via a Gauss—Bonnet technique. Their results generalize to surfaces of
bounded mean curvature, with extra terms.

COROLLARY 4.5. With the previous situation, and F a disk:

r
1+ O, [degree (x,) — 1] sl—(—(—)
{2} 2

Proof. If
k()

r=——-<r+1
27

then we can find a height function as in Corollary 4.4 with only r maxima. We
then replace r with k(I')/2x in Corollary 4.4.

We can generalize Theorem 4.2 in several directions. We first consider a more
general theorem in R>.

THEOREM 4.6. Let Q be a region in R? foliated by a minimal foliation %.
Let T be a curve in R® whose convex hull is contained in interior(Q) and which is
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tangent to ¥ at k points. Let F be a branched minimal surface spanning I. Then

x(F)< g + 2 [1 — degree (x;)]
{xp}

where {x,} is the set of branch points.

Proof. By perturbing F slightly, we can assume it intersects & transversely at
any branch point or boundary tangency. The result now follows as in Theorem
4.2.

EXAMPLE. Let L, be a piece of the catenoid.

Cea)

Figure 7

Lo

Let I be a curve with convex hull in a small ball. Translates of L, foliate this ball.
I' can be picked so each height function on I has =4 critical points but I" has only
two critical points relative to &. A minimal disk spanning I" has no branch points
by Theorem 4.6.

EXAMPLE. Let L, be the 1/2 plane {x;=0, x; =0} in R>, and rotate about
the x, axis to get a foliation ¥ of R>— ({x;=x;=0} by geodesic planes. The
curve below has no Morse function with two critical points, large total curvature,
and is only tangent to & at two points. A minimal disk spanning I" has no branch
point by Theorem 4.6. Another generalization of Theorem 4.2 is to a general
3-manifold M. Here we can not naturally perturb I or &%, as M may not have a
large isometry group like R>.

THEOREM 4.7. Let M a Riemannian 3-manifold, ¥ a minimal foliation of
M, (F, OF) a branched minimal surface with OF transverse to ¥ except at k critical
points. Then

x(F) s—,25+ {2} [—degree (x;) + 1] + {2} [-12]-T
Xp Yb
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o~

Figure 8

where {x,} are the interior branch points, {y,} the boundary branch points and
there are T points of tangency of interior (F) to %.

Proof. We can not now assume that TF, is transverse to % at boundary
tangencies or branch points. We still have the previous Euler characteristic
contribution at interior branch points, even if they’re tangent, but d-branch points
may only have transverse boundary 2-prongs if tangent to &%, so we may only get
a —1/2 contribution from them. Otherwise the proof is as in Theorem 4.2.

Further generalizations, to higher dimensions, are given in Section 5. Note
that we do not need to weaken the results of 4.2 if we can perturb the foliation
isometrically. Thus for curves in S°, H> and so on, the stronger results of 4.2
hold.

§5. Higher dimensions, branch points and a sphere theorem

In the previous section we restricted attention to the case where M was a
foliated 3-dimensional manifold. We now examine the situation in dimensions 4
and above. The appropriate analogue of a minimal foliation in these dimensions
is one in which each leaf is totally geodesic. We call this a fotally geodesic
foliation.

Using these, we can extend all the results of the previous section on branch
points, as well as prove a topological result on the existence of embedded
2-spheres in certain 4-manifolds.

The following lemma is the analogue of Lemma 4.1 in this context.

LEMMA 5.1. Let M be a Riemannian manifold with a totally geodesic
foliation ¥ of codimension one, and let f: (F, 9F)— M be a branched minimal
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immersion with OF transverse to & except at isolated points. Then either f(F) lies
entirely in a leaf of & or the induced foliation has isolated singularities of negative
Euler characteristic at each tangency of F to & and at each branch point of F. At
isolated points where OF is tangent to F there is either a transverse boundary
0-prong or a transverse boundary k-prong, k = 1. At interior branch points x of F
there is a 2k-prong singularity induced where k = degree (x) if TF, is transverse to
%, and a k-prong singularity, k =4, if TF, is tangent to %. At boundary branch
points x transverse to ¥ there is a transverse boundary k-prong singularity where
k =2 -degree (x) — 1. If x is a boundary branch point tangent to ¥ there is a
transverse boundary k-prong at x, k = 2. If x is an interior tangency of F to F there
is a k-prong singularity at x, k = 4.

Proof. The existence of a tangent space of F at a branch point implies the
statement where TF, is transverse to & exactly as in dimension 3.

