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Bounded orbits of flows on homogeneous spaces

S. G. Dani

A well-known class of flows arises as follows: Let G be a semisimple Lie group
and I be a lattice in G, that is, I is a discrete subgroup such that G/I" admits a
finite measure invariant under the action of G, on the left. Let (g,) be a
one-parameter subgroup of G. The action of (g,) on G/I' defines a flow.
Necessary and sufficient conditions are known, thanks to the work of C. C.
Moore, for such a flow to be ergodic (with respect to the unique G-invariant
probability measure); (cf. [13]). Thus, for instance, if G is a noncompact simple
Lie group with finite center then the action of (g,) on G/I'is ergodic if and only if
(g,) is not contained in a compact subgroup of G.

When the flow induced by (g,), as above, is ergodic, the orbits of almost all
points are dense in G/I. However, in general, all orbits of the flow are not dense.

t
For instance, if G =SL(2,R), '=SL(2,Z) and g, = (; S“) then the flow as

above is the geodesic flow associated to the modular surface; in this case there
exist periodic orbits, divergent orbits and also many other types of orbits which
are not dense. A similar phenomenon occurs for most homogeneous spaces for
flows induced by one-parameter subgroups (g,) such that Ad g, is semisimple for
all ¢ (cf. [2]). The situation is somewhat different when Ad g,, t € R are unipotent;
we shall however not concern ourselves with that here (cf. [8] and [3] for details).

In [2] we considered flows as above on noncompact homogeneous spaces G /I’
and studied their trajectories (one-sided orbits {g,gI'|t=0}) which are either
divergent (that is, eventually leave every compact subset of G/I') or bounded
(relatively compact). It was shown, in particular, that for flows on SL(n, R)/
SL(n,Z), n=2, induced by one-parameter subgroups of the form
diag(e™,...e™, e¥ ..., e"), where A is such that the determinant is 1,
divergence or boundedness of a trajectory starting from gSL(n, Z), g € SL(n, R),
is equivalent to a certain system of linear forms associated to g, in a natural way,
being singular or badly approximable (cf. [16] or [2] for definitions) respectively.

10
In the particular case of n =2, g, =diag(e”", €’), g = p(a l)y for some a e R,

an upper triangular matrix p and y eI, the trajectory {g.gSL(n, Z)|t=0} is
divergent if and only if « is rational and bounded if and only if a is badly
approximable (cf. Remark 2.6 for the latter). Using the latter assertion and a
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theorem of W. M. Schmidt (cf. [1-5]) it was also deduced that for the flows on
SL(n, R)/SL(n, Z) as above, the set of points on bounded trajectories is “large”
in the sense that its Hausdorff dimension coincides with the dimension of
SL(n, R)/SL(n, Z) as a manifold. We then raised the question whether an
analogous assertion holds if G=SL(2,R) and I is any lattice in G (not
necessarily SL(2, Z)) for the flow induced by diag (e, e'). In this paper we
answer that question in the affirmative in the following more general form. (cf.
Theorem 5.1 below).

THEOREM. Let G be a connected semisimple Lie group of R-rank 1 and I
be a lattice in G. Let (g,) be a one-parameter subgroup of G such that Ad g, has an
eigenvalue (possibly complex) of absolute value other than 1. Then for any
nonempty open subset Q of G|/T’

{gI € Q| the (g,)-orbit of gI' is bounded}
is of Hausdorff dimension equal to the dimension of G.

Here G/TI is understood to be equipped with a metric obtained as a quotient
of a right-invariant Riemannian metric on G. In particular, the theorem implies
that if M is a Riemannian manifold of constant negative curvature and finite
Riemannian volume, then the set of line elements (x, §), where x e M and & is a
tangent vector of unit norm at x, such that the geodesic through x in the direction
of & is bounded, forms a subset of full Hausdorff dimension in the unit tangent
bundle (cf. Corollary 5.2).

In the sequel, for convenience, we consider right actions of one-parameter
subgroups (g,) on I'\G rather than left actions on G/I. We first obtain a
description of the set E*(I') of “endpoints” of the curves {gg, |t =0} where ge G
is such that {Igg,|t=0} is bounded in I''\G (cf. Proposition 2.5); here
“endpoint” means the unique point on the Furstenberg boundary B = G/P,
where P is a minimal parabolic subgroup, to which a curve as above converges, as
t—, in the Furstenberg compactification of G (cf. §81 and 2 for details).
Corollaries 1.5 and 1.7 proved in the course of the above, using boundary theory,
seem to be of independent interest.

In the particular case of G =SL(2, R), I'=SL(2, Z) and g, =diag(e’, e™),
E*(I') as above corresponds to the set of badly approximable numbers under a
canonical identification of R U {«} with the Furstenberg boundary. (cf. Remark
2.6). Thus E*(I') may be viewed as an object generalising the set of badly
approximable numbers.

We then determine the Hausdorff dimension of E*(I") employing the notion
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of winning sets of (@, B)-games introduced by W. M. Schmidt, which was used by
him to prove that the set of badly approximable numbers is of Hausdorff
dimension 1. In §3 we prove a general result, Theorem 3.2, regarding winning
sets of the (&, B)-games in R™, m = 1. In §4 we show that all nontrivial orbits of a
certain abelian Lie subgroup (exp V as in §4 below) of positive dimension, on the
Furstenberg boundary, intersect the set E*(I) in a set, which in V corresponds to
a winning set for the («, )-game for any a,f such that 1 —2a + aff >0. This
enables us to conclude that E*(I') has Hausdorff dimension equal to the
dimension of the boundary. §5 contains the final deduction of the Theorem and
the Corollary stated above. We conclude with some comments and questions.

The author would like to thank Gopal Prasad, S. Raghavan and R. R. Simha
for useful suggestions and references.

§1. Preliminaries

Let G be a connected semisimple Lie group of R-rank 1. We fix a
one-parameter subgroup A = (exptY),.r, Where Y is an element of the Lie
algebra of G, such that the adjoint action of A (on the Lie algebra of G) is
diagonalisable over R; G being of R-rank 1 such a subgroup is unique upto
conjugacy. We denote by N and N~ the horospherical subgroups associated to A
(relative to the order determined by Y) defined by

N={neG|(exp—tY)n(exptY)—e as t—>»} and
N™={ueG | (exptY)u(exp —tY)—e as t— x}

e being the identity element in G. Then N and N~ are connected Lie subgroups.
We denote by P and P~ the normalisers of N and N~ respectively. Then P and
P~ are parabolic subgroups of G and N and N~ are their unipotent radicals. We
fix a maximal compact subgroup K of G and denote by M the centraliser of A in
K; viz. the subgroup consisting of those elements of K which commute with all
elements of A. We note that M normalises N. We also fix an element w of K such
that waw !=a"! for all ae A; such an element exists and the coset wM is
unique. We recall the following standard facts (cf. [9] and [18]) which will be used
frequently in the sequel.

1.1. PROPOSITION. i) Iwasawa decomposition: G = NAK = KAN; further,
the map of N X A X K into G which takes (n, a, k) into nak, for allneN, ac A
and k € K, is a diffeomorphism.

ii) Langlands decomposition: P = NAM = MAN
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ili) Bruhat decomposition: G = (PwP)U P = (NwP) U P; further, the map of
N into G/P which takes n into nwP is a diffeomorphism of N onto NwP/
P=(G - P)/P.

Let n be the Lie subalgebra corresponding to N. Then n is invariant under the
adjoint action, denoted by Ad, of A and all eigenvalues of Ad (exp —Y) are in

(0,1). From this observation it is easy to deduce the following (well-known)
lemma needed in the sequel.

1.2. LEMMA. If t;— o then (exp —t;Y)n(exp t;Y)— e uniformly on compact
subsets of N. If F is a compact subset of N then | ;= (exp —tY)F(exp tY) U {e} is
compact.

A sequence {g;};=, in G is said to be divergent, and we write g;,— «, if for any
compact subset C there exists iy such that g; e G — C for all i = i,.

