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Réduction theory using semistability, II

Daniel R. Grayson1

In this paper we extend the resuit of [G] to include the case of an arithmetic
subgroup F of a semisimple algebraic group G. We represent the symmetric space
X — G/K (where K a maximal compact subgroup of G) as a certain space of
inner products H on the Lie algebra g of G, namely, those inner products that
corne from the Killing form via a Cartan involution.

If we assume that F is the stabilizer of a lattice gzcg, then we may use the
notions of semistability and of Harder-Narasimhan canonical filtration to study
the action of F on X. Our main resuit is the explicit construction of a closed
submanifold (with boundary) in X (of codimension zéro) which is contractible,
compact modulo F, and has boundary T-homotopy équivalent to the Tits building
of G. Thus this subspace of X provides an alternate route toward the theorems of
Borel-Serre [BS] about the homological properties of F.

The proof in [G] of contractibility for the intersections of the neighborhoods
of the cusps [G, 7.18(c), 7.7] had the side effect of proving something already
known, namely contractibility of the space X. In section 4 we use a simpler
technique that makes use of the contractiblity of X.

We make essential use of the assumption that G is semisimple; it would hâve
been nice to avoid it altogether, the way Borel-Serre do.

The idea of formulating the results of réduction theory in terms of functions
which measure the distance to the cusps, hère and in [G], is due to Harder [Hal,
Ha2]. Indeed, his function jt(P, 5ft) of [Hal, 2.4, p. 54] is presumably closely
related to our vol (L H W1), where W1 is the nilpotent radical of a parabolic
subalgebra of g. In a sensé, we answer the question in the last sentence of [Hal],
hopefully by a method as direct and transparent as the one anticipated there by
Harder, thereby completing the program he laid out.

Motivation for doing réduction theory via semistability of Lie algebra bundles

cornes from the paper of Atiyah and Bott [AB], where the canonical filtration for
a principal G-bundle on a Riemann surface is introduced.
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1. Inner products on a Lie algebra

Let G be a connected semisimple algebraic group defined over Q. Since we
will be dealing with the adjoint représentation of G, we will replace G by
G&apos; G/Z(G), where Z &quot;center of.&quot; Since G is semisimple, Z(G) is finite, and
G&apos; is also a semisimple linear algebraic group; its adjoint représentation is now
faithful, so Z(G&apos;) 1 [W, 3.50]. Any arithmetic subgroup FcG(M) has a

congruence subgroup f c f of finite index which maps injectively to G&apos;(R); its

image in G&apos; is an arithmetic subgroup of G&apos; [B, 7.13(2)]. Since ail theorems we
intend to prove about F are (équivalent to a theorem) of the form &quot;F has a

subgroup F&apos; of finite index such that F&apos; satisfies. ,&quot; we may as well replace F
byr.

Let g be the Lie algebra of the group of real points G(R) of G; it is a

semisimple Lie algebra, so the Cartan-Killing form B (induced from the
canonical bilinear form (X, Y)*-*tr(XY) on EndR (g) via ad: g —^End^ (g)) is

nondegenerate. The form B is characteristic (i.e. for ail 0 e AutLiealg (g) we hâve

B(X, Y) B{6X, 8Y)) and is invariant (i.e. B([Xf Y], Z) B(Xf [Y, Z])).
Let H be an inner product on g, i.e. a positive definite real symmetric bilinear

form. If we think of a bilinear form also as a map g —» g* (or as a matrix formed
with respect to a basis of g and its dual basis of g*), then an expression like H~1B
makes sensé as an R-linear endomorphism of g (and is independent of the choice

of basis). We say that H is compatible (with the Lie bracket) if —H~lB is a Lie
algebra automorphism of g. One conséquence of compatibility is that 0:
—H~lB is a Cartan involution of g, as we see now. The fact that 02 1 follows
from &apos;0B0 B (B is characteristic) and *dB - BH~lB B6. Letting A (+1)-
eigenspace of 0 and/ (~l)-eigenspace, we see from 50 — H&lt;0 that B is

négative definite on â and positive definite on/. It follows from &apos;0B0 B that â

and/ are orthogonal with respect to B, and thus that 0 is a Cartan involution.
Another conséquence of compatibility is that H is compatible with B in the

sensé of [G, Définition 7.3]. For the équation 02=1 may be rewritten as

*BH~XB //, which says that B is an isometry g—» g* with respect to the inner
products H on g and /f&quot;1 on g*.