Suppose TF, is tangent to &%. We pick coordinates {y;,...,y,} about
x={0, ..., 0} such that % is given by y, = constant. Then the minimality of f(F)
implies that we can pick coordinates on F so that f is a harmonic, almost
conformal map. Call these coordinates {x;, x,}. Then the harmonicity of f is
given by the equation

a(})ﬁ(’f)a()))/of)gijzo =i, j=2

ox; ox; l1sa B,y<n

A(Yaof) +ngY

for each «, where A denotes the Laplacian on F and where g;; is the metric on F,
(") =(g;)”", and I}, are the Christoffel symbols of M. Since y, = constant gives
a totally geodesic hypersurface of M, we have for & = n in the above, that

90 °f) 80y °f) g

x, ax}'

AQneof) +1g,,

as I' ,=0if 1<, y=<n —1 by total geodesity, and I';, ,= 0 by skew symmetry.

d(yg°f) . .
Let W = [ B ——%Qg”]. Then A’ is a smooth function on F and u = (y, °f)

e
satisfies the equation Lu =0 where L=A+/ e We now apply a theorem of
j

Bers, as in [F-H-S, Section one] to show that after a C' change of coordinates in
F, U agrees with the real part of the function c - z™, where c is a constant, m =2,
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or else u =0. Thus the zeros of u consists of 2m lines crossing at (0,0), m=2,
and this is the intersection of F with the leaf L, to which it is tangent. Moreover F
is transverse to all leaves nearby to x, except at the one tangency point, as
V(Re (z™)) is not zero in a deleted neighborhood of (0, 0).

If F is tangent to & at an interior branch point, the above argument still
applies, to show an induced k-prong singularity, k=4. If F is tangent at a
boundary branch point, the argument in Section two applies to show an induced
transverse boundary k-prong, k = 2.

We first note that this extends the results of the previous section.

THEOREM 5.2. The results of Theorem 4.2, Corollaries 4.3, 4.4, 4.5 and
4.6, and of Theorem 4.7, hold for dimension larger than 3 if & is a totally geodesic

foliation of codimension one, except that the formula from Theorem 4.7 becomes
the weaker

X(F)<§+ > =11+ D [-12)-T
{xp} {ys}

where {x,} is the set of interior branch points, {y,} the set of boundary branch
points.

Proof. The proofs of all results are the same except that in the analog of
Theorem 4.7 we do not have as much control over the induced foliation if a
tangency of F to & occurs at a branch point. In this case we still know that the
induced foliation has a 2k-prong singularity where k = 1.

We next apply these techniques to get some new results in understanding the
branch points of closed minimal surfaces in n-manifolds where n =4. Results of
Osserman and Gulliver [O] [G] have shown that least area surfaces in dimension
three admit no true branch points. False branch points can occur, as for example
when a least area torus is the two-fold branched cover of a 2-sphere in the
3-manifold $* X S*. However if the surface injects in 7; or is 1-1 on its boundary,
then false branch points can’t exist for topological reasons. Branch points can
occur for surfaces in 4-manifolds, as evidenced by complex submanifolds with
singularities. Such submanifolds are always area minimizing. We next state a
theorem giving information on the existence of branch points in this context.

THEOREM 5.3. Let M* be a Riemannian 4-manifold with a totally geodesic
foliation . Then if f: F*— M* is a least area map of a surface F homeomorphic to
a torus of Klein Bottle, then F has no true branch points. If f has false branch
points its image lies in a leaf.
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Proof. We look at the induced foliation. All singularities contribute negative
Euler characteristic, so none can exist. Thus f must be transverse to % or
contained in a leaf. If contained in a leaf, then the results of Osserman and
Gulliver yield the conclusion, as the leaf is a 3-manifold. If transverse, then any
branch point, true or false, leads to a 2k-prong singularity, kK =2, and thus none
can exist.

COROLLARY 4.5. Least area tori in M> X S* have immersed image. Injective
least area tori in M> X S' have no branch points of any type, true or false.

We state one more result relating the number of tangencies 7, branch points
B and the Euler characteristic of a surface.

THEOREM 5.5. Let f: F— M* be a branched minimal immersion into a

Riemannian manifold M with a totally geodesic foliation %. Then either f(F) lies
entirely in a leaf or

x(F)<-T - B.
Proof. This follows as the previous results.

EXAMPLE. This implies for example that a minimal 2-sphere always lies in a
leaf, as does a minimal RP>. A surface of genus two can have at most two branch
points or tangencies, or else it lies in a leaf.

The topological sphere theorem [Pa], [St], states that if 7,(M>) # 0 then there
is an embedded 2-sphere in M?> which is non-trivial in 7r,. We can extend this to
certain 4-manifolds.