1.3. LEMMA. Let {u;} be a divergent sequence in N~ and let u; = n;a;k; be
the Iwasawa decompositions, where n;€ N, a;€ A and k; € K for alli. Let t; € R be
such that a;' = exp ;Y. Then t,— .

Proof. Let V = /\' g, the Ith exterior power (as a vector space) of the Lie
algebra g of G, where [ is the dimension of N. Let p be the /th exterior power of
the adjoint (left) representation of G and let v, be a non-zero vector contained in
the one-dimensional subspace in V corresponding to the Lie subalgebra of N. It is
easy to see that p(g)vy=v, for ge G if and only if ge MN and that
p(exp tY)v, = e*v, for all t € R, where u is a fixed positive number. Let || - || be a
p(K)-invariant norm on V. Then for any k € K, a =exp tY € A and n € N we have
llo(kan)v|| = e*||vol|. In particular, ||p(u;)vol| = e ||vg|| for all i. Hence it is
enough to show that ||p(u; "v,|| — . Since p(N~) consists of unipotent elements
p(N7 ), is a closed subset of V. Further, since no non-trivial element of N~ fixes
vo under the action via p, the last assertion implies that the assignment
u— p(u)vy is a homeomorphism of N~ onto p(N7)v, (the latter equipped with
the subspace topology). Since {u,;} and in turn {u; '} are divergent sequences in
N~, p(u; v, is a divergent sequence p(N™)v,. Since the latter is a closed subset
of V the last condition implies that ||p(u; )vg||— =, as desired.

We recall that G/P can be viewed as a boundary of G/K. Specifically, this is
done as follows (cf. [6] and [12] for motivation and details). Let 2 be the space of
probability measures on G/P equipped with the weak* topology; a net {y;} in ?
converges to u € P if [fdu;,— [fdu for all continuous functions. Since G/P is
compact and second countable, 2 is also a compact (Hausdorff) second countable
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space. The G-action on G/P induces a G-action on ? defined by gu(E)=
u(g'E). The action of K on G/P is transitive and consequently there exists a
unique K-invariant probability measure on G/P; we denote this measure by m.
The symmetric space G/K is then viewed as a subset of 2 via the identification
gK & gm for all g e G. Also G/P is viewed as a subset of 2 by identifying each
x € G/P with the point mass J, based at x. It is easy to see that the identification
maps are (well-defined) G-equivariant homeomorphisms. It is well-known that
G/P is contained the closure of G/K in ? and further that when G is of R-rank
1, as in our case, (G/K) U (G/P) is compact (cf. Lemma 1.4 below for the latter
and Theorem 7 of [12] for the general case).

In the sequel we use the following notation: A* = {exptY|t>0} and
A™ = {exptY |t<0}.

1.4. LEMMA. i) If {g;} is a divergent sequence contained in NA™ then
gm— 0,.

ii) If {g;} is a divergent sequence in G then there exists a subsequence of {g;m}
which converges to 8, for some x € G/P; hence (G/K) U (G/P) is compact.

Proof. i) Let {g;} be a divergent sequence in NA* and let v be any limit point
of {gim} in P. We shall show that v =4,. Since P is compact, this would prove
i). By passing to a subsequence we may assume that g;m — v. Let g; = n;a;, where
n;e N and a; € A*. Again by passing to a suitable subsequence we may assume
that either {a;} is divergent or a;,—a for some a € A* U {e} and similarly that
either {a; 'n;a;} is divergent or a; 'n;a;— i for some i € N.

We claim that for x = nwP € NwP/P, where n € N, g.x— P unless n = (i),
with 7 as above (no exception if {a; 'n;a;} is divergent). Suppose this is not true,
say for x=nwP, neN, n#(i)"'. Since G/P is compact, by passing to a
subsequence we may assume that gxx—n'wP € NwP/P =(G — P)/P, for some
n’ € N. Since g;x = n,a;nwP = n,(a;na; ")wP, by Proposition 1.1, iii) it follows that
n(a;na;')—>n' as i—». Now suppose first that {a;} is divergent. Then
a;'n"a;— e as i — » uniformly for n” in a neighbourhood of n’. Since n;(a;na;')—
n', this implies that (a;'n,a)n—e as i— . But this is a contradiction since
n+# (i)~ Next suppose that a,—>a as i— . Then g;n=n,(a;na;')a,—n'a,
which is a contradiction since {g;} is divergent. Hence the claim must hold. Since
m(P)=m(fAi"'wP) =0, in view of the bounded convergence theorem validity of
the claim implies that g;m— 6,.

ii) Now let {g;} be any divergent sequence in G. As in [12], by Cartan
decomposition we may write g; as g; = k;a;k; for some a;e A*U {e} and k,,
k; € K. By passing to a subsequence, we may assume that k;— k € K. Then {4;} is
divergent and hence by i) we have a;kim = a,m— §,. But the G-action on 2 is
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continuous (cf. [12], Lemma 8). Hence g,m = k,a;k;m— kS, = 6;p, so that ii)
holds with x = kP.

It turns out, as pointed out by the referee, that an appropriate analogue of (ii)
in Lemma 1.4 holds more generally for negatively curved manifolds and also that
a similar assertion holds for any measure on G/P, not just m.

1.5. COROLLARY. Let {u;} be a divergent sequence in N~ and for all i let
u; = n;a;k; be the Iwasawa decompositions, where n,e N, a;€ A and k; € K. Then
n;,— e, the identity, as i — .

Proof. It is well known and easy to see that N~ = wNw™!; thus for all i, u; can
be written as wn/w~', where {n/} is a divergent sequence in N. Hence
um=wnw 'm=wnim— wé, =0,p, by Lemma 1.4, i). Also, by Lemma 1.3
a;i'=expt,Y, where t;—x. Hence ak;m=awm=w(expt;Y)m—wdp=20,p
by Lemma 1.4, i). We shall conclude from these two convergences that n,—e
as i — . Suppose this is not true. Then there exists a neighbourhood £, of e in N
such that n; ¢ €, for infinitely many i. Let €2 be a neighbourhood of e in N such
that QQ'c Q,. Since u;m— 6,p, and a;k;m— 8., there exists i, such that
u;m(QwP/P)=% and a;km(QwP/P)=3. Let i =i, be such that n; ¢ 2,. Then
n; '8 is contained in N — . Hence

u;m((N — QwP/P) = n,a;k,m((N — Q)wP/P) = n,am(n;'QwP/P)
= a,;m(QwP/P) =3.

But since @QwP/P and (N — Q)wP/P are disjoint subsets and u;m is a probability
measure both cannot be assigned measure =%; the contradiction shows that the
corollary must hold.

Let w:G— N be the map defined by s(nak)=n for all neN, ae A and
k e K, every element of G being expressed uniquely as such by Iwasawa
decomposition.

1.6. LEMMA. Forany ae A, n(N-a)=a(aN")=an(N)a"\.

Proof. Let a € A. Note that a normalises N~ and hence aN~ = N~ a. Now let
n € w(aN~). Then there exist u e N~, b € A and k € K such that au = nbk. Hence
u=a"'nbk =(a"'na)(@a 'b)k so that a 'na=m(u)en(N~). Therefore ne
an(N7)a~! for all nem(aN~), so that 7(aN~)can(N )a~'. Similar argument
also yields the other way inclusion.

1.7. COROLLARY. n(N~A") is a bounded subset of N; viz. it has compact
closure.

Proof. If Qis a compact neighbourhood of the identity then by Corollary 1.5
there exists a compact subset F of N~ such that n(N™ —F)c £; hence
A(N™) c n(F)U Q, which implies that 7(N7) is bounded. Therefore by Lemmas
1.2 and 1.6, T(N"A7) =U,ea- an(N7)a"" is a bounded subset of N.
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1.8. LEMMA. For any t,>0, i(N~A~) contains a neighbourhood L of e in
N such that nN"AK N (exptY)N"A™K is nonempty for all n € Q and all t such
that |t| < t,.