Now let X be the space of ail compatible inner products on g; it is a closed

subspace of the space of ail inner products on g. Suppose F is any Lie algebra
automorphism of g: then fFBF B because B is characteristic. For any Helwe
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find that H&apos; .^&apos;FHF e X, too. See that by Computing -//&apos;&quot;&apos;# F~X6F. Thus we

may let G act on X via the adjoint représentation, i.e. (//, g) &gt;-*&apos;(Ad g)H (Ad g),
g € g, HeX. In terms of 0, the action of G on X is expressed by 0»-&gt;

(Adgyx8(Adg).
Now choose 0: G(R)-»G(R) a Cartan involution with 6 d0. We require

0 to extend to an algebraic map G —&gt; G as in [BS, 1.6]; this makes 0 unique even
if G(R) is not connected, because G is. It is known that K:= {g e G(R) | 0(g)
g} is a maximal compact subgroup of G(R). We now prove that K is the stabilizer
of 8 (and thus is also the stabilizer of H). Let Cg:G-+G dénote conjugation
by gy and let )° dénote &quot;connected component of the identity in.&quot;

then 6 (Adgyld(Adg) iff d(C^0Cg) d0 iff for ail /*eG(R)°
0(h) g-l0(g)0(h)0(g-l)g iff g-l0(g)eZ(G(Uf) l iff g € K. (We know
Z(G(R)°) 1 because Z(G(C)) 1 and G(R)° is Zariski dense in G). Since any
two Cartan involutions are conjugate under G(R) [V, Propositions 2 &amp; 9, p.
193-195, Part II, Section 1], we hâve a diffeomorphism X^G(U)/K. In
particular, we now know that Xis contractible [BHC, Lemma 1.7], [B, 9.10].

Since G is defined over Q, its Lie algebra has a rational structure gQc g.
Moreover, the adjoint représentation G-» Aut(gQ) is rational (regular map with
rational number coefficients). Let fcGbe any arithmetic subgroup. Then by [B,
7.13(1)] we may find an intégral structure gz c gQ such that (Ad F)qz c gz. Since

gQ is a Lie algebra, by clearing denominators (i.e. replacing gz by Nqz for some

large integer N) we can achieve [gz, gz] c gz. Having done this, we see that the
form B is intégral (meaning B(gz, gz) c Z). For any H e X, the pair L (gz, H)
is an example of what we call a lattice in [G]. Henceforth gz remains fixed.

By a Q-subspace W of g we mean an R-subspace of the form W WQ® R,
with WQ cz gQ. For any such W and any inner product H on g we defined a

number dw(H) d(W, H)&gt;0in [G, 2.1] with the property that dw(H) &gt; 1 iff W
is in the canonical filtration of L.

For t &gt; 1 we define Xw(t) : X(W, t) := {x e X \ dw(H) &gt; t}; this is an open
subset of X because dw is a continuous function of H, see [G, 3.1]. We will be

interested mainly in the case where W is a parabolic Q-subalgebra of g, because

the other Ws will correspond to cusps for the larger group Gl(g) which are
&quot;uninhabited&quot; by X (i.e. X does not approach the ends of thèse other cusps
without also approaching the cusp corresponding to a Q-parabolic). We make this

précise as follows. Define Xss(t) X-{JWX(W, t), where W runs over ail
parabolic Q-subalgebras of g; this is a closed subspace of X.

If geF, then Ad g is a Lie algebra automorphism of gz, and so we hâve

g • X(W, t) *((Adg) • W, 0 as in [G, 2.2(b)]. Thus Xss(t) is stable under f\

THEOREM 1.1 Xss(t) is compact modulo F.
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The other properties of Xss(t) présent fewer difficulties than compactness.

THEOREM 1.2. There is a constant c&gt;0 such that for ail HeX if some
ue(iz&quot;&quot; {0} has &apos;vHv &lt; c then there is a parabloic Q-subalgebra W of $ such that
dw(H)&gt;t.

Proof of 1.1 from 1.2. The set Xss(t) is closed in the space of ail inner
products on n, so we may apply Mahler&apos;s compactness criterion [M], [B, Prop.
8.2], [MT, 1.1], or [G, 5.2]. From the équation &apos;BH-lB H we find det/f
|detB|, so det// is bounded as H ranges over X: this is one of the hypothèses
required for Mahler&apos;s criterion. The other is a positive lower bound on the
numbers &apos;vHv with uegz- {0} and H e Xss(t), which cornes from 1.2. QED

For HeX, let 0 Loc= Lx c • • • czLs L (gz, H) be the canonical filtration
of L, and let a, slope (LJL,^). Notice that volL (det//)1/2 |det B\m is

independent of H. As in [G, 1.23] we let minL a! and max L — os. We will
corne back to the proof of 1.2 after some preliminaries.

2. Opérations on lattices

Recall that a lattice L is a fînitely generated free abelian group equipped with
an inner product H on V L®ZU. In [G, 7.1] we made the dual L* into a

lattice with inner product H~l. We can also make Lx ®z L2 into a lattice by using
Hx ® H2 as inner product; alternatively, an orthonormal basis for Vx &lt;8&gt; V2 will be

the tensor product {e, ®^} of orthonormal bases {e,} for Vx and {f;} for V2.