THEOREM 5.6. If m,(M*)# 0 and M* admits a totally geodesic foliation of
codimension one then there is a embedded 2-sphere in M which is non-trivial in
7t2(M).

Proof. Equip M with the metric in which it has a totally geodesic foliation.
Results of Sacks—-Uhlenbeck give the existence of a least area 2-sphere §
non-trivial in 7,(M*). Such a map is a branched minimal immersion. Considering
its induced foliation, we get a contradiction unless it lies inside a leaf L. Now
7,(L) #0, else the 2-sphere would be trivial. But the sphere theorem [St] gives
that there is a collection of embedded 2-spheres generating (L) as a ;r;-module.
One of these at least is non-trivial in 1,(M), as S is a linear combination of these,
and so this serves as our desired sphere.



Minimal surfaces in foliated manifolds 25

Appendix

For completeness and because we need to extend it slightly, we present here a
proof of Theorem 2.2. The proof is a simplification of Sullivan’s original
argument which applies in codimension one, and is based on ideas related to me
by D. Epstein and W. Thurston. The proof applies also in higher dimensions for
codimension one foliations.

THEOREM Al. Let M be an oriented closed 3-manifold and let ¥ be a
codimension one foliation of M. M admits a metric in which each leaf of ¥ is a
minimal surface if and only if every compact leaf of F intersects some closed curve
which is transverse to . In such a metric, each leaf is homology area minimizing.

Remark. Non-compact leaves always intersect closed curves transverse to %.

Proof. We assume first that the foliation is transversely oriented. Note that
this gives an orientation to the leaves of &%. Suppose first that each compact leaf
intersects a closed transverse curve. Since M is compact, each non-compact leaf
also intersects a closed transverse curve. Thus we can find a finite number of
maps f;: S' X D*>M, i=1, ..., k, such that

1) Each f. is an orientation preserving embedding and f,(pt X D?) is contained
in a leaf.

2) UL fi(S*xiD?) =M.

3) f(S' X pt) are curves transverse to %, and oriented according to the
transverse orientation of %.

On S!x D? we can pick coordinates (0, x, y) with 8 €S' and (x, y) e D% Let
®(x, y) be a positive function on D? such that @ =1 on the disk of radius 1/2 and
@ =0 outside the disk of radius 3/4. Let wy be the 2-form on S' x D? given by

d
wo=@(x,y)dx ndy. Then dw,=0 as dw0=—(Ed9/\dx/\dy=0, since @ is

06
independent of 6. Using the embedding f; gives a corresponding closed 2-form w;
on M, i=1,...,k Let w=YX%,w be a closed 2-form on M. Note that w is

non-zero restricted to the leaves of &.

Let p be a point in M and consider the following map 1 from the tangent
space of M at p to R? whose kernel gives a “normal direction” to %. v is the
composition of the map ¢ TM,— T*M, defined by @(x)(y)=w(x, y) and the
map k: T*M,— R? defined by k() = («(u), @(v)) where (u, v) is a basis for the
tangent space to the leaves of ¥ in a neighborhood of p. Note that since
w(u, v) # 0 by construction of w, 9 has a one-dimensional kernel. Let N be a
vector field in ker (y) in a neighborhood of p. Then w(N, u) =w(N, v) =0.
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Now pick any volume form V on M and any Riemannian metric 4 on the
leaves whose volume form equals w restricted to the leaves. We then rescale N so
that i (V) = w and prescribe a metric g on M to be h on the leaves and to have N
as a unit vector orthogonal to the leaves. In the metric g, ||w|| <1 and ||w|| =1 on
the tangent space to the leaves. We now show that each leaf is minimal in g. In
fact we show that each leaf is homology area minimizing.

Let K be a compact region of a leaf and let K’ be a homologous surface with
0K = 3K'. Then

Area(K’)=j 1>f w|K.=Jw|K=Area(K)
K’ K’ K

where the inequality holds because ||w| =<1 and the following equality holds by
Stoke’s theorem, since dw =0 and K, K' are homologous. This concludes the
proof that each leaf is minimal in the metric g. Note that the same proof applies
for codimension one foliations in manifolds of any dimension. This concludes the
first implication of the theorem. We now prove the converse.

Suppose M has a metric in which each leaf of & is a minimal surface. Define a
2-form w by w =iy V where N is the unit normal vector field to the foliation and
V is the volume form of M. Then ||w|| <1 and ||w|| =1 on the leaves of %, so the
above argument shows that each leaf is homology area minimizing.