Proof. Let t;>t, and let D = {exptY |te[—t,—t,, —t,; +t,]}. Then D is a
compact subset contained in the open set N"A™K. Since G = NAK (Iwasawa
decomposition) is topologically a Cartesian product of the component subspaces,
we can conclude from the above that there exists a neighbourhood € of the
identity in N such that QDK is contained in N"A~K. Passing to a smaller
neighbourhood we may also assume £ to be symmetric; that is, 2 = Q~!. Then
for any neQ and te[—ty1t), N AKNn'(exptY)N"A"K contains
n~'exp (t — t,)Y, and hence, in particular, it is nonempty; therefore AIN"A"K N
(exptY)N"A™K is also nonempty. From the choice of Q it is evident that it is
contained in T(N~A").

§2. A characterisation of bounded trajectories

Let the notation be as in §1. Recall that G is a connected semisimple Lie
group of R-rank 1. Let I' be a lattice in G; that is, I'\G admits a finite (Borel)
measure invariant under the action of G (on the right). For obvious reasons we
assume I'\G to be noncompact. In this section we obtain a characterisation of the
set of x in G such that {I'x(exptY)|¢=0} is a bounded trajectory (that is, it has
compact closure) in I'\G.

2.1. LEMMA. Let x € G and p € P be arbitrary. Then {Ix(exptY)|t=0} is
bounded if and only if {I'xp(exptY) |t =0} is bounded.

Proof. Let p=nam, where neN, aeA and meM, be the Langlands
decomposition of p. Then Irp(exptY)= Ixnam(exptY)= Ix(exptY) {(exp —
tY)n(exptY)}am. Since (exp —tY)n(exptY)—e, the identity, as t— o, the
relation evidently implies the Lemma.

In view of the lemma it is enough for us to characterise the subset E*(I') of
the boundary G/P defined by

E*(N)={xP e G/P| {I'x(exptY)|t=0} is bounded}.

For this purpose we recall a well-known fundamental domain for the I'-action.
For seR let A, =(expsY)A* = {expty|t>s}. A subset of the form IA,K,
where 2 is a compact subset of N and s e R is called a Siegel set. We need the
following result on fundamental domains, due to Garland and Raghunathan (cf.
[7], Theorem 0.6; note that we consider the G-action on the right and hence must
employ the inverses of the relevant subsets as in [7]).
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2.2. PROPOSITION. There exists a Siegel set ¥A,K and a finite subset A of
G such that the following conditions are satisfied.
i) G=TAZA,K
ii) for any Ae A, (A"'TA) N NM is a (cocompact) lattice in NM.
iii) for any compact subsets D and D' of N there exists 0 € R such that the
following holds: if A, A' € A and y € I are such that yADA,KNA'D'A,K
is nonempty then A' = A and A"'yA e NM.

It may be noted that the proposition would continue to hold, for suitably
modified 2 and p, if any A € A is replaced by an element of the form yAp, where
yeI and p € P. However, any set A for which the proposition holds, for a
suitable 2 and s, is a set of representatives for a fixed class of double cosets of the
form I'gP, g € G. It may be worthwhile recalling that these double cosets consist
precisely of elements g € G such that {I'g(exptY)|t=0} is a divergent trajectory
in I'\G; namely, for any compact subset C of I'\G there exists T =0 such that
I'g(exptY) ¢ C for t = T. (cf. [2], Corollary 6.2).

2.3. Remark. Let the notation be as in Proposition 2.2. Then there exists
o € R such that the following holds: if A, A’ € A and y € I' are such that either
YAZA,KNA'NA,K or yANA,KNA'NA,K is nonempty then A=A’ and
A~ 'yA e NM.

Proof. In view of ii) in Proposition 2.2 and finiteness of A there exists a
compact subset D of NM such that NM = (NM NA~'TA)D for all A € A. Hence
for any s, ANA,K=ANMA,K =ANMNA"'TA)DA,K =(ANMA~'NT)ADA,K
for all A€ A. Let 0 = p be such that iii) of Proposition 2.2 holds for U D (X as
in Proposition 2.2, i)) and D in the place of D and D' respectively. Now let A,
A’ € A be such that yYAZA,KNA'NA,K is nonempty. Then by the preceding
observation there exists y' € A’NM(A’)"' NI such that yYAZA,K N y'A’'DAK is
nonempty. By our choice of o this implies that A’ =4 and A~'y~'y'A € NM. But
since A~'y'A € NM (as A = A’), this implies that A~'yA € NM. A similar argument
shows that if YANA,K NA'NA,K is nonempty for some A, A’ € A and y € I then
A=A"and A"'yA e NM.

Through the rest of the section, in characterising bounded trajectories, we use
the notation as in Proposition 2.2 and fix 0 € R, o =p for which Remark 2.3
holds.

2.4. PROPOSITION. Let x€G. Then {Ix(exptY)|t=0} is a bounded

trajectory in I'\G if and only if there exists s € R such that x(exptY)e G —
T'ANAK for all t=0.
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Proof. Observe that G — I'ANA;K is contained in I'AY(A, — A;)K whose
image in I'\G has compact closure. This implies the ‘if’ part of the Proposition.
Next suppose that {I'x(exptY)|t=0} is bounded. Then evidently there exists
s € R such that x(exp tY) e TAZ(A, — A;)K for all ¢t =0. Further, without loss of
generality we may assume § = 0. Suppose the proposition is not true; then there
must exist =0 such that x(exptY)e I'NZ(A, — A;,)KNT'ANAK. Hence, in
particular, there exist A, A' € A and y € I" such that yAX(A, — A;)K N A'NAK is
nonempty. Since s =0, by Remark 2.3 this implies that A=A’ and A~ 'yA € NM.
But then we find that (4, — A,)KN(A"'y'A)NAK =3(A, — A;)K N NA,K
is nonempty, which is absurd by uniqueness of expression in Iwasawa decomposi-
tion. Hence the proposition.

2.5. PROPOSITION. Let A€ A and let {g;} be an enumeration of the
countable set A"'I’'A — P. Let g; = n;wa;z;, where n;e N, a;€ A and z;€ NM, be
their Bruhat decompositions. Then

E* (D= U (f] {AnwP |n ¢ t(na;'a 'N~A7)}

aeA i=1

Proof. Since for any s, A(exptY)e 'ANA,K for all t>s, in view of
Proposition 2.4, AP ¢ E*(I'). Hence by Bruhat decomposition every x € E*(I') is
of the form AnwP for some n e N. Using Proposition 2.4 and the fact that
A~IAN P is contained in NM we deduce that AnwP € E*(I') if and only if there
exists s € R such that for all t=0, nw(exptY)¢ Ug,NA,K. Now, for any
i=1,2,..., we have gNAK=nwa,zzNA,K =nwa;NA,K =nwa,aNA*K,
where a = exp sY. Further, since wiw™' =& for all £€ A and wNw™' =N, we
have nwa,aNA*K =n;a;'a 'N"A"K. Thus AnwP € E*(I') if and only if there
exists a€A such that for all =0, and i=1,2,..., nw(exptY)¢
na;'a 'N"A"K, or equivalently, n(exp—tY)¢na; 'a 'N"A"K. If n¢
a(na;'a 'N"A")=na;'a 'n(N"A )aa;, or equivalently if aa;(n;'n)a;'a™'¢
n(N~A"7), for any i, then the condition evidently holds. This shows that the set
on the right hand side in the equation as in the proposition is contained in E*(I).