We make Hom^L^ L2) L*®L2 into a lattice by combining the previous
two définitions. Alternatively, if g € Homz (Lïf L2) has matrix gtJ with respect to
orthonormal bases of Vx and V2, then ||g|| (E, E;g?;)1/2.

Given /6Hom(L1,L2), we define lattices im/ and coim/; both hâve

f(Li) c L2 as underlying abelian group, but the inner product on im/cornes from
L2 by restriction, whereas the inner product on coim/ cornes from Lx by
orthogonal projection [cf. G, Section 1].

Minkowski&apos;s theorem about finding lattice vectors in bounded convex sym-
metric closed subsets of Euclidean space may be phrased as follows.

THEOREM 2.1 [Minkowski], Given « &gt;0, there is a constant c so that for
any lattice L of dimension n some vector v e L - {0} has log \\v\\ &lt; slope L + c.

Proof Let B{r) be the closed bail of radius r in V. Then Minkowski proved
that if volB(r)&gt;2rt-volL, then 5(r)HL#={0}. Now take r 2((volL)/
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)1/n to fulfill the inequality, producing v. Then log ||u|| &lt;logr log2 +
slope L - Un log vol B{\). QED.

THEOREM 2.2. Suppose L and M are lattices. There is a number c,
depending only on the ranks of L and M, so that min Hom (L, M) &gt; min M -
max L — c.

Proof. By 2.1 applied to the first member of the canonical filtration of
Hom (L, M), it is enough to find c so for ail nonzero / e Hom (L, M) we hâve

log H/ll &gt; min M - max L-c. Consider such an /, and let L&quot; coim/, M&apos; im/,
and/&apos; e Hom (L&quot;, M&apos;) be the bijection induced by/. Now M&apos; is a sublattice of M
and L&quot; is a quotient lattice of L, so

slopeM&apos; &gt;

and

slope L&quot; &lt; max L,

and thus

slope M&apos; - slope L&quot; ^ min M — max L.

If we choose orthonormal bases for L and M compatibly with L&quot; and M&apos;, then

the matrix of /has the form/= J, so apparently ||/|| ||/&apos;||. The matrix of

/&apos; appearing hère has been formed with respect to orthonormal bases of L&quot; and
M&apos;, so vol M&apos; |det/&apos;| • (vol L&quot;). Each matrix entry satisfies \f&apos;v\ &lt; ||/&apos;||, so letting
n dimM&apos; dimL&quot; we see that |det/&apos;| \Tto±f&apos;altl • ••/^n|&lt;n! • \\f&apos;\\n.

Combining everything, we get

log ||/||= log II/&apos;H

&gt;-log|det/&apos;|--
n n

- log vol M&apos; — log vol L&quot; — log (n
n n n

slope M&apos; — slope L&quot; — log (n
n

&gt; min M - max L — log (n
n

^ min M — max L — c,

where c sup {Un log (n!) :n ^ dim L and n ^ dim M). QED.
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COROLLARY 2.3. // L and M are lattices, then there is a constant c

depending only on the ranks of L and M so that

min L® M&gt; min M + min L — c,

and

max L® M &lt; max M + max L + c.

Proof. Apply2.2toHom(L*, M) L® M and use min L -maxL*. QED.

COROLLARY 2.4. Suppose L, M, and Nare lattices, andf\L®M-*Nisa
nonzero map. There is a constant c (depending only on \\f\\ and the ranks of L, My
and N) such that any sublattices V cL, M&apos; a M, and N&apos; czN with min N/Nf
&gt; max U + max M&apos; 4- c also satisfy f(L&apos; &lt;g&gt; M&apos;) c N&apos;.

Proof. Let N&quot; N*/N&apos;} and consider the map f&apos;\L&apos;®M&apos;-±N&quot; induced by/.
For suitable orthonormal bases, we see that the matrix of/&apos; occurs as part of the
matrix of/, so ||/|| &gt; ||/&apos;||. Applying 2.2 and 2.3 we find constants with

min Hom (L&apos; &lt;g&gt; M&apos;, N&quot;) &gt; min N&quot; - max L&apos;®M&apos;- cx

^ min Af&quot; — max L1 — max M&apos; — c2.

If /&apos; #0, then we know that

log ||/&apos;|| =&gt; min Hom (L&apos; ® M&apos;, N&quot;).

Letting c log \\f\\ + c2 we find

min N/N&apos; &lt; max L&apos; + max M&apos; + c. QED.

3. The search for parabolic subalgebras

We need the following convenient characterization of parabolic subalgebras,
which was used in [AB].