We claim that dw = 0. If not, let p be a point where dw >0 and pick L to be
the leaf containing p. Let D be a small disk about p on L, and let D, be the image
of D under the leaf preserving normal flow to & at time ¢. Then

Area(D)=wa=wa+Lw+de

where A is the annulus between 9D and oD,, R the region bounded by D, A, D,.
Since A is normal to %, we have that [, w =0. Thus

I‘dw=fw——J' w>0
R D t

as dw # 0. Now w is the area form of both D and D,. But D, is a normal variation
and so D, minimal = Area (D,) constant, a contradiction. So we have dw = (.
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Now let Ly denote the Lie derivative associated to the flow along N. Then

So the volume form V is preserved by the normal flow.

Now suppose that there is some compact leaf L, which does not intersect a
closed transverse curve. For a small real number €, the normal flow along N of
distance € takes L, off itself, tracing out a 3-dimensional region R;. Iterating this
flow along N, R, gets carried to a region R, of equal volume. The surface L, gets
carried to a disjoint surface L, by flowing along N distance ¢ else there would be a
closed transversal through L,. Thus the region between L, and L, is an embedded
submanifold of M for all ¢, and its volume grows without bound. This is a
contradiction in a finite volume manifold M. Thus there is a closed transversal
through L.

We next deal with the situation where the foliation is not transversely
oriented. Our arguments relied on this orientation, so they need modification as
follows.

Assume first that every compact leaf intersects a closed transversal in M. As
before, pick fibers f(S' X D?) covering M. Note that there is a double cover M of
M, such that a loop in M lifts to M if and only if the normal line field to & along
the loop is orientable. Thus transversal closed curves lift to M and thus
£(S* x D?) lifts. In M we construct a metric making each leaf minimal as before,
but equivariantly. We do so by picking the metric equivariantly on the two
disjoint lifts of each f,(S' x D?). We thus get a metric on M in which each leaf is
minimal.

The converse is easier. Lifting the minimal foliation % to M gives a minimal
foliation % in M. Thus each compact leaf in & intersects a transversal. The
projection of the transversal to M gives the same result in M.

Theorem A2 extends Theorem Al to the case where M has boundary.

THEOREM A2. Let M be a compact manifold with boundary and let & be a
codimension one foliation, transverse to OM. Then there is a metric on M in which
each leaf of ¥ is minimal and OM is totally geodesic if and only if every compact
leaf of F intersects a closed transversal.

Proof. Assume each compact leaf of & intersects a closed transversal. Double
M to obtain M', ¥'. Every leaf of ¥’ intersects a closed transversal. We now can
carry out the construction of Theorem A1l equivariantly under the involution of
M' to get a metric in which each leaf is minimal. The boundary is now totally
geodesic.

Conversely, the argument of Theorem A1l applies.
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Figure 9

With additional argument one can go beyond the arguments of Theorem 2.7
and show the existence of a Reeb component in a foliation, rather than just the
existence of a compact leaf. We give these arguments here.

A Reeb component is a solid torus in M> whose foliation is given up to
diffeomorphism by the foliation on {R3 — {0}/~} by the level planes {x> = const/
~} where the equivalence relation ~ is given by (x', x% x*)~ (2x!, 2x?, 2x?).
Here R3 denotes the set of points in R> with x*=0. A Reeb component is drawn
in Figure 9.

We will prove the following result.

THEOREM A3 (Novikov). Let M be a closed orientable 3-manifold and let ¥
be a transversely oriented codiimension one foliation of M. If M has finite
fundamental group or if M is reducible then & contains a Reeb component.

Proof. Following Novikov [No], we put a partial ordering on the leaves of %.
We say that L, > L, if there is a transverse path, transversely oriented, from L,
to L,.

We can define an equivalence relation on those leaves L; of &% satisfying
L;<L;by L;,~L;if L,<L; and L;<L,. The components of this equivalence
relation are called Novikov components. Each non-compact leaf belongs to a
Novikov component. We now put a partial ordering on the Novikov components
of & by letting N, > N, if there is an oriented transverse curve leaving N; and
entering N,. Note that we can not have N, > N, > N,, unless N;, N, are the same
Novikov component. By the Hausdorff Maximal Principle of set theory, there is a
maximal linearly ordered subset of the set of Novikov components which we can
assume contains N;. As the set of Novikov components is countable, each being a
disjoint open set in a manifold, we can pick a sequence {N;} such that N,.; >N,
and such that all Novikov components >N, which are in the maximal linearly
ordered subset are in the sequence {N;}. Pick a leaf L, = N, for each i. The
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sequence L; accumulates to a leaf L... Either

1. There is a maximal Novikov component N,, with L., <= N.,, or
2. The leaf L. is not in a Novikov component.

In the latter case, note that L. > L, for all i. Now following backwards from
L. along a flow line of the normal flow to the foliation eventually gives rise to an
accumulation point, which lies in a Novikov component. This Novikov com-
ponent N' satisfies N’ > N, for all i. Thus we get a larger linearly ordered subset,
a contradiction. On the other hand, suppose there is a maximal Novikov
component N... N, consists of compact leaves as non-compact leaves lie in the
interior of a Novikov component. The oriented normal flow to &% is everywhere
outward pointing on 9N., which implies that AN, is a union of tori by Euler
characteristic arguments.