For proving the other way inclusion we need the following observations. In
view of Lemma 1.3 there exists a s, € R, such that if u € N~ and u = n(exp tY)k,
where ne€ N, k € K and ¢t € R is the Iwasawa decomposition, then ¢ <s,. Further,
if ue N~ and b=exp(—sY)eA~, where s>0, and ub =n(expt'Y)k is the
Iwasawa decomposition of ub, then b~ 'ub = (b"'nb) (b~ 'expt'Y)k =(b"'nb)
(exp (s +t')Y)k is the Iwasawa decomposition of b~'ub and hence s +t' <s,; in
particular, ¢’ <s,. Secondly, by Remark 2.3, for any i, g;NA,K is disjoint from
NA_K. Since g; = n;wa;z; this implies that wa;NA,K is disjoint from NA,K. In
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particular, w(a;A,)w~' must be disjoint from A,. Hence, for any i, if ;e R is

such that a;' = exp ;Y then ¢, < 20.

Now let ne N be such that for all ae A there exists i such that ne
mw(na; 'a 'N"A7). We shall show then that for every b € A there exist an index i
and ¢ =0 such that n(exp —tY)en;a;'b"'N"A™K; as noted earlier, this would
imply that AnwP ¢ E*(I'), thereby completing the proof of the proposition. Let
b € A be given. Choose a = exp sY such that s =s,+ 20 and ab~'e A*. Let i be
an index such that nea(na'a 'N"A7)=na;'a '‘n(N"A )aa;, Then
aany'na;'a 'e 1(N"A~) and hence there exist ye N"A™, a’€A and keK
such that y=(ag;n;'na;'a Na'k. Then n(a;'a 'a’)y=na;'a'yk'e
na'a !N A K cna;'b"'N"A"K, where the last inclusion follows from the
fact that (ba )N A K=N"(ba™)A"KcN A"K as (ba ')=(ab™ ) 'eA .
Let t; and ¢’ be such that a;'=exptY and a' =expt'Y. By the observations
made earlier, ¢, <20 and t' <s,. Then a;'a™'a’ € A” exp — (s — s, — 20)Y. Since
n(a;'a'a)ena;'b"'N"A K and s — s, — 20 =0, this completes the proof.

2.6. Remark. Consider the particular case G =SL(2, R), I'=SL(2, Z) and

Y =diag (1, —1), so that exptY =diag (e, e”’). Then P={<g :_1)

R, a;ﬁO} and G/P may be identified with R U {=}, via the correspondence

abe

b
(Z d)P <> a/c, where a/c is taken to be = if ¢ = 0. Similarly we also identify G/K

with the upper half-plane H* via the usual action of SL(2, R) on H*, K being
chosen to be the isotropy subgroup of i =V—1. The topology on the compac-
tification G/K U G/P corresponds canonically to the usual topology on H* U
(R U {}). In this case the identity is a cusp element (cf. [17] for a fundamental
domain) and it is straightforward to verify that the set as on the right hand side of
the equation in Proposition 2.5 is precisely the set of badly approximable
numbers in R. (It may be recalled that a real number x is said to be badly
approximable if there exists 6 >0 such that |x — k/I| > 8/ for all integers k,l
with /#0.) Thus by Proposition 2.5, E*(SL(2, Z)) is the set of badly ap-
proximable real numbers.

§3. Winning sets of (a, ) — games

In this section we prove a general result, Theorem 3.2 about winning sets of
the (a, B)-games introduced by W. M. Schmidt [14]. Applying it to the set E*(I")
as in §2 together with a result from [14] enables us to conclude that E*(I) is of
Hausdorff dimension equal to the dimension of G/P.
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The game in question goes as follows: Let &f and & be two players, X be a
complete metric space and let &, B € (0, 1)={te R |0<t<1} be given. B starts
the game by picking a closed ball B, in X with arbitrary positive radius. Then &«
picks a closed ball A, contained in B, and having radius « times that of B,. Next
P chooses a closed ball contained in A, of radius f times that of A, and so on;
the game proceeds inductively by & choosing a closed ball A, contained in B, _,
with radius « times that of B,_; and then % choosing a closed ball contained in
A, and having radius f times that of A,. Since X is a complete metric space there
is a unique point of X which belongs to A, for all k, and hence also to B, for all
k. A subset S of X is called an (a, B)-winning set (for ) if, irrespective of what
choices 8 makes during his turns, & can make his choices in such a way as to
ensure that the point of intersection belongs to §; S is said to be an a-winning set
if it is an (a, B)—winning set for all B € (0, 1). Evidently X itself is always an
(a, B)-winning set for all «,f € (0, 1). It turns out that if 1 — 2« + aff =0 then X
is the only («, B)-winning set (cf. [14], Lemma 5). On the other hand if
1-2a + aff >0 then there exist proper subsets which are («, 8)-winning sets (cf.
[14], Theorem 3, for example). However, Schmidt shows (in particular) that in a
m-dimensional euclidean space, that is, X =R"™ for some m =1, any a-winning
set is “large” in the sense that its ‘“Hausdorff dimension” (see below for
definition) is m (cf. [14], Corollary 2 to Theorem 6).

We recall that the Hausdorff dimension of a metric space X is defined as
follows (cf. [5] and [10] for motivation and general reference): For any ball U in
X let r(U) denote the radius of U. For € >0 let €(¢) be the class of open balls of
radius less than &. For s =0 let

oc

h(s, €) = inf{z r(UY | Ue €(e),i=1,2, . .. such that X =_J U,-}
1

1

Evidently, as € decreases h(s, €) increases monotonically. The quantity A(s) =
lim,_,o h(s, €) (possibly ) is called the s-dimensional Hausdorff measure of X. It
is easy to see that there exists a (unique) d =0 (possibly ©) such that h(s) = « for
all s <d and h(s) =0 for all s >d; d is called the Hausdorff dimension of X. The
Hausdorff dimension of a subspace of X is understood to be with respect to the
induced metric; evidently, it is at most as much as that of X. We note that R™
with the usual metric is of Hausdorff dimension m and that more generally any
m-dimensional Riemannian manifold metrized by the Riemannian metric has
Hausdorff dimension m.

A slight modification of the proof of Schmidt’s result alluded above yields the
following. :
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3.1. PROPOSITION. If S is an a-winning set in R™, where a € (0, 1) and

m =1, then for any nonempty open subset  of R™, SN has Hausdorff
dimension m.

It will hardly serve any purpose to give details of the proof except to note that
given Q as above, for all sufficiently small B the sets C,(i;) and hence S$* as in the
proof of Theorem 6 in [14] can be assumed to be contained in £2; the rest of the
proof of that theorem and Corollary 2 in [14] goes through word for word and
implies Proposition 3.1 as above.

In [14], Schmidt also proved that the set of badly approximable numbers is an
(«, B)-winning set in R for any «,f8 € (0, 1) such that 1 —2a + aff >0 (cf. [14],
Theorem 3). In this section we shall prove a general result, Theorem 3.2, on
(a, B)-winning sets in euclidean spaces. The idea of the proof is motivated by that
of Schmidt’s theorem.

We consider R™ equipped with the usual Hilbert norm which we denote by
II-]l. If x;, x,eR™ and S, and S, are subset of R™ then d(x,, x;), d(x,, 1),
d(S,, S,) etc. denote the distances between the respective pairs, with respect to
the norm; e.g. d(S;, &) =inf{||[x —y||[x €S,y €S,}. For any subset S the
thickness of S is defined to be

7(§) =inf sup d(x —y, V)
vV x,yeS§

where the infimum is taken over all hyperplanes V in R™.

For x e R™ and r >0, B(x, r) denotes the open ball of radius r with center at
x. For any ball B, whether open or closed, we denote by z(B) and r(B) the
center and the radius of B respectively.

3.2. THEOREM. Let {S(p, t)} be a family of subsets of R™ (doubly) indexed
over peN and te(0,1). Suppose that for any compact subset C of R™ and
p € (0, 1) there exist M=1, €€ (0, 1) and a sequence {t,) of positive numbers
such that the following conditions are satisfied:

a) ifpeNandte (0, ) are such that S(p, t) N C is nonempty, then 1, <M and
t(S(p, 1)) =t1,

b) if p,geN and te(0, €) are such that S(p,t)NC and S(q,t)NC are
nonempty and put,=<rt,=<pu"'t,, then either p=q or d(S(p,t), S(q,1))=
e(t, + 1,)

Let
F=U (Rm—QS(p, a))

6>0

Then F is an («, B)-winning set for all «,f € (0, 1) such that 1 —2a + aff > 0.
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3.3. Remark. The proof below shows that given «,f € (0, 1) as above, « can
ensure the point of intersection to be in the set F as above if conditions a) and b)
are satisfied (for suitable choices of M, € and {7,}) in the particular case of
C = B,, the closed ball chosen by % to start the game, and u = (af)", where h is
the smallest integer such that (af)” <3i(1 — 2« + apf).