PROPOSITION 3.1 [AB]. Suppose a is semisimple, W cz q is a subalgebra,
and the orthogonal Wv (formed with respect to the Killing form B) is contained in
W and is ad^nilpotent. Then W is parabolic. The converse is also true.
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Proof [Ranga Rao]. We tensor everything with C, so we are dealing with
complex Lie algebras, and are in the case where Borel subalgebras exist. Since
VKV is solvable, it is contained in a Borel subalgebra 4, Let * [4, 4], and write
4 =/©&gt;?, where 4 is a Cartan subalgebra.

We claim that Wv c*. Choose y eWw and write y h + n, h et, ne*. We
hâve an ordering on the roots a so that * Ea&gt;o $«&gt; and /= E&lt;*&gt;o g*- If we
choose a basis of à which contains bases for the root spaces, and is totally ordered
in a way that extends the partial ordering of the roots, then the matrix of ad/ n is

strictly lower triangular (because [ga, $p] Qa+p), ar*d the matrix of ad/ h is

diagonal. But ad/ (h + n) ad? y is nilpotent by hypothesis, so ad/ h 0. Thus

a(h) BidQa (/ï) 0 for or&gt;0. Now the simple roots are a basis of 4*, and so

h 0, and thus Wvc*.
Next we claim that *v=6. This follows from B(Hf ga) 0 (ar^O),

B(Qay Qp) — 0 {ce 4- /3 =£ 0), and dim a/ codimâ.

Finally, we hâve ^ ^vcWvv W, soW contains a Borel subalgebra, and is

parabolic (by définition). QED.

Proposition 3.1 describes parabolic subalgebras completely in terms of
trilinear and bilinear data, namely [•, •] : q (8) fl-&gt; g and B : g ® $-» R. We now
see how to apply the facts from section 2. Recall the notation L (g2, H) for
inner products H e X.

LEMMA 3.2. Let b [•, •] e Hom (L ® L, L). The norm \\b\\ is independent

of the choice of H eX.

Proof [D. Kazhdan]. Suppose H&apos; e X also, and U (gz, //&apos;). Then for some

g e G(U) we hâve H&apos; r(Adg)//(Adg). Since Ad g is a Lie algebra automorph-
ism of g we get a commutative diagram

V®V A V

AdgOAdg J | Adg

where F L®IR, V&apos; L&apos;®R, and the vertical maps are isometries. The
vertical maps do not préserve the intégral structure; nevertheless, the diagram
shows that ||6|| ||&amp;||&apos;. QED.

For H e X and L (gz, //), we let 0 Lo c 2^ c • • • c L5__, czLs L be the
canonical filtration of L, a, slope (L,/£,-i), and Lfv the dual with respect to
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B. We introduce the notation err(c) to dénote any (undetermined) number of
absolute value ^c, i.e. x y + err (c) will mean \x — y\ &lt; c.

PROPOSITION 3.3. There is a constant c &gt;0 so thatfor ail HeX we hâve

(PI) Vi\ y, * a, + a, + c &lt; aA + 1 ^ [Ln LJ c L*

(P2) Vi or+1&gt;a, + c =&gt; 3!y Ly Lfv, a7 -al+1 + err (c),

ay+1 -a, + err (c).

Proof. PI follows from (3.2) and (2.4) because c^ max L, and a^+i min L/
L*.

P2 follows from [G, 7.14] and the proof of [G, 7.13]. QED.

PROPOSITION 3.4. With c as in 3.3, assume i satisfies 1 &lt;/ &lt;$ - 1 and

(A) 2c&lt;a,+1,

(B) a, + c^ af+i, and

(C) 2a, + c&lt;al+1.

L, /5 a parabolie subalgebra of g.

Proo/. By (B) and (P2) we know L,v L; for some y. In addition, a;

~al+1 + err (c) &lt; - 2c + err (c) &lt; -c. Were it true that y &gt; i + 1 we would hâve

a; ^ a/+1 &gt; 2c as well, so we must hâve y ^ / and thus L} a Lt.
By (PI) and (C) we know [L,, L,] cz Ln so L, is a subalgebra of g.

For ail k we hâve Oj + ok + c ^ —c + ok + c a(^_1)+1, so by (PI) we hâve

[Lj, L^cL^t, which shows that L? — L} is adfl-nilpotent. Now by (3.1) we
know L, is parabolie. QED.

Now we hâve enough to prove Theorem 1.2.

Proof. of Theorem 1.2. Suppose we hâve an HeXss(t). Then for ail y

(1 &lt;y &lt; j) we hâve either y 1 (in which case cr; &lt; slope L); or L}-x is parabolic,
in which case o}^o}-l + \ogt\ or, finally, L}-x is not parabolic, in which case 3.4

shows that either o} &lt; 2c, or a, &lt; o}^x + c, or a, &lt; 2a;_! + c. We apply descending
induction to prove that for each i&lt;s there are a finite number of polynomials
Pla{T) with positive coefficients such that os &lt; maxa P&apos;aio,). We find that

max L os&lt; max^ Pi(aj) ^ max^ P^(slope L); the latter number is independent
of L because slope L is. The dependence of that number on s can be removed
because l^s^dim g, yielding an upper bound for maxL which is independent
of H. Clearly an upper bound on max L provides also a lower bound on min L,
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again using that slope L is independent of H. But minL&lt;log \\v\\ for any
nonzero v e L. Thus we hâve proved the contrapositive of 1.2. QED.