Let K denote the open set of leaves which are not in a Novikov component,
and not in the closure of the union of all the Novikov component. Then K is a
manifold and no leaf in K intersects a closed transversal. K consists of leaves
which are limits of points of Novikov components.

CLAIM. The boundary of K and the boundary of any Novikov component
consists of tori leaves.

Proof of Claim. We have seen that any maximal Novikov component has tori
leaves. If there is a Novikov component with a non-torus 3-component, let L, be
such a 9-component. The normal flow lines to L, each eventually enter a maximal
Novikov component. Thus L, and a collection of tori bound a 3-manifold with
flow transverse to the boundary. It follows that y(L,) =0. The boundary of K
consists of leaves that are in the closure of Novikov components and thus are tori.

Suppose now that M has finite fundamental group and is irreducible. It follows
from Theorems 2.2 and 2.7 that M has more than one Novikov component. Thus
there is a Novikov component with tori on the boundary. A torus is compressible
since it can not inject into the fundamental group of M. Either the compressing
disk is inside the Novikov component or the compressing disk lies outside the
Novikov component, and it then may or may not be disjoint from the other
Novikov components.

By passing to an innermost Novikov component on the disk, one can reduce
to two cases

Case 1. There is a compressing disk with interior in K and boundary on a
torus leaf.
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Case 2. There is a compressing disk in a Novikov component with boundary
on a torus leaf T.

Case 1. By doubling K we get a closed manifold which is foliated so that each
leaf intersects a closed transversal. Thus there is a metric on K in which every leaf
is minimal, including the boundary. by Theorem A2. We can now solve the
Plateau problem in K for a disk with boundary given by the compressing disk.
This gives a contradiction as in Theorem 2.7.

Case 2. T is the boundary of a Novikov component N,. so that there are
non-compact leaves in N, whose accumulation points include T.

CLAIM T can be isotoped into N, so that it becomes a torus T' transverse to
the foliation in N, foliated by parallel circles or lines.

Proof of Claim. Up to diffeomorphism, a neighborhood of T in N, is given by
[0, 1] X [0, 1] X [0, €]/~ with x” = const giving the foliation and the identification
~ given by the holonomy of the foliation, yielding a foliation on a neighborhood
of T in N,.

Let « and B generate 7,(7T) with [0, 1] X 0 X 0 representing & and 0 X [0, 1] X
0 representing B. Then since 7,(7T) is commutative, the holonomy k(a) of a and
h(B) of B can not both be the identity, else there would be tori parallel to T
foliating a neighborhood of T in N,, so we can find in [0, 1] X [0, 1] X [0, €] a flat
rectangle with boundary arcs a, b, h(«@) - a, h(B) - b, which will be transverse to
the planes {x’ = constant}. Note that the identification ~ identifies 0 X [0, 1] X
[0, €] to 1 x [0, 1] X [0, €] by h(a) and [0, 1] X0 X [0, €] to [0, 1] X 1 X [0, €] by
h(B). This gives the desired torus 7' in N,, proving the claim.

Let R be the part of N, bounded by T'. R is foliated by leaves transverse to
the boundary. Moreover, since N, was a single Novikov component, each leaf of
the foliation & in R intersects a closed transversal. Thus there is a metric on R in
which each leaf of %' is minimal and 7' is totally geodesic. We can now find a
minimal compressing disk D, whose boundary is either contained in a leaf or
transverse to the leaves. The latter case gives a contradiction as before. In the
former case we have that D is contained in a leaf, again by the argument of
Theorem 2.7. So T' must be foliated by parallel circles and a similar result applies
to each of these. Thus R is foliated by minimal disks. N, is constructed from R by
adding on a collar with half cylindrical leaves converging to a torus. This gives a
Reeb foliation on N,.

We finally consider the case where M is reducible and % has no 2-sphere
leaves. Let S be a 2-spheres that does not bound a ball. If § can be pushed off the
Novikov components it lies in K. But K has a metric with each leaf minimal,
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giving a contradiction as in Theorem 2.7. Else S intersects a Novikov component
in a compressing disk, giving a contradiction as in the previous case.
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