Though we have not put this condition, typically for each p, the sets {S(p, )},
t e (0, 1)} may be thought of as a shrinking family. The following particular case
which is less technical may be worth pointing out.

3.4. COROLLARY. Let {x,} be a sequence of (distinct) points in R™ and let
{r,} be a bounded sequence of positive numbers. Suppose that for any p and q,
p #q, we have

”xp —xq” = \/(rprq)-
Let
F=U (R’" ~UB@,, ar,,))
1

6>0
Then F is an («, B)-winning set for all o, B € (0, 1) such that 1 —2a + af > 0.

Proof. For all peN and 0<t=1, put S(p, t) = B(x,, tr,). Then (S(p, t)) =
tr,. Put 7, =r,. Since {r,} is bounded, condition a) of the theorem is satisfied
irrespective of the compact set C. Now let u € (0, 1) be given. Choose & = 1uVu.
Let p and g be such that ur, =r, =u~'r, and let t € (0, €). Then

d(B(x,, tr,), B(x,, tr))) = ”xp _xq” —t(r, =)= \/(rprq) —t(r, +r,)
=Vur, - t(r, +1,) = GuVu - )(r, + 1) > e(r, +1,),

which shows that condition b) is also satisfied. Hence the theorem implies the
corollary.
It is evident that the corollary would be true for various other expressions in

the place of \/(rprq). The particular expression is, however, significant in view of
the following lemma.

3.5. LEMMA. Let R™ be viewed as a hyperplane in R™*' in a natural way.
Let {x,} be a sequence in R™. Let D, be a sequence of balls in R™*" such that the
boundary of D,, p €N, is tangential to R™ at x,. Suppose also that the interiors of
the balls D,, p eN, are pairwise disjoint and are all contained in the same
connected component of R™*!'—R™. Let r, be the radius of D,. Then

llx, — xg]| = zv(rprq)

forall p #q.
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Proof is immediate from Pythagoras theorem!

We note that the set F as in Theorem 3.2 or Corollary 3.4 could be of zero
measure. Applying Corollary 3.4 to the particular case when m =1, {x,} is an
enumeration of all rational numbers, and r, = 1/1? if x, = k/I, where k and [ are
coprime integers and / # 0, in which case the condition in the Corollary is indeed
satisfied, we recover the corresponding result of Schmidt; viz.

3.6. COROLLARY. The set of badly approximable (real) numbers is an
(«, B)-winning set in R, for any «,f € (0, 1) such that 1 —2a + aff > 0.

To prove Theorem 3.2 we need the following lemma.

3.7. LEMMA. Let «,f€(0,1) such that 1-2a+ af >0 be given. Let
0=11-2a+ aB)e(0,1). Let h be a positive integer such that (af)" <6. Let
k =0 be arbitrary and let By be the closed ball chosen by R at the kth stage. Let V
be a hyperplane and let I be a closed subinterval of V*, the orthocomplement of V
in R™. Let I(I) be the length of I, a be the mid-point of I and suppose that

I(I)<d(z(By), a + V) + 6r(By)

Then A can play in such a way that By ., is disjoint from I + V.

Proof. Let L be the diameter of B, which is parallel to V* and let x, and x,
be the endpoints of L. Without loss of generality we may assume that
d(x,,a+V)=d(x,,a+ V). o shall choose A;., to be the closed ball of radius
ar(B;) which is contained in B, and is tangential to the boundary of B, at x,. Let
y: be the point of a + V nearest to x,. Then evidently,

|z(Ak+1) =l = l2(Be) = nll + A = a)r(By)

Let B, be the ball of radius Br(A,,,) contained in A, ,, chosen by . Let y, be
the point of intersection of z(Bx.;)+V and L. Then it is easy to see that

ly: = »ill = [|2(Ak+1) = yill = (7(Ai+1) = 7(Bis1))
= |z(Bx) = »ll + (1 = a@)r(Bi) = (r(Ax+1) = r(Bi+1))
=||2(Bi) = yill +26r(Bi) =d(z(B), a + V) +26r(By).
In particular we get that d(z(Bisy), a+V)=|y,—nll=d(z(B), a+V)+

20r(By) > I(I) + 6r(By) > I(I) — 6r(By+,). Then the hypothesis of the Lemma is
satisfied for By, in the place of B;,. Now A;,, may be chosen by the same
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procedure used for choosing A, ., within B;; and the process may be continued
indefinitely.

Suppose A1, Ak+2, - - ., Arsn are chosen by the above procedure, letting
alternately % choose the ball according to the rules of the game. We show that
BiinN(I+V) is empty. From the construction we have d(z(Biin), [+V)=
d(z(Bxsn-1), I + V)= - - =2 d(z(Bx41), I + V) = I(I) + 6r(By) > I(]) +
r(By.»), since (aB)" < 6. Hence By, and I + V must be disjoint.

Proof of Theorem 3.2. Let a,fB € (0, 1) such that 1 —2a + aff >0 be given.
Let B, be the closed ball chosen by %A to start the («, f)-game. As before let
0=31-2a+ aB)e(0,1) and let h be a positive integer such that (af)" < 6.
Let u=(aB)". Let M=1, €€(0,1) and {z,} be such that conditions a) and b)
are satisfied for C=B, and u as above. Let k, be an integer such that
p*e < min {eur(B,)~!, M~'}. We then choose

8 = u**'r(By)

Then 0 <6 < e <1. We shall show that & can play in such a way that the point of
intersection does not belong to S(p, 6) for any p. To that end, we shall show
inductively that he can play so that for any k =0, By, does not intersect S(p, 6)
for any p such that 7, = u~***_ For k = 0 this holds because by condition a) and
the choice of k, we have 7,=M <pu~™ for all p for which B,NS(p, 8) is
nonempty. Now let k be any positive integer and suppose that & has played upto
(k — 1)hth stage so that B(_;), does not intersect S(p, 6) for any p such that
T, = pu~ko+k=1"To complete the inductive argument we only need to make sure
that o/ can play (further) upto khth stage in such a way that B, does not intersect
S(p, 6) for any p such that p~*** < ¢, <pu~***~1 We first show that there is at
most one index p such that p~*** <<, <py~***=1 and B, _,),,NS(p, 8) is
nonempty. If p and q are two such indices then we get d(S(p, ), S(q, 6)) =
2r(B -1yn) = 2% 'r(B,) <2ep~*** < g(1, + 1,), because of our choices; but
since 7,7, € (4, u~"), the combined inequality together with condition b) in the
hypothesis imply that p =gq.

If there is no index p such that y = ** < ¢, < u~***~1and B, _,,, N S(p, 6) is
nonempty then & can play at random until the khth stage, since the inductive
assertion already holds. Otherwise let g be the unique index for which the
conditions hold. Then we have t(S(g, 8)) =<7, = pu**'r(By)t, < u*r(B,) <
6u*~'F(B,) = Or(B-1),)- Hence there exists a hyperplane V such that S(q, ) is
contained in a set of the form I + V, where [ is an interval in V* of length less
than 6r(B -1),). Hence by Lemma 3.7 & can play the next h turns in such a way
that By, does not intersect S(g, ), whatever be the choices made by % within the
rules of the game. Together with the inductive hypothesis and the uniqueness of q



Bounded orbits of flows on homogeneous spaces 651

as above this means that By, does not intersect S(p, ) for any p such that
T, = u~*** thus completing the inductive argument.