4. Topology

To prove results about Xss we introduce flows on X for each parabolic
subalgebra W c g, namely, the géodésie action of [BS].

LEMMA 4.1. Suppose W c g is a parabolic subalgebra. Then for some s, g
has a filtration by subspaces 0 Ws+l c • • • &lt;z W1 c W° c W~l c • • • &lt;z W~s g
such that W°=W, W1 (W~&apos;+1)v ail i, and [W\ W1] &lt;= Wl+J ail i, j {using the

obvious convention when i +jfalls outside the range [s + 1, -s]). Moreover, if W
is a Q-subspacey so is each W1.

Proof Define W° W, W1 Wv orthogonal with respect to Killing form
B); for i&gt;\ define W1 inductively by Wl [Wl~\ W1]; for i&lt;0 define
W1 (W~l+1)v. This is clearly a filtration, and Ws+l 0 for some s because W1 is

nilpotent (3.1). To prove that [W1, WJ]cz Wl+J we may first tensor with C and
make use of roots relative to a Cartan subalgebra A c W°. [This approach was

explained to me by Ranga Rao; I was also able to make a complicated
combinatorial proof, using only the Jacobi identity and the invariance of B.] Let 5
be a set of simple roots chosen so a e S ^&gt; g^ c W. Then by [H, Exercise 6, p. 87]
find a subset 5&apos; ci 5 so W is generated by the subspaces g^ for aeS, g.^ for
are 5&apos;, and A. The root spaces Qa are 1-dimensional, and if oc, /3, or 4- /S are ail

roots, then [g*, g^] Qa+P [H, Prop. 8.4(d)]; if oc is a root, then [ga, %-a]czÂ

[H, Prop. 8.3(d)]; and [A, Q^c:^. We also know that B(A, g«) 0; and

B(Qa&gt;Qp) Q if * + /3=éO. Introduce the notation q(R) (&amp;a€RnA Q«&gt; where
A the roots, and R is any subset of ZA (we include oc 0, and let g0 — A). Then

we see that W°= g(N5 + ZS&apos;), W1 g(Z^\-(MS+ Z5&apos;)) fl(r1), where 7;

{TiaesnctCtelA&apos;.Ytaes-s&apos;^a -«&apos;} and &quot;V dénotes &quot;complément of.&quot; Using the
fact that if E naa is a root, then ail n* hâve the same sign, we deduce that
W1 g(7;) for i &gt; 1, and then that W~l (Wl+1)v g(Z.l\ - 7;+1) g(r_,). The
conclusion then follows easily. QED.

CONSTRUCTION 4.2. Fix W and W as in 4.1. Fix an inner product H e X
and its corresponding Cartan involution 6. Use )x to dénote the orthogonal
complément with respect to H. Define V1 W1 H (Wl+1)x, so g Vs 0 • • • 0
V1 © V0 © V~l ® • • • © V5 is a décomposition orthogonal with respect to H.

By compatibility of H and J5, and using [G, proof of 7.5] deduce that
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(Wl+Y (W-&apos;)v± 0W and V1 W n 0W1. Since 0 préserves the bracket,
we see that [V, V;] c V+/ (ail i, /) and thus we hâve a Lie algebra grading of ç\.

[In terms of roots (after tensoring with C) we see that V $((/,) where
Ui {T*a*snaoc\ E«es\5&apos; «» i}&gt; provided A is chosen to be /£H 0^, where ^ is a

Borel subalgebra contained in W.] Given r e R, r &gt;0, the graded map Fr: Q-» çj,

defined as multiplication by r~l on V, is a Lie algebra automorphism of ç\. Define
H&apos; &apos;Fr-H-Fre X. The corresponding lattice V (gz, //&apos;) will be denoted by

L{W;r}; the same notation was used in [G, 7.16] for a related concept in a

différent context.
Thèse opérations commute to some extent. If W&apos;aW are Q-parabolic

subalgebras then

L{W&apos;;r&apos;}{W;r} L{W;r}{W&apos;;r}. (4.2.1)

This is best seen by examining the root spaces, as in the previous paragraph, the

point being that Fr is multiplication by a scalar on each root space qa. The
hypothesis that W cW ensures that we may assume A a W and A c W, so the
corresponding map F&apos;r is diagonal for the same root space décomposition that Fr is

diagonal for, and thus Fr and F&apos;r commute.

LEMMA 4.3. IfW&apos;czWare Q-parabolic subalgebrras of q, Le X, and r &gt; 1,

then

(a) d(W,L{W;r})&gt;r.d(W,L)
(a&apos;) d{W,L{w,r-l))*r-l-d(W9L)
(b)
(b&apos;)

Remark. It would hâve been nice to hâve (b) for the case W c W, but that is

not true.

Proof. Let V 9. Let Oc Ws c • - c W1 c W°= W ci W&apos;1 c • • • and Oc
W^c-&apos;-cW^c: W&apos;° W W&apos;&quot;1 c • • • be chosen as in 4.2. It is not always true
that the union of thèse two filtrations is a filtration, but we can manage anyway.
Notice that (a)=&gt;(a&apos;) and (b)i^(b&apos;).

We prove (b) assuming W&apos;=£W. In the notation of [G, 2.4] we hâve

L{W;r}~L[rs][Ws;r]---[Wl;r][W°;r]---[Wl-s;r) and W5c-.-cW1g
W g W° c -.. c Wl~s. Since d(W, L[r~5]) d(W, L) [see G, 2.1], ail we need

is the following lemma (from which (a) also follows). QED.

LEMMA 4.4. If L is a lattice, W cW are Q-subspaces of V L ®z R and
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then

(a)
(b) d(W,L[W&apos;;r])&gt;d(W,L)

(c) d(W&apos;,

Proof. Part (a) was proved in [G, 2.4]. By duality [G, 7.1.] (b) will follow
from (c). To prove (c) we replace L by L/W&apos;nL; then we must show that
min (L[W, r]) ^ min (L) (notation from [G, 1.23]. So for each Q-suspace UaV
we must show that vol (L[W; r] n U) &gt; vol (L n £/). Let m dim (/, choose an
orthonormal basis for V which contains an orthonormal basis for W, and write
Am(UnL) Zu, with w Efl/e7, where / (i,,..., im) e Nm and e/ e(|A
• • • a etm. Then vol (LDU) \\u\\ (E «?)1/2, but vol (L[W; r] Pi U)
(E (fl/r&lt;7))2)1/2, where (/) card {j:etj $ W}. Since r &gt; 1, the desired inequality is

clear. QED.

Our next goal is to identify the homotopy types of Xss, its boundary, and its

complément. In order to do thèse three tasks simultaneously, we abstract the
information available to us. We let W be the partially ordered set of parabolic
Q-subalgebras of g; for W e W let hw :X-+ U be the continuous map defined by
hw(x) \og(d(W,x)/t), where t is the fixed number referred to in 1.1. Let
cpw :X x U -*X be defined by &lt;pw{Ly r) L{Wy er}. Let Wt {W e W:dim W

/}. Let T dim g. Thèse data satisfy the following axioms.

(Al) W is a partially ordered subset which is the disjoint union of subsets Wn
(î l,..., T), such that W e Wn UeWJf W&lt;U=&gt;i&lt;j.

(A2) X is nonempty topological space.
(A3) VW € W hw:X-+ R is a continuous map.
(A4) VW ei^cpw^xR-^isa continuous action of the topological group

U on X, i.e. &lt;pw(x, 0)=x and &lt;Pw(çv(*&gt; r)&gt; s) ç?w(jc, r -h s).
(A5) VW eWVxeX the map R-»R defined by r&gt;-+hw(&lt;pw(x, r)) is an

increasing bijection.
(A6) VxeXVW&lt;UeW[r&gt;0^&gt; hw(&lt;pv(x, r)) &gt; hw(x)] and [r &lt; 0 =&gt;

/iw(x)&gt;/iw((pt/(x, r))].
(A7) The sets Xw:={x eX:hw(x)^0} form a locally finite family, and

moreover, any x e X has a neighborhood % such that {W e W: °U fl Zw #0} is a

chain in ^
We also define Xss\={x eX:VWhw(x)&lt;0}, and X+~{JwewXw. The following

proofs will be based solely upon the axioms.

THEOREM4.5. (a) The boundary 3XSS is the set {x eXss:BWhw(x)~0}.
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(b) There is a déformation retraction of X onto Xss which restricts to a

déformation retraction of X+ onto dXss.

(c) Given W{ &lt; • • • &lt; Wm e W, there is a déformation retraction of X onto

xWin- --nxWm.

First, we need some lemmas.

LEMMA 4.6. Given WeW, define %l&gt;w:XxU-+R by decreeing that

ipw(x,r) t iff hw((pw(x,t)) r (such a t exists by (A5)). The map xpw is

continuous.

Proof Let cp cpw, h hw, and y ipw. Suppose tp(x, r) t and

e &gt;0 is given. We know h{cp(x&gt; t)) r, so by (A5) we may choose ô&gt;0 so

h(cp(x, t- e))&lt;r- ô &lt;r -f ô&lt;h(cp(x, t + e)). Choose °U a neighborhood of
x so Vy e°U h(cp(y, t-e))&lt;r-ô and r + ô &lt;h((p(y, t + e)). If y e °U and

se(r-ô,r + ô), then h(&lt;p(y, t-e))&lt;s h{cp(yy xp(y, s))) &lt;h(cp(y, t + e)), and

thus t - e &lt; il&gt;(y, s) &lt; t H- e. QED.