It is evident that if &/ plays the game as above then the point of intersection
does not belong to S(p, 6) for any p. Hence F is an («, §)-winning set.

3.8. COROLLARY. Let the hypothesis and notation be as in Theorem 3.2.
Then for any nonempty open subset Q2 of R™, F N Q is of Hausdorff dimension m.

Proof. The theorem in particular implies that for any a € (0, 1), F is an
a-winning set. The Corollary therefore follows from Proposition 3.1.

§4. Bounded trajectories and Hausdorff dimension

We shall now apply Theorem 3.2 to compute the Hausdorff dimensions of sets
of bounded trajectories of flows as in §§1 and 2.

Let the notation be as in §§1 and 2. We equip G with a Riemannian metric
which is invariant under the left action of G on itself. Any Lie subgroup of G is
equipped with the induced metric. The space G/P is canonically identified with
K/M and is equipped with the metric obtained by projecting the metric on K. All
Riemannian manifolds are considered as metric spaces canonically via the
distance function corresponding to the Riemannian metric.

4.1. THEOREM. For any nonempty open subset 2 of G/P, the Hausdorff
dimension of E*(I')NQ (cf. §2 for definition of E*(I')) coincides with the
dimension of G/P as a manifold.

Proof. Let A € A and consider the map y : N— G/P defined by y(n) = AnwP.
Recall that y is a diffeomorphism of N onto the open submanifold A(G — P)/P
(cf. Proposition 1.1). In particular, 3 and the map y ' defined on A(G — P)/P
are locally Lipschitz maps. Since Hausdorff dimension is (obviously) unchanged
under bilipschitz maps, in view of Proposition 2.5, it is enough to prove that if (in
the notation of Proposition 2.5)

X=U (N -U Jt(n,-a,-"a"N‘A')) 4.2)

acA

then for all bounded open subsets €2 of N, X N Q has Hausdorff dimension
m = dimension of N = dimension of G/P.
Let n be the Lie algebra of N and let exp:n— N be the usual exponential
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map. N is a simply connected nilpotent Lie group and exp is a diffeomorphism of
nonto N. Let log: N— n be the inverse map. We view n as R™ and equip it with
the usual Hilbert norm with respect to a basis consisting of eigenvectors of
Ad(exp Y). Recall that all eigenvalues of Ad(exp Y) are real and positive. Let 7
be the largest eigenvalue of Ad(exp Y) and let

V ={Een|Ad(exp Y)(§) =n&}

Then V is an abelian Lie subalgebra of n invariant under Ad(exp Y). We shall
show that for all x,e N

U (V — L:{ log xOJr(n,-a,-“la“N‘A”)) (4.3)

acA

is an (a, B)-winning set for all a, B € (0, 1) such that 1 —2a + o > 0. Since exp is
a diffeomorphism, by Proposition 3.1 this implies that for all x,€N,
(xo'expV)NXNQ, where X is the set as in (4.2) and 2 is any bounded
nonempty open subset of N, has Hausdorff dimension /, provided it is nonempty.
Since the natural quotient map of N onto N/exp V is differentiable, by Theorem
2.10.25 of [5] it follows that for all s <m the s-dimensional Hausdorff measure of
XNQis o; thus the Hausdorff dimension is at least m. But since £ is also of
Hausdorff dimension m this implies that X N Q is of Hausdorff dimension m, thus
proving the theorem.

It remains to prove the assertion about the set in (4.3), for which we proceed
as follows. For t>0 let ¢, =exp(—logt/logn)Y. Then (Ad ¢; v =tv for all
veVandt>0. We fixxoe Nand forieN and 0<t=1 put

S, t)=logxer(na; @7 'N"A7)N V.

We would like to estimate 7(S(i, ¢)) (cf. §3 for definition). FixieN and 0<t=<1
and let v, v,e€S8(i, t). Then there exist y;, y,e 7(N"A~) such that expv,; =
xona;'@; 'yipa; for j=1 and 2. Then exp(v,—v))=a;'¢;'y;'y,0a;
Therefore v, — v, =log (a; '@, 'yT'y29.a;) = Ad a; '¢; '(log y1'y,). Thus (Ad a,¢,)
X (v —v;) =logyr'y,. Let

A =sup {||llog y7'ys|| [y1, y. € A(N~A7)} (4.4)

which is finite sincé mw(N~A7) is a bounded subset of N (cf. Corollary 1.7). Also
we have (Ad a,¢,) (v, —v,) =t"'n"%v, — v,) where, as in §2, t; € R are such that
a;'=expt;Y. Thus we get that ||jv, — v,|| = Am* for all vy, v, €S(i, t). Hence
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7(S(i, t)) = Atn" for all ie N and 0<¢<1. For all i e N, put 7, = An". We have
noted earlier (see the proof of Proposition 2.5) that t; =20, where o is the
constant as in Remark 2.3. Thus we get that 7, < An*° = M, say, and 7(S(i, t)) <
tt; for all i e N, which shows that condition a) of Theorem 3.2 is satisfied for the
sets S(i, t) (with constants independent of the compact set C involved in the
condition).

Now let u € (0, 1) be given and let i and j be such that ut; <7, = u~'t;. Since
T;= An" and ;= An", we have (log n)|t; — ;| = —log u. Put ¢, = —log u/log n >
0. Then by Lemma 1.8 there exists a neighbourhood € of the identity in N such
that ntN"AKN(exptY)N"A™K is nonempty for all ne £ and te[—t, t).
Recall also that by Remark 2.3 the sets n,wa,NA,K, peN are pairwise
disjoint. In particular, n,a; '(exp —0Y)N"A™K Nn;a; '(exp —oY)N~ A~ K is empty
and hence so is a;'a,N"A"KNaj(exp aY)(n;'n;)(exp —oY)a;'N"A"K.
Since a;'aj=exp(t;—¢t)Y and (y—t)e[—t,1t] we conclude that
aj(exp oY)(n; 'n;)(exp —oY)a; ' does not belong to . Let r>0 be such that
exp B(0, r)= Q. Then n;'n; does not belong to a;'exp —oY exp B(0,r)
(exp oY)a; and hence log n; 'n; does not belong to Ad(a; ' exp —aY)(B(0, r)).

Now let A, o and r be as above and let &, > 0 be such that Ad ¢, '(B(0, A))
Ad (exp —oY) (B(0, r)). Note that such &, exists since all eigenvalues of Ad ¢;!
tend to 0 as t— 0. Further, we get that for all ¢t € (0, €;), Ad @, '(B(0, 4)) =
Ad(exp —oY)(B(0, r)). Now we claim that if i,j € N are such that ut, < 1, < "',
and € (0, £;) then S(i, ) and S(j, t) are disjoint: Let, if possible, the inter-
section be nonempty. Then there exist 2z,€a;'p;'n(N"A7)pa; and
zea 'g;'n(N"A7)@a; such that xomz;=xon;z,, Then n;i'nj=z2z;'€
(a; '@ 'A(N"A)@a) (a7 '@ 'n(N"A7) 'g.a;). Without loss of generality we
may assume f =¢; then a; 'a(N"A7)a,=n(a;'N" A7) =n(a; (a;'a))N"A") =
n(a'N~(a; 'a;))A7)cn(aj'N" A7) =a;j 'w(N"A7)a;. Thus we get that

ni'nje (@ '@ ' n(N"AT)@a)(a; o7 'n(N"AT)  p,a))
=a; '@ ' tn(N"AT)r(N"A7) 'p.q;
cexp Ada; ¢, (B(0, A)) = exp Ad a; '(exp —aY) (B(0, r)).

Thus we find that log n;'n;e Ada;'(exp —0oY) (B(0,r)), which however
contradicts the choice of r; hence the claim must hold.

To complete the proof we shall find €€ (0, ;) so that condition b) of
Theorem 3.2 is satisfied. First we prove the following Lemmas.