LEMMA 4.7 [Rectification of cpw]. Define (p^:XxU-^X by the formula
&lt;Pw(x&gt;r) &lt;Pw(x, Vw(x&gt; r + hw(x))). The maps {cp&apos;w} satisfy the axioms (Al)-
(A7) as well as

(A8) V* e X Vr hw(cpw(x&gt; r)) hw(x) + r [equivariance of hw].

Proof Axiom (A8) for ç&apos;w follows from the définition.
Check (A4). Continuity follows from the previous lemma. Check

hw((Pw(&lt;Pw(x&gt; r), s))) hw((p&apos;w(x, r)) + s hw(x) + r + s hw{q)&apos;w(x, r + s)); thus
VwiVwix, r)&gt; s) q&gt;w(x, r +s), as both sides are in the orbit of x for the cpw
action.

It is immédiate that (A8) implies (A5).
To check (A6) notice that W(x, r + hw{x)) &gt;0 iff r &gt;0, which itself follows

from (A6) for &lt;pw. QED.

Proof of 4.5a. For any e&gt;0, WeV, and xeXss with /ïw(jc) O, we hâve
hw(&lt;Pw(x, e)) &gt;0, and thus çv(*&gt; f) £ A!^. since ç&gt;w(*&gt; e) is continuous in e, we
see x € 3AfJ5.

Proof of 4.5b. We define the homotopy H:Xx[0, T]-+ X as a composite of
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homotopies Hïf HT :X x [0, 1]-*X, i.e. for s e [i — 1, /] and x e X we hâve

//(jc, 5) HXH^iH^i. /^(jc, 1). 1), 1), s - i + 1).

Each //, will satisfy Ht(xy 0) jc (ail jc e X) so // will be continuous.
Since 4.5b makes no référence to the maps q&gt;w, we may use 4.7 to rectify the

çv&apos;s, and thus may assume (A8) is satisfied. Now set

((pw(x,-shw(x)) iî
A*&apos;S)

\x if M*) ^0 ail IV e^
Axioms (Al, 7) ensure that the sets Xw (W e Wt) are disjoint. Since q&gt;w(x&gt; 0) jc

we see that when the two cases in the définition of Ht overlap, they agrée;
moreover the closed sets involved form a locally finite family, so Ht is continuous.

Now we claim that

V/&lt;; VUeWj VxeX

We prove this by induction on /, the case / 0 being vacuous. Let z H(x, i) and

y H(x, i - 1), so z Ht(y, 1). By the inductive hypothesis, we know that
hw{y) &lt; 0 for U e Wp j &gt; i. Look at the définition of Ht: if hw(y) &lt; 0 ail W e Wlf
then z - y and (*) is clear. On the other hand, if W e °Wl and x e Xw, then
z (Pwiyy ~hw(u)). Pick / &lt; / and U eW} and establish (*): there are three cases.

If U= W then hv(z) hw(z) hw(y) - hw(y) 0. If U&lt;W, then (A6) yields
hu(z)^hu{y)&lt;0. If {U, W} is not a chain, then hw(z) 0 forces ha(z)&lt;0 by
(A7).

Now we check that H provides the déformation retraction we need; this
means we must check the foliowing properties:

(i) /f(x,0) Z
(ii) H(x,T)eXss
(iii) x e Xss =&gt; H (jc, s) jc, ail s

(iv) jc € X+ 4&gt; H (jc, 5)er, ail s

(v) xeX+d&gt;H(x, T)edXss
Property (i) is immédiate, and (v) follows from the others because 9XSS X* f)
Xss. Property (ii) is (*) for i T. Property (iii) is immédiate from the définition of
Hr Property (iv) follows from the analogous statements for each Hn which are
immédiate. QED.

Proof of 4.5c. We replace hw by h&apos;w=-hw, and çw by ç&apos;w defined as

&lt;Pw(x&gt; r) &lt;Pw(x&gt; ~r)- The axioms (Al-6) are preserved. We replace W by



674 DANIEL R GRAYSON

W {aXi am}, so now (A7) is satisfied as well, because W is itself a chain.
Now 4.5b yields what we want. QED.

In order to prove that various subspaces of X are manifolds, we introduce
some new axioms, which we show later are satisfied in our situation. Thèse are

necessary because, for example, the assertion M x M is a manifold does not imply
that M is a manifold.

(A9) X is a CT-manifold
(A10) q)w is a Cx-map

(Ail) If W &lt; U eW, then q)w and cpu commute, i.e. (pw(&lt;Pu(x&gt; r)&gt; s))

(A12) Given Wx &lt; • • • &lt; Ws e W, there are numbers nx ns &gt; 0 so

that if we define ç(x, r) (fWl{&lt;Pw2{&apos; • &lt;Pws(x&gt; nsr) • • • &gt;
nir)&gt; nir)&gt; then Vi

Vr &gt; 0 Vjc hWt((p(x, r)) &gt; r 4- AW|(^)- Moreover, there is a C^-map /i :X-* U

so /i(&lt;jp(jc, r)) &gt; A(jc) + r, ail x e X, r &gt; 0.

THEOREM 4.8. Awiime (Al-7,9-12) are satisfied.

(a) Xî5 is a manifold with boundary, and the boundary is dXss.

(b) Given Wi&lt;- — &lt;WseW, the space XWl fi • • • fl XWs is a manifold with

boundary.

Proof. Using &quot;inversion&quot; as in the proof of 4.5c, we see that (b) follows from
(a).

The idea for proving (a) cornes from [G, proof of 3.4]. We see that the
differential dh is nonzero everywhere (look at the composite r»-»/z(&lt;p(jt, r)), so

the level set A-1({0}) is a submanifold of X of codimension 1, and is the

boundary 3Y of the manifold Y h-l((-*&gt;, 0]).
Now suppose we choose a point x e X and try to show that Xss is a manifold

near jc, assuming x e dXss. We use (A7) to choose a neighborhood °U of x and let

{Wl&lt;--&lt;Ws}^{WeW:(UnXw ¥=&lt;/&gt;}. Define *&apos;(*) supf {hWt(x)} for x e

X, so letting Y&apos; fc&apos;~!((-«&gt;,(&gt;1), we hâve «n^ «nr, 3T fc&apos;&quot;1({0}),

and &lt;% n 3X55 % H 37&apos;; thus it will suffice to prove that Y&apos; is a manifold with
boundary dY&apos;. From (A12) we see that

(A13) h&apos;{(p{xtr))^ht{x)-¥ri ail xeX,r&gt;0.

Then using 4.6 for h and A&apos;, it is not hard to set up a homeomorphism Y** Y&apos;

which restricts to a homeomorphism 3F « dY&apos;.

PROPOSITION 4.9. (A9-12) are actually satisfied in our situation.
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Proof. (A9, 10) are clear; (Ail) was proved in 4.2.1.
Prove (A12). We define h(x) slope (x/x D Wx) - slope (jc H W,); it is a C°°

function*. We let N dim $, and define n, N • /. It is easy to check the required
properties in terms of root spaces. Each W, and its orthogonal complément for the
inner product H is a sum of root spaces, and each cpWi cornes from a map Fr which
is diagonal with respect to the root space décomposition. The numbers n, hâve

been chosen to make it clear that the composite of ail thèse maps Fr has the

following property: for each Wn the scalars occurring in W( are strictly smaller
than the scalars occurring in its orthogonal complément. The resuit foliows then
from 4.4. QED.

5. Conclusion

THEOREM 5.1. Suppose t&gt;\. The space Xss(t) is a manifold with boundary,
is contractible, and is compact modulo F. The boundary is homotopy équivalent to
the Tits building by a homotopy équivalence which respects the action of F.

Proof. We combine 4.8b, 4.5b, and 1.1 to get the assertion about Xss.

Now consider the covering X+ {JWeWXw by closed subsets; we will use

[BS, 8.1, 8.2] to identify its homotopy type.
Suppose Wi, Ws e W. If they do not form a chain, then XWï (1 • • • n

XWs (p, by (A7). If they do form a chain, then XWx n • • • D Xw$ is a contractible
manifold with boundary, according to 4.5c, contractibility of X&gt; and 4.8b, and
thus is an absolute retract [BS, 8.1].

Now we apply [BS, 8.2.1] to conclude that X+ (and thus 3XSS also, by 4.5b) is

f-homotopy équivalent to the simplicial complex associated to the poset A of
Q-parabolie subalgebras of g, and thus to the Tits building of G. QED.

Thus we hâve proved for our space Xss the same qualitative properties which
Borel and Serre prove for their manifold with corners Xy namely [BS, 8.4.2 and

9.3]. The cohomological properties for Tdeduced in [BS, Section 11, except for
11.3] can be derived using Xss&gt; except that we must appeal to [KS, p. 123] for the
fact that Xss/Fis équivalent to a finite simplicial complex, and appeal to [B, 9.10]
for the fact that F contains only finitely many conjugacy classes of torsion
éléments (which implies that F contains a torsion-free subgroup of finite index).

* One may choose a basis so that each of thèse slopes is a constant times the log of the déterminant
of a principal minor of the matrix (or its inverse) of the inner product x.
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Ultimately, I hope that both of thèse latter facts can be proved directly by thèse
methods.
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