Recall, that 7(N~A~) contains a neighbourhood of the identity in N. Hence

there exists A’ € (0, A), where A is as in (4.4), such that exp B(0, A’) is contained
in t(N"A").
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4.5. LEMMA. Let t,t'>0 be such that 4m*A*(A’) *t=t'<%. Let x,€
(Ada; '@ ')(B(0, A)) and x, ¢ (Ada;'@; ") (B(0, A)). Then

|x1 —x2|| = (m~ '’ A’ — tA)n"~°
where, as before, m is the dimension of N.

Proof. Lete,, ..., e, be an orthonormal basis of n consisting of eigenvectors
of Ad expY and let n,,...,n, be the corresponding eigenvalues. We may
assume 7, =17. Fors,,...,s,>0let

R(s1, ..., Sm)={D Ee:||&|<s; for all i}

Then x,e(Ada;'e;HR(4A,...,A)=R(A,,...,A,) where A, k=
1,..., m, are A times the eigenvalues of Ad a; ;! corresponding to e,. On the
other hand x, does not belong to (Ada;'e; ) R(m™'A',...,m'A")=
R(m™'A;, ..., m™'4A,,), where Ay, k=1,2,..., mare A’ times the eigenvalues
of Ada;'p;! corresponding to e,. Hence for some k=1,...,m the e,
coordinate of x; — x, is at least m~'A; — A, and hence ||x, — x,|| =m™'A; — A,.
Observe that if n, =7 then A, =n"t'A'" and A, =n"tA and the lemma would
hold. We shall now uphold it in general.

Since G is of R-rank 1, for any one-parameter subgroup whose adjoint action
is diagonalisable over R, the logarithms of the eigenvalues of the adjoint action of
any nontrivial element of the subgroup, form a root system in R. In particular, it
follows that the only possible eigenvalue of Adexp Y other than 7 is V7 (a
version of the lemma can also be proved without using this fact, if the condition
on t' is modified suitably — but, for simplicity, we choose the present course).
Thus if for some k=1,...,m, n#n then m™'A,— A, =n“*(m~'A'Vt' -
AV = 0" °(m ' A’Vt' — AVY), since t; < 20 for all i. Observe that m™'A’(Vt' -
) =m 1AV (1= V') =24Vi(1 — Vt'); since ¢’ <3, 1-Vt')=3(1 - Vi) and
hence we get m~'A'(Vt' —t')= A(Vt —t) and consequently m™'A'Vt' — AVi=
m~1A’t' — At. Hence for k as above we get m ™A, — A, =n""°(m~'A’'t' — At) as
desired.

For any i e N and ¢ > 0 we put

S'(i, ty=log n(na; ' @7 'N"A7) = na; '@ 'n(N" A7) p.a;.
4.6. LEMMA. For any compact subset C' of n there exists a constant L >0

such that if for some i, S'(i, 1)NC’' is nonempty then S'(i, 1) is contained in
B(, L).
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Proof. Recall that if ;€ R are such that a;'=exp Y then ;<20 for all i,
where o is the constant as in Remark 2.3. Hence by Lemma 1.2 U, #(a;'N"A")
is contained in a compact subset, say Q. Let L, =0 be such that (exp C')Q ' is
contained in exp B(0, L,). Let L >0 be such that (exp B(0, L,))Q is contained in
exp B(0, L). Let i be such that S'(i, 1) N C’ is nonempty; then so is exp S'(i, 1) N
exp C'. Hence there exists y,e m(a;'N"A”) such that n;y,eexpC’. Then
n;e(exp C)ys' = (expC')Q " and hence logn; € B(0, L,). Then for any y €
a(a;'N~"A~) = Q we have log n;y €log (exp B(0, L,))Q < B(0, L), which proves
the lemma.

We are now ready to verify condition b) of Theorem 3.2 for the family of sets
S(i, t). Let u € (0, 1) be as before and let a compact subset C of V be also given.
Let L>0 be such that the conclusion of Lemma 4.6 holds for C'=
log x5 '(exp C). Since exp is a diffeomorphism and the metric on N is translation —
invariant there exists ¢ € (0, 1) such that

¢ '|[log y; — log y,|| = |llog y1'y.|| Z ¢ |[log y, — log y,|| (4.7)

for all y;, y, e xoexp B(0, L)U Q~'Q, where, as in Lemma 4.6, Q is a compact
set containing 7(a;'N"A") for all i. Let A, A’, n, 0, m and €, be as before.
Without loss of generality, we may assume £, <3, A’ <1 and A>1. Now put

€= %CZ(A-IArm-—l)Zn—-a(l g ‘u'——l)—le1

Recall that we have (already) chosen 7, = An" for all i. Now let ¢ € (0, £) and let
i, j € N be such that ut; <1, < p~'v; and S(i, t) N C and S(j, ) N C are nonempty.
By our earlier discussion the first condition implies that S(i, ¢') and S(j, ¢') are
disjoint for ¢' € (0, &,). In particular this implies that

d(S(i, t), S(j, t))=d(S(, t), aS(, t')) (4.8)

for all ¢’ € (¢, £,), where O denotes the boundary of the set in question. Now let
t' € (e, — &, €;). Note that in particular ¢’ >4m?A*(A’)"%c. Let v, €S(i, t) and
v, € 38(i, t'). Then there exist y, € w(a;'@;'N"A”) and y, € dn(a; '@;'N"A")
such that exp vx =xon;y, for k=1 and 2. Then by (4.7) we have |v, —v,|| =
¢ |[log (xon:y1) " (xomy2)|| = c [[log y1'ya|| = ¢*||log y; — log y,||, since y, y.€ Q.
Since y, € dx(a;'@;'"N"A7), log y, does not belong to (Ada;'¢;")B(0, A")).
On the other hand log y, is contained in (Ada;'@;")(B(0, A)). Hence,
by Lemma 4.5 ||logy, —logy,||=(m~'t'A’ —tA)n"~°. Hence |jv,—uv,|=
cAm ™A —tA)n"  =c*A'(m™ ' A’ —tA)n~°. Since te (0, €) and t' > €, —
e, we have m WA —tA=m (e, —e)A'—eA=m " 'e,A' —2eA=5¢"*(1 +
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u NeAn® —2eA=c*(1+ u"")eAn°. Hence |jv,—v,||ze(l+u Y1, =e(r;+
7;). Since v, and v, were arbitrary elements of S(i, t) and 3S(i, t') we conclude
that d(S(i, ). 3S(i, t')) = €(v; + 7;). Hence by (4.8), d(S(i, t), S(j, t)) = e(7; + ;)
for any t € (0, €), which shows that condition b) of Theorem 3.2 is satisfied for the
sets S(i, t), ieN, 0<t<e. Hence by that theorem, for every x, € N, the set in
(4.3) is an (a,B)-winning set for all &,B € (0, 1) such that 1 —2a+ aff >0. As
noted before this implies the theorem.

4.9. Remark. If G =S80(m, 1), the special orthogonal group of a quadratic
form of signature (m, 1) and A = (exp tY) is a one-parameter subgroup such that
Ada, a € A, is diagonalisable over R then Ad (exp Y) has only one eigenvalue on
the Lie subalgebra n of the Lie subgroup N as defined in §1. In this case, N is
canonically isomorphic to R™~! (via the exponential map) and the above proof
actually shows that the set X defined by (4.2) is itself an (a, f)-winning set for any
a,f€(0,1) such that 1—2a+ af>0. It turns out that in this case each
n(na;'a”>N"A7) is an open ball and the condition as in Corollary 3.4 is
satisfied. We refer the reader to [4] for a discussion in this regard (see also
Corollary 5.2 below).

4.10. Remark. Though for simplicity in the proof of Theorem 4.1 we chose V
to be the eigenspace corresponding to the largest eigenvalue of Ad (exp Y), it is
not difficult to modify the proof to show the following: If V is an abelian
Ad (exp Y)-invariant Lie subalgebra of n such that the largest eigenvalue of
Ad (exp Y) on V is also the largest among all eigenvalues, then for any x, € N the
set defined in (4.3) is an (a,B)-winning set for all «,B€(0,1) such that
1-2a+ af >0. This has to do with the fact that the conditions in Theorem 3.2
involve thicknesses of sets and not diameters. It, however, does seem necessary
to assume V to be abelian, since otherwise, in the computation for verifying
condition a), we get various terms that cannot be controlled. We shall however
not go into the details regarding these observations.

§5. Bounded orbits of flows

We can deduce the following conclusion about the set of bounded orbits of
flows, rather than trajectories.

5.1. THEOREM. Let G be a connected semisimple Lie group of R-rank 1
and let I be a lattice in G. Let G be equipped with a metric obtained as a quotient
of a left-invariant metric on G. Let (g,) be a one-parameter subgroup such that
Ad g, has an eigenvalue (possibly complex) of absolute value other than one. Then
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for any nonempty open subset 2 of I'\G the set
{I'g € Q| the (g,)-orbit of I'g is bounded}

is of Hausdorff dimension equal to the dimension of G.

Proof. Let (g) be a one-parameter subgroup as in the hypothesis. Let
g = s, t € R, be the Jordan decomposition; here (s,) and (u,) are one-parameter
subgroups consisting of semisimple and unipotent elements respectively, (that is,
the matrix for the adjoint action is semisimple or unipotent respectively)
commuting with each other. Since Adg, has an eigenvalue of absolute value
other than 1, Ads, is non-trivial for all t#0. Since G is of R-rank 1 such an
element s, does not commute with any non-central unipotent element. Since the
center of G is discrete it follows that the one-parameter subgroup (u,) is trivial.
Hence (g,) consists of semisimple elements. Then g, may be expressed as g, =c,
d,, t e R, where (c,) and (d,) are one-parameter subgroups commuting with each
other and such that (c,) is contained in a compact subgroup of G and (d,) consists
of semisimple elements such that all the eigenvalues of Add,, teR are real.
Evidently, for any g € G, {Igg, |t € R} is bounded if and only if {I'gd, |t e R} is
bounded. Hence, in proving the theorem, we may without loss of generality also
assume that all eigenvalues Ad g, are real. By conjugating by a suitable element
we may assume (g,) = (exptY), the one-parameter subgroup as in the earlier
sections.

We now use the notation as in §1. Also &:G— G/P X G/P be the map
defined by @(g) = (gP, gP~). Let E*(I') be the subset of G/P defined in §2 and
let E~(I') be the subset of G/P~ defined analogously by

E~(IN={xP~ e G/P~ | {I'x(exp —tY)| t =0} is bounded}

It is obvious that for ge G, {Igg.|teR} is bounded if and only if ®(g)e
E*(I') x E~(I'). By Theorem 4.1, for any nonempty open subset Q* of G/P, the
Hausdorff dimension of E*(I')N Q" equals the dimension of G/P. Similarly
applying that result to (exp —tY) in the place of (exp tY) we conclude that for any
nonempty open subset 2~ of G/P~, E~(I') N 2~ has Hausdorff dimension equal
to the dimension of G/P~. Since the Hausdorff dimension of the Cartesian
product of two metric spaces is at least as much as the sum of the Hausdorff
dimensions of the components (this follows from Theorem 2.10.27 of [5], for
instance) we can conclude from the above that for any nonempty open subset 2’
of G/P x G/P~ the Hausdorff dimension of E*(I') X E"(I') N Q' equals the
dimension of G/P X G/P~. Observe that PN P~ (= MA in the notation of §1) is
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of codimension equal to the dimension of G/P X G/P~. Hence by the rank
theorem it follows that the map & defined above is an open map. Now let Q be a
nonempty open set and Q' = P(L2). Then L' is a nonempty open set and by our
earlier observation E*(I') x E~(I') N ' has Hausdorff dimension equal to the
dimension of G/P X G/P~. Since @ is differentiable, by Theorem 2.10.25 of [5]
this implies that @~ '(E*(I') x E~(I')) N 2 has Hausdorff dimension equal to the
dimension of G. Since for any g e G, {Igg,|t€R} is bounded if and only if
&d(g)e EY(I') X E~(I') and I'\G is equipped with a metric obtained as a quotient
of the metric on G, the last assertion implies the theorem.

5.2. COROLLARY. Let M be a Riemannian manifold of constant negative
curvature and finite Riemannian volume. Let S(M) be the unit tangent bundle of
M; that is,

S(M) = {(x, &) | x € M, & a tangent vector at x such that ||§|| =1}

For (x, §) e S(M) let y(x, E) be the geodesic on M through the point x in the
direction of E. Let S(M) be equipped with the canonical structure of a Riemannian
manifold. Then for any nonempty open subset Q of S(M) the set

{(x, &) € | y(x, §) is bounded in M}

has Hausdorff dimension equal to the dimension of S(M), viz. 2m — 1 where m is
the dimension of M.

Proof. 1t is well-known (cf. [11], for instance) that S(M) as above can be
realised as a double coset space I'\G/C, where G =SO(m, 1), the orthogonal
group corresponding to a quadratic form of signature (m, 1), I'is a lattice in G
and C is a compact subgroup of G; further, there exists a maximal compact
subgroup K of G containing C such that M may be identified with '\G/K, so that
the canonical quotient maps of I'\G/C onto I''G/K and of S(M) onto M
correspond to each other. The geodesics on M correspond to the images of orbits
of a one-parameter subgroup (g,) (viz. {I'gg,K |te R}, g € G) such that (Adg,) is
diagonalisable over R. Since G = SO(m, 1) is a simple Lie group of R-rank 1, I''is
a lattice in G and K is a compact subgroup Theorem 5.1 implies that for any
nonempty open subset Q' of I'G, {Ige Q' | {I'gg.K |t e R} is bounded in I'\G}
is of Hausdorff dimension equal to the dimension of I'\G; hence the image of
that set in '\G/C has Hausdorff dimension equal to the dimension of S(M). But,
by the above comments, for any nonempty open subset £ of S(M) {(x, §) €
Q| y(x, &) is bounded} is the image in '\G/C = S(M) of a set as above, for a
suitable open set ' in I'\G . Hence the Corollary.
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COMMENTS AND QUESTIONS. i) It would be interesting to know
whether the analogue of Theorem 5.1 holds for any Lie group G, closed subgroup
H such that H\G admits a finite G-invariant measure and (g,) such that Ad g, is
semisimple for all ¢. Using the same ideas as in §4 of [2] and a recent result of D.
Witte (cf. [19] Corollary 4.13) it is easy to reduce the question to the case of a
semisimple factor group G’ of G and a lattice I'' in G’ in the place of G and I
respectively. If G' is of R-rank =1 (for instance if G has no factor group of
R-rank = 2) then Theorem 5.1 applies and we get the desired analogue. Also, as
noted in the introduction, by a Theorem of W. M. Schmidt [15] and the
correspondence established in [2] for the flows on SL(n, R)/SL(n, Z) induced by
one-parameter subgroups of the form diag(e™, ..., e, e¥, ..., e*) the set of
points on bounded trajectories is of Hausdorff dimension equal to the dimension
of the homogeneous space. For n = 3, this is, of course, not covered by Theorem
5.1, and suggests that the analogue sought after might indeed hold.

ii) Let G and I be as in Theorem 5.1. But now suppose that Ad g, is unipotent
for all teR. Then (g,) is contained in a horospherical subgroup, say N,
corresponding to a one-parameter subgroup (a,) such that Ad a, is diagonalisable
over R. In [2] we proved that for ge C, NgI is compact or dense in G/I'
according to whether {a,gI' |t =0} is divergent or not. In the former case the
orbit {g,gl' |t € R} is evidently bounded. It seems reasonable to conjecture that
in the latter case also {g,gI" | t € R} is bounded only if it is contained in a compact

orbit of a proper subgroup H of G.

iii) Corollary 5.2 suggests the question whether analogous assertion would

hold for manifolds of variable negative curvature.
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